Parallel Port Interface for the Mentor Robot Arm

Jacky Baltes
j-baltes@auckland.ac.nz

Weidong Xu
wxu002@student.auckland.ac.nz

Centre for Imaging Technology and Robotics
Department of Computer Science
University of Auckland
Private Bag 92019, Auckland, New Zealand

Abstract

This paper describes the design of an interface board
which by emulating the bus of some popular home com-
puters can control legacy hardware through o generic
parallel port interface and serial interface. In partic-
ular, the board is currently being used to control t-
wo Mentor robot arms from a PC. We also developed
firmware and a device driver for the Linux operating
system.

1 Introduction

In 1999, the robotics paper offered by the computer
science department at the University of Auckland was
moved from the city campus to the new Centre for
Imaging technology and Robotics (CITR). As part of
this move, the CITR inherited two old Mentor robot
arms. The robot interfaces used a 1 MHz bus to con-
nect directly to some popular home computers avail-
able at the time of their design (ZX Spectrum, BBC
micro, and VIC 20).

The computer science department had used Acorn
Archimedes computers which could emulate a BBC
bus. However, it was decided that it was too much
work to resurrect the Acorn Archimedes computer-
s and that instead what was desirable was to design
and implement a board which supports more common-
ly available parallel and serial interfaces. In particular,
the computer labs at the CITR mostly use PCs run-
ning Linux and the goal of this project was the design
of an interface board which allows control of the robot
arms from this configuration.

A modern micro controller provides a cheap flexible
solution to many control problems. However, a typi-
cal micro controller does not include D-A converters.

However most modern micro controllers provide spe-
cial counters and timers which allow the implementa-
tion of a 1 bit D-A converter using PWM modulation.
Since this method is supported by the hardware, it
provides a simple and efficient method for D-A con-
version. Unfortunately, most micro controllers only
provide few of those special registers. In principle, any
parallel output pin can be used as a 1 bit D-A convert-
er using PWM, but this results in a high overhead on
the micro controller. Therefore, it was decided to use
the original motion controller board (with five D-A
converters).

We designed a 68HC11F1 based micro controller
board which emulates the bus of the VIC 20 comput-
er and which supports the now standard bi-directional
parallel port of a PC compatible computer and also a
generic serial interface. Section 2 describes the hard-
ware of the interface board.

Section 3 describes the communications protocol for
the parallel port, since the data written by the micro
is not latched. To achieve an adequate trade-off be-
tween communication speed and overhead on the PC,
a master-slave communication model was used.

We also designed a device driver for the Linux OS,
which provides a generic interface to robot arms with
up to 6 degrees of freedom. The device driver is de-
scribed in section 4.

The paper concludes with section 5. The complete
schematic of the interface board is shown in the ap-
pendix.

2 Interface Board Design

This section describes the hardware of the inter-
face board. The complete schematic is shown in the
appendix.

The board uses Motorola’s MC68HC11F1 micro
controller. The 68HC11 is a very popular and cheap
micro controller family, which we have used in a num-
ber of projects such as a local controller board for our
autonomous mobile robots.

The interface board uses the extended mode of the
68HC11F1 microprocessor. In extended mode, three
ports of the micro controller are used to implement
the address and data bus.

A serial line driver (Max232) converts the serial
port voltages from the micro controller into standard
RS232 voltages. This interface can also be used to
download programs into the EEPROM memory of the
micro controller.

The EEPROM on the 68HC11 is limited to 512
Bytes. This is sufficient to implement the primitive
communication protocol to the PC (as described in
section 3) and the interface to the Mentor robot arm-
s. To allow for future extensions, the interface board
has a free socket for a 8 KByte EPROM. This allows
the implementation of more sophisticated motion con-
trol and inverse kinematics algorithms on the interface
itself.

U2 and U4 are low voltage indicators that are used
to implement the power up reset as well as the manual
reset button.

2.1 Parallel Port Interface

The parallel port is implemented using an 8-bit bi-
directional buffer (74HC245) for the data bus and an
8-bit buffer for the control signals. The control signals
are connected to PortA of the micro controller. The
data bus is controlled via the CSIO2 signal, which is a
programmable chip select signal. Any memory access
to addresses 0z1F00 — 0z1FFF will access the buffer
instead of standard memory.

One problem is that the data at the buffer is not
latched with the read /write signal. This causes a prob-
lem when sending data from the micro controller to
the PC. The data on the parallel port will only be
valid for exactly one clock cycle. If the PC does read
the data to early or too late, it will read the incorrect
data. This problem is overcome by the design of a
strict master-slave communication protocol, which is
described in the section 3.

