Practical Camera Calibration for Large Rooms

Jacky Baltes

CITR, University of Auckland
Tamaki Campus, Building 731, Auckland, New Zealand

Email: j.baltes@Qauckland.ac.nz

Abstract: This paper describes our practical experiences and methods for calibrating a large room. We
show a semi-automatic system to assign real world coordinates to image features. Our system uses a two
stage process in which easily recognizable objects (squares) are used to sort the individual data and to
find missing objects. Fine object features (corners) are used in a second step to determine the image real
world coordinates. An empirical evaluation of the system shows that the average and maximum errors
are sufficiently small for our problem domain (autonomous mobile agents playing soccer).

Keywords: Camera calibration

1 Introduction

Our research work focuses on the design of intelligent agents in highly dynamic environments. As a
testbed, we use the RoboCup domain, which is introduced in section 2. In this domain, small toy cars
play a game of soccer. Position and orientation information is provided by a global vision system.

This paper describes an accurate, cheap, portable, and fast camera calibration system. After an initial
preprocessing step (which is guided by the user), it automatically computes real world coordinates for
features of the image. Tsai’s camera calibration is then used to compute the parameters of the camera
model.

Section 5 shows the accuracy that can be obtained by our method in a synthetic and a real world problem.
Both the average and maximum error are sufficiently small for our application.

In section 6, we discuss ideas for further research. In particular methods for improving the accuracy and
methods for using the color information in a calibration picture to determine color thresholds and regions
with different color thresholds.

2 The RoboCup World

RoboCup [1] is a domain initially proposed by Alan Mackworth ([2]) to provide a challenge problem
that requires the integration and coordination of a large number of techniques. The problem is to create
autonomous softbots and robots that can play a game of soccer.

RoboCup is a difficult problem for a team of multiple fast-moving robots under a dynamic environment
that requires the designer to incorporate: autonomous agents, multi-agent collaboration, strategy ac-
quisition, real-time reasoning, robotics, and sensor-fusion. RoboCup also offers a software platform for
research on the software aspects of RoboCup.

The RoboCup environment at the University of Auckland consists of a commercially available cheap video
camera mounted on a tripod. The video camera is connected to a video server (a Pentium PC). The video
server interprets the video data and sends it position and orientation information to other clients on the
network (three PCs). The playing field is a rectangular area of roughly three by five meters with a grey
carpet. Lighting is provided by fluorescent lamps on the ceiling. All the equipment is readily available
and most of the room has been unchanged. Figure 1 shows our environment.

Figure 1: Aucklandianapolis at the University of Auckland. The tripod of the vision system can be seen
on the top right corner of the image. The video camera is just out of the picture. The video server
determines position and orientation of the cars by bright dots on the car. As can be seen, the speed trials
took their toll on our cars.

Since we are often asked to give demos of our system for different occasions, we needed an accurate,
cheap, portable, and fast method for camera calibration.

3 Camera Calibration

Traditional camera calibration relies on the availability of known image coordinates for some known world
points, that is the real world coordinates for at least 12 image points must be known. Once a sufficient
number of matching points have been found, well known camera calibration techniques can be used. For
example, the Tsai calibration method uses an eleven parameter model with six external and five internal
parameters [3]. In our work, we are using a public domain implementation of the Tsai calibration method,
which is available from the WWW [5].

This paper focuses on the problem of finding a suitable set of matching points for camera calibration. The
need for portability and speed of the calibration method ruled out traditional methods of using feature
points inherent in the scene (since these feature points will not be available when moving to different
rooms) or of painting feature points into the scene (a labour intensive and error prone task for a large
set of points). The creation of a special calibration pattern of sufficient size and with a sufficient number
of points was also too expensive. For example, a large wooden board with calibration points (a) would
be difficult to move, (b) may not fit into rooms that do not have similar geometry (e.g., a part of the
rectangle is cut out by a wall), and (c) expensive and labour intensive to manufacture.

However, we clearly needed a portable calibration pattern, so we decided to use readily available material.
We looked at a number of possibilities including carpets (have a dense texture and are expensive) and
linoleum carpets (accurate pattern, but expensive and has an undesirable warping property).

In the end, we decided to use a duvet cover (250x200cm) with a square pattern on it. The back half of
the duvet cover was removed to reduce artifacts due to the transparency of the cloth material. The duvet
cover is well suited for our environment, since it is easily portable and can be adapted to room outlays'.
Drawbacks are that the cloth material stretches and warps. Both drawbacks can be minimized through
the handy use of an iron. However, they can not be eliminated and thus introduce errors, which limit
the accuracy of the camera calibration that can be obtained.

Figure 2 shows a picture of the calibration duvet cover as seen by the video camera.

