
Planning Strategy Representation in DoLittle

Jacky Baltes

Department of Computer Science
Tamaki Campus

University of Auckland
Private Bag 92019

Auckland, New Zealand

h.baltes@auckland.ac.nz

Abstract. This paper introduces multi-strategy planning and describes
its implementation in the DoLittle system, which can combine many
di�erent planning strategies, including means-ends analysis, macro-based
planning, abstraction-based planning (reduced and relaxed), and case-
based planning on a single problem. Planning strategies are de�ned as
methods to reduce the search space by exploiting some assumptions (so-
called planning biases) about the problem domain. General operators
are generalizations of standard Strips operators that conveniently rep-
resent many di�erent planning strategies. The focus of this work is to
develop a representation weak enough to represent a wide variety of dif-
ferent strategies, but still strong enough to emulate them. The search
control method applies di�erent general operators based on a strongest
�rst principle; planning biases that are expected to lead to small search
spaces are tried �rst. An empirical evaluation in three domains showed
that multi-strategy planning performed signi�cantly better than the best
single strategy planners in these domains.

1 Introduction

Strategical planning, in particular the classical planning paradigm has long been
an active research area in artificial intelligence. One reason for this popularity is
that many practical problems can be interpreted as strategical planning prob-
lems, e.g., scheduling of machines in a factory, file system maintenance in an
operating system, or cargo delivery.

Unfortunately, theoretical results show that planning is intractable even in
simple domains [3, 5]. To be practical, a planner must therefore reduce the size
of the search space. Based on the notion of an inductive bias in machine learn-
ing [12], I introduce planning bias to describe these assumptions. Examples of
planning biases include assumptions about the structure of the search space, the
domain description, the plan structure, the problem set, and the order of the
problems.

A planning strategy is any method that exploits some planning bias by re-
moving, re-ordering, or restructuring part of the search space. The distinction

between planning bias and planning strategy is important since (a) there may
be different strategies for exploiting a bias, and (b) since different planning bi-
ases may lead to the same planning strategy. For example, if the designer of
a domain assumes that earlier plans are subtasks of later ones (a problem or-
der bias), she may either create macros to encapsulate earlier solutions or use a
case-based system with a specific similarity metric. On the other hand, Iba’s and
Korf’s macro-planners use the same planning strategy (macros), but are based
on very different planning biases (peak-to-peak heuristic ([9]) vs. serial operator
decomposability ([10]).

2 Motivation

Planning systems based on particular planning strategies work well if the un-
derlying assumptions (biases) are met, but fail (often spectacularly) if they are
not. Many different planning strategies have been developed, but no single bias
has been found to be superior or even sufficient in all domains. Recent research
shows that planners must use different planning biases in different domains [14].

The motivation for multi-strategy planning is that instead of developing a
new planning strategy, the planner is based on partially successful, well known
planning strategies. So far, the work focused on macro-based, case-based, and
abstraction-based planning. The problem is to determine when a given planning
strategy is appropriate for a domain and solve the problem with it. Unfortu-
nately, there are many examples in which a single planning strategy is not suffi-
cient for a domain or even a single problem. Instead, some parts of the problem
can be solved efficiently by a particular planning strategy, but another planning
strategy is needed for the remainder. Therefore, a multi-strategy planning system
must (a) break the problem up into subproblems, (b) select planning strategies
and solve the subproblems, and (c) combine the solutions to the subproblems.

The remainder of this section is a brief example, to give the reader a feeling for
the essence of multi-strategy planning. Therefore, the comparison is based solely
on the necessary search depth and ignores other factors such as the branching
factor. A completely worked example can be found in [1].

This work aims at developing a strategical planning system for a kitchen
robot. To simulate this environment, I developed a kitchen domain; it consists
of an one-armed, mobile robot whose task it is to prepare different beverages. The
kitchen domain is a complex domain. It contains 51 operators and 45 objects and
has an average branching factor of 3.5. Plans contain many primitive operators,
e.g., making a cup of tea, which is one of the simplest tasks, takes 30 steps and
is shown in Tab. 1.

