Path-Tracking Control Of Non-holonomic
Car-Like Robot With Reinforcement Learning

Jacky Baltes and Yuming Lin

Centre for Image Technology and Robotics
University of Auckland,Auckland
New Zealand
j-baltes@auckland.ac.nz
http://www.citr.auckland.ac.nz/"~ jacky

Abstract. This paper investigates the use of reinforcement learning in
solving the path-tracking problem for car-like robots. The reinforcement
learner uses a case-based function approximator, to extend the stan-
dard reinforcement learning paradigm to handle continuous states. The
learned controller performs comparable to the best traditional control
functions in both simulation and also in practical driving.

1 Introduction

The CITR at the University of Auckland has a mobile robotics lab, which hosts
the Aucklandianapolis competition ([2]). The goal of the competition is to drive
car-like (non-holonomic) robots five laps around a race track as quickly as pos-
sible. The cars are simple remote controlled toy cars with proportional steering
and speed controls. A parallel port micro-controller based interface ([7]) allows
us to control the cars (65 speed settings, 65 direction settings). Position and
orientation information for the cars is provided by a video camera mounted on
top of the playing field.

A non-holonomic path planner ([3]) creates a path for the car around the
race track. The path contains only three different path segments: (a) straight
lines, (b) maximum turns to the right, or (¢) maximum turns to the left. The
toy cars do not have shaft encoders so there is a feed forward control error when
driving a given path.

Therefore, we need a controller which keeps the car on the track. Note that
the control function described in this paper only depends on the curvature of
the path and is thus mostly independent of the path itself. This means that our
results are also applicable to more dynamic environments, such as RoboCup.

Some popular methods to control a non-holonomic mobile robot in such a
path tracking problem include:

1. Feedback control as described by Alessandro and Giuseppe [5].

2. A Sliding-mode controller suggested in [1], which was used during initial
trials for the Aucklandianapolis. This state of the art controller performed
extremely well in simulation, but performed poorly in the practice. The

motivation of this project was to improve on its performance in the real
world, see section (5).

3. A Fuzzy logic controller [8] which currently holds the unofficial track record
for the Aucklandianapolis. The fuzzy logic controller is able to drive a car
twice as fast as the sliding mode controller mentioned above.

This paper describes another method based on dynamic programming, a
reinforcement learning controller. At the core of the reinforcement learner is a
value function, called Q-value, which is why it is also called Q-Learning ([9]).

The following section describes the kinematic model of the car-like vehicle, or
just car for simplicity. The model is used throughout the paper. Section 3 gives
a brief introduction to reinforcement learning. Section 4 describes a case-based
function approximator, which is used to approximate the value function in our
implementation. Section 5 describes the results of our experiments using both
simulation and practical driving. Section 6 concludes the paper.

2 Kinematic Model

In this research, we use a kinematic model, which is relative to the path. The
controller knows the current position and orientation errors and the curvature
of the path. However, the future path is not known. This model is appropriate
in highly dynamic domains such as RoboCup.

The kinematic model is shown in Fig. 2. The car is at position (z,y) and is
following a path with curvature R. The point (£,7) is the closest point on the
path to point (x,y). The position error § is the distance between points (x,y)
and (2,§). 0 is the tangent of the path at the point (2,§), 8 is the orientation of
the car, is the orientation error of the car (that is, § = 6 — 6).

-

9 Curvature R

Y

Fig. 1. The Kinematic Model

In the representation used in this paper, the current state of the system is
defined by the positional error §, the orientation error and the curvature of the
path R (a 3-tuple). The input to the controller is the three tuple for the current
state and the outputs are desired settings for speed and direction.

3 Reinforcement Learning

This section gives a brief introduction to reinforcement learning. The most im-
portant concepts in reinforcement learning are the agent and the environment.
The agent (a remote-controlled car in our case) has a number of possible actions.
The agent performs some actions in the environment (which is modeled through
a set of states). In some states, the agent receives feedback from the environment
about how good or bad a certain state is. This feedback is called reward. The
task of reinforcement learning is to find the action with the highest expected
reward (Q-value) in the current state. In the path tracking problem, the reward
is based on how well the agent tracked the given path.