2.2 Robot Arm Interface

The Mentor uses a 1 MHz bus interface with an 8
bit data bus (D0..7) and four address lines (A0..A3).
In addition it uses a R/W signal, CSIO1 (Chip Select),

and the clock. The interface to the robot arm is imple-
mented using another 8 bit tri-state buffer (74HC245)
which is controlled by the CSIO1 signal from the mi-
cro controller. The micro controller maps this buffer
at the memory region 01060 — 0x17FF. Currently,
we are using a 68HC11F1 with an 8 MHz clock, which
translates into a 2 MHz external clock. The robot ar-
m, therefore, provides a clock divider (74HC74) which
can be used to divide the clock by two. However, in
our early testing we determined that the Mentor robot
arm performed well even when using a 2 MHz clock.
Therefore, the clock divider is not used in our curren-
t implementation. However, it may be necessary to
use the divider when connecting to other peripheral
devices.

2.3 Firmware

The interface board currently uses only the internal
EEPROM of the micro controller and consists of two
parts: the communication handler and the main loop.

The communication handler is entered via an inter-
rupt whenever the PC sets nSTROBE. It receives two
bytes from the PC and returns one byte. Internally the
micro controller maintains two sets of values for each
axis. The first block contains the desired values, that
is the settings that we want the arm to be in. Since
the robot arms move at a specific speed, it requires a
certain amount of time before a robot arm reaches its
desired position. The second block contains the actual
values. The actual values should approach the desired
values as time passes.

The main loop is an infinite loop. First, the desired
settings for all axis are send to the micro controller.
Since the desired settings are latched in the robot arm
interface, this is strictly speaking not necessary. How-
ever, since the desired heading settings can not be read
back by the micro, it would require additional hand
shaking between the interrupt handler, which receives
the data and the main loop which sends it to the robot
arm interface to indicate whether a value has already
been written to the robot arm interface. Code com-
plexity is greatly simplified at negligible expense by
always writing the desired positions to the robot arm
interface.

In the bottom half of the loop, the actual values
from the robot arm are read back and stored in the
actual settings block. If the communication interrupt
handler recognizes a read command, the value from
the actual block is send to the PC.

3 Parallel Port Communication

The communication between the micro and the PC
is fully asynchronous. The parallel port on the origi-
nal IBM PC XT did not support bi-directional com-
munication. More recently a number of enhancements
have been made to the parallel port and are included
in most modern PCs. In particular, they provide an
enhanced mode for bi-directional communication (EP-
P) and a special mode for high speed communication
using DMA (ECP). Since the amount of data to be
transfered between the PC and the micro is small, a
simple bi-directional mode (sometimes referred to as
Byte Mode) is used.

In Byte mode, the parallel port provides 8 bi-
directional data bits (IN-OUT) and additional con-
trol lines: nSTROBE (OUT), nAUTOFEED (OUT),
nINIT (OUT), nSELECTIN (OUT), nACK (IN),
BUSY (IN), PE (IN), SELECT (IN), and nERROR
(IN) [1].

To reduce the load on the PC, the interface uses a
master slave communication protocol, that is all com-
munication is initiated by the PC. The timing of the
communication is shown in Fig. 1. The PC first waits
for the micro to clear the BUSY flag, which indicates
that the micro is ready to receive data. The PC set-
s the STROBE signal to indicate that it is ready to
transmit data to the micro. The micro acknowledges
reception of the data by toggling the BUSY signal.
The signal nAUTOFEED is used to synchronize com-
munication by indicating whether the command or da-
ta byte of a command is being transmitted.

After sending two bytes, the PC reads exactly one
byte from the micro. In this case, the PC sets the
INIT flag. After receiving the INIT signal, the micro
will write the data on the data bus. Since this write is
not latched, the PC polls the ERROR flag and reads
the data. The PC acknowledges receipt of the data by
toggling the INIT flag.

4 Device Driver Implementation

In the UNIX paradigm, external devices are treat-
ed in the same way as files. For example, to send and
receive data from a modem, the application program
writes and reads data from a special file, which is asso-
ciated with the modem hardware. These special files
are called device files. Faster or more complex interac-
tions (e.g., continuous synchronized capture mode of
a frame grabber) between the external device and the
application program can be implemented using shared
memory. Since all communication between the PC and

the robot arm occurs at comparatively slow speed, the
robot arm device driver uses only the read and write
interface.

