
ACHIEVING FLEXIBLE
AUTONOMY IN MULTIAGENT
SYSTEMS USING CONSTRAINTS

MARK EVANS
JOHN ANDERSON
GEOFF CRYSDALE
Department of Computer Science, University

of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Organizations influence many aspects of our lives. They exist for one reason: they can accom-

plish things that individuals cannot. While recent work in high-autonomy systems has shown

that autonomy is a critical issue in artificial intelligence (Al) systems, these systems must also
be able to cooperate with and rel y on one another to deal with complex problems. The

autonomy of such systems must be flexible, in order that agents may solve problems on their

own as well as in groups. We have developed a model of distributed problem solving in which
coordination of problem-solving agents is viewed as a multiagent constraint-satisfaction plan-
ning problem. This paper describes the experimental testbed that we are currently developing

to facilitate the investigation of various constraint-based strategies for addressing the coordi-

nation issues inherent in cooperative distributed problem-solving domains.

INTRODUCTION

Management science research has developed many descriptive theories of

designing and analyzing human organizations (Galbraith, 1973; March et al.,

1958; Simon, 1957). Understanding the behavior of people in organizations has

become increasingly important in managing individuals and groups to maximize

the performance and effectiveness of an organization. Distributed artificial intel-

ligence (AI) research on the other hand, is concerned with the study and devel-

opment of organizations of computerized problem solvers (possibly integrated

with human problem solvers). The two disciplines share many common issues:

how to select organizational structures and decentralized coordination regimes;

how to decompose problems and distribute responsibilities and tasks among a

number of problem-solving agents; how to coordinate these agents to solve

problems cooperatively; and how to measure the effectiveness of the organiza-

tion in meeting individual and organizational goals (Bond and Gasser. 1988).

It is important, when designing or studying a multiagent system, to consider

the autonomy of the agents involved. Autonomy, the ability of an agent or sys-

tem to function independently, is clearly an important characteristic and, unfor-

tunately, one that has been almost universally lacking in AI systems to date

(Zeigler. 1990). Completely autonomous AI systems would be desirable in many

situations; all too often, humans are expected to intervene where knowledge or

Applied Artificial Intelligence: 6:103-126, 1992
Copyright	 1992 by Hemisphere Publishing Corporation 	 103

104	 M. Evans et al.

senses fail. However, one can think of just as many situations where completely
autonomous agents would not be desirable. Indeed. the reason humans organize
into roups is that more can be accomplished in unison than could be done
autonomously. Therefore, in the design of agents for a multiagent s y stem, we
require autonomy to be flexible, in that agents will sometimes be required to
work completely autonomously, but will often be commanded or influenced by
others to some degree. This flexibility must also be extensible to higher-level
organizations: societies of agents may be autonomous, or dependent on other
agents or societies.

We have developed a model of distributed problem solving in which coordi-
nation is viewed as a multiagent constraint-satisfaction planning problem (Evans
and Anderson, 1989). This architecture supports the basic multiagent planning
actions of task decomposition, task distribution, and result integration. It also
allows control of agents to be centralized, partially centralized, or completely
distributed. This in turn allows agents to be completely autonomous (possibly
allowing communication with other a gents for information gathering without
any formal control or influence, or simply complete ignorance of other agents
and their activities), to be completely dependent on other agents, or to possess
varying degrees of freedom in between. Adaptive planning (the modification of
existing plans to cope with execution failure or an unexpected change in the
environment) is also supported. through monitoring and replanning using con-
straint relaxation as a means of negotiation between agents.

This paper describes the experimental testbed that we are currently develop-
ing to facilitate the investigation of various constraint-based strategies for ad-
dressing the coordination issues inherent in cooperative distributed problem-
solving domains. The testbed is being developed in Allegro Common LISP, and
consists of a set of constraint-based control and representation mechanisms that
enable the construction of cooperative problem-solving agents. Individual agents
are implemented as LISP procedures. and tools are provided for adding an
intelligent coordination interface to each agent.

We are currently experimenting with these tools by simulating the coopera-
tive activities of a number of agents in a simplified automotive repair shop
environment. This domain was chosen because we have found it to be typical of
most cooperative problem-solving situations. The operations of a repair shop
involve interactions between many classes of agents, which can be divided into
two categories: a kernel of agents who provide fundamental problem-solving
activities (e.g. mechanics, managers), and a group of peripheral agents who
provide ancillary services (e.g. accountants, other repair shops, wholesalers).
The organization of these agents is partially hierarchical (e.g. management
agents can supervise and dictate the activities of worker agents) but also partially
linear (e.g. two mechanics may make decisions as to which tasks each will
perform). The autonomy of the agents within the repair shop environment also

Flexible Autonomy in Multiagent Systems	 105

varies: some work highly autonomousl y, while others are more ti ghtly con-
trolled. Various examples from this application will be used throughout the pa-
per to illustrate the tools and techniques we are currently investi g ating; the
reader is referred to Evans and Anderson (1989) for additional examples and
details of this application. This domain will be stressed considerably in order
that the reader may relate the functions provided by the testbed to a real-world
scenario. However, it must be emphasized that the testbed is a flexible environ-
ment. which can accommodate the implementation of many distributed problem-
solving situations.

THE EXPERIMENTAL DOMAIN

In order to give the reader a better understanding of the workin g s of the
testbed itself, we will first describe the agents, resources, and flow of informa-
tion in the domain we have chosen as a test for the system. The following
discussion of the automotive repair shop domain is based on analysis of the
repair shop associated with a major General Motors dealership in Winnipeg,
Manitoba. It is not our intention to imply that all automotive repair shops oper-
ate in the manner described; however, we feel that it is representative of many
similar organizations and that unique aspects of the operation could be modified
to accommodate the peculiarities of other such organizations.

The general layout of the repair shop is illustrated in Fig. 1. The repair shop
is divided into several areas includin g offices, the tower (an office overlooking
the work area), repair stalls with hoists. and repair stalls without hoists. Each set
of repair stalls is outfitted with a limited number of support tools such as diag-
nostic computers and high-pressure ratchets. Mechanics are required to supply
all the other tools they might need.

A repair enters the shop in the form of a work order initiated by a service
writer. The work order is routed to the tower operator for task schedulin g . Tasks
are scheduled on an ad hoc basis: when a mechanic in a given group becomes
available, the tower operator assigns the next task from the queue of current
work orders associated with that group. There is no ranking of the mechanics
within a group; each is considered to have the same abilities. This is not neces-
sarily realistic, however; mechanics aspire to certain designations within their
profession (i.e., Grand Master. Master. etc.). These designations are not consid-
ered in the task-allocation protocol employed in this particular environment, but
they could be represented easily usin g our model.

