Practical Camera and Colour Calibration for
Large Rooms

Jacky Baltes

Centre for Image Technology and Robotics
University of Auckland,Auckland
New Zealand
j-baltes@auckland.ac.nz
http://www.citr.auckland.ac.nz/"~ jacky

Abstract. This paper describes a practical method for calibrating the
geometry and colour information for cameras surveying large rooms. To
calibrate the geometry, we use a semi-automatic system to assign real
world to pixel coordinates. This information is the input to the Tsai cam-
era calibration method. Our system uses a two stage process in which
easily recognizable objects (squares) are used to sort the individual da-
ta points and to find missing objects. Fine object features (corners) are
used in a second step to determine the object’s real world coordinates.
An empirical evaluation of the system shows that the average and maxi-
mum errors are sufficiently small for our domain. Objects are recognized
through coloured spots. The colour calibration uses six thresholds (Three
colour ranges (Red, Green, and Blue) and three colour differences (Red -
Green, Red - Blue, Green - Blue)). This paper describes a fast threshold
comparison routine.

1 Introduction

Our research work focuses on the design of intelligent agents in highly dynamic
environments. As a test-bed, we use the RoboCup domain, which is introduced
in section 2. In this domain, small toy cars play a game of soccer.

This paper describes an accurate, cheap, portable, and fast camera calibra-
tion system (Section 3). After an initial preprocessing step (which is guided by
the user), it automatically computes real world coordinates for features in the
image (Section 4). Section 5 discusses our algorithm in more detail. The Tsai
camera calibration algorithm is briefly described in section 6.

Section 7 shows the accuracy that can be obtained by our method in a sample
and a real world problem. Both the average and maximum error are sufficiently
small for our application.

Section 8 discusses the blob detection used in our video server. Objects are
identified using coloured spots. The colour detection uses the R-G-B colour mod-
el. Each colour is identified by twelve parameters. Six parameters identify the
minimum and maximum threshold for the red, green, and blue colour channels.

Another six parameters identify minimum and maximum values for the difference
channels (red - green, red - blue, and green - blue).

To be able to maintain a frame rate of 50 fields per second without special
purpose hardware, the video server uses a number of optimizations described in
section 9.

In section 10, we discuss ideas for further research to improve the accuracy
of the calibration and to find colour thresholds automatically.

2 The Laboratory Setup

RoboCup [4] is a domain initially proposed by Alan Mackworth ([5]) to provide
a challenge problem for AI researches that requires the integration and coordi-
nation of a large number of techniques. The problem is to create autonomous
softbots and robots that can play a game of soccer.

RoboCup is a difficult problem for a team of multiple fast-moving robots
under a dynamic environment that requires the designer to incorporate tech-
niques such as: autonomous agents, multi-agent collaboration, strategy acqui-
sition, real-time reasoning, robotics, and sensor-fusion. RoboCup also offers a
simulation environment for research on the software aspects of RoboCup.

RoboCup is a standard problem which allows the evaluation of proposed
methods to solve these problems in a friendly competition. Apart from Machine
Learning, which has used databases of problems extensively in research [6], such
an agreed upon evaluation method is sadly missing from lots of AI research
areas. However, the importance of such test-beds has been realized in other AI
fields as well. The planning community agreed on a common domain description
language and held the first planning competition in 1998.

The RoboCup environment at the University of Auckland consists of a com-
mercially available cheap video camera mounted on a tripod. The video camera
is connected to a video server (a Pentium PC). The video server interprets the
video data and sends position, orientation, and velocity information to other
clients on the network (three PCs).

Lighting is provided by fluorescent lamps on the ceiling. All the equipment
is readily available and most of the room has been unchanged. Although playing
soccer is our main objective, there are other tasks that we are working on such
as parallel parking and time trials on a race track. Time trials along a race track
(called Aucklandianpolis [1]) proved to be very popular with students. Figure 1
shows our environment.

In contrast to all other teams in the RoboCup competition, our camera is
mounted on the side of the playing field, which introduces large perspective
distortions. Therefore, the geometry calibration is very important.

Since we are often asked to give demos of our system, we needed an accurate,
cheap, portable, and fast method for camera calibration.

