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Abstract. This paper describes fast demosaicing methods to quadru-
ple the resolution of a CMOS camera. The resulting increase in accu-
racy in camera calibration and object detection is important for local
vision robots, especially those that use computer vision as their only
source of information about the state of the world. The paper describes
two methods for demosaicing: interpolation and variance demosaicing. A
comparison of three sample views is shown to demonstrate the increased
resolution and the difference between the interpolation and variance de-
mosaicing methods. Both demosaicing methods work well. Variance de-
mosaicing performs better around edges in the image, but is computa-
tionally more expensive.

1 Introduction

This paper presents demoasicing, a well known technique in digital cameras and
investigates its application to problem of computer vision in real-time, real world
robotics. Demoasicing quadruples the resolution of CMOS sensors based on the
Bayer pattern. This increase in resolution leads to more accuracy in determining
the camera calibration and feature locations. For example, the distance to the
ball and the angle to the goal can be computed more accurately.

Given the limited amount of processing power available on most robotic plat-
forms and the harsh constraints of the real world, the extra amount of memory
required and the additional computational overhead is of interest. Both of these
issues are investigated for the two described algorithms.

Section 2 gives a brief introduction into the geometry of a CMOS camera and
the Bayer pattern that is most commonly used. Section 3 introduces demosaicing
and presents two demosaicing methods: interpolated demosaicing and variance
demosaicing. Section 4 describes an additional method for pre-processing of color
images taken with a CMOS sensor. The green channel is usually much more
sensitive than the other channels. Conclusions are described in section 5.



2 CMOS Camera Hardware

This section describes the actual hardware that is used in most CMOS image
sensors. The CMOS sensor is able to measure the itensity of incoming light only.
Therefore, a color CMOS sensor uses at least three different image sensors to
measure the brightness of the color signals: one red filter, one green filter, and
one blue filter.

However, since multiples of three are awkward to manufacture, a common
way of manufacturing a CMOS sensor is the so-called “Bayer” pattern. This
pattern use four image sensors as shown in Fig. 1.
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Fig. 1. Bayer Pattern as used in CMOS Image Sensors. R, G, and B indicate a red,
green, and blue filter sensor element.

It can easily be seen that for a single position only, a single color channel is
available. That is pixel (0,0) can only measure the red channel of the signal. The
sensor data needs to be further processed to create a RGB color image.

A standard method is to create a single color pixel from four adjacent image
sensors. One problem is that there are two image sensors with green information.
To speed up the processing, most systems simply discard one channel of green
information. Another possibility is to use the average of the two green channels
as green value for the pixel. Figure 2 is a graphical illustration of the algorithm
used. In this example, a 164 by 124 image sensor produces a 82 by 62 image.

This is the standard method used by the CMOS cameras used by the Eyebot
controllers, which are used in the 4 Stooges RoboCup team. Some sample images
obtained with this method are shown as original image in Fig. 4, Fig. 5, and
Fig. 6.

The obvious disadvantage of this method is that information is lost in the
conversion process. The position of the pixel segments is not taken into consid-
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Fig. 2. Standard Processing of CMOS Sensor Data

eration, and the resolution of the resulting image is only a quarter of that of the
resolution of the CMOS sensor.

3 Demosaicing

The idea is to infer the missing values for the color information of all pixels
by using information about adjacent or near-by pixels. This process is called
demoasicing. Figure 3 is a graphical illustration of the main idea.

If we take the blue-filter image sensor at location (1,1) as an example, then
we can see that the blue information at this pixel is known, but we do not know
the values for the red and green channel. However, we do know the values of the
red channel for four adjacent pixels and the values of the green channel for four
other adjacent pixels.

Similarly the values for the green and blue channel are missing for red-filter
sensor elements, and the green filter elements are missing the red and blue color
information.

The process of inferring the missing color information is a topic often studied
and well known in digital cameras.

3.1 Averaging

The simplest and fastest algorithm is a bilinear interpolation of the missing pixel
values by averaging the values of adjacent pixels. The algorithm shown in Alg. 1
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Fig. 3. Demosaicing of CMOS Sensor Data. Green and red information for the pixel
(1,1) is inferred from neighboring pixels.

implements this simple interpolation scheme. It can be seen that for red and
blue pixels four neighboring pixels are available to infer each of the missing color
information. For the green pixels, only two neighboring pixels are available for
the red and blue color information.

This algorithm can be implemented by using three rows of pixels as tempo-
rary storage.

