
The Evolution of a Digital Logic Lab

Jacky Baltes Cameron Patterson

Computer Science Dept. Alberta Microelectronic Centre

University of Calgary Calgary, Alberta

baltes@cpsc.ucalgary.ca cdp@cpsc.ucalgary.ca

Abstract

This paper describes di�erent technologies that were
used in a VLSI design course at the university of Cal-
gary. The main goal of this paper is to show how
the advent of new technology allows students to spend
more time on design capture, logic simulation, and the
design of test vectors, as opposed to the tedious tasks of
implementing/fabricating a design and a test environ-
ment. This trend has lead to more and more complex
and interesting projects. In recent years, the students
used VHDL to create a behavioral description of their
circuit and synthesize a schematic from it. The syn-
thesis targets Actel or Xilinx FPGAs. The example
project is the design of a GCD circuit, which the au-
thors selected because of a number of desirable charac-
teristics: most importantly, (a) it is complex enough
to allow the students freedom in their design, and (b)
it can easily be adapted to the available hardware re-
sources. The paper includes a small example of the
conversion from an algorithm into a �nite state ma-
chines, one of the crucial steps in the design phase. In
the future, we hope to use con�gurable hardware (the
Algotronix CHS2x4) with a powerful connection to a
host computer. This will allow students even greater

exibility in their design, since they can choose which
parts are implemented in hardware and which are done
through software.

1 Introduction

In this paper, the authors describe and evaluate

their experiences in preparing digital logic labs for a

fourth year undergraduate course (CPSC 521) at the

University of Calgary. The goal is to show how the

course labs were substantially improved through the

advent and use of new hardware and software technol-

ogy. In particular, more time can be spent on design

of the circuit and test sets and less time on tedious

wiring, schematic capture, and the creation of test en-

vironments.

The authors' perspective is mainly that of the lab

assistants. Therefore, this paper emphasizes the prac-

tical component of the course. The labs for the

course are held at the Alberta Microelectronic Cen-

tre (AMC), a company which endeavors to improve

cooperation between university and industry.

CPSC 521 is a fourth year course o�ered to com-

puter science majors who would like to specialize in

hardware. The pre-requisites are CPSC 321 (Introduc-

tion to Logic Circuit Design) and CPSC 421 (Digital

Systems Design). The �rst course discusses boolean

logic, logic minimization, basic arithmetic circuits,

and storage elements. The lab component of this

course consists of implementing various small circuits

using SSI and MSI TTL components.

CPSC 421 examines the structured design of con-

trol logic and data paths. The students use schematic

capture and simulation tools provided by the AMC for

more complex designs (e.g., 8� 8 multiplier).

CPSC 521 (VLSI design) surveys the design and

construction of CMOS VLSI circuits. The students

design, implement and test substantial circuits using

VLSI technology. Since CPSC 521 is a one semester

course, there are only 10 weeks or 30 hours available

for lab sessions. Students usually work in groups of

two because of the limited resources (e.g., worksta-

tions, software licenses).

The next section describes and compares the tech-

nologies used in the labs over the last years. The tech-

nologies are compared according to the amount of time

allocated to the di�erent phases of the project. Sec-

tion 3 summarizes the experiences and also previews

what technology will be used in the future.

2 Technologies

This section describes and evaluates previously

used technologies. The technologies are shown in

chronological order as they were used in the course.

1



The paper compares the amount of time that an aver-

age student spends on the di�erent phases. In general,

the time spent by students in the lab can be divided

into three phases: (a) design capture and simulation,

(b) implementation or fabrication time, and (c) creat-

ing the test environment and testing the design.

The comparison contrasts the suitability of di�erent

technologies to our goal (teaching VLSI design) and

does not re
ect on the applicability of these technolo-

gies to real world problems. However, undoubtedly

some of the features, e.g., the quick fabrication time,

is also of importance in more practical circumstances.

The design capture and logic simulation phase con-

sists of �nding a solution to the given problem. The

student creates a description of the intended circuit

and satis�es himself that the proposed design is cor-

rect through software simulation. The available design

time limits the complexity of the project that can be

attempted in the course. However, students enjoy the

design process and would like to attempt more com-

plex designs, as opposed to simple ones.