The repair shop encompasses several groups of agents, indicated in Fig. 1.
The shop manager serves as the shop administrator. He or she is mainly con-
cerned with maintainin g public relations and does not need in-depth knowledge
of mechanical repairs. The tower operator coordinates work throu gh the shop.

He or she assi gns tasks to available mechanics. keeps track of the progress of

106	 M. Evans et al.

each work order, and arranges the movement of vehicles from stall to stall. The
tower operator knows the prescribed duration of each task, and also has a lim-
ited amount of mechanical knowledge. The service writers act as liaisons with
the customers. They provide the initial description of the repair based on the
customer's description of the problem. A service writer must have a relatively
good understanding of mechanical repairs in order to transform the customer's
description into one that can be used by the mechanics. The service writers also
track each work order that they have created as it pro g resses through the shop.
The shop foreman is the head mechanic. He or she has a broad and deep under-
standing of mechanical repairs, and test drives all vehicles before any work
begins and after all work has been completed. The shop foreman also acts as
advisor to the other mechanics in problem situations.

Mechanics in the automotive repair shop are divided into several groups
whose names are self-explanatory. In addition to the groups shown in Fig. 1,
larger groups of mechanics also exist: transmission mechanics and heavy me-
chanics form a group, as do tune-up and electrical mechanics. Each member of
each group can perform all the tasks associated with the group.

The automotive repair shop has an organizational hierarchy that describes
the formal authority structure. The shop manager is at the top of this hierarchy
and has ultimate authority. Reporting directly to the shop manager are the tower

FIGURE 1. The automotive repair shop.

FIGURE 2. The conceptual model.

operator. the shop foreman, and the service writers. All the mechanics are under
the direct supervision of the shop foreman. The shop foreman has the final say
on all repairs. The tower operator and the service writers can also exercise a
certain amount of control over the mechanics by authorizing repairs.

Established lines of communication that exist within the shop are denoted in
Fig. 1. Much of the communication that occurs between the various groups of
agents is based on the structure provided by the organizational hierarchy.
Among the various groups of mechanics, intragroup communication is quite
common in the form of collaboration on difficult repairs: however, intergroup
communication is rare.

THE CONCEPTUAL MODEL

The major focus of our research to date has involved the design of control
regimes and knowledge representations that allow agents to reason about local
activities and cooperatively coordinate global activities with other agents.
A gents are implemented as two-component entities, as illustrated in Fig. 2. The
problem-solving component addresses the tasks that are assi g ned to the agent: it
thus embodies the knowledge required to perform the tasks required of the
agent, the inference/control mechanisms necessary to represent that knowledge,
and the sensors and effectors necessary for the agent to interact with the outside

108	 M. Evans et al.

world. The planning component contains a knowled ge-based model of the world
in which the a gent operates; this includes models of the agent's own abilities, the
abilities of other a gents in the environment, and the relationships between
agents. The problem-solving component performs tasks that the agent is able to
solve itself, while the plannin g component acts as an intelli g ent coordination
interface that determines how tasks the agent is to perform may be broken down.
(possibly) distributed to other a gents, and integrated. Maintaining a distinct co-
ordination interface enables knowledge and control associated with coordination
activities to be represented explicitly rather than coded implicitly with basic
problem-solving actions. This allows for commonalities amon g coordination
functions to be noted and expressed appropriately, and it also enables develop-
ment of coordination responsibilities to occur more or less tightly coupled from
the problem-solving responsibilities as dictated by the domain.

Agents are grouped into societies (or agencies), and each agent may be a
member of many societies simultaneously. Lines of communication exist be-
tween a gents; these may be either direct or indirect (via another agent), and the
communication methods themselves may differ in speed and cost. This informa-
tion is stored and manipulated by the planning component of each agent. In our
current implementation, we are simulatin g the distribution of agents usin g a
controlled multitaskin g environment; we can, however, simulate different distri-
bution speeds and costs by modifyin g an agent's coordination knowled ge accord-
ingly.

A gents are also related to one another through lines of authority. Authority
has many uses in a distributed problem-solving environment (Meehan, 1980). In
our model, authority agents perform two main functions. Primarily, they are
used to assist in negotiations between agents with opposed interests. Should two
agents arrive at a deadlock in negotiations, their respective authority agents (if
any) may be consulted for advice on a compromise. Authority agents are also
used to provide information of a more globally coherent nature: information of
this sort aids in maintaining global plan coherence and the wise allocation of
resources.

Societal and authority relationships, together with various constraints that
will be described shortly, represent the set of methods available for defining an
agent's autonomy. Highly or completely autonomous a gents will have few or no
lines of authority, and may have only loose societal ties. More tightly controlled
agents will have strong societal ties. be strongly influenced by authority agents.
and have additional constraints imposed on them.

Organizational Knowledge

Each a gent possesses knowled ge describin g its view of the organization (the
view of the or g anization will vary dependin g on the agent's role and function: an

Flexible Autonomy in Multiagent Systems	 109

agent charged with managing a group of subordinate agents will undoubtedly
have a more global view of the organization than its subordinates). This knowl-
edge is represented using four different types of knowledge sources (KS's)
within each agent. Plan knowledge consists of skeletal plans. which prescribe
ways of decomposin g problems and coordinating the integration of results. Task
knowledge describes agents (or groups of agents) in the organization that are
capable of carrying out tasks specified within plans. Agent knowledge describes
protocols to be used to interact with other agents when attempting to distribute
tasks. Coordination knowledge describes an agent's role within the organization.
its powers of authority over other agents (or its own authority figures). and
resource allocation information. Thus, information about the organization and
the agent's means of contributing to it are represented explicitly (the planning
process associated with these knowledge sources is described in the section on
planning). Much of this knowledge will be incomplete and possibly in conflict
with other members of the organization.

This explicit representation of organizational knowledge is not novel. How-
ever, the manner in which knowledge is represented and manipulated is innova-
tive: much of the knowledge is represented as sets of constraints and corre-
sponding constraint relaxations , which can be applied (through negotiation)
when conflicts and inconsistencies arise. For example. agent knowledge sources
can include constraints such as the information a particular agent requires to
perform a specific task or limitations inherent in an agent's ability to perform a
task. Coordination regimes defined in our architecture allow each agent to rea-
son about local and global planning by selecting applicable knowledge sources
and by satisfying relevant constraints; when conflicts arise, agents can interact
cooperatively with other agents to reformulate problem decompositions. task
descriptions and distributions, and the integration of results.