Assume that in the kitchen domain, the goal is to prepare a cup of instant
coffee with sugar. The solution to this problem contains 42 primitive operators
and is shown in Tab 2.

Case-based planning retrieves a plan (in this example, the plan for making
tea) and adapts it. This requires replacing the tea box with the instant coffee jar
(steps 23,25), replacing the tea bag with instant coffee (steps 29), adding steps

Table 1. Making tea in the kitchen domain

1 open-door cupboard ; get a cup and �ll it
2 pick-up-from-cupboard cup1 ; with water
3 move-robot at-table at-sink

4 put-in-sink cup1

5 fill-with-water cup1

6 turn-water-off

7 pick-up-from-sink cup1 ; heat the cup with water in
8 move-robot at-sink at-table ; the microwave and put it
9 put-on-table cup1 ; on the table

10 move-robot at-table at-stove

11 open-door microwave

12 move-robot at-stove at-table

13 pick-up-from-table cup1

14 move-robot at-table at-stove

15 put-in-microwave cup1

16 close-door microwave

17 heat-water-in-microwave cup1

18 open-door microwave

19 pick-up-from-microwave cup1

20 move-robot at-stove at-table

21 put-on-table cup1

22 move-robot at-table at-sink

23 pick-up-from-shelf tea-box ; get a tea-bag and put it in
24 move-robot at-sink at-table

25 put-on-table tea-box ; the cup, dispose of it
26 open-container tea-box ; afterwards
27 get-tea-bag

28 make-tea cup1

29 move-robot at-table at-sink

30 put-in-garbage-can old-tea-bag

to get a spoon (steps 27-28), and removing operators to throw out the used tea
bag. A case-based planner can perform these adaptations relatively quickly by
comparing the old and new goal predicates. However, the case-based planner has
to create a suffix plan to get the sugar jar and open it, and then scoop the sugar
into the coffee. This takes an additional 19 steps in the kitchen domain and
the previous plan does not contain any information that can help a case-based
planner to speed up this process.

Table 2. Making instant co�ee with sugar in the kitchen domain

. . .
22 move-robot at-table at-sink ; identical to the

; plan for making tea
23 pick-up-from-shelf instant-coffee-jar ; replace tea-box

; with
24 move-robot at-sink at-table ; instant-co�ee-jar
25 put-on-table instant-coffee-jar

26 open-container instant-coffee-jar

27 open-door drawer ; add steps and use
28 pick-up-from-drawer spoon ; a spoon
29 scoop-instant-coffee

30 pour-instant-coffee cup1

31 stir cup1 ; stir instant co�ee
32 put-down-on-table spoon

33 move-robot at-table at-sink

34 pick-up-from-shelf sugar-box

35 move-robot at-sink at-table

36 put-on-table sugar-box

37 open-container sugar-box

38 pick-up-from-table spoon

39 scoop-sugar

40 add-sugar cup1

41 stir cup1

42 put-on-table spoon ; done

Macro-based planning exploits often used operator sequences in the do-
main. Because of the large variety of possible location for the utensils in the
kitchen domain, there are few long recurring operator sequences. The average
length of the useful macros in the kitchen domain is about four operators. For
example, the following macro fills a cup with water (put $Cup in sink, fill $Cup
with water, turn water off, pick up $Cup). Given that macros only contain small
number of operators, they can not reduce the search space sufficiently. For ex-
ample, in this case, the search depth is still at least ten steps.

Abstraction-based planning creates an abstract plan to make instant coffee
with sugar: (get a cup, fill cup with water, heat the water by either using the

microwave or the stove, add instant coffee, get the sugar jar, add sugar). However,
the refinement of each of those abstract operators is non-trivial in itself, and
abstraction-based planning does not provide any guidance when searching for
the refinement. For example, the refinement of the “heat-the-water” operator
consists of ten primitive operators.