Fig. 1. Aucklandianapolis at the University of Auckland. The tripod of the vision
system can be seen on the top right corner of the image. The video camera is just
out of the picture. The video server determines position and orientation of the cars by
bright dots on the car. As can be seen, the speed trials took their toll on our cars.

3 Camera Calibration

The problem of camera calibration is a very fundamental problem in Computer
Vision. The input to a calibration method is a set of known world coordinates and
their matching pixel coordinates in the image and the output is a set of external
and internal parameters for a camera model. Given this calibrated camera model,
it is easy to determine the real world coordinates of image points (if at least one
dimension is known) or compute the image coordinates for known real world
coordinates.

Traditional camera calibration relies on the availability of known image co-
ordinates for some known world points. For example, a simple pin hole camera
model requires that at the real world coordinates of at least 12 image points
are known [3]. Once a sufficient number of matching points have been found,
well known camera calibration algorithms can be used. For example, the Tsai
calibration method uses a complex eleven parameter model with six external
and five internal parameters [7]. In our work, we are using a public domain im-
plementation of the Tsai calibration method, which is available from the WWW
[9].

This paper focuses on the problem of finding a suitable set of matching points
for camera calibration. The need for portability and speed of the calibration
method ruled out traditional methods of using feature points inherent in the
scene (since these feature points will not be available when moving to different
rooms) or of painting feature points into the scene (a labour intensive and error
prone task for a large set of points). The creation of a special calibration pattern
of sufficient size and with a sufficient number of points was also too expensive.
For example, a large wooden board with calibration points (a) would be difficult
to move, (b) may not fit into rooms that do not have similar geometry (e.g., a
part of the rectangle is cut out by a wall), and (c) expensive and labour intensive
to manufacture.

However, we clearly needed a portable calibration pattern!, so we decided to
use readily available and light material. We looked at a number of possibilities
including carpets (have a dense texture and are expensive) and linoleum carpets
(accurate pattern, but expensive and has an undesirable warping property).

In the end, we decided to use a duvet cover (250x200cm) with a square
pattern on it. The back half of the duvet cover was removed to reduce artifacts
due to the transparency of the cloth material. The duvet cover is well suited for
our environment, since it is easily portable and can be adapted to room outlays?.
Drawbacks are that the cloth material stretches and warps. Both drawbacks
can be minimized through the handy use of an iron. However, they can not be
eliminated and thus introduce errors, which limit the accuracy of the camera
calibration that can be obtained.

! Otherwise our overweight charges when flying to the RoboCup competitions would
be even higher

2 It is also a handy blanket for my graduate students when they get caught up in their
work and end up sleeping in the lab

Figure 2 shows a picture of the calibration duvet cover as seen by the video
camera.

Fig. 2. Calibration Pattern as seen by the Camera

4 Find Matching Points Algorithm

Given the picture shown in Fig. 2, our system uses a semi-automatic method
for calculating the matching points. In the preprocessing step, the user removes
unwanted parts of the picture, such as the table top on the left side of the
calibration picture. Secondly, the colour image is converted into a gray scale
image and thresholded, so that only the white squares are left in the image.
Currently, we use a global threshold value on the red channel, which was sufficient
for our environment.

After this initial preprocessing step, the system automatically computes the
matching points. The idea is to find features in the image that can be assigned
world coordinates by the known geometry of the calibration pattern (i.e., by
knowing that the dimensions of the squares are 8.0 x 8.1em). A false colour
image of the result of the preprocessing step can be seen in Fig. 3. The figure
shows some of the practical problems in assigning real world coordinates to image
features: (a) some of the squares are missing from the right side of the image,
and (b) some parts of the squares are missing (e.g., in the bottom right corner).

First, the system uses a simple pattern (5 by 5 pixel squares) to find the
white squares in the picture. This step ignores small artifacts and handles missing

N N H E N W E = = m s wm
A B N N N N E EH m = om
M N N O N NS E W W s o
N N N B E F B B EE m s
- mE E EEEEEE®EmN
oo N W HOE N W M E W W s
Mo oW oW om W OE OE e W oW Wm
N NS EEEEEEEE=
N N B E E N EEEEEW
N N N N B B E B B B W Wy
N N B FE EE EEEEEE =
N N FE B B H EHEHEEW™YS®R
BN B BN BN BN B B T BE W B N
N N N N B EEEBERBEE =
A N B EEEEEEEER:2
N BN BN EEEEEWMNS
F B R N EEEEE W7

Fig. 3. Calibration Pattern after Preprocessing

squares. The centre point of each square is computed by calculating the moments
along the z and y direction. Then, the squares are sorted. This sorting step is of
critical importance, since if it is done in the wrong order, the assigned real world
coordinates will be wrong, which will result in unusable calibration parameters.