Constraints in Multiagent Planning

The representation of a distributed problem-solving environment in terms of
constraints yields many advantages. Many of these are at a low level and are
provided by the constraint-directed representation. For example, a single repre-
sentation for all knowledge makes that knowledge more understandable and
easily organized: it also simplifies manipulation. More importantly. when a set
of constraints cannot be satisfied, selected constraints can be relaxed to arrive at
a satisfying solution (the use of relaxation to find a solution that best satisfies a
set of constraints has long been known and is the cornerstone of constraint-
directed reasoning). Explicit representation of these relaxation methods make
for easy selection of alternatives when constraints cannot be satisfied. However.
the majority of the benefits of using constraints as a representation mechanism
appears at high levels: usin g the organization presented here, we can flexibly

110	 M. Evans et al.

TABLE I. Categories of Constraints in Multiagent Planning

Physical

Maximum weight (hoist class A. 4000)	 Resource utility (call-back repair. 8. 10)
Temporal	 Resource utility (Muffler repair. 1. 5)

Do before (body repair. engine repair) 	 Commitment

Availability	 Resource commitment (clutch repair. 4. M)

Must have (diagnosis, dia g nostic computer)	 Communication

Ability	 Must inform (additional repair. service writer)

Can perform (tune-up mechanic, li g ht tune-up.	 Organizational
7, 10)	 Role (agent 1, tune-up mechanic. 10)

Can perform (li g ht mechanic, tune-up. 0. 0) 	 Maximize (customer satisfaction)

Relational	 Minimize, (Idle resources)

group-task (Engine repair. Transmission repair)

represent entire organizations and the knowledge within each agent in terms of
constraints and relaxations.

The types of constraints necessary for distributed problem solving can be
divided into a number of categories, but fall into two broad groups based on
their use. Fox and Smith (1984) describe a similar categorization for constraint-
based scheduling. However, while these types of constraints are also required in
multiagent planning, the differences in problem structure introduce a number of
additional types of information that are ideally represented as constraints (Evans
and Anderson, 1990b). Thus, while some entirely new types of constraints use-
ful in planning and coordinating cooperative problem-solvin g activities have
emerged, others in the list have been adapted from Fox's work (Fox and Smith,
1984).

The various constraint types are shown in Table 1, along with simple exam-
ples of each type of constraint taken from the experimental domain. One group
consists of those constraints that influence the development of multiagent plans,
while the other group consists of those that influence the coordination of mult-
agent actions. Since, in distributed problem solving, we wish to maintain a
balance between an agent's autonomy (i.e., its ability to solve problems on its
own and make its own decisions) and its cooperation with other agents (i.e., its
ability to consider and balance information from other agents in making deci-
sions). it is crucial that an agent's individual problem-solving abilities be kept
distinct from its distributed problem-solving functions. Through the distinctions
made in the conceptual model and the distinctions made here in the low-level
constraint representation. this is accomplished.

When constructing a plan, one must consider the natural limitations of re-
sources. requiring physical constraints. Temporal constraints are also crucial in
the construction of plans, in order to establish specific orderings among individ-
ual requests. messages. and tasks. Given that we require resources in the form
of tools or agents to perform our plan. availability constraints are also required.

Flexible Autonomy in Multiagent Systems	 111

In addition to these. ability constraints associate a level of capacity with physical
resources and a level of skill with knowledge resources. Ability constraints are
much easier to define for physical resources than for knowledge resources.
Abilities of physical resources are generally of a predicate nature: either they
can do somethin g or they can't. This is illustrated in Table I: A tune-up me-
chanic can perform a light tune-up with an ability factor between 7 and 10.
Finally. relational constraints specify connections among resources and tasks
that restrict or enhance actions. Some tasks may be mutually exclusive while
others may be complementary. As an example, the same mechanic can perform
engine repairs and transmission repairs: therefore, these tasks should be per-
formed consecutively in the same stall.

The types of constraints required to govern interaction between agents are
generally of a more abstract nature than are plan-generation constraints. Typi-
cally, some plans or specific plan components carry more or less significance
than others. Consequently, it is often necessary or desirable to constrain the
types of resources that can or should be used to carry out planned actions. We
have identified utility and commitment constraints, which address this facet of
task distribution and resource allocation.

Utility constraints govern the selection of planning resources. These con-
straints dictate the degree of applicability (as indicated by each resource's ability
constraints) that must exist between a resource (physical or knowledge) and a
task before a resource can be considered a candidate to perform the task. For
example, a call-back repair is an important task and is assigned a very high
utility constraint to indicate that it requires skilled resources to be used.

Commitment constraints are used to determine the relative importance that a
task carries in relation to other tasks being executed or whose execution is
pending, locally or globally, within the environment. These constraints set the
minimum and maximum amount of effort that should be expended while execut-
ing a task. Commitment constraints are also used to determine the amount of
effort that should be expended when attemptin g to resolve incompatibilities that
may exist between the distributor and recipient of a task (e.g. availability con-
flicts, ability conflicts, etc.). For example, in our experimental domain, we can
assign a 4-hour clutch repair a medium commitment constraint, to indicate that it
is important enough to warrant additional effort to resolve conflicts should they
arise. On the other hand, a low commitment constraint would indicate that only
minor conflicts should be tolerated. Agents may also become more committed to
tasks over time: as an agent expends more and more energy to complete a
certain task, its commitment to achieving that task increases as a result of the
investment in resources. Thus. an agent's existin g plans serve as constraints on
its future plans (Bratman et al.. 1988), and they force commitment constraints to
be modifiable over time as the agent's workload changes and it becomes more or
less committed to specific tasks.