Multi-strategy planning uses all planning strategies to make instant coffee
with sugar. It uses case-based planning to find an initial plan. However, it is
able to employ other planning strategies when searching for the suffix plan to
add sugar. An abstract plan to add the sugar is easily found: get the sugar
jar and add the sugar. The refinement of these abstract operators is sped up by
providing macros for often recurring subsequences, e.g., fetching a jar or opening
a jar. In this case, the search depth is two steps only.

As can be seen in the previous example, no single problem solving strategy
(macros, cases, abstractions) was able to solve the problem efficiently, but a
combination had to be used.

3 Planning Paradigm

Korf has previously analyzed the planning problem as a state space search prob-
lem [10]. In this framework, planning is interpreted as a graph search problem.
The nodes of the graph represent world states and edges correspond to applica-
tion of an operator. Although intuitive, this framework is not powerful enough
to represent other planning strategies, such as abstraction-based planning since
it reasons about sets of world states.

This section develops a practical definition of planning strategy as a lan-
guage for evolving plans and a set of plan transformations. This work uses the
plan-space search paradigm, which was first introduced to analyze partial order
planning [4] but can be extended to include recent new planning paradigms [2,
6]. Planning is interpreted as search through evolving plans. In this framework,
a planner is defined as follows:

Definition 1 (Planner). A planner P is a tuple (LS ,LG ,LO,LP , T ,M).

– LS is the state language, describing possible world states.
– LG is a goal description language.
– LO is a description language for operators,
– LP is the plan language, the language describing evolving plans. The plan

language must be able to express plans, that is a set of operators, an ordering
on the operators in the set, and a set of constraints on variable instantia-
tions. Early planning systems supported only totally ordered, fully instan-
tiated plans. More recently, partial-order planners support partially ordered
plans with co- and non-codesignation constraints of variables.

– T is a set of plan transformations. A plan transformation t is a function
that takes a plan expression from LP , and returns a new candidate plan c
expressed in LP .

– M is the plan selection method. Given a set of possible plans P expressed in
LP , M selects the plan p to be tested next.

The state LS , goal LG , and operator LO languages determine the descrip-
tion of a domain, since they define the input to the planning system. As many
other planning systems, this work uses a variant of the Strips representation.
Therefore, the representational classification is ignored in the remainder of this
paper.

The operational classification is determined by three components: the plan
description language LP , the set of plan transformations T , and the plan se-
lection method M . Plan selection methods are usually derived from well-known
search methods such as depth-first, breadth-first, or best-first.

The following subsections discuss some popular planning systems in the plan
space search paradigm. Although there are many possible variations of the dif-
ferent strategies, the following discussion focuses on the most common imple-
mentations.

3.1 Forward chaining planning

Forward chaining planning is a simple planning system that applies operators
until a goal state is found. The plan language represents a totally ordered and
fully instantiated operator sequence. There is only a single plan transformation:
append an operator to the operator sequence.

3.2 Means-ends analysis

Means-ends analysis contains two totally ordered and fully instantiated sets of
operators, the plan head and the plan tail. The plan head contains operators
that are already applied and the plan tail contains operators that still need to
be applied. There are three plan transformations: (a) append an operator to
the plan head, (b) prepend an operator to the plan tail, and (c) apply the first
operator of the plan tail.

3.3 Macro-based planning

Macro-based planning is similar to means-ends analysis planning, but the plan
language and the plan transformations are extended to include sequences of
operators instead of single operators only.

3.4 Abstraction-based planning

Abstraction-based planning extends the plan language to allow for different lev-
els of abstraction. The set of plan transformations from means-ends analysis
are extended to include a transformation that adds the generation of a new
subproblem space at the next lower abstraction level.

3.5 Case-based planning

Case-based planning uses a similar plan language to means-ends analysis, but
a much larger set of plan transformations (insert, remove, reorder, replace, and
instantiate an operator). The operator selection method is based on a similarity
metric instead of relevance.

Table 3, which is described in [1], summarizes the results presented above and
includes the plan language and set of plan transformations for other planning
strategies.

