Horus: Object Orientation and Id without
Additional Markers

Jacky Baltes

Centre for Image Technology and Robotics
University of Auckland,Auckland
New Zealand
j-baltes@auckland.ac.nz
http://www.citr.auckland.ac.nz/"~ jacky

Abstract. This paper describes a novel approach to detecting orien-
tation and identity of robots using a global vision system. Instead of
additional markers, the original shape of the robot is used to determine
an orientation using a general Hough transform. In addition the move-
ment history as well as the command history are used to calculate the
quadrant of the orientation as well as the identity of the robot. An empir-
ical evaluation shows that the performance of the new video server is at
least as good as that of a traditional approach using additional coloured
markers.

1 Introduction

This paper describes a new approach to image processing in the RoboCup do-
main, that has been implemented in the video server of the All Botz, the Uni-
versity of Auckland F180 team.

In the F180 league, most teams use a global vision system to control up to
five robots per team in a game of robotic soccer. In order to be able to control
the robots, coloured markers or bar codes are put on top of the robots to simplify
the vision task.

Coloured markers or bar codes are an easy and robust method, but have two
big disadvantages. Firstly, the calibration of sets of colours, so that they can
be detected over the entire playing field and do not interfere with each other
is a very time consuming task. The resulting calibration is not robust. Even
small changes in the lighting conditions require a re-calibration. Secondly, these
methods do not scale to large teams of robots with eleven players or more.

Therefore, the All Botz developed a new flexible and scalable approach, that
uses the original shape of the robot as its sole source of vision information. In
other words, the robots are unaltered except for the addition of a marker ball,
which is required by the F180 RoboCup rules. A generalized Hough transform is
used to infer the orientation of the robot from a sub-image. The image processing
determines an exact orientation of one side of the robot (an angle between 0 and
90 degrees), but there is not sufficient information to determine the quadrant of
the angle. Thus, the quadrant is determined by correlating the movement history



(e.g., dx, dy) and current command (e.g., move forward) to the motion of the
robot.

The most difficult vision problems in the RoboCup domain is to determine
the identity of a robot. All other teams use unique features of the robots to
determine their id. As the number of robots increases it becomes more difficult
to find unique features that can be recognized efficiently and robustly. In our
system, the identity of the robot is determined through correlating the command
stream from the individual controllers to the observed behavior of the robot.

Section 2 describes the vision problems associated with the F180 league and
how these problems were addressed by other teams previously. Section 3 de-
scribes the design of HORUS, the new video server of the All Botz. The results
of an empirical evaluation comparing the performance of HORUS against that of
a traditional video server are shown in section 5. Directions for future research
and further improvements are shown in section 6.

2 Global Vision in the RoboCup

Most teams in the F-180 league of the RoboCup initiative use a global vision
system to obtain information about objects in the domain, including the robots,
the opponents, and the ball.

There are three important pieces of information that the global vision system
must provide: position, orientation, and identification. The following subsesctions
describe related work in obtaining the necessary information.

2.1 Position

The rules of the F-180 league require each robot to mount a coloured table tennis
ball in the centre of the robots. Each team is assigned a colour (either yellow
or blue). The two goal boxes are also painted yellow and blue respectively. The
yellow team shoots on the blue goal and vice versa.

The position of a robot can easily be determined by the image coordinates
of this marker ball. Given the height of the robot as well as the extrinsic and
intrinsic camera parameters, this location can be mapped back to real world
coordinates. The All Botz use a pinhole camera model with two non-linear lens
distortion parameters.

The geometry of the All Botz video camera setup makes the accuracy of the
camera, parameters more important and the computation of these parameters
more difficult than that of other teams. However, this side view setup is general
and versatile.

Briefly, a calibration pattern is used to find real world coordinates for a
number of image coordinates. This mapping from image to real world coordinates
is computed using an automatic iterative method. Given this set of calibration
points and their real world coordinates, the Tsai camera calibration method is
used to compute the parameters of the camera model [4].



2.2 Orientation

Although a single point on the robot is sufficient to determine its position, addi-
tional information (e.g., a second point or a vector) is needed to determine the
orientation of a robot.

Most teams in the RoboCup competition use additional coloured markers to
create a second point on the robot. In the simplest case, the two points have a
distinct colour, which makes it easy to determine the orientation of the robot by
relating it to the orientation of the line between the two points.

The distance between the two points determines the accuracy of the orienta-
tion: the further apart the two points, the better the orientation. The maximum
length of the robot is limited by the rules.

The All Botz used this method previously with good success. The variance
in the orientation for a static object was less than 10 degrees at the far side of
the field.

