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Abstract

Our research goal is to design systems that en-

able humans to teach tedious, repetitive, simple tasks

to a computer. We propose here a learner/problem

solver architecture for such a system. The problem

solving module is able to combine diverse problem solv-

ing strategies on a single problem, by using a com-

mon representation for operators, and learning oper-

ators by analyzing solution traces. At the distributed

processor level, the design provides a general dynamic

load balancing system that has little domain knowl-

edge. It is controlled from the next level by a tightly

constrained planner. The distributed problem solver

testbed enables us to design, experiment with, and eval-

uate our combined learning/problem solving system for

automating users' repetitive tasks.

1 Introduction: end user task automa-
tion

Computer technology continues to promise conve-

nient task automation to end users, but often fails

to deliver it. System designers can not meet all the

requirements, since di�erent users have di�erent pref-

erences and must perform di�erent, sometimes new

tasks. Our research goal is to design systems that en-

able humans to teach computers tedious, repetitive,

simple tasks [15, 16], in domains such as robot as-

sembly [7, 8, 9, 14, 17], workstation \desktops," text

editing [24], and operating system commands [2, 3]

including shell scripts and make�les.

Rather than bringing end users into the program-

ming world, it may be more appropriate to design

automated computer assistants that learn under con-

ditions familiar to the human user; emulating situa-

tions like the interaction between an o�ce manager

and a human assistant. This means that the learner
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must accept the normal kinds of human instructions,

take better advantage of humans' natural communica-

tion ability, and exploit the natural constraints in hu-

man instruction. Forms of human instruction include:

speci�cations, goals, formal procedures, programs, ab-

stract plans, partial plans, concrete plans, rules, ad-

vice, comments, general hints, manually guided ex-

amples, passively observable examples, gestures, com-

mentary, and so on.

For example, a Unix expert might teach a new task,

such as backing up a selection of �les, by: calling over

the beginning user; stating the goal of the task; listing

all the �les in the current directory, telling the user

to consider a particular �le name that is a representa-

tive name for the required set, copying it over to the

new destination, then selecting another �le, and so on.

Another method would be to tell the beginner exactly

what steps to do, and instruct him or her to suggest

steps as the task proceeds, always checking with the

expert before execution. Baltes shell clerk enables a

simpli�ed interaction of this kind between user and

computer. This common type of human interaction

is rich in information that is both easily provided by

the expert and helpful to the beginner who must de-

termine what is important in the demonstrated task

steps. The expert's actions are examples of what we

refer to as human instruction, and our aim is to enable

a computer-based learner to observe and understand

them.

Only minimal expertise should be required of users,

ideally that they can (a) perform the task themselves,

and (b) teach the task to other humans. A user should

not be required to undergo formal training in pro-

gramming, nor in education, but should be articulate

enough to show a fellow worker how to do a task. For

example, to show someone how to typeset a TEX docu-

ment a knowledgeable user might suggest that a novice

(human or computer) user observe while the expert:

invokes the LATEX system on the document; points to

the particular lines in the resulting log output, that

suggest the previous step be repeated (e.g., to correct



cross{references); invokes LATEX again; and prints the

completed typeset result. The learner would be ex-

pected to automate the task. Another example task

is to build an arch from a set of blocks. The teacher

shows the robot the steps to build two columns and

place a lintel on top of them. During the demonstra-

tion the teacher performs some strictly unnecessary

actions, which focus the learner's attention on partic-

ular important aspects of the task. For example, in

Lewis' [13, 14] system the teacher might use the lin-

tel as a \measuring stick" to mark o� the distance

between the columns, showing that the distance con-

straint is determined by the lintel.

Generally there is an implicit promise made to

a teacher when a learner accepts instruction. The

teacher will expect the learner to be able to perform

the newly taught task under a reasonable variety of

di�erent conditions, and also to put the task to use

in other, larger tasks. The teacher does not expect to

have to show the \same" task more than once. So

systems must be able to put their knowledge, pre-

vious learning, and the human instructions together

to perform tasks autonomously, while taking advan-

tage of implicit biases in human teachers. For exam-

ple, one LATEX demo should su�ce as above, but it

would be reasonable to expect a further demonstra-

tion when bibliographic citations are to be entered,

and the bibtex system is to be invoked, or when an

index is to be created.

