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Abstract

In domains such as robotic rescue, robots must plan
paths through environments that are complex and
dynamic, and in which robots have only incomplete
knowledge. This will normally require both diversions
from planned paths as well as significant re-planning as
events in the domain unfold and new information is ac-
quired. In terms of a representation for path planning,
these requirements place significant demands on effi-
ciency and flexibility. This paper describes a method
for flexible binary space partitioning designed to serve
as a basis for path planning in uncertain dynamic do-
mains such as robotic rescue. This approach is used in
the 2003 version of the Keystone Fire Brigade a robotic
rescue team. We describe the algorithm used, make
comparisons to related approaches to path planning,
and provide an empirical evaluation of an implementa-
tion of this approach.

Introduction: Path Planning in Robotic
Rescue

Navigation is an important task for any mobile robot,
since being at the right place at the right time is a pre-
cursor to performing almost any useful task. Navigation
in very simple domains can be done purely reactively
(for example, the reactive foraging of Balch (Balch &
Arkin, 1994)). In such domains, a robot can be success-
ful despite minimal navigation abilities simply because
being in the right place at the right time is not partic-
ularly important: If we are foraging for targets, we will
eventually find them all if we simply wander enough.
If, however, we are trying to find all of them in a mini-
mal amount of time, it helps to keep track of where we
have been, where we are, and where we are going. The
majority of real-world tasks are similar: in a domain
that is complex or hazardous, planning ahead to some
degree both increases the likelihood of success and the
likelihood that the robot will survive its travels.

Navigation in a domain of any sophistication requires
a number of important sub-tasks: localization, path
planning, and plan execution. Localization involves
maintaining some concept of one’s position in the over-
all environment, and goes hand in hand with the other
sub-tasks. Path Planning is the problem of creating a

collision-free path through a set of obstacles from an
initial to a goal position. Finally, plans must be carried
out.

Robotic rescue environments represent one of the
most difficult challenges a path planner can face. To
measure progress in the field of robotic rescue, inter-
national competitions are held using a number of re-
configurable environments following a set of standards
(e.g. (Jacoff, Messina, & Evans, 2001)). In this task
domain, it is certainly possible to have a purely reac-
tive robot searching for victims with no knowledge of
the area. We have previously implemented such an ap-
proach (Baltes & Anderson, 2002). This experience has
taught us that at absolute minimum, rudimentary path
planning abilities are necessary. Being able to plan even
a general path using limited knowledge can assist the
robot in tasks such as finding the entrances to rooms,
ways around obstacles, etc., that are beyond the capa-
bilities of a purely reactive robot. During the course of
rescue activities, building a map to victims is a primary
concern. A robot should be able to take advantage of
such a structure as a basis for further navigation, which
also requires path-planning skills.

In the robotic rescue domain, knowledge about the
environment will be both uncertain and dynamic. As
such, it cannot be relied upon as the sole basis for nav-
igation. An agent must be able to plan tentative paths
and have real-time means of following these paths and
dealing with errors in sensing and odometry that are
necessary evils in the real world. It must also be able
to detect when differences between a planned path and
the real world are significant enough to be beyond mi-
nor adjustments, and decide when to re-plan based on
this new knowledge. The fact that re-planning must be
done often and in real time places very hard demands
on a path planning approach in terms of computational
efficiency. The fact that we may wish to try to salvage
parts of a plan also places demands on a path planner
in terms of flexibility of representation: a more flexi-
ble representation of the space in which path planning
was performed will allow greater exploration of alter-
natives based on a currently non-executable plan given
real time constraints.

The Keystone Fire Brigade is a robotic rescue team



Figure 1: A Sample Path Planning Problem in the
RoboCup Rescue domain

that has competed in the 2002 competitions in both
Fukuoka (RoboCup) and Edmonton (AAAI). The key
elements of our approach are emphasis on autonomy,
vision-based computing, and implementation on inex-
pensive robot bases (toy car platforms). The 2002 Key-
stone Fire Brigade team employed a simple reactive
navigation and heuristic mapping implementation. We
have since been exploring the use of flexible variants of
binary space partitioning as alternatives for path plan-
ning in such domains. In this paper, we describe an
improved approach to real-time path planning based on
these ideas for use in domains such as robotic rescue.
The remaining sections of this paper reviews traditional
approaches to path planning, describes our approach to
flexible binary space partitioning, describes the imple-
mentation of this approach for the 2003 Keystone Fire
Brigade team, and provides an empirical evaluation.

