Subsumption-based Control for Mobile Robots
in Dynamic Environments

Jacky Baltes
j-baltes@auckland.ac.nz

Department of Computer Science
University of Auckland
Private Bag 92019, Auckland, New Zealand

Keywords: Non-holonomic control, subsump-
tion architecture, path planning

Abstract

This paper describes an architecture for path plan-
ning and control of car-like mobile robots. The method
is based on a subsumption architecture with four indi-
vidual behaviors: approach, steer, turn, and progress.
The coordination of these simple behaviors results in a
robust control architecture for mobile robots that per-
formed well when compared to other control methods.
The controller also results in simplifying the require-
ments on the path planner.

1 Introduction

The Centre for Imaging Technology and Robotics
(CITR) at the University of Auckland has worked on
the design of path planning, control, and task planning
algorithms for the last three years. The overall goal of
the project is to develop an architecture for intelligent
robotic assistants and teams of assistants for humans in
a variety of domains. Examples of applications for the
robotic assistants are rescue operations, tour guides,
space explorers, and warehouse organizers.

What all these tasks have in common is that they
require robust control and path planning of the robot
under real world constraints. For example, a tour
guide robot must reach certain locations in a reason-
able amount of time, but also not run into people or
other obstacles.

Instead of using custom built robots, the “robots”
used at the CITR are off-the-shelf toy cars. The toy
cars were minimally modified to provide local vision

and global vision platforms. The only input informa-
tion is from a video camera (A 80x60 pixel CMOS
colour camera for the local vision robots, a camcorder
mounted on the ceiling for the global vision team).
There are no other sensors, such as shaft encoders, ul-
trasound, or infrared, which are commonly found on
other robotic platforms. In fact, for the global vision
team, all processing is done off board and commands
are transmitted to the car given the orignal remote con-
trol. The only difference is that instead of a human, the
transmitter is connected to the parallel port of a PC.
The motors and steering control are coarse, noisy, and
unreliable.

As most other researchers, our initial research fo-
cused on separate methodologies for control and path
planning. Given the lack of additional sensors and inac-
curacies in the actuators of our robots, we quickly found
that the state of the art in control for car-like robots
and path planning in dynamic environments was not
able to provide satisfactory results.

In the last two years, we developed several new
approaches to control and path planning for car-like
robots (Fuzyy-Logic [4], Reinforcement Learning [3],
anytime path planning [8], and adaptive path planning
[7]).

From this research, we drew two conclusions. First,
a strong relationship between the controller and the
path planner exists. The path planner must generate
paths that the controller can follow. For example, it
is of little use to generate B-spline shaped paths if the
controller can follow only curves with a constant radius
efficiently.

Second, a controller is useful only if the domain is
static. In a dynamic domain, the controller will have
to switch amongst paths too often. Therefore, a path
planner should generate only an approximate path for
the controller. The dynamic nature of the real world

environment, will unavoidably lead to the plan being
locally modified by the controller.

From these observations, we developed the following
requirements for navigation of a car-like robot in highly
dynamic environments:

Anytime path planning: The time that a robot
has available for path planning varies. For example, if
the robot is sitting in front of an approaching truck,
at plan must be returned within milliseconds. On the
other hand, when the robot is waiting at an intersec-
tion, it may spend more time planning. What is needed
is a path planner that can trade off plan quality versus
runtime. An initial guess is available immediately, but
a better plan is returned if more time is available.

Robust control: Much research on non-holonomic
control is limited to controllers that have benign ini-
tial conditions (e.g., the orientation error is at most
90 degrees [1]. These systems rely on the path plan-
ner to provide a new path if the robot is outside of
these initial conditions. In practice, the incomplete-
ness of the path planners information (e.g., unknown
obstacles), results in possibly large errors. Therefore, a
controller must recover even from large errors. This re-
quirement then blurs the distinction between the path
planner and the controller. It is the task of the path
planner to generate a plan that takes all known ob-
stacles into consideration, whereas the controller must
deal with unknown obstacles or obstacles whose trajec-
tory has been mis-predicted. The controller needs to
locally modify the plan to compensate for changes in
the environment. The path planner is responsible for
the global consistency of the plan.

Therefore, we focused our efforts recently on a reac-
tive, robust architecture for path planning and control.
The goal is to develop a low level controller that can
approach points in sequence. Instead of a path, the
path planner generates a sequence of target points.

2 Related Work

Most controllers for car-like robots try to minimize
the distance and orientation error of the car. An ex-
ample of such a controller is shown in Fig. 1. Point
x,y is the current position of the rear axle of the car,
point z,,y, is the closest point to the car on the path.
The distance error g is the distance between these two
points. The orientation error § is the difference between
the orientation of the car § and the first derivative 6,
of the path at zp, yp.

A problem with this representation is that it is dif-
ficult to minimize both error terms at the same time.

Peth

Figure 1: Representation of the Control Problem based
on Balluchi

For example, the distance error is more important if the
car is far away from the path, whereas the orientation
error is more relevant near the path.