The implementation or fabrication phase consists

of building a physical realization of the design. Since

this phase is mainly a translation process, it is of-

ten experienced as tedious by students. The design is

known, and all that is required is to convert it into

a physical representation. For the fabricated IC tech-

nologies discussed in subsections 2.2 and 2.3, the fab-

rication process was done for the students. However,

they were unable to start testing until the chips were

fabricated, so that in these cases the turnaround time

became critical.

In the testing phase, students produce a test en-

vironment (which might include adding switches and

LEDs) and test the project. Since students already

have convinced themselves of the correctness of the

design through logic simulation, the creation of the

test environment is experienced as a nuisance.

It can be argued that the creative process is in the

design and logic simulation phase, and that the te-

dious phases of fabrication and testing may be omit-

ted. However, the authors do not share this view. A

number of real world constraints only arise because of

the need to fabricate and test the chip. Any course on

VLSI design would be incomplete, if only the design

capture and simulation phase was done. Furthermore,

students get a feeling of satisfaction from seeing their

designs work in a \real world" environment, that can

not be achieved through logic simulation.

2.1 Breadboarding

Prior to 1990, the students used breadboarding

to implement their designs. One advantage of this

method was that the components (7400 family TTL

ICs), were readily available. Also, after implemen-

tation, the design could immediately be tested, since

only minor changes are required to the implementa-

tion, for example adding LEDs and DIP switches.

However, this method su�ered signi�cant disadvan-

tages. Most importantly, the long fabrication time.

Due to the large amount of work necessary for the

fabrication, the projects were simple adders and coun-

ters. This meant that the design was straight forward.

More care had to be taken in the selection of test vec-

tors to aid in testing and debugging the design. How-

ever, testing was limited by the small design.

2.2 Multi-project MPGAs

In 1990, the students used the LSI Logic tools for

schematic capture and logic simulation (SC & LS).

The students were broken up into groups of up to four

students and built separate modules of a serial line

interface with builtin hardware compression. The �rst

module received input values and converted them into

a hu�man code. The hu�man code was passed on

to a variable length parallel to serial converter, that

sent the data over a serial line. At the other end, a

variable length serial to parallel converter reads in the

data, decodes it, and converts it back into the original

bit pattern.

Once the designs were �nished, multi-project chips

were created at the AMC mask-programmable gate

array fabrication facilities in Edmonton. This setup

created two problems: (a) fabrication could not be

started until the last group was �nished with their

design, and (b) the turnaround time was almost six

weeks. Due to the long delay in fabrication, insu�-

cient time for testing was available.

2.3 Direct-Write Gate Arrays

In 1991, the AMC and Simon Fraser University col-

laborated to provide fast prototyping of CMOS gate

arrays. Dr. Albert Leung, a researcher at SFU, had de-

veloped a direct-write system for patterning the met-

allization of gate array ICs. Rather than using tra-

ditional masking and photolithographic techniques, a

laser \draws" the desired pattern directly on the die.

The Plessey MHD single-metal-layer gate array was

used, which contained 100 logic cells, horizontal rout-

ing underpasses, and 40 I/O cells. These resources



were su�cient for the students to implement a digital

clock (seconds and minutes) with enable, synchronous

reset, and a scan path.

The IC design and implementation process is fully

described in a report available from the AMC (see

[ea91]). It consists of the following main steps:

1. The AMC provides workstations with Silvar

Lisco's CASS schematic editor and LSI Logic's

LSIM and LWAVE simulation tools.

2. AMC Calgary sta� perform placement and rout-

ing using the Silvar Lisco GARDS system, and

produce CIF layout �les.

3. The SFU QuickChipTM process customizes the

gate array die. The wafers are pre-fabricated with

a single aluminum layer. Photo-resist is applied

and exposed to a deep-blue laser in a rasterized

manner. The resist is developed, and used as an

etch mask for the metal. Finally, the remaining

resist is removed.

4. AMC Edmonton sta� inspect, separate, and

package several dies for each student group.

5. Students test the ICs using a breadboard environ-

ment.

2.4 Actel FPGAs

Actel FPGAs were �rst used in 1992 and then again

in 1993. The labs used the Actel 1010 parts, one time

programmable FPGAs with 1200 gates. The Actel

FPGAs are row-based architectures, that is, they pro-

vide special routing facilities to distribute signals to

di�erent cells in a row. A cell or logic module in the

Actel 1000 family is a simple multiplexor based mod-

ule with 8 inputs and 1 output. It can implement any

2-input boolean function, many 3-input functions, and

some 4-input functions or a latch.