112	 M. Evans et al.

While utility and commitment constraints are the most crucial of the coordi-
nation constraints in that they are always required, other important coordination
constraints exist as well. Communication constraints restrict the type and amount
of information an agent may share with another a gent. Reducing the use of
communication resources by being more selective about the messages that are
exchanged is accepted as one of the major goals of cooperatin g a gents (Durfee et
al., 1989). Communication restrictions can be used to force an agent to inter-
change only very important information (such as information about agent out-
ages) when the communication network is particularly busy. These constraints
can be relaxed to allow the exchan ge of less vital information (such as agent
workload reports), which would allow processin g across the organization to be
optimized. Constraints also exist with regard to the types of information that
agents can communicate. For instance, a service writer must be informed if a
vehicle requires additional repairs. Furthermore, communication constraints
may also identify the methods of communication that agents may use. These
constraints may be in the form of network protocols for computational agents or
real-world constraints for other situations; for example, a mechanic may not
communicate with a customer by telephone. However, some of these may also
be considered physical constraints since they represent a portion of an agent's
physical structure (e.g., a network protocol).

There are many constraints that do not fall into any of the categories dis-
cussed or that bridge several cate gories. We refer to these as organizational
constraints since they constrain an agent's role and function within an organiza-
tion. These constraints are of a general nature, identifying such things as global
goals (related to the purpose of the or ganization as a whole: this is loosely
analogous to metaplanning in a sin gle-a gent system) and their relative impor-
tance. the types of interagent activities that should be promoted (and those that
should be avoided), levels of authority that one agent has over another, and
group norms and beliefs.

Agent Interaction

A gents coordinate cooperative problem solving throu gh the exchange of in-
formation with one another. We divide this information into two categories:
problem-solving requests and notifications . These categories are analogous to
the request and inform actions described by Cohen and Perrault (1988).

Problem-solving requests are structures that describe an operation (or set of
operations) to be performed. an object (or set of objects) to which the operation
is to be applied, and possibly an agent (or class of a gents) that is to carry out the
operation. A request consists of a set of specific attributes and constraints that
describes the work to be performed (examples of such requests are shown in a
later section). Within a request. constraints may be imposed on individual attri-

Flexible Autonomy in Multiagent Systems	 113

butes. among two or more attributes, or on requests as a whole (e.g., a utility
constraint might delimit the quality of plans and/or agents that should be used to
fulfill the request). The recipient of the request must coordinate appropriate
problem solving in order to fill in the request components with acceptable val-
ues. The recipient may carry out these actions autonomously or may choose to
distribute some of the task to other agents.

Notifications are more general structures that can be used to convey other
types of information between agents. These types of information include logisti-
cal information such as agent work-load reports (which may influence the divi-
sion of labor) or notification of nonfunctioning a g ents (which are circulated
when a given agent finds that some other agent is nonresponsive). Notifications
may also convey planning information such as constraint-violation reports and
relaxation notifications . Constraint-violation reports are generated when a spe-
cific constraint associated with a request is violated. They describe and justify
the violation and provide a suitable number of alternatives (relaxations). An
agent receiving such a notification may choose a relaxation (or generate a new
one), and return a relaxation notification indicating its proposal. Selecting a
suitable relaxation method is a complex process, and a complete description of it
can be found in Evans and Anderson (1989). This results in a process of negotia-
tion, which continues until a suitable compromise has been reached. Examples
of the use of these structures will appear in a later section.

Planning

The organizational knowled ge maintained by an agent dictates the planning
involved in de% eloping and coordinating cooperative activities. Ideally, one
would like to plan all actions in advance and simply execute them in a prescribed
order. Indeed, this plan-then-execute approach is the norm in classical planners
such as STRIPS (Fikes and Nilsson, 1971). However, in any real-world environ-
ment. this approach is useless: we require the ability to achieve results in real
time in areas where the environment is changing either spontaneously or as a
result of other agents' actions (Anderson. 1990). Requiring results in real time
physically limits the time we may spend planning, as does a dynamic world:
chances are that by the time a long plan is constructed. some important aspect of
the environment will have been altered in such a way that the plan will be
invalidated. In order to cope with these restrictions, it is necessary for a planner
to merge planning, execution, and monitoring into a single, ongoing process
(Ambros-Ingerson, 1987). The planner must be able to interleave planning and
the execution of partial plans, and also incorporate a monitoring or sensing
component to recognize both successful execution of partial plans and spontane-
ous changes in the environment. Single-agent systems have been developed that
have incorporated this technique (Ambros-Ingerson. 1987; Wilkins, 1988), but

114	 M. Evans et al.

it is even more crucial in any attempt at multia gent planning. This is because the
problem that the interleaving process was meant to deal with (a spontaneously
chan g in g world) is g reatly compounded by the effects of other a g ents on the
environment. In a multiagent world. we may have models of other agents and
their activities, but we can never be completely certain they will not interfere
with our plans. We also have to coordinate the actions of agents to achieve larger
goals, which is difficult to accomplish effectively unless an interleaving process
is employed. Thus, a combination of planning and monitored execution forms
the basis for our multia gent planning architecture.

The Planning Process

An agent's plans are constructed in a hierarchical fashion on an activity
blackboard, contained within the planning component of each agent (shown in
Fig. 2). When requests are received, they are stored on the blackboard and
assigned a priority based on coordination knowled ge (e.g., in the repair shop, a
previous repair job that has resulted in further problems takes priority over a
first-time repair). The highest-ranked request is then selected and used to create
a root node of a plan tree on the blackboard, an example of which is shown in
Fig. 2. There may be several plan trees on the blackboard, each corresponding
to a request being processed (only one of which will be active at any given
moment). Coordination knowled ge is used to determine commitment and utility
constraints that denote the amount and type of resources (respectively) to be
allocated to the request (this process is described more completely in Evans and
Anderson, 1989, 1990a). These constraints are combined with those specified in
the request itself and attached to the root node's constraint list. The planning
component monitors the expenditure of resources, and low-priority requests
may occasionally have to be terminated in order to maintain organizational
goals. For example, if a very important repair request is sent to a mechanic
(e.g.. a call-back or a job for an important customer). the mechanic may have to
drop or postpone other requests that are pending. Such requests are rejected.
appropriate messages are sent to their sources, and all outstanding processing
associated with the requests is terminated.

A request is broken down into a number of alternative or conjunctive plans
by applying plan-decomposition knowled ge: skeletal plans represented in plan
KS's. Each plan KS has a precondition component, which constrains its applica-
bility to a particular request class, and an action component, which specifies
how to plan the execution of the request, (i.e., plan steps and coordination
information needed to fulfill the request). Usin g hierarchical plannin g tech-
niques. further plans are applied to break these plan steps down, until eventually
low-level tasks are realized. The plan tree is of the AND—OR variety: at any
level, we may have not only conjunctive subplans. but also alternative plans.
When a portion of a plan has been reduced to the task level, task-allocation

6	 M. Evans et al.

FIGURE 3. Plan execution and monitoring.

means to rank one KS ahead of another, and thus to prune low-quality or highly

incompatible methods and leave a reasonable subset.