1.1 Performing tasks and understanding

natural human instruction

One part of our research is the development of a

model of human instruction. It should be a construc-

tive model, so that we will be able to build systems

that understand the instructions, taking advantage of

humans' implicit biases. In this paper we present only

the parts of the model that are relevant to the main

point of the paper, which is the design of the under-

lying distributed, learning, problem solver.

Lewis [13, 14] has viewed instruction as a series of

communicative acts, and presents an initial model for

interpreting these instructions. The human teacher's

actions have two objectives: (a) to change the state of

the world in order to perform a task demonstration,

and also (b) to update the learner's emerging repre-

sentation of the new task. For example a robot engi-

neer might grab a robot's hand and physically move it

through steps to assemble an electric motor. This cre-

ates a series of world state changes culminating in the

task goal. The engineer may also intersperse actions

intended to help the learner, but whose worldly e�ects

are not required for the task goals; actions such as lin-

ing up the components in order of assembly, saying

the word \red" when connecting the red wire, picking

up and replacing the housing in the assembly jig to

show it needs to be there, and so on. Instruction is

seen as a kind of discourse, and understanding instruc-

tion as recognizing a constrained plan. To meet the

general requirements our problem solver must be able

to incrementally remember the teacher's instructions

for later reuse in problem solving. It must be able to

understand the communicative instructions a teacher

does, and also understand how to solve a task that is

demonstrated.

In addition, the system must not place undue cog-

nitive load on the human user, and the learning prob-

lem solver must work within this constraint. We have

begun to examine aspects of the cognitive load in-

volved [15], and the practical constraints on the prob-

lem solver.

From a technical viewpoint, the learner is faced

with a teacher who is able to do somewhat more than

supply examples of the task, but somewhat less than

evaluate a program if the learner were to propose one.

The teacher is able to give demonstrations, and anno-

tate these with hints, advice, and so on. Our problem

solver will have a module that understands such in-

structions, the design of this is an important research

problem, but not the topic of this paper.

The learner must do more than remember tasks and

execute them on request. It must also handle a wide

variety of conditions, modifying its performance of the

task to match di�ering situations. Also, a teacher

will expect the learner to remember previously taught

tasks, and use them as required for subtasks in later

\new" tasks. These two \implicitly promised" abili-

ties mean that the learner must be able to carry out

problem solving when it is performing tasks.

1.2 Distributed problem{solver

In our design the problem solving module smoothly

combines diverse problem solving strategies on a sin-

gle problem, by using a common representation for

operators [4]. The system learns operators that cor-

respond to di�erent planning biases in the domain

(e.g., macro{operators, abstraction hierarchies and

case{based planning), by analyzing a trace.

The basic problem solver is already implemented

on a distributed system, currently a network of trans-

puters; in the future it may be moved to a network of

UNIX workstations.

The design involves many research questions, and

we have separated out the underlying general dis-



tributed planner, so it can be used as a research

testbed. An object oriented paradigm mitigates the

problems of engineering such a large parallel software

system. At the distributed processor level, the design

provides a general dynamic load balancing system that

has little domain knowledge. It is controlled from the

next level by a tightly constrained planner, which uses

its knowledge of planning to drive the load balancer

e�ciently. The planner is in turn controlled by the

problem solving architecture, which includes learning.

The load balancer is demand driven; objects are

swapped from one processor to another only if work is

requested by a neighboring processor. Estimates must

be available for the expected work and for object{

object communication. A priori estimates are in gen-

eral di�cult. However since our problem solver em-

phasizes the use of learning to improve performance on

similar problems, suitable estimates can be extracted

from previous problem solving episodes.

The objects at the planner level are states, oper-

ators, and partial plans. A split{work method dis-

tributes the work over the processors; partial plans are

created by extracting nodes from the solution stack,

generating new subproblem objects [20, 21].

The distributed problem solver testbed enables us

to design, experiment with, and evaluate our combined

learning/problem solving system for automating users'

repetitive tasks.

1.3 Organization of the paper

This section has motivated our general research

goal, and introduced the distributed design that this

leads to. Section 2 introduces our general architec-

ture for an instructable problem solver. Remaining

sections give details of the learning/planning engine.