Planner Plan lang. LP Transform. set T

Forward Total order Append to plan head
Chaining Instantiated variables Advance current op.

Plan head

Means-ends Total order Append to plan head
Instantiated variables Prepend to plan tail
Plan head and plan tail Advance current op.

Case-based Total order Insert operator
Chef Instantiated variables Remove operator

Plan skeleton Reorder operator
Concurrent plans Replace operator

Change var. bindings
Move current op.

Auto. subgoals Total order Append to plan head
Stepping Stone Instantiated variables Prepend to plan tail
Relaxed Uniform trees Advance current op.
Abstraction Plan head and plan tail Create probl. space

Abstraction Total order Append op. at level i
Alpine Instantiated variables Prepend op. at level i

Uniform trees Advance curr. op. (i)
Plan head and plan tail Create probl. space (i+ 1)

Macros Total order Append op. sequence
MacLearn Instantiated variables Advance current op.

Plan head

Multi-strat. Total order Move current op.
DoLittle Instantiated variables Insert op. sequence

Plan skeleton Remove, -order, -place ops.
Non-uniform trees Change var. binding

Create problem space

Partial-order Partial order Add operator
Tweak Constrained variables Add variable constraint

Add operator ordering

Table 3. Operational classi�cation of di�erent planning systems

Note that this representation is not the only one possible. There are many
other weak representations, for example, Gould’s APS system uses a pattern
weight representation [7]. The main focus of this work is a representation that is
weak enough to cover a wide variety of strategies, yet strong enough to emulate
them. For example, it may seem that the reorder and replace plan transfor-
mations in case-based planning are superfluous, since they can be achieved by
sequences of insertion and removal of operators. From a representational point of
view, operator insertion and removal are the only ones necessary, since any plan
can be created with these two transformations alone. However, this neglects the
fact that these transformations have specific conditions under which they are
applied. For example, in Hammond’s Chef planner [8], an operator can only be
replaced if it solves a missing precondition or unwanted side effect conflict. As
Hammond showed, the power of Chef stems from the fact there is a small set of
these transformations and applicability conditions that can solve most problems
in the cooking domain.

4 Multi-strategy Planning in DoLittle

This section discusses the design of DoLittle, a multi-strategy planner that
can combine forward chaining, means-ends analysis, case-based, automatic sub-
goaling [13], abstraction-based, and macro-based planning.

Extending the analysis of different planning strategies in the plan space
paradigm described in section 3, the plan language and the set of plan trans-
formations necessary for a multi-strategy planning system can be determined.
In particular, the plan language must be able to represent: (a) totally ordered
operator sequences, (b) instantiated variables, (c) a plan skeleton, and (d) trees
of problem spaces. The set of plan transformations must include (a) operator
transformations (application, insertion, removal, reordering, replacement of an
operator sequence), (b) changing a variable binding, and (c) the creation of dif-
ferent subproblem spaces for subproblems, serial subgoals, and abstract spaces.

The design of a multi-strategy planner requires three key components: (a)
applicability conditions for planning strategies, (b) a representation for different
planning strategies, and (c) a search strategy that emulates different planning
strategies.

4.1 Applicability conditions

Previous work has shown that simply extending the set of plan transformations
is not sufficient. Minton showed that the creation of macro-operators alone must
be carefully controlled to avoid a decrease in performance due to the increase
in branching factor [11]. The situation is even worse for a multi-strategy system
that adds many more plan transformations. Therefore, a multi-strategy planning
system must also provide powerful methods for specifying when a given plan
transformation should be applied. There are many possible features of a planning
process that may be useful in determining whether to apply a planning strategy,

e.g., the current state, the goals the planner is trying to achieve, the problem
space, the current subgoal hierarchy, the current operator and its binding, the
results of the indexer, the set of rejected plans, and additional domain knowledge.
Many of these features are planning strategy dependent. For example, there is
no concept of a subgoal hierarchy (means-ends analysis) in case-based planning
and vice versa for the results of the indexer. Therefore, DoLittle’s applicability
conditions are based on a common subset of these features: the current state and
the set of goals the planner is trying to achieve (so-called open goals).

