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Abstract

This paper discusses the design of an interface for a PC and a commercially avail-
able remote-controlled car. The objective of the project is to provide the capability
for a PC to emulate a conventional RC transmitter. The micro-controller-based de-
sign provides the best means of extendibility and flexibility where future requirements
are yet to be defined, it also significantly reduces the processing requirements on the
host PC and the client application. The data communications between the host PC
and the interface is via a standard parallel port implementation that provides a plat-
form independent communications medium. The firmware design is based on a single,
restart-able task paradigm with interrupts for communications and other system func-
tions. This is motivated by a need for quick execution of commands by the interface.
An active braking application was used to evaluate advanced functionality, which pro-
duced encouraging results, and showed superior control compared with the original
manual controller. A client application was written to test the functionality of the
interface and data communications.

1 Introduction

This document discusses an interface between a personal computer and a commercially avail-
able remote-controlled car with proportional control for steering and speed. This interface
will be used by a Master’s paper in Intelligent Active Vision at the University of Auckland.
The interface takes its input from a parallel port on the host computer and generates radio
frequency output to control the car. Figure 1 illustrates a computer science application for
the interface. The car is the controlled variable, its’ positional feedback is processed by a
video server and passed to the Al controller, which then manipulates the car.

One design goal was extendability, so that the interface can meet future requirements,
such as feedback from the car (battery low warning), or additional actuators (lights). There-
fore, the interface uses a micro-controller based design, which provides flexibility, extend-
ability, and reduces the computational load on the PC host.

Section 2 discusses current techniques for controlling a car from a transmitter, followed by
an analysis of electronic-circuit design for this application. Section 3 describes the electronic
circuit design process and its translation to a printed circuit board. Section 4 describes the
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Figure 2: Transmitter Packet

software architecture, data communications protocol and firmware. The firmware design and
implementation form a large portion of the design phase, where the design of the software
architecture is critical to the maintainability and versatility of the interface. Section 5
concludes and discusses future applications.

2 Analysis

The transmitter was disassembled and the antenna output was analysed on a digital oscillo-
scope. The oscilloscope trace indicated a bitstream that comprised of a start-block (which
synchronises the packet for processing at the receiver) followed by two PWM’s! | which were
used to represent the velocity and directional control of the car, see figure 2.

The packet was updated every 10ms which defines the maximum control resolution of
the car. The packet was modulated on a 27MHz carrier, which means that it would not be
possible to use an inexpensive micro-controller to digitally reconstruct the RF signal due
to the high speed requirement, the design would therefore need to interface directly to the

! Pulse Width Modulator A Pulse Width Modulator is a digital waveform that has a fixed frequency, and
a variable duty cycle see figure 7. The duty cycle represents the mark (on) / space (off) ratio, i.e. at 50%
there is an equal ratio of on and off



transmitter (less the existing control components). The core of the transmitter was based
upon an ASIC? which obfuscated the transmitter functionality. The components that were
used to determine the state of the car (velocity and direction) were linear potentiometers,
these were found to operate about a midpoint resistance where no action was generated.
The resistances on either side of the midpoint resistance determined forward, reverse and
left, right for the velocity and directional potentiometers respectively (see figure 6). The
potentiometer design solutions are discussed in section 2.1.

2.1 Potentiometer Emulation

The most reliable concept for emulating an analogue potentiometer in the digital domain is
to use a digital potentiometer. A digital potentiometer takes a digital input (either a serial or
parallel interface) and constructs an isolated resistive output, which mimics the behaviour of
a conventional potentiometer. Digital potentiometers are manufactured with a limited range
of resistances (1K, 10K, 50K and 100K) and resistance steps (50 - 255). They cost upwards
from $NZ8 and the device footprints range from 8-20 pin packages. The major benefit of using
a digital potentiometer is that it can replace a conventional potentiometer, irrespective of
the circuit function. Two common applications for potentiometers are resistive and voltage
reference circuits. Digital potentiometers work reliably for both applications, however a
D/A converter replacement would not function correctly for resistive-reference applications.
It was difficult to ascertain how the ASIC applied the potentiometer inputs (voltage or
resistance reference) on the transmitter, so this concern made the digital potentiometer
solution seem likely. The potentiometer IC’s didn’t match the requirements of the transmitter
(the potentiometer has a span of 1.4K ohms) so the following solutions were analysed.

2.1.1 Single 1K Digital Potentiometer Solution

This solution uses a common 1K digital potentiometer device, however the resistance span
required was 1.4K ohms, so the design is devoid 200 ohms either side of the resistance mid-
point. This reduces the resolution for the direction and velocity significantly (i.e. maximum
forward, left, right and reverse would not be possible). This circuit and the respective out-
put chart are illustrated in figure 3, note that the signal is shifted to illustrate the cut-off
resistance points.