Currently, the device driver only supports a prim-
itive protocol: (a) setting one axis of the robot arm
to a specific value (absolute motion), (b) adding or
subtracting an offset to the current value of a specific
axis (relative motion), and (c¢) reading back the cur-
rent setting of a particular axis (read back).

The following table shows the syntax of these com-
mands. All data are unsigned bytes, except for the
offset value which is interpreted as a signed value.

Command Comment

stXX,YY\n set axis XX to YY

0sXX,YY\n set axis XX to current value + YY
rdXX,ZZ\n read back the value of axis XX

77 is ignored

Since all commands are assumed to be generated by
an application program, the syntax of the command-
s is very strict and terse. Also, all commands use a
fixed format, which simplifies generation of commands
in the application program (e.g., fixed memory alloca-
tion).

Figure 2 shows a small example of an application
program. First the application opens a file with the
special name /dev/robot0 (this corresponds to the
first robot arm) for reading and appending. After ex-
ecuting a series of commands, the application closes
the file, which makes the robot arm accessible to oth-
er programs.

5 Conclusion

The interface board was built and tested in May
and June of 1999. After the first successful tests it has
been used by students in the robotics paper starting
from July 1999.

One problem with the communication emerged dur-
ing stress test of the robot arms in the robotics lab.
Currently, the aim of the robotics paper is to play a
game of badminton with the two robot arms. The po-
sition of the shuttle cock is determined through binoc-
ular stereo vision from two pan and tilt cameras which
are mounted on the wall and look at the playing field.

The video information is processed by two PCs with
Sequence P18 frame grabbers. These two video servers
capture true colour (24 bit) images with a resolution
of 576 by 768 at 50 fields per second. The resulting
transfer rate of 32 MB/sec puts a high load on the
CPU and the PCI bus of the video server.

PC ready to

nSTROBE send
Out
nAUTOFEED indicate data byte
Out
PC acknowledges
PCr to
recei(\a/eedy data from uC
nINIT
Out

DATA

In-Out X Command Byte X X DataByte X X Return Vaue X x

uC ready to uC acknowledges
data

BUSY receive

uC ready to
send data
nERROR

In

0.5 usec

Figure 1: Timing of the Parallel Port Communication between the PC and the Micro-controller

Under these conditions it is impossible to control
the robot arm while simultaneously running the video
server, since as described in section 3 the data from
the micro to the PC is not latched. Communication
errors occur when the higher priority frame grabber
device interrupts the robot arm device driver.

Therefore, we are currently modifying the board to
use a 74HC574 (Octal D-Flipflop with 3 State Out-
puts) bi-directional latch.

Currently, the device driver only implements a low
level interface to the robot arm. We are working on
extending the device driver to support queuing of com-
mands and includes inverse kinematics routines.

#include <stdio.h>

int main(int argc, char *argv[]) {
FILE * fp;
int axis, value;

fp = fopen("/dev/robot0","rw+");

/* Set axis 1 to value 80 %/

axis = 1; value = 0x80;

fprintf (fp,"st%02X,%02X\n",axis,value);
fflush(fp);

/* Send read back command for axis 2 */
axis=2;

fprintf (£p, "rd%02X,00\n" ,axis) ; References
fflush(fp);

/* read back the value of axis 2 */
fread(&value,1,1,fp);

[1] Warp Nine Engineering. Teee 1284-1994 s-
tandard. http://www.fapo.com/1284int.htm,
September 1999.

fclose(fp);
return 0O;

Figure 2: Schematic of the Robot Arm Interface

EL]

Beq

8
LosVaY as =
wy
omL w
$——0 13y
)
! _u
o] ™
S n
N — §>\|ﬂ
AeTERCOT
T 1=
- VHZOHPLON _
f ° :
= A [se
LA/ - <
v eA ——E i
VA e
. & € areny [e
Looleol ool | 6N [
TATTOHBSON T VZOHPLON e
Trs
23 FEER 2
§237283838 w e
=] G IS v B :
2 2890 zog X o EA oy o
— o & vA o 3
L2 2080 w —e—
1080 ——e-] oo
oy NSO —Le ven n_ —=
v 0SS 1 [ot
CEm v T s I
v fe=1 I [st
v a |
v a L vt
%
v a T
v s a 0
{paxp v a &l i
o 85| = wm Zr 8a
e | g oy SrZOHpLON
Ox& a
AT 5,358 M
An%2258 J v
g8 ov
N 4 4 4 e sv
_ , %8 v
A @ ey
II “ va 2y
| €8 ™
I Stz
. | ¥
o2a — o—
2 07
n
A wy
vo_| e ~ 9 =
LEP ~ g N e
=)
I e
A

Bl