Figure 2: Calibration Pattern as seen by the Camera

4 Find Matching Points Algorithm

Given the picture shown in fig. 2, our system uses a semi-automatic method for calculating the matching
points. In the preprocessing step, the user removes unwanted parts of the picture, such as the table top
on the left side of the calibration picture. Secondly, the color image is converted into a gray scale image
and thresholded, so that only the white squares are left in the image. Currently, we are only a global
threshold value on the red channel, which was sufficient for our environment.

After this initial preprocessing step, the system automatically computes the matching points. The idea
is to find features in the image that can be assigned world coordinates by the known geometry of the
calibration pattern (i.e., by knowing that the dimensions of the squares is 8 x 8.1¢m). A false color image
of the result of the preprocessing step can be seen in fig. 3. The figure shows some of the problems in
assigning real world cooridinates to image features: (a) some of the squares are missing from the right
side of the image, and (b) some parts of the squares are missing (e.g., in the bottom right corner).

First, the system uses a simple pattern to find the white squares in the picture. This step ignores small
artifacts and handles missing squares. The centre point of each square is computed by calculating the
moments along the x and y direction. Then, the squares are sorted. This sorting step is of critical
importance, since if it is done in the wrong order, the assigned real world coordinates will be wrong,
which will result in inaccurate calibration.

The following algorithm find_real_worldis used to sort the squares and to assign real world coordinates
to the centre of the squares. The algorithm takes a unsorted sequence of squares as input and assigns
a real world coordinate to the centre of each square. First,the squares are sorted in increasing order of
their y coordinate (line 3). This is used to repeatedly extract the next row from the sequence. A row
is defined by an initial sequence of squares from y_sort_squares, whose y coordinates are within the
tolerance limit eps. The system also initializes the variable guess_y, which is used as a guess of the

1Tt is also a handy blanket for my graduate students when they get caught up in their work and end up sleeping in the
lab

i N & N E B EH = = W ¥ wm
F By BN BN BN BN BN BN BN TR W
A N &N BN B H B E W W Owm om
N N N N E E N B E e Ew
o A B E E E 2 E B E e
AN N N B E B E B BT W W W
N N N E HE N H B g mw
N N B B B B EH B EmEwmE=
f Av B BN BN BN BN BN BE BN TN UR Y
N N N B B B B E E W Wy
' v BN BN BN BN BN BN BN BE TR W A
N N N E EEEESEW%®E
N N E EEEENEERUE®RS
P BN B BN BN BN BN BN BN B BR S
A B N EEEEEBEEEE &
N N N FE N EEEEEWES
H B R EE EEE W7

Figure 3: Calibration Pattern after Preprocessing

distance in pixels between the previous and the current row. Lines 8-12 calculate the ratio between the
actual average distance in pixels between the previous row to the current row to this estimate. This ratio
is used to overcome the problems of missing rows in the input image. The current y coordinate Wy, and
guess_y are updated in lines 13-14. Similarly to the rows, the squares within a row are then sorted
based on their coordinate (line 16) and an z coordinate is assigned (line 24) based on a guess of the
distance in pixels to the next square guess_x (lines 20-23 and line 27).

Procedure find_real_world_coors(unsorted_squares) {

1

2

3 y_sort_squares=sort(unsorted_squares,y—direction);
4 guess_y=0; prev_avg_y=0;

5 Wy=0;

6

7 while (row=extract_row(y_sort_square,eps)'!=empty) {
8
9

avg_y = average_y_coor(row);
if (guess_y != 0)

10 factor = round((avg_y-prev_avg_y)/guess_y);
11 else

12 factor = 0;

13 Wy=Wy+factor*SQUARE_Y_DIMENSION;

14 guess_y=avg_y-prev_avg_y;

15

16 x_sort_squares=sort (row,x-direction);
17 guess_x=0; prev_square=null;

18 Wx = 0;

19 foreach square in x_sort_square {

20 if (guess_x != 0)

21 factor=round((square.x-prev_square.x)/guess_x) ;
22 else

23 factor=0;

24 Wx=Wx+factor*SQUARE_X_DIMENSION;

25 square.realworld_x = Wx;

26 square.realworld_y = Wy;

27 guess_X = square.X - prev_square.Xx;
28 prev_square = square;

29 }

30 prev_avg_y = avg_y;

31}

Table 1: Algorithm for finding real world coordinates

n Synthetic Picture Real picture

avg. err | stddev | Max. err | avgerr | stddev | Max. err
50 0.9936 | 0.0653 0.7291 | 15.2802 | 7.6748 | 85.0945
100 | 0.0964 | 0.0553 0.3307 | 17.2455 | 7.9873 | 50.0908
150 | 0.0931 | 0.0511 0.3068 | 13.0654 | 3.8769 | 37.0576
200 | 0.0939 | 0.0557 0.5121 | 13.8500 | 5.0923 | 55.2477
300 | 0.0904 | 0.0498 0.3186 | 13.6753 | 4.3130 | 43.3685
400 | 0.0901 | 0.0504 0.3207 | 13.6320 | 4.2632 | 56.5799
500 | 0.0899 | 0.0497 0.3152 | 13.5105 | 3.6942 | 34.5634

Table 2: Results of the Evaluation

Note that the estimates to the next row and column are adaptive, so this method will work in pictures
with obvious perspective distortion (as can be seen in fig. 2) as long as the change from one row to the
next is not more than 50%.