Interleaving Planning, Execution, and Monitoring

Interleavin g planning with the execution of plans is a difficult task. Our

approach to the problem is summarized in Fig. 3. The ability to interleave

planning and execution with the architecture's dynamic replannin g capabilities is

provided throu gh the use of execution overseers. These are data structures that

are associated with each node (be it a high-level plan node or a low-level task

node) in a plan tree and that represent the agent's expectations from that particu-
lar node, that is, facts that are expected to change in the environment as a result

of the action(s) represented by the plan-tree node. Like the nodes in the plan

tree, these will also be hierarchical in nature: a hi gh-level overseer may define

expectations such as "Car repaired" or other facts of an abstract nature, while

lower-level nodes (under the same basic request) would consist of expectations

of various subtasks such as "Remove fan belt" or "Loosen bolt." These expec-

tations are broken down in the same manner in which hi gh-level plans are bro-

ken down into low-level plans.

Once a subplan is completely decomposed (i.e., we hit the task level), a task

may be executed by our problem-solving component or distributed to another

a gent. In the latter case, expectation information is included, combined with any

constraints that have been a greed upon between the distributin g and receiving

agents to form a new, hi gh-level execution overseer for the receivin g a gent. The

Flexible Autonomy in Multiagent Systems	 115

knowledge. in the form of task and agent knowledge sources. may then be
applied to distribute the tasks to the appropriate agent (or to the a gent's own
problem-solving component) for execution.

Selecting Planning Alternatives

Two major difficulties arise during this planning process: at any given time
we have a number of nodes from which to select for expansion and a number of
methods for expanding the node. The first problem is dealt with using a combi-
nation of a sophisticated scheduler associated with the activity blackboard and
the constraint-directed representation detailed earlier. In the same manner as was
done with requests, each node in the plan tree is ranked. This ranking is based in
part on constraints inherited from higher-level nodes. For example, if a subplan
was part of a larger plan to satisfy the important call-back request mentioned
earlier, the commitment and utility constraints indicating its importance would
be inherited, resulting in a higher rating. Other factors also influence this rating,
including the relative importance and difficulty of satisfying other constraints
associated with the node. For example, if a very strict time constraint were
placed on the action (e.g. it had to be ready for execution in a short time
because of the dynamic nature of the domain), this would in turn affect the
node's rating. Thus, the most important portions of the most important requests
are always worked on first. This sophisticated scheduling approach has been
used before in hierarchical, nonlinear planning (Ambros-Ingerson, 1987); how-
ever, node-ranking criteria have never been clear. The use of constraints to
encode information about the request results in more obvious methods of prefer-
ring one node over another. Indeed, constraints are always associated with a
ranking of some sort: if we have no method of preferrin g one constraint over
another, the power of the representation is lost.

The second major difficulty is the problem of selecting the most appropriate
way of breaking a higher-level plan down into lower-level actions (i.e., choos-
ing which of a repertoire of actions to apply). Here a gain, the constraint-directed
representation helps alleviate the problem. Each applicable KS has a utility mea-
sure (generated by invoking the KS's ability constraint) indicating the relative
utility of the method (i.e., ranking plans. tasks, and agents accordin g to their
perceived ability to carry out the required actions); and a compatibility measure
(generated using constraint satisfaction based on the number and type of invali-
dated constraints) indicatin g the de gree of compatibility between the activity
demanded by the plan node and a KS precondition, ranging from 0 (completely
incompatible) to 1 (completely compatible). Each KS also has associated with it
a utility threshold and a compatibility threshold, indicating bare-minimum re-
quirements for the KS to be applicable to a given request (i.e., a method may
tolerate some degree of incompatibility, possibl y with a reduction in its utility
measure to compensate for the incompatibilities that remain). This gives us the

Flexible Autonomy in Multiagent Systems 	 117

major difficulty that occurs when working with conjunctive plans is that sub-
plans may interact with one another. The constraint-directed representation ad-
dresses this problem: if a given task interacts with others, the constraints asso-
ciated with the task will prevent its execution until the affected tasks are also
ready for execution. and then the appropriate sequence may be executed (i.e.,
we impose linearity constraints when necessary).

Given that expectations can be defined, a methodology is also needed to
allow expectations to be confirmed or refuted (i.e. we must be able to state
whether or not the intended effects of an action were actually achieved). The
expectations set by a given plan-tree node may be confirmed in a number of
ways, which are also summarized in Fig. 3. If a task has been distributed to
another agent. that a gent can confirm (via a notification) that the expectations
have been met. or if they have not, the agent can indicate what has not been
achieved or what constraints have been violated. Expectations of tasks passed to
the agent's problem-solving component can be confirmed by sensing equipment
in the problem-solving component: for the moment, we follow convention in
planning systems (Ambros-Ingerson, 1987: Wilkins, 1988) and simply enter
changed predicates via a keyboard to avoid the many problems inherent in per-
ception. Finally, we have expectations at a high level, which are solved by
propa g ating the subplans' satisfied expectations upward to deduce satisfaction at
a higher level (part of the process of integrating subplan results to achieve
higher-level goals).

As stated earlier, the desire to have realistic execution monitorin g is part of
the larger goal of implementing interleaved planning and execution. For this, we
require two additional facilities. Since we may have alternative subplans that
may satisfy a portion of a higher-level goal. we must ensure that, once a portion
of one subplan has been expanded enough so that a portion of it may be exe-
cuted. the other subplan must not be broken down to such a low level (i.e.. we
don't want to be executing two processes to achieve the same subgoals). This is
easily handled by the blackboard architecture along with the constraint-directed
representation. When a plan is broken down into alternative subplans. each will
be rated based on how well it satisfies the constraints contained in the original
plan node. The control strategy will choose the most highly rated alternative.
When the chosen subplan is expanded. each of its expanded nodes will be rated
as better than the other higher-level subplans. Thus, the alternative subplans will
not be expanded unless the other nodes are removed (i.e.. the subplan pursued
did not succeed). They serve as contingency plans which we may fall back on.
but do not interfere with the course of action we have chosen. This technique
was originally used in HEARSAY-II to limit hypotheses at high levels of abstrac-
tion (Erman et al.. 1980) and was first used for this type of opportunistic plan-
ning by Hayes-Roth. B.. and Haves-Roth. F. (1988).