Section 3 describes the planner design, and explains

its �ne grained multi{strategy design. Section 3.1

develops a uniform operator representation for mul-

tiple strategies. Section 3.2 explains and illustrates

the algorithm that controls the search. Stronger bi-

ases are examined before weaker ones and operators

are indexed as in a case based system. Section 3.3

discusses how operators are learned, to implement dif-

ferent kinds of planning biases. One emphasis of our

research is that the learner explicitly takes the current

problem solver state into consideration when suggest-

ing new general operators. Section 4 describes the

distributed architecture.

2 Designing a learning problem solver

Before we introduce the design of the learning prob-

lem solver, it is important to recognize the general

technical problems; are the proposed learning and

problem solving requirements tractable?

Briey the learning problem can be seen as one of

inducing a procedure graph from instantiated graph

paths, at the same time extracting subgraphs for later

re-combination. We see simple sequential procedures

represented as some kind of graph (eg the AND{OR

variety). In general this problem is intractable, and a

good model of human instruction is essential in con-

straining the search for a suitable graph. Task perfor-

mance is a planning problem; putting together previ-

ous tasks and primitive actions to achieve a new task.

Planning new tasks is generally intractable in a rich

environment, and we see the learning component as

important in controlling the complexity of this. The

system will be not be expected to solve new problems

on its own, but will be expected to (a) solve problems

that are similar to previously learned ones, and (b)

solve problems that can be composed from previously

learned ones.

That is (cf. [?]) the complexity of learning will be

alleviated by a helpful presentation of examples, hints,

etc, plus background knowledge of human instruction.

The problem solving complexity will be alleviated by

caching previous learning, in a similar way to case{

based techniques.

2.1 Learning problem solver architecture

During instruction the system interprets the human

user's input, extracts what it considers to be useful

components of the task, including possibly the com-

plete task, and stores these for later reuse. When a

new goal is given, similar tasks will be retrieved from

the remembered past experience, and put together to

solve the current problem in the current situation.

The general architecture we have developed is

shown in Figure 1. It represents our current inten-

tions for a learning problem solver, given our em-

phasis on understanding human instruction for au-

tomating repetitive tasks. The teacher demonstrates

the task by performing it manually, while the learn-

ing system watches and records (a) the task actions,

(b) the changing environmental conditions as each ac-

tion is executed, and (c) the instructions the teacher

gives to augment the actions for performing the task.

The learner uses its existing knowledge of tasks and

its model of teacher interaction (the static discourse

model [13, 14]) to interpret this information and store



Figure 1: The general architecture of our learning

problem solver
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seemingly useful tasks and subtasks (general opera-

tors) in its memory. When a task must be executed the

speci�ed goal evokes similar tasks from the learner's

memory, and these are adapted and combined to at-

tempt to solve the problem. This performance is

also analyzed and any seemingly useful new subtasks

stored. As subtasks are repeatedly used, the memory

module attempts to �lter out ones that do not seem

useful. At each stage of learning and performance, fo-

cusing rules2 limit the objects that are considered, to

help manage the complexity of the learning and prob-

lem solving.

3 A Multi{strategy Learner/Problem
Solver

This section presents our design for a learning prob-

lem solver, including the operator representation, the

search control algorithm, and the acquisition of new

operators for various planning biases. As mentioned

previously, problem solving is intractable in rich do-

mains. Di�erent methods have been proposed to limit

the search space, such as means{ends analysis [19],

non{linear planning [23, 25], abstraction hierarchies

[11, 22], case{based planning [6], reactive planning [1],

and many more. These methods correspond to plan-

ning biases, that is assumptions about some aspect

2Rosanna Heise is working on the focusing system.

of the problem, for example the domain, the distri-

bution of problems, or the structure of plans. These

assumptions allow the problem solver to reduce the

search space. For example, non{linear planning as-

sumes that permutations of operators in a sequence

result in equivalent states and that the cost of avoid-

ing commitment to a given ordering of operators is less

than having to backtrack, should the planner choose

an incorrect order. Only if these assumptions are met

in a domain, may the planner be successful, otherwise

it will fail or perform poorly.