The language for DoLittle’s applicability conditions supports conjunction,
disjunction, and negation of preconditions and open goals. For example, DoLit-

tle can specify that a given planning strategy should only be used when the
current state contains either (on cup1 table) or (in cup1 microwave) and
the planner is trying to achieve (in cup1 sink) but not when it is trying to
achieve (on cup1 shelf). For more detail, the reader is encouraged to refer to
[1].

4.2 Representation of planning strategies

DoLittle uses general operators, a generalization of Strips operators, to rep-
resent applicability conditions and planning strategies. Associated with a general
operator is a set of refinements. A refinement is a sequence of general or primitive
operators that guarantees that the effects of the parent operator are achieved,
but it may have additional pre-conditions and effects.

The following general operator is an example from the kitchen domain and
illustrates the key features:

General operator example

gen-pick-up-from-cupboard

Variables $object

Preconds (arm-empty)

(is-at robby at-table)

(is-in $object Cupboard)

Open goals (holding $object)

Effects (holding $object)

(not (is-in $object Cupboard))

(not (arm-empty))

Refine. 1 pick-up-from-cupboard($object)

Refine. 2 ABSTRACT-SUBGOAL

The general operator gen-pick-up-from-cupboard can be used to pick up
an object from the cupboard independent of whether the cupboard is open or
not. The preconditions and open goals refer to the planner state, not the world
state. The preconditions of the operator establish that the planning strategies
described in the refinements are applicable, if the current world state matches

them, i.e., the arm is empty, the robot is at the table, and $object is in the
cupboard. Note that DoLittle will not subgoal on the preconditions in the
planner state, only on those of the refinements. Furthermore, one goal that the
planner is trying to achieve is (holding $object). Adding another literal to
the set of open goals results in a conjunction. To represent a disjunction, a new
general operator must be created:

General operator example

gen-pick-up-from-cupboard-2

Variables $object

Context
Preconds (arm-empty)

(is-at robby at-table)

(is-in $object Cupboard)

Open goals (not (is-in $object Cupboard))

Effects (holding $object)

(not (is-in $object Cupboard))

(not (arm-empty))

Refine. 1 pick-up-from-cupboard($object)

Refine. 2 ABSTRACT-SUBGOAL

Given the two general operators, the strategies described in their common set
of refinements are applicable if the planner is trying either to achieve (holding

$object) or to negate (is-in $object Cupboard).

General operator example (continued)

Refine. 1: MACRO
Variables $object

Preconds same as parent plus
(is-open cupboard)

Effects (holding $object)

(is-in $object Cupboard)

(arm-empty)

Sequence pick-up-from-cupboard($object)

The first refinement is of type MACRO and consists of the single primitive oper-
ator pick-up-from-cupboard. This refinement has the additional precondition
that the cupboard must be open when picking up the object. If DoLittle selects
this refinement, but the cupboard is closed, it will subgoal and generate a plan to
open the cupboard. Note that in practice DoLittle selects the refinement that
best matches the situation and would return the second refinement, discussed
below, if the cupboard is closed. The deletions of (is-in $object Cupboard)

and (arm-empty) are side-effects of pick-up-from-cupboard. The difference

between a MACRO and CASE refinement is that only CASE refinements can
be adapted by for example replacing operators. MACRO refinements can only
be added to the plan.

General operator example (continued)

Refine. 2: ABSTRACT SUBGOAL
Variables $object

Preconds same as parent plus
(not (is-open cupboard))

Effects (is-open cupboard)

(holding $object)

(not (is-in $object cupboard))

(not (arm-empty))

Sequence empty

The second refinement is a reduced abstraction refinement, which does not
contain an operator sequence. It contains one additional precondition (not

(is-open cupboard)) and one additional effect (not (is-open cupboard)).
DoLittle recursively searches for a plan that achieves all effects of the refine-
ment. However, since the search space is classified as an abstract search space,
the planner is constrained to plans that do not change the values of the literals
in the general operator. For example, while searching for the plan to pick up
the cup, DoLittle will reject any plan that changes the position of the robot
((is-at robby table)) or picks up an object ((arm-empty)).