The computational cost of this algorithm is not much more than the standard
algorithm, but results in an image with four times the resolution. The following
table summarizes the number of memory reads and writes, the additions and
subtractions, and lastly the multiply and divide operations for each pixel:

Pixel Mem Read/Write|Add/Sub|Mul/Div
Red 9/1 8 2
Green Pixel 15/1 4 2
Green Pixel 2/5/1 4 2
Blue 9/1 8 2

The total cost of demosaicing is therefore 8 Mem + 6 Add + 2 Div operations
per pixel. This algorithm was implemented an tested on the Eyebot controllers.
On a 25 MHz 68332, the demosaicing routine took 30ms. This is about half the
time required to read in the image. This means that the maximum frame rate
of the video processing dropped from 15 to 10 frames per second.



Algorithm 1 Interpolation Algorithm for Demoasicing
1: for =0 to Height do
2:  for j=0 to Width do
3 if (¢ mod 2 = 0) AND (j mod 2=0) then
4: red = pixel[i,j] {// Red Pixel}
5: green = (pixel[i — 1,j] + pixel[s,j — 1] + pixel[i + 1,5]
T pixelli,j + 1])/4

6: blue = (pixel[i — 1,5 + 1] + pixel[i — 1,5 — 1] + pixel[¢ + 1,j — 1]
+ pixelli + 1,5 + 1])/4
7 else if (i mod 2 = 0) AND (j mod 2=1) then
8: green = pixel[s,j] {// Green Pixel 1}
9: red = (pixel[i,j — 1] + pixel[i,j + 1])/2
10: blue = (pixel[s — 1,5] + pixel[i + 1,5])/2
11: else if (¢ mod 2 = 1) AND j mod 2=0) then
12: green = pixel[t,j] {// Green Pixel 2};
13: red = (pixel[i — 1,5] + pixel[i + 1,5])/2
14: blue = (pixel[i,j — 1] + pixel[s,j + 1])/2
15: else if (¢ mod 2 = 1) AND j mod 2=1) then
16: blue = pixel[i,j] {// Blue Pixel };
17: red = (pixel[i — 1,5 + 1] + pixel[s — 1,5 — 1] + pixel[¢ + 1,j — 1]
+ pixel[s + 1,5 + 1])/4;
18: green = (pixel[s — 1,j] + pixel[i,j — 1] + pixel[s + 1,5]
+ pixel[s,j + 1])/4;
19: end if
20: image[i,j] = (red, green, blue);
21:  end for
22: end for

Sample images are shown in Fig. 4, Fig. 5, and Fig. 6. The images after inter-
polated demosaicing look quite natural. More pixels are available to determine
the center of the ball for example.

3.2 Variance Interpolation

A closer look at the output of interpolated demosaicing shows that it leads to
blurring around the edges of objects. For example, the edges of the ball, the goal,
or the track are blurred by this process.

To overcome this blurring, a more complex demosaicing algorithm, so called
variance demoasicing is used to maintain the sharpness of edges. The main idea
is to compute the amount of variance (that is the difference between this pixel
and its neighboring pixels) and to assume that the variance is similar in all three
color bands. So, if the current red pixel is much brighter than its neighboring
pixels, then its green and blue channels are also increased. The algorithm is
shown in Alg. 2. Algorithm 3 is used to compute the average brightness in the
current color channel. In line 2, the difference between the current pixel and
this average is computed. The missing color information (green and blue for a
red pixel) is computed similarly to the interpolation algorithm shown in Alg. 1.



However, in lines 2 and 2, the computed difference is used to adjust these color
values.

Algorithm 2 Variance Algorithm for Demoasicing

1: for =0 to Height do
2:  for j=0 to Width do

3: if (¢ mod 2 = 0) AND (j mod 2=0) then
4: red = pixel[i,j] {// Red Pixel}
5: redAvg = calcAverage(i,j,red)
6: redDiff = red - redAvg
7: green = (pixel[s — 1,j] + pixel[i,j — 1] + pixel[s + 1,7]
+ pixel[s,j + 1])/4
8: green = green + redDiff
9: blue = (pixel[i — 1,5 + 1] + pixel[¢ — 1,j — 1] + pixel[i + 1,j — 1]
+ pixel[i + 1,5 + 1])/4
10: blue = blue + blueDiff
11: else if (¢ mod 2 = 0) AND (j mod 2=1) then
12: green = pixel[s,j] {// Green Pixel 1}
13: greenAvg = calcAverage(i,j,green)
14: greenDiff = green - greenAvg
15: red = (pixel[s,j — 1] + pixel[s,j + 1])/2
16: red = red + greenDiff
17: blue = (pixel[s — 1,5] + pixel[i + 1,5])/2
18: blue = blue + greenDiff
19: else if (¢ mod 2 = 1) AND j mod 2=0) then
20: {Similar to processing of Green Pixel 1}
21: {and omitted here}
22: else if (¢ mod 2 = 1) AND j mod 2=1) then
23: {Similar to processing of Red Pixel}
24: {and omitted here}
25: end if
26: image[i,j] = (red, green, blue);
27:  end for
28: end for