2.3 Identification

One of the most difficult aspects of the vision processing is the visual identifica-
tion of robots. To be able to control a robot, the control system needs to know
the identity of the robot, so that the commands are sent to the correct robot
(e.g., Robot 3 move forward).

So far, the only solution to this problem suggested by teams competing in the
RoboCup are to use individual colour markers, “bar codes” or manual tagging.

Most teams identify their robots through different colours. The major prob-
lem is that it is non-trivial to find a parameters for a colour model that allows
the detection of a colour over the entire playing field.

Another possibility is to identify a robot using some easily distinguishable
geometrical pattern. Popular methods are to identify different patterns based on
their size or their aspect ratio.

A third possibility is to manually identify (tag) each robot before game starts.
For example, the user may click on robot one through five in turn. The vision
server then continues to track the robot until there is an occlusion or the robot
is occluded. This occurs usually during a stoppage in play.

This procedure is time consuming and error prone. Assigning an identification
takes about 30 seconds, but needs to be done in every stoppage in play. Also,
in the heat of battle it is easy to mistake two robots. Furthermore, as the skill
level increases and stoppages in play become less common, there will be fewer
chances to change an erroneous assignment.

3 The Horus Videoserver

The solutions described in the previous section have severe disadvantages since
they do not scale up to larger teams and to more flexible camera positions. If
we do not want to use additional patterns, then what else is there? The only



information left is the image of the robot itself. So the goal was to design a
videoserver that uses only a single marker ball and no other patterns on the
robot.

Position information in the current implementation is still based on the
marker ball on top of the robot. Since the rules require this marker, it seems rea-
sonable to use it for position information. Since the processing of the orientation
(described in more detail in the next section) is computationally more expensive
than simple blob detection, the position information is used to “anchor,” that is
to constrain the following computation to a small subimage (approximately 64
by 64 pixels).

3.1 Orientation information using the Generalized Hough
Transform

Figure 1 contains three zoomed views of our robots from our video camera. The
views correspond to the worst case (i.e., the robot is at the far end of the playing
field) for our vision system. As can be seen, the most prominent features are the
edges along the top of the robot. Other features (e.g., the wheels are not always
visible and hard to distinguish). Therefore, we decided to use these edges as
features and to infer the orientation of the robot from them.

Fig. 1. Some sample images of our robots taken at the far side of the field.

This idea faces an immediate problem, since the robots are almost square.
This means that it is impossible to determine the orientation of the robot from
a single image. Given the angle of the edge, there are four possible orientations
for the robot, which can not be distinguished without further information.

Furthermore, since all robots have exactly the same shape, it is impossible
to identify the robot. Therefore, we decided to use additional information (e.g.,
history of the cars, current commands, motion of the robot) available to the
video server to disambiguate the orientation and to identify the robot. This part
of the system is described in section 4.

Given the real world coordinates of the robot, the surrounding image corre-
sponding to a square area of the diameter of the robot is extracted. The max-
imum size of this window depends on the geometry of the camera position. In
most “practical” situations, the size of the window is less than 64 * 64 pixels.



All further processing is limited to this local neighborhood. The image is divided
into four regions, which are shown in the Fig. 2.

— Pixels that are more than half a diameter away from the position. These can

not be part of the robot and are ignored.

Pixels that belong to the marker ball or are very close to it. These pixels are

usually noisy and are ignored.

Pixels that match the top colour of the robot.

— Pixels that belong to the contour of the robot. These pixels are determined
after tracing the contour of the robot using a standard edge walking algo-
rithm.

Figure 2 shows the output for the three sample images given in Fig. 1. The
contour of the robot is shown in black. As can be seen, using even a very coarse
colour calibration, the edges of the robot can be traced accurately even under
worst case conditions.

Fig. 2. The image of the robot after preprocessing. Pixels that are too far or too
close are ignored. Pixels matching the colour of the top of the robot and pixels on the
contour.

Given the position of the edge pixels, a general Hough transform is used to
compute the possible orientation of the robot in the first quadrant [1].

The Hough transform is a popular method in computer vision to find lines
and other shapes. The basic idea for the Hough transform is to collect evidence
to support different hypothesis. The evidence for different hypotheses is accumu-
lated and the hypothesis with the strongest support is returned as the solution.

Figure 3 shows an example of the geometry in our problem. Each edge pixel
can be at most on four possible edges (E1, Es, E3, E4 in the figure). It is easy to
see that

a = sin ! (w/d)
B =sin"1(l/d)

Therefore, the corresponding angles for the edges can be computed as:

E,=60+p
Ey=60-p
E; =6+«

E4=0—Ck
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Fig. 3. The four possible edges E1, E2, E3, and Es (and therefore, the possible orien-
tations) for an edge pixel (Xg,Yr).