Although di�erent methods were used to create a

schematic (schematic capture (1992) vs. VHDL syn-

thesis (1993)), in both cases the students used logic

simulation to test their designs. After successful sim-

ulation, the students used the Actel place-and-route

software to back-annotate the simulation netlist with

the actual delay information. This additional step is

necessary since the signal delay is determined by the

number of anti-fuses in the path, which is unknown un-

til the design is mapped to the Actel A1010A FPGA.

After re-simulating their design, the FPGAs were pro-

grammed.

2.4.1 Schematic Capture

Students used Workview on PCs for schematic cap-

ture and simulation of their design. The project was

to design a stopwatch with enable, count-up, count-

down, and asynchronous reset. A report describing

the project in more detail is available from the AMC

[ea92].

The simplicity of the project and the e�ort required

to change the schematics discouraged students from

experimenting with di�erent designs. Many students

perceived schematic capture as tedious and not very

instructive.

Furthermore, a special testing environment had to

be created by the students, consisting of a breadboard

with four LEDs, and a number of buttons to select

the di�erent functions of the clock. This task was also

time consuming, and left little time for the design of

an e�cient testing strategy or suitable test vectors.

2.4.2 VHDL Synthesis

In 1993, the second author was the instructor for

CPSC 521. The course lectures were revised signi�-

cantly from the previous years (see [ea93]). Since com-

puter science students are more comfortable with algo-

rithms than ohms, the transistor-level design of CMOS

circuits was de-emphasized. Instead, the course mate-

rial concentrated on the technologies and methodolo-

gies that speed up the design and implementation of

ICs. These include: (a) giving an algorithmic or be-

havioral description of a circuit in VHDL, (b) synthe-

sizing logic from VHDL, and (c) mapping the logic to

an FPGA architecture. As a result of the positive ex-

perience in using VHDL, the authors created training

material for the Canadian Microelectronics Corpora-

tion, which is available through the CMCcache.

The course labs gave the students hands-on expo-

sure to the above topics. The following three limit-

ing factors were reasonably balanced: (a) the circuit

size and complexity that could be completed by av-

erage students in the time available for labs, (b) the

speed and capacity of VHDL Designer V2.05 running

on 33 MHz 80386 PCs with 8 Mbyte RAM, and (c)

the capacity of the target FPGAs (1200 gate Actel

A1010As). In addition, VHDL Designer was found to

be robust enough for student use.

The default student project was to compute the

greatest common divisor (GCD) of 2 n-bit numbers.

The algorithm to compute the GCD is based on an

algorithm described in [Knu73] and shown in table 1.

The algorithm employs three well known facts about

the gcd and can be explained to students in a short



time. No background in number theory is required.

It is important to note that it is given to them in a

high level format (pseudo-code) that they are familiar

with.

GCD (integer n1,n2)

{ integer k;

k = 0

while even(n1) and even(n2) /* Loop 1 */

n1 = n1/2;

n2 = n2/2;

k = k + 1;

while even(n1) /* Loop 2 */

n1 = n1/2;

while even(n2) /* Loop 3 */

n2 = n2/2;

while (n1 != n2) /* Loop 4 */

if (n1 > n2) then

n1 = n1 - n2;

while even(n1)

n1 = n1/2;

else

n2 = n2 - n1;

while even(n2)

n2 = n2/2;

while (k != 0) /* Loop 5 */

n1 = n1*2;

k = k - 1;

}

Mult/Div by 2 => shift left/right

even(n) => lsb of n (n[0]) = 0

Table 1: GCD algorithm

The GCD algorithm has a number of desirable fea-

tures. Firstly, the IO requirements are small. The

input consists of two n bit numbers provided in par-

allel. A serial input would require fewer IO pads, but

requires the students to change the bit for each clock

cycle. This is a very error prone operation, if done

manually. Secondly, n can be scaled easily to the avail-

able resources, for example, given fewer IO cells, 4 or

6 instead of 8 bit numbers can be used. Thirdly, the

circuit does not contain complex combinational logic,

only shifts left and right, single bit tests, etc. The

most expensive operation is the greater than compari-

son in loop 4. Most importantly, all functions are part

of the library and do not have to be created separately.