At any time, the agent is in one state (X), it finds the optimal action (U)
and executes it. Usually, the selected action is the one with the highest expect-
ed reward (Q-value). To prevent premature convergence on suboptimal action
sequences, a reinforcement learner will sometimes not select the best action so
that it can further explore the environment. This is called the exploration vs.
exploitation trade-off.

After executing the action, the agent enters another state(X'). The agent may
get a reward (positive or negative reinforcement) when entering certain states.
The function Q(X,U) is the value function for a given state(X) and action(U).
It is the immediate reward r after the execution of the action(U), plus the best
Q-value (discounted by a factor v) in the following state. The reinforcement
learning algorithm is shown below (Algorithm 1).

Algorithm 1 Reinforcement Learning Algorithm
for each pair of < X,U > do
Q(X,U)«0
end for
Observe the current state X
loop
1.Select an action U and execute it
2.Receive immediate reward r
3.0bserve the new state X’
4.Update the table entry for Q(X,U), as follows:
QX,U) = + 7 * maxy Q(X',U")
end loop

Initially, since all function values are zero, the agent just selects an action
randomly. With more and more experience, the function values may converge

to the actual values [6] and the agent may use the learned function values for
optimal control.

It is important to note that in general, the size of the state space determines
how quickly the algorithm will converge on the correct function. The larger the
state space, the longer it will take to learn the correct function.

3.1 Reward function in the car domain

The reward function is of critical importance in the design of a reinforcement
learner. The reward function must accurately reflect the progress that an agent is
making towards achieving a goal, since otherwise the agent will learn the wrong
behavior.

In the car driving domain, we want to keep the car on the path, so it is
reasonable to base the reward function on the position (§) and orientation error
(). Preliminary experiments, however, with Balluchi’s controller ([1]) suggest-
ed that it is also important to have a smooth control function. Therefore, the
reward function in this research is based on the weighted sum of normalized

position error (§) and orientation error (6) as well as the necessary control work
(Difference in control setting U at time ¢ and time ¢ —1) as shown in Equation 1.

0 6 U — Up_s

r= —w1*(%)2+w2*(%)2+w3*(9)? (1)

In a control problem, in principle a reward can be associated with every
state. However, to get a better estimate of the real reward of a state, we return
as reward the sum of the rewards for the last five states.

3.2 Reinforcement Learning with Continuous States

One may notice that the algorithm listed above assumes discrete states and
actions. This is a problem in our path-tracking domain. Although the actions
of the car (i.e. left-turn, right-turn etc) are discrete, the state, a 3-tuple vector
< §,8,R >, is continuous. We must provide some mechanism to quantize the
state space before reinforcement learning can be applied in this problem. There
are at least two approaches.

The first one is to quantize the state directly and apply reinforcement learn-
ing. An example is shown in figure 2. This method is simple but inflexible and
inefficient. It will unnecessarily increase the size of the state space. For example,
assume that the car is facing in the right direction when following a straight
line. In this case, if the car is only slightly to the right of the line, we want to
turn gently left to approach the line and to not overshoot it. If the car is far
away from the line, we want to turn sharply to get back onto the path. There-
fore, we would require a fine quantization. But if we are following a circle, then
independently of how far away we are from the outside of the circle, we want
to make a sharp turn, since all circles are maximum turns. This means that the
fine quantization will generate unnecessary states, which will greatly reduce the
convergence speed of the algorithm.

Discretization
Grid

-

Path

Fig. 2. Static Quantization. Each intersection of lines represents of the discretization
grid a world state.

The second method is the use of a function approximator for the value func-
tion Q. In this case, the quantization is implicit and based on previous cases,
which are stored in a database. Figure 3 shows an example of a case-based quan-
tization. A state is assigned a value based on a prototypical case (e.g., close to
the straight line or further away). In this simple example, all cases have the
same area of influence. The key is to calculate the distance from the current
state to those existing states in the database. In the example, only the nearest
case determines the type of state, but in our implementation, a nearest neighbor
set is computed.