4.3 DoLittle’s search control

The representation of different planning strategies is alone not sufficient for a
multi-strategy planning system. The representation of cases and macros are very
similar, both are sequences of operators. However, their effect on the search space
is very different. Macros are simply selected and concatenated, whereas cases are
selected based on a similarity metric and are adapted. The situation is similar
to that of asking for the inherent meaning of a bit-pattern (e.g., 11101010),
which of course depends on whether it is interpreted as a binary number (signed
or unsigned?), a machine code instruction (for which processor?), a character
string, or a floating point number. Therefore, a multi-strategy planning system
must also provide a search control method that emulates the effect of a given
planning strategy on the search space.

DoLittle’s search control method is based on a strongest-first heuristic:
planning strategies that result in the smallest search space are tried first. Check-
ing a small search space first has two benefits: (a) if a solution exists in this space,
it can be found quickly, and (b) if no solution exists, the failure can quickly be
recognized. Note that since planning strategies are not complete, they may re-
move the part of the search space with the solution.

DoLittle uses a domain independent similarity measure to retrieve the most
similar general operator to the current problem and to select the refinements. If
the operator or refinement represents a macro that exactly matches a problem,
a solution is found (macro-based planning). Otherwise, the operator sequence is
adapted to the current situation (case-based). If there is no case or macro avail-
able, a subproblem search space is created. At present, there are three different
types of search spaces in DoLittle: an abstract subgoal space, a serial sub-
goal space, and a general subgoal. The different search spaces represent different
constraints on the search.

5 Evaluation

This section discusses briefly the results of an evaluation of DoLittle’s perfor-
mance on a set of problem domains. For a detailed description of the method-
ology and the statistical analysis, please refer to [1]. The evaluation included
three domains: (a) the blocks-world, (b) the towers of Hanoi, and (c) the kitchen
domain.

The goal of this evaluation was to evaluate empirically the performance of
multi-strategy planning (DoLittle) against that of four single strategy plan-
ners: a means-ends analysis planner, a case-based planner, a macro-based plan-
ner, and an abstraction-based planner. The performance of DoLittle was also
compared against that of a problem coordinated multi-strategy planner with an
oracle (PC-MSP-O), that is a planner that selects from a set of possible planners
the best one for a given problem. Although in practice, selecting the best strat-
egy is impossible a priori, the entries for the hypothetical PC-MSP-O planner
were generated by selecting the minimum of the single strategy planners. How-
ever, in contrast to DoLittle, the planning strategy is fixed for a problem, that
is, PC-MSP-O is not able to switch between planning strategies when solving a
single problem.

For the evaluation, a set of 150 training problems were randomly generated
and the different planners were trained on these problems. Then a new set of
250 test problems were generated and the performance of the different planners
was tested. Solving problems in the kitchen domain is difficult. Therefore, the
solution length of the problems in the test and training set was slowly increased
by increasing the number of drinks and ingredients in a plan. For example, a
simple problem maybe to prepare a glass of milk, whereas preparing a glass
of milk with honey or two cups of tea are more difficult (as measured by the
minimum solution length) problems. The idea is that by solving small problems
first, the planners are able to learn enough information to solve more complex
problems later.

The comparison included the cumulative number of nodes generated and the
cumulative running times for the different planners as well as the relationship
between the time limit and the total running time of the system. Figure 1 shows
the cumulative running time in the kitchen domain. The X-axis is a set of 250
test problems that are increasingly more difficult.

baltes-kttime.eps

Fig. 1. Cumulative running times in the kitchen domain

The single strategy planners did improve performance with case-based plan-
ning being the best single strategy planner in this domain. In the kitchen domain,
variations of earlier problems are often subtasks in later ones, which favors a case-
based approach. Multi-strategy planning provided a significant higher speed up
than single strategy planning. DoLittle performed better on the more difficult
problems than PC-MSP-O. This difference statistically significant, which shows
that especially in complex domains, a multi-strategy planner should be able to
switch planning strategies while solving a problem.