Previous Approaches to Path Planning

The path planning problem is formally defined as: given
an input location, a goal location, and a description of
a set of obstacles, create a collision free path that will
move the robot from the initial position to the goal po-
sition. A sample path planning problem taken from the
NIST testbed is shown in Figure 1. The figure does not
include the dynamic objects, nor the extensive debris
that is typically placed throughout the testbed. While
this might be typical for plotting a path through a room
to the next, paths based on desired area coverage are
also important - in that case, the goal would be in the
general vicinity of an unexplored region of the environ-
ment rather than a specific point such as a door.

There have been many different approaches to path
planning for both holonomic and non-holonomic robots.
The major approaches for holonomic path planners can
be divided into skeletonization methods (such as visi-
bility graphs, Voroni diagrams, or road maps), cell de-
composition (e.g., approximate or exact quad-tree de-
composition), or local approaches (e.g., potential fields,
landmarks) (Russell & Norvig, 1995; Latombe, 1991).

Skeletonization Methods
Visibility graphs are the most commonly used skele-
tonization method. In path planning using visibility
graphs, the planner constructs a graph from its repre-
sentation of the environment. In this graph, the edges
of the graph are the edges of obstacles, with the ver-
tices being the intersections of edges, along with the
start and goal points for the robot. Once this graph is
constructed, the robot can then easily plot a path by
adding vertices from the start and end points to those
of nearby obstacles, and connecting disjoint obstacles in
the graph through additional edges such that the cost
of traversing each of those edges is minimal. It can be
shown that the minimum length path from start to goal
lies along the visibility graph (Latombe, 1991).

While theoretically very useful, visibility graphs are
more problematic in practice. In a situation where there
are obstacles to be traversed, the path produced by this
approach follows the edges of the walls and obstacles
that make up the visibility graph. Even if it can be as-
sumed that the initial locations of these obstacles were
extremely accurate, this results in a strong likelihood
of the robot running into and against walls and other
obstacles, due to small errors in motor encoding and
localization.

Local Approaches
One alternative to working with skeletonization meth-
ods is to construct a representation that allows decision-
making at run time to proceed using entirely local in-
formation. Potential field methods are representative
of this alternative.

A potential field map defines an attraction (or re-
pulsion) gradient across a spatial area using an arbi-
trary potential function(Arkin, 1998). A potential field
map can be constructed for any environment in which
an appropriate potential function can be defined, and
paths are followed easily by moving to across the gra-
dient of greatest potential. Decision making is entirely
local: a robot in any particular location calls the po-
tential function to take into account the perceived or
known forces on it at that point in time, thereby defin-
ing the gradient value for that areas around the par-
ticular point the robot occupies. This method involves
weaker assumptions of accuracy compared to visibility
graphs, and is more dynamic in nature. However, be-
cause the agent is simply following a gradient toward
desirable states and away from undesirable states, this
method suffers from the same problem of all gradient-
descent problems: local minima/maxima. To deal with
these, changes must be made to the potential field at
run time for the robot to be able to escape any local
minimum/maximum states. Detecting the locations of
these states and repairing them, however, is not a trivial
problem.

Cell Decomposition Methods
The third common approach is that of cell decompo-
sition, such as quad-tree or oct-tree decomposition or



Figure 2: Space Partitioning in a Quad-Tree Approach

binary space partitioning (e.g. (Zelinsky, 1992; Saona-
Vazquez, Navazo, & Brunet, 1999)). Cell decompo-
sition methods build a representation of the environ-
ment for path planning by recursively decomposing the
known or detectable spatial area into partitions of reg-
ular size. Each approach begins with a single large cell,
and labels that cell as either blocked (i.e. entirely filled
by an obstacle), free (completely open space), or mixed
(at least part of the cell is occupied by an obstacle).
Any cell that is mixed must be recursively broken down
by sub-partitioning it, resulting in a tree structure. Any
cell that can be labelled as blocked or free at any point
forms a leaf node in that tree structure. As this tree
is built, adjacency links must be maintained between
branches of the tree in order to facilitate path planning.