2.1.2 Dual 1K Digital Potentiometer Solution

This solution uses the same 1K-potentiometer device used in the previous design, except
that two devices are connected serially to achieve the required 1.4K ohm span. This solution
provides the best resolution, and it mimics the closest behaviour of the conventional poten-
tiometer. The main disadvantage of this design is that the cost is doubled, and at $NZ8
per device this becomes an issue. The circuit and respective output chart are illustrated in
figure 4.

2 Application Specific Integrated Circuit
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Figure 4: Dual 1K potentiometer solution
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Figure 5: 10K potentiometer solution. The 1K6 resistor in parallel with the 10K digital
potentiometer derives the maximum resistance span of 1K4

2.1.3 10K Digital Potentiometer Solution

This design uses a 10K digital potentiometer in parallel with a 1K6 resistor to produce a 1K4
resistance span. A disadvantage of this design is the logarithmic behaviour of the output
which requires additional software to linearise the resistance profile. This design provides
a cost-effective solution, however the resolution is reduced and there is a slight software
overhead. This circuit and the respective output chart are illustrated in figure 5.

Further testing of the transmitter circuitry indicated that DC voltages were being gener-
ated by the potentiometers. This implied that the potentiometers were not part of a timing
circuit since an oscillating waveform should have been present. This new evidence indicated
that it may be possible to use an digital to analogue converter to recreate the behaviour of
the potentiometers. Simple testing in the electronics laboratory confirmed the assumptions
that a DC voltage could control the car. The voltage band is identical for both potentiome-
ters, where the voltage span is 1 volt and the range occurs between 2.2V and 3.2V, with a
dead band at 2.7V of 4+/-50mV, see figure 6. The following section describes the analysis of
digital to analogue conversion methodologies.

2.2 Digital to Analogue Converter Analysis

The following subsections discuss three methodologies of digital to analogue conversion, for
generating the velocity and directional signals on the transmitter.
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2.2.1 R2R Ladder Network DAC

The R2R ladder is a network of resistors which connect to the data-bus and the respective
analogue voltage is produced at the output of the network. This analogue quantity is ampli-
fied so it can be used by the respective circuit. The accuracy of this design is not as effective
as an IC, since common IC’s use additional circuitry for compensation and high-precision
resistors.

2.2.2 Digital-Analogue Converter IC

This design is the most common and convenient means of producing a digital to analogue
conversion, where it uses an integrated circuit to provide the conversion. The cost (upwards
from $NZ10) is dependent on resolution, conversion time and accuracy factors. The interface
to a processor is via connections to the data bus and control lines for the conversion process.

2.2.3 Discrete PWM DAC

The Discrete DAC methodology is a contemporary solution for digital to analogue conversion.
The PWM methodology provides the cheapest solution since the micro-controller internally
generates the PWM and therefore minimises the PCB space. The PIC micro-controller has
two PWM ports available, which conveniently satisfies the requirements for this design. The
pulse-width modulator output is coupled to a low pass filter circuit to translate the digital
bit stream into the respective analogue voltage. The low pass filter is configured to filter
the frequency component and generate a DC voltage proportional to the duty cycle of the
PWM. The discrete DAC circuit is illustrated in figure 7.



LED State Mode

PC On PC Control Active
PC Flashing || Emergency Stop Active
Manual On Manual Control Active

Manual & PC | Flashing || Time Out - transmitter off

Table 1: Interface Modes of operation

2.3 DAC conclusion

The DAC IC design was the most expensive solution, as it requires an entire 8-bit port and
control lines for operation. The R2R ladder network also uses an 8 bit port and requires 1%
tolerance resistors for reliable operation, additional circuitry was also necessary to amplify
the output voltage from the resistance ladder network. The discrete PWM DAC proved to
be the best design since it has the least software overhead, uses only one I/O pin and utilises
the micro-controller internal PWM generator for operation.

3 Hardware Design

This section discusses the design of the electronic circuitry, firmware and software architec-
ture, and the communications interface.

3.1 Circuit Design

The electronic circuit consists of seven modules which are described in the following subsec-
tions. Figure 8 illustrates the complete circuit schematic.