The following algorithm find_real_worldis used to sort the squares and to
assign real world coordinates to their centres. The algorithm takes an unsorted
sequence of squares as input and assigns a real world coordinate to the centre of
each square. First, the squares are sorted in increasing order of their y coordinate
(line 3). This is used to repeatedly extract the next row from the sequence. A
row is defined by an initial sequence of squares from y_sort_squares, whose y
coordinates are within the tolerance limit eps. The system also initializes the
variable guess_y, which is used as a guess of the distance in pixels between the
previous and the current row. Lines 8-12 calculate the ratio of the actual distance
between the previous and the current row to the current estimate. This ratio is
used to check for missing rows in the input image. The current y coordinate
Wy, and guess_y are updated in lines 13-14. Similarly to the rows, the squares
within a row are then sorted based on their z coordinate (line 16) and an x
coordinate is assigned (line 24) based on a guess of the distance in pixels to the
next square guess_x (lines 20-23 and line 27).

Note that the estimates to the next row and column are adaptive, so this
method will work in pictures with obvious perspective distortion (as can be seen
in Fig. 3) as long as the change from one row to the next is not more than 50%.

Procedure find_real_world_coords(unsorted_squares) {

1

2

3 y_sort_squares=sort(unsorted_squares,y—direction);
4 guess_y=0; prev_avg_y=0;

5 Wy=0;

6

7 while (row=extract_row(y_sort_square,eps)!=empty) {
8
9

avg_y = average_y_coor(row);
if (guess_y != 0)

10 factor = (avg_y-prev_avg_y)/guess_y;
11 else

12 factor = 0;

13 Wy=Wy+factor*SQUARE_Y_DIMENSION;

14 guess_y=avg_y-prev_avg_y;

15

16 x_sort_squares=sort (row,x-direction) ;
17 guess_x=0; prev_square=null;

18 Wx = 0;

19 foreach square in x_sort_square {

20 if (guess_x !'= 0)

21 factor=(square.x-prev_square.x)/guess_x;
22 else

23 factor=0;

24 Wx=Wx+factor*SQUARE_X_DIMENSION;

25 square.realworld_x = Wx;

26 square.realworld_y = Wy;

27 guess_X = square.X - prev_square.Xx;
28 prev_square = square;

29 }

30 prev_avg_y = avg_y;

31}

Table 1. Algorithm for finding real world coordinates

After approximate real world coordinates have been assigned to the centres
of all squares, the system uses four edge detection steps to find the coordinates
of all four corners. If a corner has been identified, it is assigned a real world
coordinate by the geometry of the calibration pattern (for example in the first
column, the first top left corner has coordinates 0.0, 8.1, the bottom left corner
of the next square is 0.0,16.2 and the top left corner of the second square is
0.0,24.3.

This means that the assignment of the real world coordinates to the corners is
independent of the assigned real world coordinates of the centres of the squares
themselves. This is an important feature in our algorithm, since the centres
of objects are distorted by the perspective projection and are moved to the
lower end of the picture (see Fig. 4), which means that they are unsuitable for
applications that require high accuracy. Of course, given an accurate camera
model, this perspective distortion can be compensated for, but this leads to a
chicken and egg problem, since we are using this information to calibrate the
camera in the first place.

Video Camera Frontal View of Image Plane

% Image plane Centre of Gravity
shifted downwards \.

Colored Spot
-

Fig. 4. Movement of the center of a circle under perspective distortion

The real world coordinates of the centres are only used for sorting the squares,
which means that only their relative values are important since they are used
to determine, which square is the next square in a row or column or whether a
square is missing.

Also we found in our tests that this two-stage approach (sort centre of
squares, find corners for each square) works better than assigning world co-

ordinates to all corner points. Missing squares or missing data points makes this
one step assignment very difficult and error prone.