Combining a problem solver with a learning module

can alleviate some of the complexity of problem solv-

ing [12, 18, 26], however, the system will still be lim-

ited by the underlying problem solver's biases. Should

a planning bias be inappropriate, then the learning

system may be unable to overcome these limitations.

Therefore, most learner/problem solver systems use a

weak planner, that is a planner that makes few as-

sumptions about the domain. For example, systems

that learn macro{operators usually are based on prob-

lem solvers that use depth{�rst or best{�rst search

algorithms. However, by doing this, these systems

give up those planning biases that have proven useful

in many domains. Our research takes a di�erent ap-

proach. Rather than giving up useful planning biases

such as macros, abstractions, and case{based plan-

ning, we are developing a multi{strategy planning sys-

tem that can combine these biases on a single problem.

The idea is to design a problem solver that can dynam-

ically adjust its bias to improve its performance.

To achieve this goal, we require:

� A common representation for di�erent planning

biases.

� A search control strategy that can take advantage

of di�erent planning biases.

� Planning bias learners that can recognize when

certain biases are appropriate and that can up-

date the common representation so that this bias

is used by the search algorithm.

The architecture of the learner/problem solver is

shown in �gure 2. The user provides an initial domain

theory and a causal theory of the domain. The initial

domain theory consists of a set of operators describ-

ing all primitive actions that an agent can perform in

the domain. This set initializes the general operator

memory. The search control algorithm is described in

section 3.2. It uses the set of general operators and

plan critics to �nd a solution to the problem. Once

the problem solver �nds or fails to �nd a solution, the



Figure 2: Learner/Problem Solver Architecture
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derivation is passed on to a set of planning bias learn-

ers (see section 3.3). The planning bias learners use

surface or operationalized abstract features to iden-

tity parts of the search that could have been improved

using a given bias, and create new general operators

that implement the given bias. Execution information

is passed on to a performance evaluator that updates

information used by the dynamic load balancing al-

gorithm, such as the average amount of work for a

given general operator. The system uses a dynamic

�lter to remove general operators that do not prove to

be useful any more. This can happen, for example, if

the user's long term activities change from one set of

tasks to another. This shift may invalidate previously

appropriate biases.

Primitive operators consist of a list of pre{

conditions and a list of e�ects and can contain for-

mal parameters. To overcome the frame problem, the

learner/problem solver makes the STRIPS assumption

[5]. The e�ects of an operator consist of an add and a

delete list, which specify predicates that are added or

removed from the state description during execution

of the operator. Predicates not mentioned in the e�ect

lists remain unchanged during execution. An example

operator de�nition is shown in table 1.

The STRIPS assumption makes it impossible to de-

scribe conditional e�ects of operators, such as an op-

erator for ipping a light switch, which can not be

modeled using add and delete lists alone, since the

change depends on the initial switch state. The light

will come on if it was o� before and vice versa. This

can complicate the speci�cation of a domain. There-

Table 1: Example: Operator to move a robot from

position 1 to 2

Operator: Move-Robot($P1,$P2)

Preconditions: Robot-at($P1) AND

Free-path($P1,$P2)

Effects:

Delete: Robot-at($P1)

Add: Robot-at($P2)

fore, the user can provide a causal theory to model

conditional e�ects if so required.

The user can start the problem solving process

by presenting the system with an example problem,

which consists of an initial state and a goal state. The

task is to generate a sequence of operators plus vari-

able instantiations, that will transform the initial state

into the goal state.

3.1 Representation of General Operators

The search space of the problem solver, the state

space, is implicitly de�ned by the set of operators.

An explicit representation of the state space, though

more powerful, is impractical because of its size. To

be able to combine di�erent problem solving strate-

gies, the operator set must be powerful enough to rep-

resent di�erent biases. However, to enable dynamic

and exible combination of di�erent biases, there must

be a single underlying representation method. The

learner/problem solver uses a generalized version of

the standard operator representation, so called gen-

eral operators.

Figure 3 describes the general operator schema.