In general, this distance is used to measure the contribution of all those
selected states in the database in the Q evaluation. The research described in
this paper uses a case-based function approximator, which is described in more
detail in the following section.

4 Reinforcement learning using a Case-based Function
Approximator

Function approximators are used to represent the value function(Q) for a con-
tinuous state problem. In discrete space, a finite resource can be used to store
the value function, whereas in continuous space this is not the case. There are
many functions approximators. For more details please see [10]. The Case-based
function approximator is one of them and it is suitable for our task because of
its structure. Operations are defined for the evaluation and update of the value
function. Details can be found in [10].

Fig. 3. Case-based Quantization

4.1 Case Structure

Every case in the database corresponds to one input point X; that the agent has
visited(X; =< ;,0;, R; > in our case). One case C; is:

Ci = (Xi, Qi, €, {Uij, Qij, €ij})
where ¢ = 1... N is the number of cases (2)
and j =1... M, M is the number of actions

From 2, it can be seen that C; consists of two separate portions, the first
portion (x;, Qs,e;) is associated only with the state, the other (Uij, Qij,ei;) is
associated with actions within the state. e; is the eligibility trace of the state
[11], while e;; is the eligibility trace for action j within the state .

4.2 Function Evaluation

To evaluate the value function Q(Xq, Ug) for the query state X¢, the database is
searched for those states that are similar to the state in question. The distance
(d;) from an existing state (X;) to the query state X, can be used for the
estimation of similarity (d; = f(4; — 4,) + 9(6; —6,) + h(R; — R,)) - After search
through the entire database, a nearest neighbor set NN, for the query state
X, is generated. NN, consists of those states with distance to X, less than a
predefined threshold 74, . That is

NN, = {Qild; <= 1%} 3)

The distance measure d; is defined as:

gi—9.\> (6:-6,\" [Ri-R,\
= | (Y ZiT% i
@ (2)+<2*7r> +< 2))

The distance is based on three parts: current distance error, current orien-
tation error and the curvature of the path. The distance error is normalized to
—1..1 meter, the orientation error to 360 degrees, and the curvature to 0..2.

From NN, in Equation (3), all existing cases in the database that are similar
to the current input X, can be found, thus the Q value for the query point
< X4,Uq > can be calculated by the following formulas:

QilUg) =(1-pQi+ (5)
K*(djj)
Vu;a ZjK (dij) J q

- S
Q(X(JJUKI) - VCZ]:VN‘Z E] Kz(d;v)

Q:(Uy) (6)
The value Q;(U,) is the overall @) value for the current query action U, in
state X;. It consists of two parts: (a) the @ value for state X; and (b) the sum
over all actions in this state.
The action having the highest Q(X,, U,) is selected as the current action for
the input X,.

4.3 Learning Update

All Q-values in the database must be updated after a new reward is returned from
the environment for the given action. The eligibility traces (e;,e;; in Equation(3))
are also updated according to their contribution to Q(X,,U,;). Based upon the
distance function, a new case is created if no case near enough to the query input
X, exists [10].

4.4 An Example of Function Evaluation

This section gives an example of how to evaluate the Q-value for an input X, =<
0.5,0,1 > and to find the best action for state X¢. For simplicity, after searching
the database, only two cases are in NN, in Equation (3), as shown in Figure
4. Table 1 shows details of the cases in NINV,. There are only three actions(0
for left-turn, 1 for go-straight, 2 for right-turn) here. The actual implementation
uses nine different steering angles.