The second difficulty with interleaving planning and execution in this envi-

118	 M. Evans et al.

ronment arises when a partially executed plan is invalidated for some reason.
This may be due to an error or alteration in the environment (i.e.. unmet expec-
tations) or an inconsistency that arises in an unexpanded, unexecuted portion of
the overall plan. In either case, we must cease execution immediately. If there is
an error in execution, then we can try repeating the action, backtracking to an
alternative plan, or considering other applicable plan-knowledge sources that
have not been used.

Of far greater interest from the point of view of multiagent planning are
inconsistencies within plans that span multiple agents. These will usually arise
due to outside agents' interaction in our plans or to difficulties in coordinating
other agents' actions with our own to work cooperatively. The first problem is
roughly equivalent to the problem of a dynamic world; we can in many cases
ignore the fact that another agent performed some action having a detrimental
effect on us and assume that the detrimental effect occurred naturally, rendering
the solutions equivalent to those of dealing with execution error and spontaneous
effects of nature (Anderson, 1990). The second, however, is a much more diffi-
cult problem. Here we must use the constraint-directed representation to allow
us to negotiate with other agents to allow for cooperation. We view this negotia-
tion process in terms of selectively relaxing the constraints associated with re-
quests, in order that both agents may reach a satisfactory agreement.

The entire planning process, including task decomposition and allocation as
well as interleaving of planning and execution, is summarized in Fig. 4. The

FIGURE 4. The overall planning process.

Flexible Autonomy in Multiagent Systems 	 119

Request Type:	 Service Order
Request ID:
	

34374
Customer ID:	 401303

Task:
	 Clutch repair, Air conditioning repair

Total Cost:	 constraint(<250)
Due Date:	 constraint(current time + 8 hours)

relaxation(if courtesy car is provided then
extend Due Date indefinitely)

FIGURE 5. A problem-solving request.

following example from the experimental domain illustrates these concepts (fur-
ther information may be obtained from Evans and Anderson, 1989, 1990a).

AN EXAMPLE OF THE MULTIAGENT PLANNING PROCESS

To illustrate our problem-solving architecture, we now present a scenario of
interaction that is typical of the automotive repair shop domain described earlier.
Within this scenario, computerized agents, implemented using our model, simu-
late the roles of their human counterparts. Once again, while this is the domain
we have chosen to implement using the architecture, it is only an example: the
architecture is capable of supporting many different styles of coordination. The
scenario be g ins with the followin g customer's description of a repair:

I have two problems. When I apply gas as I'm driving along, the car doesn't

speed up; the engine just revs. Also, the air conditioner doesn't work.

The service writer translates this repair into a request stating that the clutch slips
and that the air conditioner doesn't work. The customer also indicates a willing-
ness to allow the total cost of the repair to reach $250, but requests notification
if it will exceed this amount. The customer is also willing to be without the
vehicle for a maximum of 1 day unless a courtesy car is provided. Since the
estimated clutch repair time is 4 hours and the estimated time for diagnosis of
the air conditioning repair is 0.5 hours, a courtesy car will not be issued unless
the total time constraint is violated based on feedback received during the actual
repairs. The request structure representing this repair. shown in Fig. 5, is routed
to the tower operator to be worked into the current shop load.

The tower operator employs his or her task-allocation knowledge to identify
the class of agents to which each component of the repair should be assigned.
Using this knowledge, the request is placed in the current job schedule for either
an electrical mechanic to perform the air conditioning repair or a transmission

120	 M. Evans et al.

mechanic to perform the clutch repair. We will assume that the request can be
immediately routed to a transmission mechanic to perform the first task of the
request: the clutch repair.

Tasks within this request are considered to be totally independent (i.e. the
transmission repair cannot affect the electrical repair and vice versa) and. as
described earlier, are allocated on an ad hoc basis. In addition. if both mechanics
are available, no predetermined ordering is used when the component tasks of
the repair are issued. This greatly simplifies the scheduling task and the skill
requirements of the tower operator: however, if a hi g her de gree of complexity
were required in the planning knowledge used by the tower operator. it could be
represented using our model.

The transmission mechanic receives a request from the tower operator to
perform the clutch repair. Task-decomposition knowledge is used to identify
each of the tasks involved in the repair. Task-allocation knowledge is then em-
ployed to identify the agent(s) to whom each of the tasks in the repair should be
allocated. This knowledge is represented in the form described earlier, and is
displayed abstractly in Fig. 6 (for a syntactical description, see Evans and An-
derson. 1989). The task-decomposition knowled ge is represented as a set of
lower-level plans and tasks that accomplish the job requested. This approach is
particularly appropriate for the automotive repair domain, since most mechanics
work from this type of "canned" plan. As Fig. 6 illustrates, each individual task
is related to a class of agents that are able to perform it. Associated with each of
these classes are the specific agents that are known to be candidates for the task.
This agent knowledge need not be complete. Alternatively, each agent class is
associated with the individual tasks that its members can perform. A gain, this
knowledge need not be complete. It simply represents a particular agent's view
of a certain class of agents (including the class of which it is a member).

The actual process of using the constraints associated with a task to allocate
it to the most appropriate agent is illustrated in Fig. 7. Each task will have
associated with it a large set of constraints and pointers to other pieces of knowl-
edge relevant to the task (e.g. a description of the task, or knowledge of how to
decompose it). Some of the constraints will be associated with the task itself: in
Fig. 7, the Adjust-Cable task has such constraints as the qualification of the
agent to perform the task, the time it will take, and the tools required. Since
tasks (as well as agents) are organized in a hierarchy, constraints will also be
inherited from superclasses of tasks (in this case. there will be general policies
on all types of transmission repairs. which will further constrain this task). As
stated previously, each agent will have a model of the abilities of other agents
(and classes of agents). Some of these abilities will be fairly static knowledge
(e.g. the agent's strength). while others must be inquired about fairly regularly
(e.g. the current status of the agent). These abilities are matched to the con-
straints dictated by the task and weighted using a heuristic classification process

FIGURE 7. Task allocation using constraints.

Flexible Autonomy in Multiagent Systems 	 121

FIGURE 6. Transmission mechanic knowledge.

122	 M. Evans et al.

(Evans and Anderson. 1989). Further details of the task-allocation process can
be found in Evans and Anderson (1991).

Upon successful completion of the repair, the transmission mechanic sends
an appropriate notification to the tower operator, who updates the service order
accordin g ly. The next task to be performed is the air conditioning repair. When
an electrical mechanic becomes available and the work order is at the top of the
request queue for electrical mechanics. the tower operator issues an appropriate
request.