However, our main reason for choosing this problem

is that since the algorithm was intended as a sequential

computer program, a large number of optimization for

speed or area are possible. These optimization include

but are not limited to:

� combine loop 1,2,3 into one loop.

� execute loop 2 and 3 in parallel.

� unrolling loop 1, 2 or 3.

� replace loop 2 by a possible swap. At most one of

loop 2 or 3 is executed, since at least one number

is odd after loop 1.

� reuse loop 2 and 3 in loop 4.

� replace one of the inner while loops in loop 4 by

a swap.

As computer science majors, the students were

quickly able to learn the syntax of the VHDL subset

that they needed to complete the project. To start,

we used the VHDL designer tutorial to show students

how to create a simple combinational circuit (a seven

segment display driver) and a �nite state machine (a

simple pattern matcher). The students went through

the tutorial quickly, but had signi�cant problems in

converting an algorithmic description (the one shown

in table 1) into synthesizable VHDL. Once students

learned how to convert the algorithm into a �nite state

machine, they �nished and tested the VHDL design in

a short amount of time.

Table 2 is an example of this process. It shows a

straight forward implementation of loop 4 (shown in

table 1) in VHDL. It creates a �nite state machine

using parallel ifs. Simple arithmetic expressions such

as shifts, add, and subtract can be directly typed into

the source �le. More complex ones such as multipli-

cation and division have to be implemented in other

ways. The GCD algorithm, however, only requires

arithmetic expressions that are part of the synthesis

library. State 1 simply skips to the end of the loop if

one of the inputs (n1,n2) is 0. This is done to speed

up the calculation as well as to avoid an in�nite loop

in states 3 or 4.

State 2 �nds the larger one of n1 and n2, replaces

the maximum by the di�erence, and moves to the cor-

responding state (3 or 4). States 3 and 4 are equiv-

alent to the embedded while loops in loop 4 of the

GCD algorithm. If n1 and n2 are equal, the loop is

terminated.



...

------------------- State 1 ---------------------------

if (n1 = 0) or (n2 = 0) then -- skip while loop if one number is 0

State <= 5;

end if;

------------------- State 2 ---------------------------

if State = 2 then

if n1 = n2 then -- parallel ifs with mutually exclusive conditions

State <= 5;

end if; -- If equal, terminate loop by moving to exit state

if n1 > n2 then

n1 <= n1 - n2;

State <= 3; -- move to while loop state for n1

end if;

if n2 > n1 then

n2 <= n2 - n1;

State <= 4;

end if;

end if;

------------------- State 3 ---------------------------

if State = 3 then

if n1(0) = '0' then -- n1 is even ?

n1 <= shiftrum(n1,1); -- shift right to divide by 2

else

State <= 2; -- otherwise goto main while loop

end if;

end if;

------------------- State 4 ---------------------------

if State = 4 then

if n2(0) = '0' then -- n2 is even ?

n2 <= shiftrum(n2,1)

else

State <= 2;

end if;

end if;

------------------- State 5 ---------------------------

if State = 5 then -- we are done with loop 4

...

Table 2: VHDL source �le for loop 4 of the GCD algorithm



After synthesizing the design and simulating it us-

ing ViewSim, the Actel place and route software was

used and chips were fabricated. Unfortunately, the

Actel chips proved to be to small to implement the

complete design, if optimized for speed or broken up

into more than one module. This means, that stu-

dents had to combine the complete algorithm into one

�nite state machine rather than into separate modules.

The instructors had discouraged students from creat-

ing large, hard to understand modules and had encour-

aged them to break the design up into smaller mod-

ules, to simplify the design and debugging. This divide

and conquer technique is also at the heart of most pro-

gramming languages (procedures and functions). Ad-

ditionally, in contrast to programming language com-

pilers, synthesis times grows extremely quickly once

the modules are over a certain size. As a rule of thumb,

the di�erent entities should be about one page long.

However, the overhead in handshaking and local reg-

isters made the resulting designs too large for the Ac-

tel chip. Therefore, some students only implemented

the main loop (loop 4) of the algorithm, which meant

that their chip was limited to computing the GCD of

two odd numbers. However, by using VHDL, these

changes could be made very quickly, so that all stu-

dents were able to test at least part of their design.