Instead we are using a different model, shown in
Fig. 2 derived from Egerstedt [6]. The controller looks
ahead along the path for a given distance d to the point
Z¢, yr. The controller only tires to minimize the orien-
tation error 6, which is the angle between a straight line
to the point z,,y; and the orientation of the car. This
model allows the car to approach a path gently and to
look ahead along the path. In contrast to Egerstedt,
we found that a simple look ahead function, which is
dependent on the speed of the car, is sufficient.

Brooks in 1987 suggested so-called subsumption ar-
chitectures to solve problems for mobile robots [5].
More recently, these architectures have been extended
into hybrid architecture to overcome some of the short
comings of the original subsumption architecture. The
above model of control can easily be incorporated into
a subsumption architecture. This allows the controller
to be extended to deal with unpredicted events (e.g.,
unknown obstacles).

3 Design

This section describes the design of the subsumption
architecture for the controller. The controller consists
of four behaviors: approach, steer, turn, and progress.
Each individual behavior is shown in the following sub-
sections.

Figure 2: New Representation of the Control Problem

3.1 Approach

The first behavior is responsible for the robot follow-
ing the path correctly. When the orientation error 8 is
small, then increase the speed and drive towards the
control point. This behavior is not concerned with the
path, but rather with the orientation and can therefore
be quickly and efficiently implemented.

3.2 Steer

The second behavior is used to correct the steering
when the robot is slightly of course. When the robot
is facing to the right/left of the target point and the
orientation error "6 is not too big, then steer to the
left /right. The amount of time of the course correction
is proportional to the orientation error.

3.3 Turn

The third behavior turns the robot by roughly 90 de-
grees when the orientation error is large. In this case, it
would take a long time to change the robots orientation.
It is quicker to execute a three point turn rather than a
long turn. Furthermore, continuing the path may also
result in continuous large errors. An extreme example
is when the target point is within one minimum turn ra-
dius of the robot. Then, if the robot is trying to follow
the circle, it would simple orbit the point forever.

3.4 Progress

The last behavior is responsible for local obstacle
detection and avoidance. If the robot has not made any

progress towards the goal for some time (approximately
10 secs.), then it chooses a direction and steering angle
randomly and drives with these parameters for a period
of time (approximately 0.5 sec.). After this random
behavior, the path planner is called again and a new
plan developed.

3.5 Coordination of behaviors

In a subsumption architecture, many different be-
haviors are active at the same time and may result in
conflicting actions being suggested by these behaviors.
Much research in subsumption architectures is focused
on the development of efficient policies for the coordina-
tion of different behaviors. Coordination of different be-
haviors requires an understanding of all possible inter-
actions amongst different behaviors and is non-trivial
and error prone.

A closer inspection of the subsumption based con-
troller shows that the approach, steer, and turn behav-
iors are mutually exclusive, since they are all based on
specific values of the orientation error. Therefore, the
only possible conflict is between the progress behavior
and one of the other behaviors. In this case, the cur-
rent control is not working and the progress behavior
should have priority over other behaviors.

Coordination of behaviors in subsumption architec-
tures can be done through either preventing a behavior
from firing by shutting of its input (inhibition) or by
preventing a behavior from sending a command to the
actuators (suppression). In this work, we used sup-
pression links from the progress behavior to all other
behaviors.

Figure 3 shows a graphical representation of the sub-
sumption controller. The hierarchy of behaviors is in-
dicated through the suppression links.

4 Evaluation

This section shows the results of evaluating the per-
formance of the subsumption-based controller. The
evaluation of the controller was done on two tasks:
a race track (Aucklandianapolis) and a treasure hunt
competition [2].

4.1 Performance

This subsection describes the results of evaluating
the performance of the subsumption based controller
against that of traditional path planners and con-
trollers.

Sensors Actuators
] Progress
d unchanged for 10 sec.
b Turn 1
Orientation 8> 75deg Motor Speed
error
Steering
L Steer &
Distance to 10deg< B <75 deg.
joal
b’
= Approach @
B <10deg. Suppression

Figure 3: Subsumption Architecture for the Controller.

The new controller behaved performed well com-
pared to other control algorithms that we have tested
(Balluchi’s controller, Egerstedt’s controller, Fuzzy
Logic controller, and a reinforcement learning con-
troller). The subsumption-based controller achieved a
new official track record.

This subsection shows that the subsumption based
controllers performance is comparable to that of tradi-
tional control algorithms. This evaluation does not con-
sider the additional features of the subsumption based
controller such as local obstacle avoidance or robust-
ness, which will be discussed in the next subsection.

4.2 Robustness

Robustness is an important feature of a practical au-
tonomous robot in the real world. In particular, the
robot should execute a given task, even if conditions
change in new or unforeseen circumstances. Clearly,
the robustness of a system to sudden change is limited.
Some changes are more reasonable to expect than oth-
ers. For example, one would not expect a path planner
to work in worlds where obstacles materialize out of
thin air, but one would expect a system to execute a
task successfully, even though an obstacle moved by a
few millimeters.

Therefore, evaluating the robustness of a system is
non-trivial. Most evaluations change certain parame-
ters or operating conditions. These changes are under
the control of the designer of the algorithm. Since the
designer is responsible for both design and evaluation,
it is possible for underlying assumptions to influence
the design as well as the evaluation.