Algorithm 3 calcAverage(z,y,c)

1: avg = (pixel[i — 2,5] + pixel[i + 2,5] + pixel[i,j — 2]
+ pixel[s,j + 2])/4;

2: return avg

This algorithm requires more storage and more computation that the inter-
polation algorithm described in section. In fact, it requires temporary storage
to hold five rows. Furthermore, the cost of computing the calcAverage is 4/1
Memory + 4 Add + 1 Div. Thus the costs in terms of memory read or writes,
additions or subtractions, and multiply and divide for this algorithm can be
computed and are shown in the following table.



Pixel Mem Read/Write|Add/Sub{Mul/Div
Red 15/5 18 3
Green Pixel 1|11/3 10 3
Green Pixel 2|11/3 10 3
Blue 15/5 18 3

The average cost of computation for a pixel is therefore 17 Mem + 14 Add
+ 3 Div. In other words, this algorithm uses more than twice the number of
memory accesses and add operations than the previously shown one. This re-
sult was verified by timing the implementation of both algorithms, where the
variance demoasicing algorithm took sufficiently more time than interpolated
demosaicing.

Three sample images with the output of the variance demosaicing algorithm
are shown in Fig. 4, Fig. 5, and Fig. 6. The images after variance demosaicing
show that the edges around the ball, the cup, and the track are much clearer
and not blurred.

We also created difference images to highlight the differences between the
interpolated and variance algorithm. As can be seen, the result of the algorithms
are very similar and only around the edges are the outputs different.

Original Image

Variance Demosaicing Difference between Interpolate
and Variance Demosaicing

Fig. 4. Ball Scene: Comparison of the original image, the interpolate-demoasiced image,
and the variance-demosaiced image. The difference between these two methods is also
shown.
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Fig. 5. Scene with Red Cup: Comparison of the original image, the interpolate-
demoasiced image, and the variance-demosaiced image. The difference between these
two methods is also shown.

4 Color Calibration

Another problem with CMOS sensors is that the sensitivity of the device is not
the same as that of the human eye. Therefore, images taken by a CMOS camera
have incorrect color information. This can be easily be seen in a color photo
which show a very strong green tint.

To correct for this green tint, we took an image of a gray scale gradient.
This image showed that the red and blue channels were similar and ranged in
value from approximately 20 to 210. However, the green channel ranged from
approximately 25 to 250. We therefore reduced the intensity of the green channel
by a factor of 0.8. The resulting image was a gray scale image and the green tint
has disappeared.

Since, like most other teams we perform blob detection in the image to detect
interesting colors in the scene, and since this blob detection only depends on
the paramaters used to define the colors, we do not adjust the green channel
during standard local vision processing. The main reason is that green channel
adjustment resulted in a 10ms increase in our video processing loop.

However, we use the green channel adjustment only when displaying or trans-
ferring color images for later viewing. The resulting images are more convincing
if the colors are adjusted correctly.



-

Original Image Interpolated Demosaicing

.......

Variance Demosaicing Difference between Interpolate
and Variance Demosaicing

Fig. 6. Track Scene: Comparison of the original image, the interpolate-demoasiced
image, and the variance-demosaiced image. The difference between these two methods
is also shown.

5 Conclusion

This paper describes two algorithms for the demoasicing of color images: the
interpolation and variance demosaicing algorithms. Both algorithms are easy to
implement and perform well in practice.

An empirical evaluation showed that the interpolation algorithm results in
blurring around the edges and that the variance algorithm can overcome this
problem.

However, the paper also showed that the computational cost of the variance
algorithm is significantly more than that of interpolated demosaicing.

This trade-off depends then on the required accuracy of image features as
well as the available processing power. We currently use only interpolated de-
mosaicing in our Eyebot controllers, which allows us to maintain a framerate of
10 frames per second.

Currently, we are investigating methods for interleaving the image acquisition
and demosaicing processes. This would result in a higher frame rates for our
vision processing, since some of the cost of demosaicing may be hidden in the
image acquisition routine, which currently has to wait for the next byte from
the camera.
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Of course, more complex and accurate methods of demosaicing can be de-
veloped. The gradient information and direction of edges in the image may be
used. We do not believe that the improvement would be minimal and does not
warrant the additional computational cost.