The major variation between cell decomposition
mechanisms is the number of recursive partitions that
are generated from any area labelled as mixed: a quad-
tree decomposition breaks the space into four regular
partitions, while an oct-tree decomposition breaks it
into eight, and a binary space partitioning process into
two. These approaches thus trade off the depth of the
resulting tree with the number of potential adjacency
links that must be maintained and the work involved
in partitioning the domain. In addition to this trade-
off, each approach relies on a precise, regular means of
partitioning a space.

Once the entire space is broken down into blocked and
free cells, path planning can ensue by exploring open
spaces using adjacency links. Algorithms for produc-
ing plans are reasonably simple and efficient once the
environment is decomposed. The plans produced are
practical to execute at runtime, and there is no issue of
local minima at runtime. However, there are issues of
complexity in quad-tree decomposition that currently
limit its applicability to path planning. In performing
decomposition it is non-trivial to manage the tree struc-
ture and appropriately insert adjacency links between
regions that may be in physically very distant parts of
the tree.

More importantly, the issue of partitioning space
evenly makes decomposition more work than is neces-
sary and results in trees that are less efficient repre-
sentationally that is desirable. Consider the situation
in Figure 2. The overall area has approximately 50%
obstacle coverage. However, using a quad-tree decom-
position, all areas are still labelled as mixed after one

decomposition, forcing an additional level in the tree
and a corresponding increase in nodes and adjacency
links. A common-sense decomposition would identify
the large open areas in the middle of the path. In any
cell-decomposition approach we must choose an atomic
level of interest, and for path planning this should be
approximately the largest dimension of the robot itself.
However, situations like the one above force a decom-
position to use a significantly smaller granularity (e.g.,
half the robot width), with corresponding increase in
complexity and resource consumption.

Because it is recursive in nature, quadtree decom-
position can be viewed as an anytime approach from
the point of view of representation: we begin with a
very coarse breakdown and gradually make it finer given
more time to compute. From the point of view of path
planning, however, this does not induce the ability to
plan in an anytime manner: a path plan cannot be con-
structed until the decomposition is complete.

It is these overhead issues that make the use of visi-
bility graphs the most popular choice in contemporary
path planners, despite the fact that they produce infe-
rior plans from an execution standpoint. However, this
overhead could be reduced if the cell size that was nec-
essary to decompose to were made larger, and more im-
portantly if it were possible to identify the larger open
areas to begin with (and thus not have to break down
portions of the tree so deeply).

The next section describes Flexible Binary Space Par-
titioning, a method based on cell-decomposition that
allows us to avoid using the poorer paths induced by
visibility graphs, while limiting the overhead associated
with cell-decomposition approaches.

Flexible Binary Space Partitioning
The major problem with the use of cell decomposition
methods in path planning is that in general they forgo
the overhead of making intelligent decisions in parti-
tioning in order to make the decomposition process
more efficient. It is our view that this is a poor trade-
off, and that an intelligent partitioning mechanism can
be applied that will more than make up for its overhead
through the development of trees that are smaller and
more effective for path planning.

What is required, ultimately, is a heuristic for par-
titioning that is computationally feasible to calculate
yet still biases the partitioning process to identifying
open spaces quickly and allow those to be grouped to-
gether rather than appearing in isolated regions of the
tree. While the characteristics of such a heuristic are
similar irrespective of the cell decomposition method
employed, our approach is based on binary-space parti-
tioning. This is because quad-tree, oct-tree, and larger
decompositions are sub-optimal when the decomposi-
tion method does not result in square regions of roughly
equal size. This will occur, for example, when par-
titioning a long, thin room. By attempting to select
partitioning points that will identify open and blocked
spaces quickly, we largely guarantee there will be no



Figure 3: Decomposition of a one-dimensional example
space

regular square regions. At the same time, any quad-,
oct-, or larger decomposition can be represented by a
series of binary space partitions, meaning an approach
based on BSP will subsume these others.