3.1.1 Micro-controller core & User Interface

The micro-controller associated circuitry comprises of I/O port buffering, the 20MHz clock
reference and power supply lines. The user interface is comprised of 2 pushbuttons and 2
LED’s. The micro-controller I/O ports are capable of sinking and sourcing 25mA, which is
sufficient for driving high-efficiency LED’s without additional drive circuitry. The switches
are buffered via resistors into the micro-controller, where the switch debouncing will be
performed in software. The switches (Source Select and Emergency Stop) allow the user to
select between the two modes (joystick or PC) and Emergency Stop to halt the car in the
PC Control mode. The two LED’s PC Control and Manual Control are used to represent
the current mode of the interface. The Emergency Stop capability is only effective in PC
control mode since the joystick defaults to the off position in manual mode, and it would
be desirable to manually move the car when emergency stop was active before resuming
PC control. Table 1 illustrates the modes of operation and the states of the LED status
indicators.
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3.1.2 Joystick interface

This interface applies noise filters to the X and Y signals from an IBM compatible joystick
and passes the signals to the A/D converter in the PIC.

3.1.3 Transmitter circuit

The initial design assumed that the transmitter would work satisfactorily from the 9V DC
adapter supply, however the adapter is not well regulated and produced approximately 14
volts with the current circuit load connected. The transmitter failed to operate correctly
with the higher voltage, producing spurious RF output. A discrete voltage regulator was
designed to provide a low current regulated voltage supply. The remaining circuitry controls
the power to the transmitter, which provides the sleep capability.

3.1.4 Serial port interface

The asynchronous serial RS232 interface is comprised of a MAX202 IC and four capacitors.
The four 100nf capacitors attached to this device are for the internal charge pumps to
generate the +/-12 volt RS232 line specification from the 5 volt supply.

3.1.5 Parallel port interface

The parallel port interface circuitry is comprised of the data-bus buffer (U400) and the
buffered parallel port control lines (STROBE, PAPER END, BUSY, FAULT, ACK and
SELECT). The strobe line is connected to the micro-controller external interrupt line, which
generates an interrupt when a byte is placed on the parallel port. The input lines on the
parallel port that are read by the PC include: ACK, PAPER END, FAULT and SELECT.
Port D on the micro-controller is the data-bus for the PC parallel port, reading this port will
return the data-bus contents. The parallel port interface is compliant with the ”standard
mode” parallel port, which corresponds to a unidirectional data bus and control lines. The
unidirectional aspect prohibits reading a byte from the interface, so the interface must use
the control lines to transfer a nibble back to the PC. The extended parallel port mode was
not implemented since the standard mode is compatible with all PC’s, unlike the extended
parallel port modes.

3.1.6 Digital to analogue converter

This circuit is identical for both the velocity and directional converters. The micro-controller
generates two PWM’s (velocity and direction), which are fed into the bases of transistors
Q500 and Q501 respectively. Resistor pairs (R501,R502 and R505, R506) define the max-
imum output voltage when the PWM is 0% (transistors Q500 and Q501 invert the PWM
signal). The transistor inverts the PWM signal so when the PWM signal is off, the maxi-
mum output voltage is present at the respective collector, and when the PWM signal is on,
the collector voltage will be approximately 0 volts. Resistor and capacitor pairs (R503,C500
and R507,C501) form the low pass filters which translate the inverted PWM drives into the
respective analogue voltages. The function of the low pass filter is to average the ripple



generated by the PWM output which thus produces the average DC voltage. The capacitor
and resistor (which form the low pass filter) are calculated according to the frequency of the
PWM, this ensures that at the preset frequency a smooth DC output will be generated. The
circuit provides a resolution of 50 steps for each control component (reverse, forward, left
and right), however the dead-band reduces this to 32 steps.

4 Software Architecture

Given the intended application in figure 1, the client will generate a stream of control com-
mands. For example, the controller may issue the following commands to navigate a small
right turn: forward 10ms,right 10 deg, forward 3ms. This requires a scheduler to keep
track of elapsed time between commands.

There are two methodologies for scheduling events to control the car: interface-based
scheduler or client-based scheduler. The interface-based solution requires the interface to
queue commands from the PC and execute them with its own scheduler. This requires
memory resource to store the queue (the RAM available within the micro-controller is less
than 150 bytes) and the software overhead for the command scheduler. The advantage is
that the computational load on the PC client is reduced. However, because of uncertainty
in the domain (wheel slip, friction, coarseness of control), the control program must receive
feedback (in this case from the vision system) to compare the current state against the
desired one. If the current state is different from the predicted one, corrective actions, must
be taken (e.g., lengthening or shortening the time to drive forward, changing the directional
control). Therefore, the client must be able to change the execution of queued commands
based on the feedback from the world.