In Table 1, d;q is calculated by Equation (4), The selection of K* in Equation
(5) and K? in Equation (6) is based on the strategy of exploitation and explo-
ration[6]. Set p = 0.6 in Equation(5), and let K* be such that in Equation(5)

.‘_rleq
°
; C i
D
NTK
]
0
Fig.4. Two cases in the NN,
A
Path

C, Cq C,

Fig. 5. One of the situations as shown in Fig. 4

Case| g | 0 |Ri| Q |Qo|Q1|Q2]| dig
1 10.6{0.3|1 |-0.2|-0.8/-0.6|-0.3|0.069
2 (0.4/-0.1| 1 |-0.1}-0.7|-0.1]-0.2]0.052

Table 1. The two cases in the nearest neighbor set NN,

Qi(Uy) = (1—p)Qi+ pQiq (that is, only the value of the action that is the same
as the query action is considered), K*(d¥) = d¥.
The distance of case 1 and 2 to the query state are given as:

06—05\> [03-0\> /[1-1\2
= (2552 () (52 - oo
0.4—0.5)\2 —0.1-0)\? 1-1)\2

The overall @ values for the actions in state X; and X, are computed using
Equation 5.
Q1(0) = (1—p)Q1 + pQo = (1 —0.6) * (—0.2) + 0.6 % (—0.8) = —0.56
Q:1(1)=(1-p)Q1+ pQ1 = (1 —0.6) * (—0.2) + 0.6 x (—0.6) = —0.44
Q:112)=(1-p)Q1+ pQ2 = (1 —0.6) * (=0.2) + 0.6 x (—=0.3) = —0.26

So action 2 (right turn) has the best () value in case 1.

Q2(0) = (1= p)Q2 + pQo = (1 — 0.6) * (—0.1) + 0.6 * (—0.7) = —0.46
Q2(1) = (1= p)Q2 + pQ1 = (1 — 0.6) * (—0.1) + 0.6 % (—0.1) = —0.1
Q22)=(1-p)Q2+ pQ2= (1 —-0.6) x (—0.1) + 0.6 x (—0.2) = —0.16

Similarly, action 1 (straight) has the best @) value for case 2. As shown below,
we evaluate the best action for the current state X, by using Equation 6.

Q(Xq,0) = d1+sz1()+d1+sz2()= 0069(056)+3(1)3f(0.46) = —0.52

Q(Xy,1) = FZ4-01(1) + 7£%5-Q1(1) = F99(-0.44) + §952(-0.1) = —0.29

Q(Xy,2) = ZH-0Q1(2) + 725 Q2(2) = 3;‘{%(—0.26”5’)%(0.16) = —0.22

As Q(X4,2) has the highest value, the agent will take action 2, namely turn
right when the input X, is < 0.5,0,1 >

5 Experiments

The controller described above has been implemented both in simulation and
practical driving. Surprisingly, the database generated during simulation can be
directly applied to practical driving. This means that the controller in a real
world environment does not need to learn from scratch, which is very difficult
in practice because it requires too many training episodes and because you need
to put the car close to the path again if the current trial fails.)

The Aucklandianapolis race track is used as the sample path, both in simu-
lation and practical driving.

Table 2 shows the average position and orientation errors for different num-
bers of learning episodes. Each trial consists of 200 steps. The data is averaged
over 100 trials after the training phase.

10

260
240 Unit: cm
220
200
180
160
140
120
100

80

60

40

Path
20

140 160

Fig. 6. Learned result in simulation after 1000 trials

Figure 7 shows the result of using the learned controller to drive the car in
practice. As can be seen, the controller can use the results from simulation to seed
the controller to drive the car in practice. Ideally, one would like the controller
to improve its performance now in practice with increased experience. However,
there is no noticeable improvement in practical driving. There are two reasons:
(a) the reinforcement learner has settled, that is most Q values are known, on
the current controller so that it is unlikely that it will explore new actions, and
(b) it takes a lot longer to drive a track in practice as opposed to simulation
where it is easy to drive a few thousand laps.