5 Discussion

The find_real_world_coors algorithm assumes that the perspective distortion
increases along the y axis. This assumption does not always hold. Sometimes, our
camera has to be mounted such that the perspective distortion increases along
the z axis. In this case, the user can simply rotate the image by 90 degrees. Note
that rotation by 90 degrees simple involves swapping pixel coordinates and does
not incur a loss of information.

Given the corners of the calibration carpet, it is also possible to compute the
necessary rotation angle. We experimented with arbitrary rotation angles and
found that the errors introduced through the rotations were too big and that
the calibration data computed was therefore useless.

The algorithm also does not deal with missing squares in the first column.
Without knowing the values for the perspective distortion it is impossible to
compute where the next row starts and therefore to find out whether the first
square in a column is missing.

In practice, both of these aspects are under the user’s control. The carpet is
manually aligned with the camera coordinate system through visual feed back.
The second problem is solved by the user removing any leading columns with
missing squares.

6 Tsai Camera Calibration

After the computation of the matching points, we use a PD implementation of
Tsai’s camera calibration to compute the extrinsic and intrinsic parameters of
the camera model.

The Tsai calibration method uses a four step process to compute the param-
eters of a pin hole camera with radial lens distortion.

Firstly, the position (Xr,Yr,Zr) and the orientation (Rx, Ry, Rz) of the
camera with respect to the world coordinate system is computed. This involves
solving a simple system of linear equations. This step translates the 3D World co-
ordinates into 3D camera coordinates and computes the six extrinsic parameters
of the camera model.

In Step 2, the perspective distortion of a pin hole camera is compensated for.
This step is a non-linear approximation and computes the focal length f of the
camera. The output of this step are the ideal undistorted image coordinates.

Thirdly, the radial lens distortion parameters (k1, k2) are computed. These
parameters compensate for the pin cushion effect of video cameras, that is s-
traight lines along the edges of the camera are rounded. An example is seen in
the top and bottom row of the calibration image in Fig. 2. The output of step 3
are the distorted image coordinates.

10

Lastly, the image coordinates are discretized into the real image coordinates
by taking the number of pixels in each row and column of an image into consid-
eration.

The last three steps compute five intrinsic parameters of the camera model
(focal length, lens distortion, scale factor for the rows, and the origin in the
image plane).

The Tsai method is a very efficient, accurate, and versatile camera calibration
method and is therefore very popular in computer vision.

7 Evaluation

We evaluated the system in practice (by calibrating different rooms on a number
of occasions) and quantitatively through the use of syntheticly generated and
real camera, pictures.

The synthetic picture was generated by computing a perfect image of all fea-
ture points (corners of squares) given our current camera setup (camera mounted
on a tripod, 2.58m above ground). Since in this case the matching points are
100% accurate, it gives an indication of the maximum accuracy that can be
obtained with an eleven parameter camera model.

Given the input image shown in Fig. 2, the corner detection finds 815 corner
points. Table 2 summarizes the average error and the standard deviation of the
error with increasing number of calibration points n. The data in the table was
generated by averaging the results of three cross validation runs for each pic-
ture. In each test, n points were selected at random. The camera was calibrated
with the data from the calibration points and then the average error, standard
deviation, and the maximum error (all in millimeters) were computed.

n Synthetic Picture Real picture

avg. err|stddev|Max. err| avg err|stddev|Max. err
50 | 0.9936|0.0653| 0.7291|15.2802(7.6748| 85.0945
100| 0.0964(0.0553| 0.3307(17.2455|7.9873| 50.0908
150 0.0931{0.0511| 0.3068(13.0654|3.8769| 37.0576
200| 0.0939|0.0557| 0.5121|13.8500(5.0923| 55.2477
300| 0.0904|0.0498| 0.3186|13.6753(4.3130| 43.3685
400| 0.0901|0.0504| 0.3207|13.6320(4.2632| 56.5799
500| 0.0899|0.0497| 0.3152|13.5105|3.6942| 34.5634
Table 2. Results of the Evaluation. All measurements are in millimeters.

As expected, increasing the number of calibration points improves the cali-
bration of the camera in the synthetic picture. A similar trend can be observed
in the real picture.

11

The differences in errors between the synthetic and the real world image
are due to warping of the material and inaccuracies in determining the feature
coordinates precisely.