The most important information associated with an

operator is its pre{conditions and e�ects. Pre{

conditions and e�ects may be incomplete speci�ca-

tions, that is, they can be at di�erent levels of ab-

straction. This type of abstraction is similar to AB-

STRIPS [22] and ALPINE [11], which also delete pred-

icates from pre{conditions and e�ects to produce an

abstraction hierarchy. Additionally, a set of re�ne-

ments is associated with each operator. A re�nement

is a sequence of operators, that was previously suc-

cessful in achieving the top{level e�ects, given the

top{level pre{conditions. However, the pre{conditions

and e�ects of a general operator may be more abstract

than those of its re�nements. All that is required is

that the pre{conditions and e�ects of re�nements sub-

sume those of the associated operator. In [4], we show

that this representation is powerful enough to repre-

sent a large variety of di�erent planning biases such as



Figure 3: General Operator Representation
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Table 2: General Operator Example

General Operator: Move-Medium-Disk($P1,$P2)

Preconditions: On-Medium($P1)

Effects: On-Medium($P2)

Refinements:

1: Move-Medium($P1,$P2)

2: Move-Small($P1,$P3),Move-Medium($P1,$P2)

macro{operators, abstractions, cases, reactive rules,

subgoaling, goal regression, and many more.

A simple example of a general operator is shown

in table 2. It is an abstract operator to move the

medium disk in the towers of Hanoi problem.3 The

�rst re�nement is for the case in which the small disk

is already on the medium peg, the operator sequence

simply moves the medium disk. In the second case,

the small and the medium disk are on the same peg.

The re�nement �rst moves the small disk out of the

way, and then moves the medium disk. Note that this

set will not always be complete. In this example, the

re�nements do not cover the case in which the small

disk blocks the target peg. When this case occurs the

planner will construct it.

3.2 The Search Control Algorithm

The search control algorithm uses the general oper-

ator set to �nd an operator sequence that transforms

the initial state into the goal state. The search algo-

rithm �rst tries to use stronger biases, that is biases

that restrict the search space more. If a bias fails, the

search space is extended and a weaker bias is used.

Thus, the system will gracefully degrade to an exhaus-

tive search procedure in the worst case. For example,

if a solution is not found the search algorithm will

3This example has been tested on Baltes' prototype problem

solver [4].

move from using instantiated cases to macros, then to

abstraction hierarchies.

Given an initial state and goal, the search control

method tries to �nd a general operator that solves the

speci�c problem. If the general operator found is an

instantiated case, the search algorithm will use plan

critics to adapt the case to the new situation. Plan

critics are generalizations of those proposed by Sac-

erdoti [23]. A plan critic is a local repair method to

make a plan valid in the new situation, for example

substitute-variable. They use abstraction hierar-

chies created by the planning bias learners to guide

the possible adaptations of a plan. For example, if the

part of the original plan that fails is part of a re�ne-

ment of some abstract operator, the plan critic will

try to use another re�nement. If the general operator

found is an abstraction, the algorithm tries to create

a re�nement that �ts the current situation. If no gen-

eral operator can be found, the search algorithm tries

to generate a plan by combining general operators.

We will illustrate the search control with an ex-

ample from a slightly extended version of Nilsson's

blocksworld [?]. The example shows how case{based

techniques, abstractions, and macros are combined.

There are four primitive operators in the domain,

shown in table 3. Suppose the problem solver is given

the problem of constructing a stack of three blocks,

shown in �gure 4. This problem is solved using means{

ends analysis, since no learning has taken place so far.

The resulting plan is shown in �gure 4 and is added

to the general operator set as a case, see table 4.

Suppose the system is then asked to solve the problem

in �gure 5. Before y can be stacked on z, x has to

be taken o�. The solution to the second problem is

passed on to a set planning bias learners. An analysis

of the solution shows that the operator sequence has

identical post{conditions, but di�erent pre{conditions

than the standard pickup(x),stack(x,y) sequence.

One of the planning bias learners creates the abstract

general operator in table 5 under these conditions, and

adds it to the operator set. This abstract operator can

stack two blocks together independently of whether

the �rst block is clear or not. If the �rst block is

clear it is picked up and stacked on the target block.

Otherwise the second re�nement clears it �rst.

After this preliminary training, the problem solver

is given a new blocksworld problem, shown in �gure 6.

The task is to construct a tower. There are now six

operators; four primitive ones and two learned general

ones.