The electrical mechanic will use his or her task-decomposition and task-
allocation knowledge in the same way as the transmission mechanic. The me-
chanic will perform the majority of the tasks. but may send requests to other
agents as required. In this case, the electrical mechanic proceeds with the diag-
nosis and determines that the compressor needs to be replaced. The total-cost
constraint, passed on to the electrical mechanic as part of the tower operator's
request and updated after the transmission repair. will be violated if the com-
pressor is replaced.

This event causes the electrical mechanic to send a notification, similar to
that shown in Fig. 8, to the originating service writer for authorization to con-
tinue with the repair (the service writer may then communicate directly with the
customer or may authorize the repair based on existing warrantees). Included
with the notification is a proposed relaxation of the constraint being violated.
proposing that the total-cost constraint be modified to include the cost of replac-
ing the compressor.

Upon receiving the notification from the electrical mechanic, the service
writer issues a notification to the customer indicating the constraint violation and
the proposed constraint relaxation. Given the cost involved and the nature of the
component to be repaired (most people in Winnipeg would consider air condi-

Notification Type:	 Constraint Violation Report

Originating Agent:	 Electrical Mechanic
Responding Agent:

Request ID:	 34374

Violations:
Field:	 Total Cost
Description:	 Cost = 800
Task:	 Air conditioning repair
Justification:	 Replace compressor
Relaxation:	 Extend Total Cost by 800
Instructions:

FIGURE 8. Constraint-violation report.

Flexible Autonomy in Multiagent Systems 	 123

Notification Type:	 Constraint Violation Report
Originating Agent:	 Electrical Mechanic
Responding Agent:	 Service Writer

Request ID:	 34374

Violations:
Field:	 Total Cost
Description:	 Cost = 800
Task:	 Air conditioning repair
Justification:	 Replace compressor
Relaxation:	 Extend Total Cost by SOO
Instructions:	 Abandon air conditioning repair

FIGURE 9. Updated constraint-violation report.

tioning a luxury item), the customer decides that the repair should not proceed.
The proposed relaxation is rejected. and negotiation is terminated. The service
writer subsequently issues correspondin g notifications (Fig. 9) to the tower op-
erator, so that the original request can be updated accordingly, and to the electri-
cal mechanic, so that the repair will not be completed.

RELATIONSHIP TO HIGH -AUTONOMY SYSTEMS RESEARCH

When we view this architecture from the perspective of hi gh-autonomy sys-
tems research, a number of important points emerge. One is that the use of
modeling techniques has been extensively explored in the development of high-
autonomy systems. However, our approach is unique in that we employ
constraint-based representation and control paradigms to capture and manipulate
models of potential activities and a gent abilities to contribute to these activities.
The use of constraints provides a homogeneous and natural means of represent-
ing the models that will ultimately drive agent interactions. Our categorization
of constraints enables the representation and application of partial models ad-
dressing different aspects of multiagent planning.

As has already been stated, agents in a multiagent system require flexible
autonomy in order to adapt to a wide range of problem-solving situations. The
architecture includes the decision. action. and perception components necessary
for high autonomy (Zeigler, 1990). and the use of a constraint-based representa-
tion for the various aspects of an agent's relationship to others allows us to relax
or constrain these relationships, thus producing flexible autonomy. Our
constraint-directed representation is also hierarchical in nature, with constraints
at the operational, agent, and organizational levels (for a more complete expla-
nation of this view of constraints. see Evans and Anderson, 1990b). Since an

124	 M. Evans et al.

agent's autonomy is defined largely through these constraints. the concept of
autonomy itself becomes hierarchical: agents can be subservient or completely
autonomous: likewise. groups of a gents can be self-sufficient or dependent on
others.

While this defines an abstractional hierarchy based on organization for au-
tonomy. autonomy can also be viewed as a hierarchy based on ability. Zeigler
(1990) describes three "levels of achievement" for autonomy. The first is char-
acterized by the ability to achieve prespecified objectives using knowledge in the
form of models: the second is characterized by the ability to adapt to major
environmental changes: and the third is characterized by the ability to develop
its own objectives. The constraint-directed architecture described here can be
used to define agents (and societies) at all levels of autonomy. Level 1 agents are
relatively simplistic, and are very easily definable within this architecture: their
objectives arrive in the form of requests, and are broken down and distributed or
executed using models of the agent itself and the other agents around it. The
perception components and our method of interleaving planning and execution
allow level 2 agents to be defined: the environment may change, but existing
plans can be repaired by the agent to cope with these changes. Lines of author-
ity, communication, and organizational constraints can also be altered to change
the structure of an entire organization in order to adapt to change. As for level 3,
the concept of an agent defining its own objectives is somewhat vague. How-
ever, depending on the interpretation of this statement, the architecture can also
define level 3 agents. The receipt of information from the environment or from
other agents may cause an agent to alter its plans (based on its own knowledge
about the world) or to opportunistically generate new requests based on that
information (i.e., the information may cause the a gent to realize that this is an
opportune time to perform some action). Whether intentions such as these can
be characterized as purely internal or not remains an open question (Bratman,
1987).

From a design perspective, our architecture can be used to test operational
desi gns of systems consisting of highly autonomous a g ents. Such desi gn proce-
dures require many influential decisions to be made such as the structure of
agent groupings, the distribution of authority across agents. potential bottlenecks
among agent activities, or alternative activities. Our architecture can be used to
create experimental testbeds for examining the ramifications of these decisions
before committin g to a final system design. Furthermore. the architecture can be
used to simulate existing systems to measure effectiveness, uncover bottlenecks,
and evaluate streamlining procedures. From an implementation perspective. the
architecture can be used to develop working systems consistin g of several coop-
erating knowledge-based or expert systems. Consequently. systems developed
from diverse, yet interrelated applications can be integrated to capture the bene-
fits of potential interactions among their individual abilities.

Flexible Autonomy in Multiagent Systems	 125

CONCLUSIONS

We have described an architecture that enables the design and development
of organizations of autonomous but cooperative agents. This architecture sup-
ports the basic multiagent planning actions of task decomposition. task distribu-
tion, and result integration through the use of activity and agent modeling. Con-
trol among agents may be centralized, partially centralized. or completely
distributed depending on the characteristics of the application: the authority ex-
ercised among agents can be captured in the agent models and used to bound the
influence of one agent over another. The architecture also provides adaptive
planning when bottlenecks or incompatibilities arise, through monitoring and
replanning using constraint relaxation as a means of negotiation between agents.