We motivate our approach using a simple one-
dimensional problem illustrated in Figure 3. The top
portion of the figure illustrates a quad-tree decomposi-
tion of the example space. While a quad-tree decompo-
sition breaks each cell into four equal-sized partitions,
this view shows only one dimension of the space, and so
two partitions are made. Both of these partitions are
mixed, and so a second iteration splits these as well.
The second iteration identifies one completely free par-
tition, and the others all must be split by a third itera-
tion before all partitions are labelled as free or blocked.
In a two-dimensional space, this would simply occur
over both dimensions. Note that the space partitioning
causes two problems: one large four-cell gap is split into
three separate pieces in different branches of the tree,
and the right obstacle is split over two cells as well. For
a robot more than two cells wide the former problem
would cause difficulty during path planning, since space
must be amalgamated before a path could be plotted
through this region. Similarly, the large obstacle is es-
sentially viewed as two smaller obstacles, which may
also cause problems when trying to predict the motion
of obstacles.

The difficulty here is that the openings and obstacles
in the domain are not recognized for what they are. An
appropriate heuristic must begin by attempting to sep-
arate these areas in a useful way rather than splitting
at a fixed point. The lower portion of Figure 3 begins
with the identification of the points marking the tran-
sition between blocked and open spaces. These mark
three potential places where a partition could be made.
The heuristic we employ requires only that we test these
three points, rather than all of the points in the space;
this is explained in detail below.

Having a fixed split point does not guarantee the in-
troduction of any new knowledge regarding the result-
ing partitions: while we will certainly eventually break
the space down eventually, the process of performing
one subdivision does guide the process toward the iden-
tification of useful spaces. The main motivation for our
algorithm is that any split in the space should result in
a high likelihood of more knowledge about the two re-
sulting partitioned regions - the times where there are
no new partitions that can be labelled should be ex-

ceptions rather than the rule. This can be discussed
in terms of entropy - the minimum length of a code
describing the area, which can also be viewed as the
percentage of mixture of the resulting regions. We cal-
culate a heuristic value to associate with each potential
split point by comparing the size and entropy of the
regions that would result if that point was used to par-
tition the space (i.e., weighted entropy). In the example
in Figure 3, the point that results in the least entropy is
the middle of three potential partition points. Both of
the new partitions that result are labelled mixed, and
like other cell decomposition methods, this now con-
tinues recursively. In the next stage, each of the left
and right partitions has only one choice for a potential
partition point, and so these are used. The resulting
set of partitions is much better than those produced
by the quad-tree decomposition: a large open block of
four has been recognized, and no obstacles are divided
between partitions. The resulting decomposition tree is
also smaller and easier to employ in path-planning.

There are two parts to solving this problem: iden-
tifying the potential partition points, and selecting the
partition point that would result in the most useful par-
titions were it to be used in cell decomposition. We will
deal with the latter first.

When describing information content of a signal, the
concept of entropy - originally introduced by Shannon
(Shannon & Weaver, 1949) - is often used. Entropy
refers to the minimum description length required to en-
code a message, but has also been applied in other areas
requiring the measuring of information. For example,
the ID3 heuristic for learning a decision tree uses the
concept of information gained by splitting the decision
tree on a particular attribute (Mitchell, 1997). Similar
measurements based on entropy have been applied in
other areas as well, such as Balch’s (Balch, 1998) so-
cial entropy, measuring the information imparted to a
group by a heterogeneous member.

We define the entropy of a spatial area as

Entropy(A) = −pf log2 pf − pb log2 pb

Where

pf =
|f |
|A|

and

pb =
|b|
|A|

are the percentage of free and blocked areas respec-
tively. The entropy function measures the information
in a given space through the relative proportion of free
and blocked areas. This means that the more evenly
mixed the free and blocked areas in the space are, the
more entropy is present and less information is provided
by that space. Note that since entropy is a probabilistic
measure of the complexity of a domain, it is particu-
larly suited to highly-dynamic uncertain domains such
as robotic rescue. It is also inherently robust to sensor
noise.



In order to estimate the gain in information we might
achieve by partitioning an existing space using a po-
tential partition point, we must look at the difference
between the entropy of the original space and the total
entropy in the resulting partitioned spaces, with each
of the latter weighted by its proportional size:

gain(pi, A) = E(A) −
∑ |P |

|A|
E(|P |)

Information gain is the factor used to choose the best
potential partitioning point. It would appear that the
most computationally challenging part of the problem
would be the calculation of potential entropy for each
and every cell that could potentially be used as a parti-
tioning point. However, as can be seen from the formu-
lae above, the gain in information depends strongly on
the percentages of blocked and free areas. This means
that significant changes in entropy will only occur when
we split at the junction of a free and a blocked cell. So,
in a given space, we need only perform entropy calcula-
tions on such transition points - for example, the three
potential partition points identified in lower left portion
of Figure 3.

