Adaptive Path Planner for Highly Dynamic
Environments

Jacky Baltes and Nicholas Hildreth

Centre for Image Technology and Robotics
University of Auckland,Auckland
New Zealand
j.baltes@auckland.ac.nz
http://www.citr.auckland.ac.nz/~ jacky

Abstract. This paper describes adaptive path planning, a novel ap-
proach to path planning for car-like mobile robots. Instead of creating a
new plan from scratch, whenever changes in the environment invalidate
the current plan, the adaptive path planner attempts to adapt the old
plan to the new situation. The paper proposes an efficient representa-
tion for path that is easily amendable to adaptation. Associated with
the path planner is a set of repair strategies. These repair strategies are
local methods to fix a plan to compensate for object movement in the
domain. The repair strategies are specific and have a high probability
of being able to fix a plan. An empirical evaluation shows that adaptive
path planning is suitable to highly dynamic domains, such as RoboCup.
Adaptive path planning reduces the cumulative planning time by a fac-
tor of 2.7 compared to Bicchi’s planner. At the same time, the quality of
the plans generated by the adaptive path planner were similar to those
generated by Bicchi’s planner.

1 Introduction

Navigation is an important task for any mobile robot. Before a robot can affect
the world in any sensible way, it must be at the right place at the right time.
The navigation task can be broken down into a number of important sub tasks:
localization, path planning, and plan execution.

Path planning is the problem of creating a collision free path through a set
of obstacles from an initial to a goal position. A simple example is planning to
go from the entrance of the CITR lab to the desk in room 305 on the third floor.
Path planners can be categorized based on whether global or local information
about the environment is available and whether objects are static or dynamic.

The F180 league in RoboCup, a game of soccer between autonomous robots,
is a good example of a global path planning domain with dynamic obstacles.
The RoboCup domain has a number of properties, which makes it interesting
for real world planning. It features a high density of highly dynamic obstacles.
This means that an agent has to re-plan often, since plans may be invalidated
through objects moving. In fact, RoboCup features an active opponent that tries

to prevent a robot from executing its plan (e.g., a defender tries to prevent a
striker from moving into a position in front of the goal) successfully. A robot de-
signed to perform real world applications, such as search and rescue in dangerous
environments will have to cope with similar environments.

A path planner in such a domain needs to be able to react quickly to changes
in the environment. Furthermore, the path planner needs to be able to return
at least an approximate plan (a best guess) immediately, that is it must be an
anytime path planner. On the other hand, as more planning time is available,
a better plan should be returned. For example, if a truck is barreling down on
a robot, the planner must return an escape plan (run left) immediately. With
more planning time, a complex plan for the robot to reach its destination can
be developed.

This paper discusses a novel approach, adaptive path planning, for global
path planning in dynamic domains. Although the approach is applicable to holo-
nomic robots, the description focuses on car-like robots, since path planning is
a more interesting problem for these non-holonomic robots.

The motivation for the adaptive path planner is to reuse previous planning
work and to adapt a plan to a changing world rather than to re-plan from
scratch. The adaptive planner has been tested on sample problems derived from
the RoboCup competitions and during the actual competition at RoboCup-99.
An empricial evaluation shows that the cumulative runtime of the adaptive path
planner is 2.7 times faster than that of a path planner based on Bicchi’s work,
but optimized for the RoboCup domain.

Section 2 gives a brief introduction to related work. Section 3 describes the
design and implementation of the adaptive path planner. The section focuses on
the novel plan representation as well as the set of repair strategies. The results of
the empirical evaluation are shown in section 4. Section 5 concludes and discusses
how the desribed ideas can be applied to holonomic robots.

2 Literature Review

There have been many different approaches to path planning, both for holonomic
and car-like robots. The major approaches for holonomic path planners are skele-
tonization methods (e.g., visibility graphs, Voroni diagrams, or road maps), cell
decomposition (e.g., approximate or exact), or local approaches (e.g., potential
fields, landmarks) [5, 3].