This subsection provides a case study of the robust-
ness of the described system given a real world expe-

Wheels and Steering Rod

)) \

[<]

Car Body

Whesls and Steering Rod

1 N

Straight Left Turn

Figure 4: Steering Mechanism: An example for straight
ahead (no current through the control lines) and left
turn (induce magnetic field to pull the magnet to the
left).

rience. It shows that the described architecture was
able to be moved to different robot platforms and cope
with their idiosyncracies. Furthermore, the described
changes were completely unexpected on our part. The
inherent robustness of the system allowed us to solve
this real world problem.

About half way through the project, we decided to
start work on a local vision robot soccer team and had
to buy new toy cars (Nikko Pocket Racers) for our
global vision team. Instead of the proportional con-
trol, these new toy cars had a simple bang-bang control
only. This did not pose a problem, since the effective-
ness of the proportional control was limited and only
a few steering angles were usable by the controller in
practice. The bang-bang control was not achieved us-
ing a servo motor, but rather through the setup shown
in Fig. 4. The figure shows two controls for straight
and for a left turn. A small magnet is used to center
the steering if no current is flowing through the two
control lines. For a turn, a current is used to induce a
magnetic field in the inductors to pull the steering to
the right or the left respectively.

We were also familiar with the effect of battery
charge on the velocity of the cars. For example, set-
ting the speed of the car to 2, will result in 2.8 m/s
with fresh batteries, but 0.3 m/s after a few minutes of
driving. Therefore, the subsumption architecture uses
standard PID controller for the velocity.

A completely novel problem occurred given the steer-
ing of the new cars. Since the magnetic field is propor-
tional to the voltage, the steering force decreases over
time, because of the discharge of the batteries. The
effect is that the car has a minimum turn radius of 25
cm with fresh batteries, but only 70 cm with old ones.
Most control algorithms assume a constant minimum
turn radius and are not able to adjust to such drastic
changes.

It was therefore interesting to see the effect that the

Figure 5: Track of the robot around the Aucklandi-
anapolis race track with different battery charges. The
top part qualitatively shows the track of the car with
fully charged or half charged batteries. The bottom is
a track with a low charge.

change in minimum turning radius has on the behavior
of the controller. Figure 5 shows qualitatively the per-
formance of the subsumption architecture on a treasure
hunt. The task of the robot is to navigate around all
three points in the sketch. As can be seen the controller
compensates for the change in steering angle success-
fully. The controller is able to follow the path even
with an ever increasing minimum turn radius. Once
the minimum turn radius exceeds a certain limit, the
controller continues to drive a circle around point 1 and
then proceeds to point 3.

This subsection shows that the subsumption based
controller is robust and can adapt to a variety of differ-
ent conditions, even if these conditions were a surprise
even to the designers of the algorithm.

5 Conclusion

The described controller has been used extensively in
our experiments both at the Aucklandianapolis as well
as treasure hunt competitions. It is also now used as
part of the agent architecture for the All Botz robotic
soccer team.

The described architecture provides a robust plat-
form that can deal with unforeseen changes in the envi-
ronment and can quickly adapt to new paths. Although
not as good as the performance of other special purpose
car-like robot control algorithms, the subsumption con-
troller performs well over a wide range of conditions.

We are working on implementing additional behav-
iors for robotic soccer. Also, instead of using simple
suppression and inhibition, we are investigating more
sophisticated approaches, such as fuzzy logic and neu-
ral nets to coordinate different behaviors.

References

[1] A. Balluchi, A. Bicchi, A. Balestrino, and
G. Casalino. Path tracking control for dubin’s cars.
In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, 1996.

[2] Jacky Baltes. Aucklandianapo-
lis homepage. WWW, February 1998. http://-
www.tcs.auckland.ac.nz/ jacky/teaching/courses/-
415.766 /aucklandianapolis/index.html.

<

Jacky Baltes and Yuming Lin. Path-tracking con-
trol of non-holonomic car-like robots using rein-
forcement learning. In Proceedings of the IJCAI
Workshop on RoboCup, Stockholm, Sweden, July
1999.

[4] Jacky Baltes and Robin Otte. A fuzzy logic con-
troller for car-like mobile robots. In Proceedings
of the IEEE International Symposium on Compu-
tational Intelligence in Robotics and Automation,
pages 89-94. IEEE, November 1999.

[5] Robert Brooks. A robust layered control system
for a mobile robot. Technical Report 864, Mas-
sachusetts Institute of Technology, 1985.

[6] Markus Egerstedt, X. Hu, and A Stotsky. Control
of a car-like robot using a dynamic model. In Pro-
ceedings of the 1998 IEEE Conference on Robotics
and Automation, Leuven, Belgium, 1998.

[7] Nicholas Hildreth. An adaptive path planning sys-
tem for car-like mobile robots. Master’s thesis, Uni-
versity of Auckland, February 2000.

[8] Huang Li. Anytime path planning for mobile robots
in highly dynamic environments. Msc., University
of Auckland, Auckland, New Zealand, July 2000.