Using the \strongest bias �rst" strategy, the prob-

lem solver retrieves the �rst problem as the most sim-



Figure 4: First blocksworld problem
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ilar case and tries to execute it. This will fail for the

�rst operator, since there is no block b in the new prob-

lem. The problem solver tries to use di�erent adap-

tation methods to make the old case �t the new sit-

uation. One of the adaptation methods is substitute{

variable, which replaces a variable instantiation by a

di�erent one. As shown in �gure 7, by replacing block

b by block e in the case, the �rst part of this problem

can be solved.

In the next step, the plan fails because pickup(a)

can not be executed, since a is not clear.

However, the problem solver indexes the re�ne-

ment hierarchy and �nds that the operator se-

quence pickup(a),stack(a,e) is a re�nement of

abstract-stack. This re�nement is replaced by a

di�erent re�nement of the abstract operator. Using

the second re�nement, the second part of the problem

can be solved, as shown in �gure 8.

In the third step, the system generates a subprob-

lem recursively to complete the plan, since the pre-

vious case is now fully adapted to the new situation.

This remaining subproblem is easily solved and the

plan completed, see �gure 9.

Table 3: Operators for the Blocksworld

Pickup($X) the hand picks up block $X

from the table

Putdown($X) put block $X on the table

Stack($X,$Y) put block $X on block $Y

Unstack($X,$Y) take block $X o� block $Y

Table 4: Learned operator for �rst problem

General Operator: Case1(a,b,c)

Preconditions: ...

Effects: Solves first problem

Refinements:

1: Pickup(b),Stack(b,c),Pickup(a),Stack(a,b)

Table 5: Abstract operator created by the second

problem

General Operator: Abstract-Stack($X,$Y)

Preconditions: ...

Effects: $X on block $Y

Refinements:

1: Pickup($X),Stack($X,$Y)

2: Unstack($Z),Putdown($Z),Pickup($X),

Stack($X,$Y)

3.3 The Planning Bias Learners

Since the search space is implicitly de�ned by the

general operator set, the performance of the system is

critically dependent on the general operator set. This

set must be updated to improve future performance.

After a problem solving episode, the system will pass

the derivation to a set of planning bias learners. The

task of these learners is to (a) �nd instances in which a

planning bias can be useful, (b) create a general opera-

tor to implement this bias. The problem is that adding

an operator will in general (a) increase the branching

factor (adding more possibilities for achieving a goal),

and (b) increase the matching cost of the domain (if

will be more expensive to test whether an operator is

applicable). Therefore, the generation of new opera-

tors must be carefully controlled. This learning task is

in general intractable. Therefore, the type of general

operators that are created must be restricted.

Most learning problem solving systems adapt inde-

pendently of the current state of the planning system.

For example, systems that learn macro{operators such

as Iba's MacLearn [10] use some heuristic (e.g., peak

to peak heuristic) to create new operators, and this is



Figure 7: Step 1: Case Adaptation
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independent of the current operator set. Our research

emphasizes that the learner consider the current state

of the system when creating new operators. For exam-

ple, Baltes' implementation [4] of one learning module

creates abstractions by comparing parts of a success-

ful plan to other operators in the general operator set

and extracting those that can be used to build abstrac-

tion hierarchies. Although only a prototype system,

it learned an abstraction hierarchy (equivalent to that

learned by ALPINE [11]) that reduced its time com-

plexity from exponential to linear in the length of the

solution.

4 Distributed Implementation of the
Learner/Problem Solver

This section explains the distributed learner/prob-

lem solver created by Baltes. There are two reasons for

a distributed implementation. First, to provide cheap

processing power. Second, to distribute the workload

and free the user's workstation for doing manual tasks,

so that the learner/problem solver is not intrusive.

Currently, the implementation platform of the

learner/problem solver is a network of transputers

connected to a PC{compatible host running LINUX.4

Transputers are speci�cally designed for parallel ar-

chitectures based on the CSP model of concurrency.

In the CSP model, developed by Hoare, processes

run asynchronously and can communicate via synchro-

nized channels. Transputers provide four high speed

serial interfaces for creating networks, and support

parallel execution in the instruction set. This provides

a cost{e�ective development environment. We plan to

port the system to a network of UNIX workstations.