While the motivating example was one-dimensional
for simplicity of explanation, in the more common
two-dimensional cases (or higher dimensions) the same
method may be applied. In a two-dimensional case, the
gain is calculated for each partitioning point as well as
partitioning direction. That is, each point is considered
along either dimension.

The other manner in which the motivating exam-
ple has been simplified is in the nature of the free and
blocked regions: in simple a one-dimensional vector, the
obstacles are necessarily rectangular. In a real-world
situation, however, blocked regions will be irregular and
can be approximated by polygons. Figure 4, for exam-
ple, contains two polygons that are not aligned to the
coordinate space. In this case, the vertices of the poly-
gons are projected onto the dimension of partitioning,
as shown in the figure. While the worst-case projection
is only linear in the number of vertices, this is still over-
head that a simple regular partitioning method would
not require. However, in cases where there is a large
number of vertices, this complexity can be reduced by
selecting only a subset of these vertices (which is also
being done by approximating the irregular obstacles
with polygons to begin with).

Empirical Evaluation

An implementation of our method was compared
against the standard quad-tree decomposition path
planning algorithm using C++ under Linux. A sam-
ple run of this implementation in comparison with a
standard quad-tree decomposition is illustrated in Fig-
ure 5. In this problem, 16 obstacles of the same size
were arranged in a regular pattern. The decomposition
of this space resulted in a tree of 311 leaf nodes for a
quad-tree decomposition, vs. 122 for using the flexible

Figure 4: Representing polygons by projecting their
vertices

BSP approach detailed in the previous section. Beyond
having a simpler tree to use in path planning, one can
see that there are in general more useful open spaces
and the spatial decomposition is much more intuitive.
This is particularly true for the right-hand side of the
environment, where there is more open space and the
representation is less disjoint. These results are repre-
sentative of the quality of the decomposition - for sim-
pler environments we obtained even better results (e.g.
an 11 vs. 41 node tree for a two-obstacle environment).
To examine this over a range of problem complexities,
we generated random test problems over a 2.8m x 2.3m
test environment. The size as well as the position of
the obstacles was created at random, and the quality of
the decomposition in terms of the number of leaf nodes
in the resulting tree was examined. The number of ob-
stacles in test problems ranged from 1 - 32. The results
of this, over increasing obstacle numbers, is shown in
Figure 6. These experiments were re-run several times,
and in each case the results were consistent. Consider-
ing the decompositions produced for all problems, the
flexible BSP approach generated 27% of the nodes gen-
erated by a quad-tree decomposition.

Conclusions

It is non-trivial to develop a good path planning method
for a domain as complex as robotic rescue. The results
obtained by our experiments suggest that flexible BSP
is a very promising alternative for decomposing a repre-
sentation of a region for the purposes of path planning.
We believe this approach to be especially feasible for
use in the robotic rescue domain (and similar highly
dynamic and uncertain domains) because it is based
on probability estimates rather than relying on a com-
plete precise model of the domain. While re-planning of
paths will always be necessary in dynamic domains, the
flexible BSP approach produces simpler trees that make
path planning itself a simpler task, which in turn facil-
itates more effective re-planning when necessary (and



Figure 5: Quad-tree decomposition vs. flexible BSP

Figure 6: Comparison of approaches over increasing
number of obstacles

allows more re-planning given the same computational
resources).

We will be employing this approach in the 2003 Key-
stone Fire Brigade our entry for the upcoming year’s
robotic rescue competitions. There two elements cen-
tral to the design of the Keystone Fire Brigade that we
believe make this approach particularly suitable. First,
the Keystone Fire Brigade is based on inexpensive toy
car platforms, allowing only extremely limited odom-
etry. We expect that this mechanism will allow more
extensive path planning while still not requiring a high
degree of odometry accuracy, because of the simpler
decomposition. In additional to limited odometry, the
Keystone Fire Brigade possesses only limited compu-
tational abilities, much of which is already committed
to visual information processing. The limited proces-
sor speed and environment require a method that will
provide smaller, more efficient data structures for path
planning. We believe flexible BSP will be an ideal ap-
proach under these constraints.
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