After approximate real world coordinates have been assigned to the centres of all squares, the system
uses four edge detection steps to find the coordinates of all four corners. If a corner has been identified,
it is assigned a real world coordinate by the geometry of the calibration pattern (for example in the first
column, the first top left corner has coordinates 0.0,8.1, the bottom left corner of the next square is
0.0,16.2 and the top left corner of the second square is 0.0,24.3.

This means that the assignment of the real world coordinates to the corners is independent of the
assigned real world coordinates of the centres of the squares themselves. This is an important feature in
our algorithm, since the centres of objects are distorted by the perspective projection and are moved to
the lower end of the picture, which means that they are unsuitable for applications that require a high
accuracy. Of course, given an accurate camera model, this perspective distortion can be compensated for,
but this leads to a chicken and egg problem, since we are using this information to calibrate the camera.

The real world coordinates of the centres are only used for sorting the squares, which means that only
their relative values are important to determine, which square is the next square in a row or column or
whether a square is missing.

Also we found in our tests that this two-stage approach (sort centre of squares, find corners for each
square) works better than assigning world coordinates to all corner points. Missing squares or missing
data points makes this one step assignment very difficult and error prone.

After the computation of the matching points, we use a PD implementation of Tsai’s camera, calibration
to compute the parameters of the camera model.

5 Evaluation

We evaluated the system in practice (by calibrating three different rooms on a number of occasions) and
quantitatively through the use of a synthetically generated and a real camera picture.

The synthetic picture was generated by computing a perfect image of all feature points (corners of squares)
given our current camera setup (camera mounted on a tripod, 1.78m above ground). Since in this case
the matching points are 100% accurate, it gives an indication of the maximum accuracy that can be
obtained of an eleven parameter camera model.

Given the input image shown in fig. 2, the corner detection finds 815 corner points. The following
table summarizes the average error and the standard deviation of the error with increasing number of
calibration points n. The data in the table was generated by averaging the results of three cross validation
runs for each program. In each test, n points were selected at random. The camera was calibrated with
the data from the calibration points and then the average error, standard deviation, and the maximum
error (all in millimeters) were computed.

As expected, increasing the number of calibration points improves the calibration of the camera in the
synthetic picture. A similar trend can be observed in the real picture.

The differences in errors between the synthetic and the real world image are due to warping of the material
in inaccuracies in determining the feature coordinates.

Also, even when using only 150 points, the predictive power of the algorithm is sufficient for our purposes.
The error of the calibration is less than 1.3¢m on average and the maximum error is 3.4c¢m. This data
is confirmed by testing the accuracy of the coordinates in uncovered areas of the picture (on the very
top and bottom of the image). Although, there were no calibration points that covered these ares, the
measured error for this region is around 1.5¢m.

6 Conclusion

This paper describes a practical implementation of camera calibration in large rooms. It combines the
use of a well known calibration algorithm with a semi-automatic method for computing the matching
points.

The method uses a two stage approach. An initial approximation of the centre of an object (in our
example squares) are used to sort the objects, but specific features of the object are used to assign real
world coordinates. We intend to use feature detection mechanisms with subpixel accuracy, such as the
ones described in [4] in the future to improve the accuracy of the calibration.

Currently, only information in the calibration image is used to calibrate the geometry of the camera only.
Another problem is the color calibration of the image. The individual cars are detected by our vision
server through bright red and green dots on top of the cars.

We found that under different lighting conditions the parameters for the detection routines of the colors
had to be adjusted. Another problem is that the lighting over such a large area is not uniform. Areas
directly under the ceiling lights are brighter than other areas.

Our next goal in this research is to use the information in the picture to calibrate the geometry as well
as the color information in the system. The system would compute the correct thresholds for detecting
red and greed dots based on the color of the blue squares in the image. Furthermore, if there are large
differences in brightness due to non-uniform lighting, the system will have to break up the room into
different parts and compute color thresholds for each region separately.

References

[1] Hiroaki Kitano, editor. RoboCup-97: Robot Soccer World Cup I. Springer Verlag, 1998.

[2] Alan Mackworth. Computer Vision: System, Theory, and Applications, chapter 1, pages 1-13. World
Scientific Press, Singapore, 1993.

[3] Roger Y. Tsai. A versatile camera calibration technique for high-accuracy 3d machine vision metrology
using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automation, RA-3(4):323—
344, August 1987.

[4] Robert J. Valkenburg, Alan M. Mclvor, and P. Wayne Power. An evaluation of subpixel feature
localisation methods for precision measurement. In Videometrics III, volume SPIE 2350, pages 229—
238, 1994.

[5] Reg Willson. Tsai camera calibration software. WWW, 1995.