The software architecture was designed around a client-based scheduler, where the client
application instructs the interface in real-time. The interface can not therefore queue com-
mands for the proposed system to function correctly. The client-based solution remedies
the problems associated with the interface-based design by operating a pre-emptive single-
tasking environment. It ensures consistency between the client application and the interface
since the client controls the state of the interface.

The design of the software architecture is critical to the extendibility and maintainabil-
ity of the interface. The micro-controller is organised into two distinct areas; the interrupt
handler and the system executive. The interrupt handler manages individual interrupts for
the external interrupt, A/D converter, serial communications, three timer interrupts and
the parallel slave port. The software design consisted of the following code modules: eight
channels of analogue to digital, communications handler, communications command proces-
sor,user interface, joystick handler, advanced functionality, time bases, keyboard debouncing
and timeout. The determination of where the code should reside was established from the
software module real-time constraints. The tasks that required urgent servicing were placed
in interrupt executive modules and the remainder were covered by the system executive.
Figure 9 illustrates the organisation of software modules within the PIC architecture.
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Figure 9: Software architecture

4.0.7 Advanced Functionality

Advanced functionality is used to support the theme that the micro-controller-based design
offers the best solution. Advanced functionality examples include active braking, acceleration
profiles, car feedback etc. This functionality is capable of being performed solely by the
interface, without the PC wasting any resource. The advanced functions must not be coded
into interrupt areas, since other critical interrupts will not have their real-time requirements
satisfied. The system executive is the appropriate area for advanced functionality since the
interrupts can still get serviced, while the two code areas operate pseudo-concurrently. The
difference between the advanced functionality and the application software is that the PC
application needn’t be concerned with trivial operations e.g. ramping the cars’ acceleration
every 50ms. The advanced functionality should perform tasks without the associated burden
on the PC processor.

4.0.8 Communications command processor

When the PC issues a command there is a real-time requirement that such a command has
been actioned, i.e. it is not desirable to allow the car to hit the upcoming wall when a
halt command had been sent 500ms earlier. Certain functions of the system executive may
take several seconds to complete, i.e. an acceleration profile that takes 5 seconds to execute.
Most of the processing for this action will be spent waiting for a specific duration to elapse,
it is therefore desirable to terminate the current process and start the current command,
which guarantees congruence between the PC and the interface. A solution for aborting an
active process that exists for a long period of time is to have a call in the delay routine that
examines the communications status. If a new communications packet has arrived, then the
delay is aborted prematurely, the calling process is terminated and the new communications
directive is processed and executed. The delay associated with aborting the current process
and executing the new packet will be negligible with respect to waiting for the current process
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Figure 10: Communications synchronisation example

Command Description | Datal Description | Data2 Description | Data3 Description
Forward velocity NULL NULL
Reverse velocity NULL NULL
Left position NULL NULL
Right position NULL NULL
Straight NULL NULL NULL
Halt NULL NULL NULL
Status Request NULL NULL NULL
RAM Request MSN LSN NULL

Table 2: Communications command list

to terminate naturally, before actioning the communications packet.

4.1 Communications protocol and management

The parallel port interface is configured as a master-slave interface, where the host PC is the
master and the PC-RC Interface is the slave. This implies that the PC-RC interface cannot
initiate a dialogue with the PC, instead the PC must transmit a data request command to
the interface. The following subsections describe the design of the communications protocol,
command design and the communications handshaking.

4.1.1 Communications protocol

The communications packet is comprised of four bytes, where the first byte represents the
command, and the three successive bytes represent the data for the command. The MSB for
all communication bytes is reserved for the type of the byte; either command or data. The
MSB provides a synchronisation mechanism for the interface to align the communications
packet. Figure 10 indicates a stream of packets and the resultant behaviour of the RC
interface, which illustrates that interface will not respond until a valid byte sequence has
been detected.

4.1.2 Command design

The basic requirements for controlling the car include defining the directional and velocity
information, the initial concepts involved sending a broad command and the arguments (re-
maining data bytes of packet) specified either forward or reverse, left or right. This technique
reduces the number of commands, but for this application an extensive command vocabulary
is unnecessary. Explicit commands (i.e. reverse or forward) simplify the command decoding
at the interface and produce a more intuitive language for the application software. The
commands that are implemented are listed in table 2.



5 Conclusion

The benefits of using a micro-controller are confirmed by the fact that the design works
beyond the original specification, and the extendibility supports future applications. The
interface is equipped to receive and process data without placing a burden on the host PC.
The processor has 4K of ROM available and only one sixteenth is currently used, which allows
some very complex processing to be performed in the future. The platform-independent
communication interfaces ensure that most computers can control the interface with a very
small software overhead.
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