Experiment|Training|Avg. §(m)|Avg. §(radius)
1 200 0.2684 0.3202
2 400 0.2126 0.2802
3 600 0.0734 0.1381
4 800 0.0462 0.1043
5 1000 0.0509 0.1033
6 2000 0.0477 0.0943

Table 2. Average Control Errors in Simulation

11

Unit : cm

0 A\, v —
ZDW 140 160

Fig. 7. Using the learned result in practical driving

6 Conclusions

In this paper we describe some aspects of reinforcement learning, such as func-
tion value representation and how it is used in the problem of path-tracking.
Reinforcement learning can be adapted to control a car in path-tracking. The
training can be initialized using a simulation and after the performance has sta-
bilized, training can continue with practical driving. Since the representation
is independent of the path ahead, the learned controller can be used in real
time path following tasks, independently of whether the path is static (as in the
Aucklandianapolis) or dynamic (as in the RoboCup competition).

The performance (average control errors) of the simulation in our experiment
is satisfactory. The learned values in the simulation can also be used in the real
world task of driving our toy cars.

The reinforcement learning controller has also proven itself in the Aucklan-
dianapolis competition. It won the 1999 competition in 2 minutes 30 seconds,
which is twice as fast as Balluchi’s controller and comparable to the Fuzzy Logic
controller ([8]). The reinforcement controller is the only controller that has been
used successfully to drive cars with and without linear steering behavior. The
Fuzzy Logic controller works by interpolating steering angles and thus works
only for cars with at least an approximate steering behavior.

12

However, further work is needed to achieve significant improvement during
learning (as in the simulation) in the real world with its many sources of errors
e.g., noise, actuator error and slipping.

Another improvement is the use of dynamic weights in the reward function.
A simple example shows that given our representation, static weights are insuf-
ficient to learn the correct control function. Assume that the car is following a
straight line. When the car is far away from the path, then it will need to steer
towards the path, which means that it will get a reduced reward due to the ori-
entation error. In this case, the weight on the orientation error should be small.
However, when close to the line, the orientation error is more important than
the position error and should receive more weight. Full details of the practical
evaluation of the reinforcement learner are given in [4].

References

1. A. Balluchi, A. Bicchi, A. Balestrino, and G. Casalino. Path tracking control
for dubin’s cars. In Proceedings of IEEE International Conference on Robotics and
Automation, Centro “E. Piaggio” & Dipartimento Sistemi Elettrici e Atuomazione,
Universitd di Pisa., 1996.

2. Jacky Baltes. Aucklandianapolis homepage. WWW, February 1998. http://-
www.tcs.auckland.ac.nz/"jacky/teaching/courses/415.703 /aucklandianapolis /-
index.html.

3. Antonio Bicchi, Giuseppe Casalino, and Corrado Santilli. Planning shortest
bounded-curvature paths for a class of nonholomic vehicles among obstacles. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 1349-1354, 1995.

4. Yuming Lin. Path Tracking Control of Non-Holonomic Car-Like Robots with Re-
inforcement Learning. Master’s thesis, University of Auckland, Auckland, New
Zealand, July 1999.

5. Alessandro De Luca, Giuseppe Oriolo, and Claude Samson. Feedback control of a

nonholonomic car-like robot. Technical report, Universita di Roma La Sapienza,

1996.

Tom Mitchell. Machine Learning. mcGraw-Hill, 1997.

7. Ben Noonan, J. Baltes, and B. MacDonald. Pc interface for a remote controlled
car. In Proc. Of the IPENZ sustainable city conference, pages 22-27, 1998.

8. Robin Otte. Path following control of a nonholonomic vehicle at high speeds using a
fuzzy controller. Technical report, Computer Science, The University of Auckland,
rott001@cs.auckland.ac.nz, 1998.

9. Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach, chap-
ter 20, pages 598-624. Prentice-Hall Inc., Englewood Cliffs, New Jersey 07632,
1995.

10. JC Santamaria, RS Sutton, and A Ram. Experiments with reinforcement learning
in problems with continuous state and action spaces. Adaptive Behavior, 6:163-217,
1997.

11. Singh SP and Sutton RS. Reinforcement learning with replacing eligibility traces.
Machine Learning, 1996.

o