There are a number of problems with the path planning methods listed above.
Firstly, these algorithms have a high computational cost. Secondly, these algo-
rithms are not anytime path planners, since they require a large pre processing
step. For example, quad tree decomposition, a popular approximate cell decom-
position, has to break the domain up into cells before any planning can occur.
Therefore, visibility graphs are the most popular global path planning methods.

A number of non-holonomic path planning methods are two stage approaches;
a holonomic path planner is used to create a holonomic path, which is then
converted into a non-holonomic path. Two stage approaches are not suitable to

anytime planning, since there is no gurantee that the holonomic plan can be
converted into a non-holonomic one.

Other approaches use variations of standard holonomic path planners to cre-
ate a non-holonomic path directly. An example of this approach is Bicchi’s path
planner, which is an extension of visibility graph algorithms [1]. The idea behind
Bicchi’s path planner is to add circles of minimum turn radius around all ver-
tices of obstacles. The planner then finds a non-holonomic path by searching the
connections between circles from the start to the goal. An example of Bicchi’s
path planner is shown in Fig. 1.

Fig. 1. Bicchi’s Path Planner. A path consists of straight lines between circles located
at the vertices of the obstacles.

There are a number of heuristics that can be exploited in the RoboCup
domain to speed up the search step in Bicchi’s path planner. For example, since
all obstacles are modeled as circles, only a single circle around this obstacle is
needed. Also, the search heuristic can construct the turning circles dynamically
instead of creating all the connecting lines in a preprocessing step.

3 Adaptive Path Planning

Observation of a RoboCup quickly leads to the realization that most object
movements from one frame to the next are rather small. Although it is true that
a tiny movement can invalidate a plan or indeed make this particular planning

problem unsolvable (e.g., two opponent robots are covering the ball), in most
cases, the necessary changes to the plan are minimal. So, the main motivation
behind adaptive path planning is that:

— Path planning is an expensive operation, so the result of this work should
be reused if possible.

— The result or output of a path planner is a partial or complete path

— Assuming that changes in the domain are small between individual planning
episodes, the best plan for the current situation will be structurally similar
that for the previous situation.

This motivation is similar to Hammond’s case-based planning ([2]) with some
important differences. Firstly, case-based planning assumes that a plan database
exists with previous plans and that the most similar plan to the current situation
can be found in the database. Case retrieval from the database uses commonly
a similarity metric. Secondly, the database of previous plans needs to be main-
tained; new plans need to be added so they can be reused in the future or old
plans that are not useful must be removed. So, a lot of work on case-based
planning focuses on the design of suitable similarity metrics (i.e., how to find a
similar case to the current one) and on database maintenance policies (should a
case be added to the database or deleted).

In adaptive path planning, we assume the existence of an albeit slow static
path planner that can be used to create an initial plan. Furthermore, the previous
plan is the most similar one to the current situation and that, therefore, there
is no need to maintain a plan database.

3.1 Path Representation

At the heart of any path planner is the plan representation. A plan consists of
a sequence of path segments. Bicchi’s path planner and most other planners use
a representation where each path segment is either a straight line or a maximal
turn to the right or left. These representations are based on a result by Reed
and Shepp, that proves that any shortest path for a vehicle consists of exactly
three types of segments: straight lines, full left turn, or full right turn ([4]).

However, the shortest path may not always be the optimal one, since it may
lead too close to the obstacle, may include many reversals, or may result in the
robot driving backwards for long stretches.

Furthermore, this representation makes it difficult to adapt a path, since the
adaptations will need to be specific for a given segment type.

To simplify the adaptation, the adaptive path planner uses a uniform rep-
resentation for all path segments. Each segment is an arc that contains the
following information:

— start point [

— initial bearing «

— traversal direction D specifies whether the robot should travel backwards or
forwards along the segment.

— length of the arc segment L

— radius of the segment R. Straight lines are represented as arcs with a large
radius. There is also a minimum radius since car-like robots are limited in
the radius of their turns.

— time limit to traverse the segment 7'. This information is used by the strategic
component. If we can not reach a point in the desired time (e.g., be in place to
receive a pass), it is better to recognize this fact and pursue a different course
of action (e.g., play defensively), instead of reaching the goal 30 seconds after
the pass was made.

— A possibly empty attachment A. An attachment is used to attach an object
to a path segment, so that if the object moves, all attached path segments
will move as well.