The students also realized that trying to optimize

a design to reduce the area is a sometimes frustrating

endeavor. The place and route software is non-trivial

to visualize and it is hard to predict the e�ect that

certain changes to the design have in terms of area

used. For example, changing the state encoding from

a one-hot to a binary generally reduces the area, but

especially if only a small number of states are used, can

also increase the required area. Fortunately, VHDL

allows a student to quickly change the encoding (edit

a few lines in your VHDL source �le), so that both

methods can be tried out.

2.5 VHDL and Xilinx FPGAs

Viewlogic's VHDL Designer was again used in 1994

(see [ea94]), but the students used the larger capacity

Xilinx XC4003 FPGAs. The Xilinx FPGAs are SRAM

programmed symmetrical arrays of logic blocks. Each

logic block contains two 
ip
ops, two 4 input func-

tion generators, a dedicated carry logic. Each LookUp

function generator can instead be used as 16 bits of

RAM.

After a small tutorial and some worked examples,

the students were able to start on the GCD project.

To ameliorate the problems students had with design-

ing the control logic, the lab assistant worked on a

small case study, the problem of normalizing 
oating

point numbers. Given an 8 bit input number f and an

exponent e, shift f left until there is a 1 in the most sig-

ni�cant bit and decrement the exponent for each shift.

This algorithm was expressed as a simple while loop.

Using this case study, the students learned to con-

vert an algorithm into a �nite state machine, which

was one of the major problems students had in the

previous year. Students also tried to optimize their

designs for speed or area which gave them a feeling

for the di�erent tradeo�s in optimization, as well as

give them some expertise in trying to determine how a

given change will a�ect the area. Another advantage

was the fact, that students were shown one complete

iteration of the design cycle. Furthermore, the work

done in the case study could very easily be adapted

to provide them with loop 1, 2, and 3 of the GCD de-

sign. Lastly, it showed them how to implement proper

handshaking, which is not part of the original prob-

lem speci�cation, but is necessary so that a chip can

communicate with the external world.

However, bugs in the viewlogic tools hindered the

progress. Also, the Xilinx chips still were too small to

implement the complete design as separate modules,

so most groups only implemented the main loop in

hardware.

Xilinx provides prototype boards with two 7 seg-

ment displays, two buttons, one reset button, and

eight dip switches. The board also contains a small

prototyping area. This means that only an additional

bank of switches had to be added to create the testing

environment. Students could spend more time on the

choice of good test vectors.

We feel that the use of synthesis and program-

ming/testing an FPGA in CPSC 521 is a nice com-

plement to the sole use of schematic capture and sim-

ulation in CPSC 421. The students are already fa-

miliar with the basic Workview tools employed in the

CPSC 421 labs (e.g., Viewsim). This is advantageous

because there is a signi�cant amount of time required

for the students to become productive with logic syn-

thesis. In particular, the students must structure their

VHDL code so that it can be e�ciently processed by

the synthesizer.

2.6 Algotronix CHS2x4

In 1995, the university of Calgary intends to use

recently purchased Algotronix CHS2x4 boards. The

CHS2x4 is an add on card for the PC/AT bus. Each

CHS2x4 card contains 8 FPGAs of SRAM con�g-

urable logic. Each FPGA contains an array of 32� 32

logic cells. Each cell can implement any boolean func-



tion of two variables or a D-latch. The Algotronix

FPGA is a sea of gate architecture, that is there are

no dedicated routing matrices. Each cell receives its

input from any of the four neighbors or one of two

global signals.

The eight FPGAs are connected forming a two by

four matrix. Thus, each board contains 8; 192 con�g-

urable units. This number can be doubled by connect-

ing up to two CHS2x4 boards back to back.

In addition to the FPGAs a CHS2x4 contains up

to 2 MB of static local memory. The board provides

an interface to the host computer, allowing access to

secondary storage etc. The con�guration as well as

the local memory is accessible to the host computer.

Thus, logic designs can be designed, implemented, and

tested without touching the hardware. The tight cou-

pling between the host computer and the FPGAs has

the great advantage that designs that require more in-

put/output (e.g., image processing hardware or search

engines for arti�cial intelligence) can now be imple-

mented. These designs would be impossible if the data

was to be provided through dip switches and there is

not su�cient time to design external local memory

modules.