Engineering a large distributed software system is

challenging in itself. To overcome these problems, the

design used an object oriented version of the CSP

model of concurrency. Each object is associated with

one process; processes run asynchronously. Therefore,

objects can handle only one message at a time. An ob-

ject can send synchronous or asynchronous messages

to other objects. A synchronous message will halt the

calling process until it receives an answer from the

receiver; asynchronous messages allow the sender to

continue.

The load distribution scheme must assign processes

to processors. Since search spaces in planning prob-

lems are highly irregular structures, an a priori work

distribution is infeasible. Instead, a dynamic load bal-

ancing system distributes work at run time by swap-

ping objects to other processors. The design of the

dynamic load balancer has been separated out as an

important research area. It is similar to the overall

problem solver design, since the goal was to provide

a general weak low level architecture that is tightly

controlled by higher levels, in this case the planner.

Each processor runs a special process, the central

dispatch controller or CDPC, which distributes mes-

sages to objects that do not reside on the local pro-

cessor and collects statistics about the performance

of the system. Figure 10 is an example of the object

oriented parallel architecture. Since all messages are

distributed by the central dispatch controller, an ob-

ject can easily be swapped to a di�erent processor.

The calling objects do not need to know the location

of the destination object.

The load balancer is demand driven, that is work is

swapped out to other processors only if they request

work. This improves the error tolerance of the system.

Should a processor break down, it will not disable the

whole system, the processor will simply stop request-

ing work.

4A PD Unix Operating system, copyright Linus Torvalds.



Figure 10: Object Oriented Parallel Architecture
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Dynamic load balancing requires estimates of the

work for an object and the object{object communi-

cation. A priori estimates are in general di�cult to

obtain. However, since our problem solver emphasizes

learning to improve performance on similar problems

in the future, suitable estimates can be extracted from

previous problem solving episodes. The implementa-

tion focuses on parallelization of the search, since this

is the most time consuming part of the problem solv-

ing process. As shown in �gure 2, the estimates are

updated by the performance evaluator.

The goal of learning is to reduce the number of

reasoning steps required to �nd a solution. For exam-

ple, macro{operators reduce the number of operators

that have to be added to a plan. Case{based reason-

ing provides a base case and assumes that adapting

this takes fewer steps than generating the plan from

scratch. Parallelization supports learning, therefore,

by exploring di�erent alternatives in parallel. Rather

than assigning a large number of processes to a sin-

gle general operator re�nement, they are assigned to

di�erent ones. This allocation scheme has a num-

ber of advantages: (a) di�erent re�nements require

mostly local computation and are therefore relatively

independent. (b) a re�nement will have a reasonable

amount of work associated with it.

The planner level of the system uses state, operator,

and partial plan objects. To distribute the work, par-

tial plan objects provide a split{work method that can

break a partial plan up into two parts. The two parts

have roughly an average amount of work left in com-

pleting the plan. For example, if the learner problem

solver is trying to complete a partial plan that con-

tains an abstract operator with two re�nements, the

split{work method will create two new partial plans

using di�erent re�nements of the abstract operator.

This section summarizes our distributed problem

solver architecture, which is based on an object ori-

ented version of the CSP model. It uses a dynamic

load balancing level that is controlled by the planning

level, which in turn creates subproblems in a breadth{

�rst manner to take advantage of the learning compo-

nent.

5 Conclusion

Our design for a learning problem solver provides

an engine for a system that understands human in-

structions and empowers end users with automation.

The problem solver provides a uniform, �ne{grained,

exible, multi{strategy engine for solving problems

based on analyzed past experience, gracefully moving

from a case{based approach in a piecemeal fashion to

a more expensive search when the new task di�ers

more from previous ones. Various planning biases are

learned as new operators, by a set of learning modules.

The system architecture is a distributed one, providing

semi{remote use of computing resources and e�ective

use of current and expected future technology. It is

implemented on a transputer system at present. An

object oriented design is used, with one object per pro-

cess, and is based on the CSP model of concurrency. A

tailored dynamic load balancer distributes the work.

A dispatch process on each processor controls the dis-

tribution of non{local messages. Dynamic estimates

of the subtask e�ort are used in later allocation of

processor resources for similar subtasks.

The distributed problem solver testbed enables us

to design, experiment with, and evaluate our combined

learning/problem solving system for automating users'

repetitive tasks.
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