This representation, shown in Fig. 2, proved very useful, because plans in this
representation can be easily adapted to compensate for movements of objects or
goal locations in the domain.

157 Path Description
Angular
gBearings Lan guage
0. 3.14

4.71
Goal Turning
Circle

ILocation

Robot Turning
Circle

Segment Descriptor
Lo LR, T A)]

ILocation: Start point for segment
o : Start bearing for segment

L: Length of segment

R: Radius of curvature

T: Time that segment is valid for
A: Attachment of segment

Fig. 2. Path Description Language

Objects are attached and detached from path segments dynamically. If an
obstacle moves too close to a path, the path is split at the closest point to the

obstacle and a new segment is inserted which is attached to the object. As the
object continues to move the attached segment will move as well. Once the object
is too far from the path, the object is detached from the path segment.

3.2 Repair Strategies

Any movement in the domain results in attached path segments being moved
as well, and thus may create a discontinuity, a so-called disjunction, in the path
(see Fig. 3). The assumption is that repairing these disjunctions is cheaper than
creating a new path from scratch.

Sample Path with
. Multiple Disjunction
>

Goal Point
& Orientation|

Object

O

v

Fig. 3. An Object Movement that Results in a Disjunction

There are two types of disjunctions: distance disjunctions (break in the path)
and angle disjunctions (continuous path, but discontinuity in the first order
derivative).

The adaptive path planner starts with the largest disjunction and attempts
to adapt the plan to fix the disjunction. In this process, new, but smaller dis-
junctions may be introduced into the path. The repair methods are applied
using a standard A* search algorithm that uses the complexity of the repair as a
heuristic function. For example, changing the length of a segment is easier than
translating a segment to a different location.

To fix these disjunctions, the adaptive path planner contains a library of path
repair methods. These path repair methods are highly specific repairs that have
a high chance of success and of reducing the size of the disjunction.

The following classes of repair methods are implemented in the adaptive path
planner:

— Positional Adjustment: Changes in the start and end position and bearing
of a segment. By themselves these repair strategies are not very useful, but
in combination with others (e.g., shape adjustment) they can fix many plans.

— Shape Adjustment: These repair methods change the length or curvature
of a segment. For example, a tight turn can be converted into a gentler turn.

— Type Adjustment: These repair strategies change the sign of the curva-
ture, so a left turn can be converted into a straight line or a right turn. Also,
the traversal direction of a circle can be swapped.

— Segment Structure Adjustment: These repair methods use segment in-
sertion, segment breaks, and segment deletion to change the structure of the
plan.

— Plan Justification Adjustment: These repair methods remove unneces-
sary plan segments or object attachements from the plan and thus are an
optimizing post-processing step.

A shape adjusting adaptation is shown in Fig. 4. An angular disjunction is
fixed by simultaneously rotating and stretching the line segment and shortening
the circle.

A complete list of adaptation methods can be found in [?].

4 Evaluation

To evaluate the performance of the adaptive path planner, we compared the
cumulative runtime and the success rate of the adaptive path planner against
that of two popular non-holonomic path planners.

The evaluation was based on a set of case studies, which were derived from
situations during robotic soccer competitions. Figure 5 shows a case study of
a situation that was inspired by the RoboCup competitions. It shows how the
adaptive path planner changes the path to compensate for a moving ball and an
interfering object. The robot starts at the left side of the field. The goal location
is on the right side of the field. The goal initially moves upwards until it rebounds
and starts moving downward. An obstacles moves upwards in the center of the
field. There are also two static obstacles in the domain.

Figure 5 shows a graph of the planning time of the adaptive path planner
versus that of an optimized Bicchi planner. As can be seen, the adaptive planner
uses very little time in most cases. The adaptive planner uses more time in cycle
103. That is because at this moment the obstacle intrudes into the path and a
new segment attached to this object needs to be inserted. Correspondingly, the
peaks at cycle 200 and 300 correspond to the path planner having to change the
traversal direction around the obstacle as well as avoiding the upper obstacle.