In the kitchen domain, DoLittle gained much of its power by combining
case-based planning with either macro operators or abstract operators. Initially,
it would select a case and adapt it to the new situation. It would use macros,
abstractions, and sometimes even other cases for difficult adaptations.

The empirical evaluation also showed that no single strategy planner was
superior. For example, although case-based planning lead to the biggest im-
provement in the kitchen domain, it performed worse than abstraction-based
planning in the towers of Hanoi domain.

6 Conclusions

So far, the main focus of the research has been on methods for combining different
planning strategies on a single problem. Current work investigates the interaction
of different planning strategies.

The uniform representation in DoLittle also makes it an ideal test-bed for
the comparison of different planning strategies. This work may result in a better
understanding of the applicability conditions of different planning strategies.
This will lead to better methods of determining when a given planning strategy
is appropriate for a domain.

Development on DoLittle is continuing at the University of Auckland. Cur-
rently, we are working on a project that uses DoLittle as the strategic planning
component of an autonomous, mobile robot. The intended applications for the
robot are mail delivery in an office environment, and other household and secu-
rity tasks.

This new application will require the addition of new planning strategies and
new learning methods. So far, DoLittle’s learning methods are limited since
they only learn from successful solutions. There are many more problem solving
events that may prove helpful in learning to improve the performance of the
planner, such as failure, subgoal interaction, or expensive refinements.

References

1. Jacky Baltes. DoLittle: a learning multi-strategy planning system. PhD thesis,
University of Calgary, June 1996.

2. A. Blum and M. Furst. Fast planning through plan-graph analysis. In Proceedings
IJCAI-95, 1995.

3. Tom Bylander. Complexity results for planning. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, pages 274{279, Sydney,
1991.

4. David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333{
378, 1987.

5. Stephen V. Chenoweth. On the np-hardness of blocks world. In Proceedings Ninth
National Conference on Artificial Intelligence, volume 2, pages 623{628, Stenlo
Park, July 1991. AAAI Press/The MIT Press.

6. Matt Ginsberg. A new algorithm for generative planning. In Proceedings KR-96,
1996.

7. Je�rey Gould and Robert Levinson. Experience-based adaptive search. In Ryszard
Michalski and Gheorghe Tecuci, editors, Machine Learning: A multi-strategy ap-
proach, volume 4, pages 579{603, San Francisco, Ca, 1994. Morgan Kaufmann
Publishers.

8. Kristian J. Hammond. Case Based Planning. Academic Press Inc., 1989.
9. Glenn A. Iba. A heuristic approach to the discovery of macro-operators. Machine

Learning, 3:285{318, 1989.
10. R. E. Korf. Planning as search: A quantitative approach. Artificial Intelligence,

33(1):65{88, 1987.
11. Steven Minton. Learning Search Control Knowledge: An Explanation-based Ap-

proach. Kluwer Academic Publishers, Boston, 1988.
12. Tom Mitchell. The need for biases in learning generalizations. In J. Shavlik and

T. Dietterich, editors, Readings in Machine Learning, pages 184{191. Morgan Kauf-
mann, 1990.

13. David Ruby and Dennis Kibler. Steppingstone: An empirical and analytical eval-
uation. In Proceedings of the Ninth National Conference on Artificial Intelligence,
pages 527{532, Menlo Park, July 1991. AAAI, AAAI Press/The MIT Press.

14. Peter Stone, Manuela Veloso, and Jim Blythe. The need for di�erent domain-
independent heuristics. In Kristian Hammond, editor, Proceedings of the second
international conference on artificial intelligence planning systems, pages 164{169,
Menlo Park, 1994. AAAI Press.