Also, even when using only 150 points, the predictive power of the algorithm
is sufficient for our purposes. The error of the calibration is less than 1.3cm
on average and the maximum error is 3.4cm. This data is confirmed by testing
the accuracy of the coordinates in uncovered areas of the picture (on the very
top and bottom of the image). Although, there were no calibration points that
covered these areas, the measured error for this region is around 1.5¢m.

The system also proved its worth during competition. The camera calibration
was tested at the PRICAI-98 RoboCup and RoboCup-99 competition and proved
very stable and fast [2]. For example, it took us less than 15 minutes to calibrate
the geometry of our camera system.

8 Colour Calibration

In the RoboCup domain, the ball is a bright orange golf ball and to simplify
recognizing the cars they are marked with coloured dots (blue and yellow) or
table tennis balls. These dots provide position and orientation information. Since
we do not have access to special purpose video hardware, all processing must be
done by the video server (Pentium 200MHz).

A simple and fast method for the colour detection is to use minimum and
maximum thresholds for the three colour channels R, G, B. In this model, a
colour is defined as a cube in the R—-G-B cube. This method is not robust
enough, since in any practical situation, the colour values will vary greatly with
lighting across the field. This means that the thresholds for the colours must be
made very large and only a small number of different colours can be detected.
In our experience, even when spending a lot of time fine tuning the calibration,
it is impossible to distinguish more than four colours with this method.

Although a change in lighting will affect the absolute colour values (e.g., the
R, G, B channels are lower in a shadow), the relative distribution of colours
is more stable. Therefore, our video server also computes the three difference
channels R - G, R - B, and B - G and uses minimum and maximum thresholds
for the three difference channels.

The addition of the difference thresholds allows us to detect eleven separate
colours reliably, which is sufficient in our domain.

9 Object Tracking

To be able to maintain recognition at 50 fields/sec, the video server uses a
number of optimization techniques to reduce computation time: integer threshold
comparison, object prediction, and a sampling grid.

12

9.1 Integer Threshold Comparison

The most frequently used subroutine in our video server is the colour matching
routine. Therefore, it was a natural choice for optimization.

Firstly, we tried standard improvements such as hand coding the routine in
80X86 assembly language. Secondly, we even used the special purpose MMX
instructions. Neither of these approaches led to the hoped for improvement.
The Assembly language implementation only led to 5% speedup. The MMX
routine run somewhat faster, but stalled the FPU which slowed down subsequent
computations of the real world coordinates. Both approaches, of course, have the
additional disadvantage that they are specific to the Pentium CPU and are thus
not portable to others architectures.

Therefore, we looked to a general solution that would make use of the fol-
lowing facts:

— Most modern processors support word (32 bit) operations on integer operand-
s and word memory accesses.

— Pixels are stored as words (32 bit) in either ARGB (big endian) or BGRA
(little endian) format.

The motivation for our approach is to test all three channels R,G and B
against the minimum in one operation by interpreting the pixel as a 32 bit
word. Similarly, our method only uses one operation in the comparison against
the maximum.

Our implementation is based on the realization that subtracting two bit fields
will result in a borrow if the first operand is smaller than the second operand.
If bits at position i are both 0, then there can never be a borrow. Therefore, if
the resulting bit is a 1, it must have resulted from a borrow at position i — 1.

Our colour threshold routine uses the least significant bit of the alpha, red,
and green channel as a stop bit to detect borrows from the red, green, and
blue channel respectively. This means that the least significant bit of the colours
is ignored. This does not cause a problem, since there is very little difference
between for example, a red value of 110 or 111.

The algorithm for our colour thresholding routine is shown in table 3. Vari-
able pixel is an integer representation of the pixel value. Variable lower is
the concatenation of Ryin, Gmin, and B, anded with Ox7efefeff (so that
the least significant bits are cleared). Variable upper is the concatenation and
magsking of the least significant bits of the upper thresholds respectively.

The least significant bits of the red and green channel in the pixel are cleared
and the lower threshold is subtracted from the pixel. Should a colour channel
(R, G, B) be less than the corresponding threshold, a borrow will have resulted
in bits 8, 16, or 24. If such a borrow occurred, the routine returns 0, otherwise
1.

Comparisons against the upper thresholds are done similarly by subtracting
the pixel value from the maximum threshold.

We use a similar method to calculate and test the difference thresholds R-G,
R-B, and G-B. This routine resulted in a 20% speedup in our code.