The repair strategies had a very high success rate (> 99%), since the adaptive
path planner only failed in six of the 1000 planning episodes. Should the adaptive
planner fail, it may or may not call the static planner in the current cycle. This

Angular Disjunction

v b
Il d Centre of
‘ y Segment 1
& 3
Adaptation 2.2: &
Dual Rotation &
Length Adjustment

Rotated
Centre of
Segment 2
(Exaggerated)
Original
Centre of
Segment 2
(Exaggerated)

Fig.4. A Shape Adjustment Adaptation

decision depends on the amount of computation that was done in the current
cycle and the expected cost of repairing the plan.

Nevertheless, the cumulative running time for the path planner in this prob-
lem is greatly reduced. To evaluate the cumulative runtime further, we randomly
created a set of real world problems similar to the one shown above. After the
problem was set up using our mobile robots, the path planning activity of the
robot was recorded until it reached the goal. These tests used a complex domain
with 11 objects.

Table 1 shows that the adaptive path planner is significantly faster (a factor
of 2.7) than the optimized Bicchi planner. Often the adaptive path planner is
orders of magnitude faster. Only in situation 7, did the adaptive path planner
perform worse.

The length of the plan is similar for the adaptive planner and the optimized
Bicchi planner. Note that the optimized Bicchi planner uses heuristics to prefer
simple path (few reversals, few segments), and not necessarily the shortest path
as the original Bicchi planner.

Fig. 5. Case Study Derived From Observed RoboCup Competition

Plarning Tire Usage per Cycle {4 Object)

B ot -8
1805
i
160%2
80 £
[
& 14055 E
% s
m =
1200 =
£ £
§4o- 1o &
g 3
l; =
& £
-} B E
“ . W i
T | Wl mg
) | L
NEFRENIN NN I|I||||.||| -
1 ki) 201 301 4 5 801 o 801 am

Exncutian Cycla (numbar)

S Dyniemic: Flanmer Do, —— Skaric Planner Dets |

Fig. 6. A comparison of the planning times for the episode shown in Fig. 5

5 Conclusion

This paper describes a novel approach to path planning for car-like mobile robot,
that attempts to reuse previous planning work as much as possible when planning
for a new situation.

10

OPTIMIZED BicCHI PLANNER ADAPTIVE PLANNER
Sit.|Time (ms)|Outcome|Length (mm)|Time (ms)|Outcome|Length (mm)
1 276ms Success 2750mm 13ms Success 1912mm
2 93ms Success 1480mm 12ms Success 1484mm
3 2ms Success 988mm 2ms Success 993mm
4 304ms Success 2287mm 2ms Success 2282mm
5 189ms Success 2538mm 10ms Success 2107mm

23ms Success 2151mm
18ms Success 2161mm
6 264ms Success 2347mm 59ms Success 1678mm
7 43ms Success 2023mm 243ms |TimeOut| 1880mm
40ms Success 1866mm
8 281ms Success | 1758mm! 12ms Success 2758mm
dms Success 2755mm
9 381ms Success | 2755mm! 242ms | TimeOut| 3022mm
8ms Success 3147mm

Table 1. Cumulative Runtime for randomly generated real world examples with 11
objects.

!This plan uses both forward and backward movement by the robot to complete.

A set of adaptation methods, a set of highly specific repair strategies, has
been developed that have a high rate of success.

An empirical evaluation using a set planning episodes derived from real world
problems shows that the adaptive planner is significantly faster than other state
of the art non-holonomic planners.

The basic idea of adaptive planning is independent of the actual robot control.
The only change required is the plan representation and the associated set of
adaptation methods.

References

1. Antonio Bicchi, Giuseppe Casalino, and Corrado Santilli. Planning shortest
bounded-curvature paths for a class of nonholomic vehicles among obstacles. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 1349-1354, 1995.

2. Kristian J. Hammond. Case Based Planning. Academic Press Inc., 1989.

J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.

4. J.A. Reeds and R.A. Shepp. Optimal paths for a car that goes both forward and
backward. Pacific Journal of Mathematics, 145(2), 1990.

5. Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach, chap-
ter 20, pages 598-624. Prentice-Hall Inc., Englewood Cliffs, New Jersey 07632,
1995.

w