In contrast to other FPGA architectures, Algo-

tronix also provides a C-library, that allows the con-

�guration and control of the FPGAs through C pro-

grams. This, in conjunction with the fact that the FP-

GAs are SRAM based, allows even greater 
exibility

using the Algotronix boards, since they can be quickly

recon�gured during execution. Therefore, the hard-

ware does not limit the size of the project any more.

Instead, only the size of the largest module is limited.

For example, given the GCD algorithm described in

table 1, loops 1, 2 and 3, in fact form a pre-processing

stage, loop 4 the main processing stage, and loop 5

the post processing stage. Therefore, the GCD algo-

rithm can be solved on the Algotronix boards in the

following steps:

1. load FPGA con�guration for loop 1,2,3

2. Setup input values

3. compute functions and store result of loop 3

4. load FPGA con�guration for loop 4

5. load results of loop 3 and store result of loop 4

6. load FPGA con�guration for loop 5

7. load results of loop 4 and compute �nal result

The FPGAs must only be able to hold the di�erent

modules (loop 1/2/3, loop4, and loop5) as opposed

to the complete project (loop1/2/3/4/5). A second

advantage of the direct access provided by the host

computer is that in previous years, students had no

choice in the implementation medium. The complete

project had to be implemented in the provided hard-

ware. With the Algotronix boards, a closer match to

our goal in teaching complete system design is possi-

ble. Now students can choose to implement di�erent

parts in hardware or software, given design constraints

such as speed or available hardware. For example, a

student might choose to implement the post process-

ing (i.e., loop 5) in software rather than hardware to

speed up the computation by pipelining the hard and

software.

Although this combination of hardware and soft-

ware makes it appealing as a teaching tool, the soft-

ware support is not as impressive. Algotronix sup-

ports schematic capture using popular systems such

as OrCad or Viewlogic. However, there is no place

and route tool for the Algotronix boards and no high

level description language, such as VHDL. Di�erent

places are working on these, however, including some

work tentatively scheduled to begin at the university

of Calgary this summer. Nevertheless, the �rst author

implemented and tested a simple pattern matcher in

about three days. It is unclear, how this scales up to

irregular structures as the GCD algorithm used in the

previous section.

3 Discussion

A short summary comparing di�erent technologies

is shown in Table 3. The time distribution column

indicates the number of labs allocated for each of the

three phases (design capture and simulation, imple-

mentation or fabrication, creating the test environ-

ment and testing). This column shows an interesting

trend. Using breadboarding and fabricated ICs, the

students spend most of the time on implementation

or waiting for fabrication. Using FPGAs, signi�cantly

more time was spent on the design capture and logic

simulation phase, and the testing phase. It is impor-

tant to note that using schematic capture and VHDL

synthesis, the students spend roughly the same e�ort

on design capture and logic simulation. However, as

can be seen in the project column, using VHDL per-

mits more complex projects. The con�gurable com-

puter made possible through the Algotronix CHS2x4

boards holds much promise, if decent software sup-

port can be obtained and we are looking forward to

interesting and complex designs.



Era Technology Software Year Representative Time

Tools Project Dist.

7400 Family TTL Breadboarding none < 90 Adder 1/8/1

Fabricated ICs MPGA SC & LS 90 Hu�man En/Decoder 3/5/2

Direct Write SC & LS 91 Alarm clock 3/4/3

FPGAs Actel SC & LS 92 Count down clock 5/2/3

VHDL+Actel Synth & LS 93 GCD chip 5/2/3

VHDL+Xilinx Synth & LS 94 GCD chip 6/2/2

Algotronix undecided 95 undecided 7/1/2

Table 3: Technologies and projects used in CPSC 521

References

[ea91] Cameron Patterson et al. Selected stu-

dent reports from CPSC 521, winter term

1991. Technical report, Alberta Microelec-

tronic Centre, 1991.

[ea92] Jacky Baltes et al. Selected student reports

from CPSC 521, winter term 1992. Technical

report, Alberta Microelectronic Centre, 1992.

[ea93] Jacky Baltes et al. Selected student reports

from CPSC 521, winter term 1993. Technical

report, Alberta Microelectronic Centre, 1993.

[ea94] Jacky Baltes et al. Selected student reports

from CPSC 521, winter term 1994. Technical

report, Alberta Microelectronic Centre, 1994.

[Knu73] Donald Ervin Knuth. The art of computer
programming. Addison-Wesley: Reading,

Mass., 1973.