13

Table 3. The Colour Threshold Routine

int matchColourThreshold(int pixel, int lower, int upper) {
int ret;

pixel = pixel & Ox7efefeff;
if (((pixel - lower) & 0x81010100) ||
((upper - pixel) & 0x81010100)) {

ret = 0;
} else {
ret = 1;

}

return ret;

9.2 Object Prediction

Another method that we use to speed up the object detection routine is to use
the previous position of an object as a starting point for a new search. The
video server maintains the X and Y velocities of all object. When looking for an
object in the next frame, a new position for the object is predicted using these
velocities and a small 32*16 pixel subarea is searched for the object.

If the object is not found within this area, the object is put on a scan queue.

Object prediction works very well in our domain. In over 90% of the times,
an object can be found in the predicted region. The reason for prediction failure
is most often a fast moving ball, which is deflected or occluded by a robot.

9.3 Sampling Grid

Given the current hardware, we do not have sufficient processing power to scan
the whole image even once. Therefore, we use a sampling grid whose size is
determined by the smallest object that we are trying to find.

In our domain, these are the yellow and blue ping pong balls, which on the
far end of the field are about 6*3 pixels. Therefore, we are using a 6*3 scanning
grid.

9.4 Field Mask

As can be seen in the sample picture 2, only about 2/3 of the image contains
the actual playing field. The tables on the left side and the top of the picture
are not used. The video server uses a mask to distinguish the playing field from
the surrounding area. This has two advantages: (a) finding objects is faster since
only a sub area of the image must be scanned, and (b) the video server is more
robust, since if someone with blue shoes walks through the image it will not be
incorrectly classified as an opponent.

14

10 Conclusion

This paper describes a practical implementation of camera calibration in large
rooms. It combines the use of a well known calibration algorithm with a semi-
automatic method for computing the matching points.

The method uses a two stage approach. Initial approximations of the centres
of objects (in our example squares) are used to sort the objects, but specific
object features are used to assign real world coordinates. We intend to use feature
detection mechanisms with sub-pixel accuracy, such as the ones described in [8]
in the future to improve the accuracy of the calibration.

Object detection is based on blob detection of coloured spots on the car and
the ball. The videoserver uses three colour ranges and three difference ranges
to identify different colours. Under general lighting conditions, such as the ones
that exist during RoboCup, this method allows us to distinguish between up to
eleven different colours. A fast integer threshold comparison is used which lead
to a 20% speed-up of the video server.

Currently, only geometry and brightness information in the calibration image
is used to calibrate the camera. We are currently working on extending the
system to compute the colour changes for blue and white squares. This would
allow us to estimate the spectrum of the light source. The goal is to compute the
colour thresholds for orange, blue, and yellow balls automatically given a single
calibration picture as input.

References

1. Jacky Baltes. Aucklandianapolis homepage. WWW, February 1998. http://-
www.tcs.auckland.ac.nz/"jacky/teaching/courses/415.703 /aucklandianapolis/-
index.html.

2. Jacky Baltes, Nich Hildreth, Robin Otte, and Yuming Lin. The all botz team
description. In Proceedings of the PRICAI Workshop on RoboCup, 1998.

3. K.S. Fu, R.C. Gonzales, and C. S. G. Lee. Robotics: Control Sensing, Vision, and
Intelligence, chapter 7.4, pages 306-324. McGraw Hill, 1987.

4. Hiroaki Kitano, editor. RoboCup-97: Robot Soccer World Cup 1. Springer Verlag,
1998.

5. Alan Mackworth. Computer Vision: System, Theory, and Applications, chapter 1,
pages 1-13. World Scientific Press, Singapore, 1993.

6. C.J. Merz and P.M. Murphy. UCI repository of machine learning databases, 1998.

7. Roger Y. Tsai. A versatile camera calibration technique for high-accuracy 3d ma-
chine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal of
Robotics and Automation, RA-3(4):323-344, August 1987.

8. Robert J. Valkenburg, Alan M. Mclvor, and P. Wayne Power. An evaluation of
subpixel feature localisation methods for precision measurement. In Videometrics
111, volume SPIE 2350, pages 229-238, 1994.

9. Reg Willson. Tsai camera calibration software. WWW, 1995.