We have also demonstrated that much of the knowledge necessary for plan-
ning and coordinating cooperative activities among multiple problem-solving
agents can be expressed in terms of constraints. Although (as stated earlier)
constraints have long been recognized as an essential component in planning,
their representation power in the coordination of multiple problem-solving
agents has yet to be fully appreciated. The representation of a distributed
problem-solving environment in terms of constraints yields many advantages.
Some of these are at a low level. For example, a single representation for all
knowledge makes knowledge more understandable and easily organized; it also
makes manipulation of that knowledge easier. Explicit representation of relaxa-
tion methods makes for easy selection of alternatives when constraints cannot be
satisfied. However, the majority of the benefits of using constraints as a repre-
sentation mechanism appear at high levels: using our model, we can represent
entire or g anizations and the knowledge within each agent in terms of constraints
and relaxations.

Throughout this paper, we have examined the application of our work to the
activities and agents in an automotive repair shop. The architecture itself. how-
ever, is generic in nature. In effect, the development of a system involves creat-
ing N individual agents with appropriate local problem-solving abilities (akin to
N autonomous knowled ge-based systems) and then developing coordination in-
terfaces for each agent, which involves specifying plan and agent knowledge
(activity and agent models) of the agent itself and of some of the other related
agents in the system. The constraint-directed control mechanism provided in the
architecture can then interpret these models and construct and coordinate appro-
priate agent interactions to achieve a synergy of agent abilities within the sys-
tem.

Research on this project is currently continuing in a number of different
directions. First. an implementation in cooperation with the Department of Elec-
trical Engineering at the University of Manitoba is under way, using this
constraint-directed model to control robotic agents (Evans et al.. 1991). The

126	 M. Evans et al.

constraint-directed reasoning. methods presented here are also being integrated
into a system for combining reactive and strategic planning within a single agent
(Anderson and Evans, 1991a, 1991b).

REFERENCES

Ambros-Ingerson, J. 1987. IPEM: Integrated Planning, Execution and Monitoring. Unpublished M. Phil.
dissertation, Computer Science. University of Essex.

Anderson, J. 1990. Toward a Theory of Temporal Reasoning for Practical Planning Systems. Technical Re-
port. Department of Computer Science. University of Manitoba, January.

Anderson. J., and Evans. M. 1991a. An Architecture for Reactive and Strategic Planning. Proc. 4th Univer-

sity of New Brunswick Artificial Intelligence Symposium, September. Fredricton. pp. 195-210.
Anderson. J., and Evans. M. 1991b. What to Do Next: Using Constraints in Reactive Planning. Working

Paper. Department of Computer Science, University of Manitoba.
Bond, A.. and Gasser. L. 1988. Readings in Distributed Artificial Intelligence. San Mateo, Calif.: Morgan

Kaufmann.
Bratman, M. 1987. Intentions. Plans, and Practical Reason. Cambridge, Mass.: Harvad.
Bratman, M., Israel, D., and Pollack, M. 1988. Plans and Resource-Bounded Practical Reasoning. Technical

Note 425R. SRI International.
Cohen. P., and Perrault, C. 1988. Elements of a plan-based theory of speech acts. In Readings in Distributed

Artificial Intelligence, eds. A. Bond and L. Gasser, pp. 169-186. San Mateo, Calif.: Morgan Kaufmann.
Durfee, E.. Lesser. V., and Corkin. D. 1989. Trends in cooperative distributed problem solving. IEEE Trans.

Knowl. Data Eng., 1(11:63-83.

Erman. L.. Hayes-Roth, F.. Lesser. V., and Reddy, D. R. 1980. The Hearsay-II speech-understanding system:
Integrating knowledge to resolve uncertainty. Comput. Surv. 12(2):213-253.

Evans, M., and Anderson. J. 1989. A constraint-directed architecture for multi-a gent planning. Proc. 9th

AAAI Distributed Artificial Intelligence Workshop, pp. 1-24, Seattle.
Evans, M., and Anderson, J. 1990a. Constraint-directed intelligent control in multi-agent problem solving. In

AI , Simulation, and Planning in High Autonomy Systems, eds. B. Zeigler and J. Rozenblit, pp. 42-50.
Los Almitos, Calif.: IEEE Computer Society Press.

Evans, M., and Anderson, J. 1990b. An Analysis of Constraints for Multi-Agent Problem Solving. Technical
Report, Department of Computer Science. University of Manitoba. February.

Evans. M., and Anderson. J. 1991. Flexible task allocation in heterogeneous cooperative systems. AAA/
Workshop on Heterogeneous Cooperative Systems, July, pp. 14-26.

Evans. M.. Jaeannathan, S.. and Anderson. J. 1991. Using Constraint-Directed Reasoning in the Control of
Autonomous Robots. Working paper. Departments of Computer Science and Electrical Engineering.
University of Manitoba.

Fikes, R.. and Nilsson. N. 1971. STRIPS: A new approach to the application of theorem proving to problem
solving. Artif Intell. 2:189-208.

Fox. M. , and Smith, S. 1984. ISIS: A knowledge-based system for factory scheduling. Int. J. Exp. Syst.
I(1):25-46.

Galbraith, J.. 1973. Designing Complex Organizations. Reading, Mass.: Addison-Wesley.
Hayes-Roth. B.. and Hayes-Roth. F. 1988. A cognitive model of planning. In Readings in Cognitive Science.

eds. A. Collins and E. E. Smith. pp. 496-513. San Mateo, Calif.: Morgan Kaufmann.
March. J., Simon, H., and Guetzkow. H. 1958. Organizations. New York: Wiley.
Meehan. J. 1980. Everything you ever wanted to know about authority structures but were unable to represent.

N ational Conference on Artificial Intelligence, pp. 212-214. Stanford. Calif.
Simon, H. 1957. Models of Man. New York: Wiley.
Wilkins. D. 1988. Practical Panning: Errending the Classical AI Planning Paradigm. San Mateo. Calif.:

Morgan Kaufmann.
Zeigler. B. 1990. Hi g h autonomy systems: Concepts and models. In Al. Simulation, and Planning in High

Autonom y Systems. eds. B. Zeigler and J. Rozenblit. pp. 2-7. Los Almitos. Calif.: IEEE Computer
Society Press.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