Edges F; and FE, are only possible solutions if the distance d between the
center point (X¢,Ye) and the edge pixel (Xg,YE) is greater than the length of
the robot {. Similarly, edges E3 and E4 are only solutions if d is greater than the
width w of the robot.

In theory, this information is sufficient to determine the orientation of the
robot + /- 180 degrees. In practice, we normalize the angles to within 90 degrees,
since the distance between the edge pixel and the center point is noisy. This
makes little difference in resolving the disambiguity about the quadrant, since
for a car-like robot two of the four possible orientations can immediately be rules
out, since a car can not move sideways.

The hough space consists of a one-dimensional array with 18 entries, which
gives us a resolution of 5 degree. For each edge pixel, the value in the array for
that position is incremented. Finally, the angle corresponding to the maximum
value is returned.

4 Identification Using Bayesian Probability

As mentioned previously, since all robots in our team look identical, the vision
information is insufficient to identify them. HORUS uses two additional sources
of information to determine the identity.

HORUS maintains a probability for the identity of each robot. We use a simple
Bayesian model to update this probability when new evidence is encountered.

Firstly, HORUS predicts the motion of the robot and tracks it. Should the
robot be found in the predicted position, its identity and its associated proba-
bility is not changed. If the robot is found in the neighborhood of the predicted
position, its identity is not changed, but the probability in the identity is reduced



by a factor of 0.9 or 0.7, dependent on how far the robot was found from the
predicted position.

Secondly, HORUS observes the motion of the robot over a number of frames
and assigns it one of seven states: not moving, forward left, forward straight,
forward right, backwards left, backwards straight, and backwards right. The
actual steering angle is not determined, so there is no difference between, for
example, full left and gently left.

Initially as well as after some errors in the assignment, a robot will have an
unknown identity. If a robot has an unknown identity, HORUS will assign it the
first free identity that matches the observed behavior of the robot. The initial
probability of this identity assignment is 0.5.

5 Ewvaluation

The performance of HORUS was compared against the performance of our origi-
nal video server, both with respect to speed and accuracy. The evaluation shows
that the performance of the new videoserver is at least as good as that of our
original video server. The performance of the vision processing is not a limiting
factor in the overall system.

5.1 Horus’ Processing Speed

The Hough transform is a compute intensive method, which as a rule should
be avoided in real time applications. However, since the position of the robot
is known, only a small neighborhood (64x64 pixels) of the image needs to be
considered. Also, the number of edge pixels in that neighborhood is small. In
the worst case, there are 256 edge pixels. Also, the Hough space is reduced, since
we are not interested in the location of the line and since the possible orientations
are only between 0 and 90 degrees.

These factors explain why there is no noticeable difference in the process-
ing speed of the two videoservers. Both videoservers are able to maintain a 50
fields/second frame rate in the RoboCup domain with eleven objects.

5.2 Horus’ Accuracy

Evaluating the accuracy of the orientation information is more difficult. HORUS
is unable to determine the orientation completely from just a single image or
from a stationary object.

Knowing the orientation of static objects is rarely useful though. We are
interested in moving our robots to their targets, so the accuracy of the orientation
information for a dynamic object is much more important. A dynamic evaluation
is more difficult than a static one, since we have no way of knowing the correct
orientation for a moving object.

We tested HORUS by driving a simple pattern (a circle to the left in the
centre of the playing field at constant speed) and by observing the orientation



information. The correct information was inferred from a kinematic model of the
robot. This test showed that the average error of HORUS was slightly less (less
than approx. 5 degrees) than that of our original videoserver (less than approx.
10 degrees).

Another factor that determines the quality of the videoserver is its inter-
action with the control algorithm. For example, it is unclear if the maximum
or average errors are more important. Therefore, we tested the interaction of
the orientation information with a non-holonomic control algorithm based on
Egerstedt’s controller ([3]. This control algorithm was used in time-trials on the
Aucklandianapolis race track ([2]) using orientation information from the two
video servers. The times were identical in both cases. The limiting factor for
the speed was in this case not the accuracy of the video server information, but
rather the latency in the control loop, which is at least 20ms.

6 Conclusion

This paper presents a new approach to vision in the RoboCup domain. Instead of
coloured markers, the system uses geometrical features of the robots to determine
their orientation.

This means, that the only coloured marker on the robots are marker balls,
which are used to determine the position of the robot. The orientation is deter-
mined by the projection of the robot in the image.

The system uses a generalized Hough transform to find edges in the neigh-
borhood of the position of the robot. These edges are used to determine four
possible angles (offset by 90 degrees) for the orientation of the robot.

The videoserver correlates the movement of the different robots with the
observed behavior to disambiguate the angles and identify each robot.
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