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Abstract

This paper describes a benchmark suite for mobile
robots that provides quantitative measurements of a
mobile robot’s ability to perform specific tasks. Guide-
lines for the design of benchmark tests were derived
from other areas faced with the problem of evaluat-
ing complex systems. The benchmarks test the con-
trol and accuracy of the path and trajectory tracking,
the static path planning, and the dynamic path plan-
ning ability of a mobile robot. A set of metrics that
provide important information about a mobile robot’s
performance are also presented. These benchmarks
could also be used as simple games. Their inclusion
in robotic games will lead to an increased opportunity
fo researchers to evaluate their work without having to
buy expensive or special purpose equipment.

1 Introduction

Immediately after the first robots appeared in re-
search labs and universities, they were used for games
and the first robotic competitions were organized. An
example is the table tennis playing robot developed at
MIT in the late 60’s.

Robotic games have been used for a variety of rea-
sons in robotics research:

They included problems that both posed interest-
ing research questions as well as were motivating. Al-
though many of the associated problems are similar,
it is easier to convince people to work on a treasure
collecting robot than on a vacuuming robot.

They are an intuitive way to introduce robotics and
AT research to the general public. This has lead to
a strong interest in robotic games in the media and
associated with this an increased publicity.

They sometimes allow researchers to secure addi-
tional funding through the increased publicity.

They provide researchers with a venue to show their
work, and discuss ideas in an informal setting.

Another reason often cited for the use of robotics
games is that they allow an empirical evaluation (bench-
mark) of a team’s research and their progress. How-
ever, as a competition matures, this becomes increas-
ingly more difficult, since more expensive and more
special purpose hardware is being developed for the
competition. There is also the ugly side of these com-
petitions where teams start to exploit the rules. Win-
ning the competition becomes the over-ruling motiva-
tion.

Other researchers have noticed this trend as well.
Kitano suggests a set of physical agent challenges for
the RoboCup domain. However, these challenges (e.g.,
receiving a pass) are high level tasks, difficult to re-
produce, limited to specific robot hardware, and do
not allow to isolate the performance of different sub-
systems.

This paper gives a brief introduction to popular
robotic games (Section 2) as well as a background
in the design of benchmarks (Section 3). From this
background work, a set of simple benchmarks and
their associated performance measures are described
(Section 4). These benchmarks have been used with
good success in our research work. The motivation
is that these benchmarks allow a team to gauge their
progress, even with limited hardware and no special
purpose equipment.

2 Robotic Games

This section describes some of the more well known
robotics games: Micromouse, Robocup, and RoboFesta.

2.1 Micromouse

The Micromouse competition, first suggested by
Don Christiansen [3] was the first robotics competi-



tion that elicited large interest in the media.

The playing field consists of a maze constructed
from small plastic walls. A robot is first allowed to
explore the maze and to find the shortest path from
the initial position to the goal. After the robot com-
pletes its exploration, it is returned to the starting po-
sition and has to move to the goal position as quickly
as possible.

Even after 23 years, Micromouse competitions are
still popular. However, most researchers now consider
the AI and robotics problems as solved. Nowadays,
most improvements are mechanical in nature and re-
sult in lighter and faster robots[2].

Also, a number of researchers have adapted and ex-
tended the original Micromouse competition. For ex-
ample, in Singapore, the Micromouse has developed
into a local trash bin collection competition where
robots need to collect trash bins.

2.2 RoboCup

Robots playing soccer was first posed as a challenge
problem to the AI community by Alan Mackworth in
1992 [6]. The idea was taken up by Hiroaki Kitano
who organized the first international competitions in
1996.

Playing soccer adds two important dimensions to
robotic games. Firstly, instead of a single agent, a
successful soccer team has to coordinate the actions
of all robots in the team. Secondly, a soccer game has
an active opponent that is trying to prevent a robot
from executing its plan.

The RoboCup initiative currently has three active
leagues: simulator, small sized, and medium sized.

The small sized league is intended as the entry level
competition for physical robots. Teams consist of five
players and the playing field is the size of a table ten-
nis plate. Teams can use a global vision system. This
is the most active physical robot league; 28 teams
registered for the RoboCup 2000. Most teams use
holonomic robots with a wheel chair based design, an
embedded microcoontroller, and a global vision cam-
era mounted directly overhead. Coloured markers are
used to determine the position, orientation, and id of
robots. However, some teams made a conscious deci-
sion to enter the competition with inferior hardware
or additional constraints. For example, some teams
use local vision (e.g., CHIIPS Glory from UWA), non-
holonomic robots (All Botz). Some legged and hu-
manoid robot teams have expressed interest in com-
peting in this league.

The trend towards multi-purpose robots is impor-
tant and supported by robot games that include a va-

riety of competitions. It is a natural counter agent
towards over-specialization.

2.3 RoboFesta

RoboFesta is possibly the most ambitious robotics
competition, the Olympics of robot games. The first
competition is planned to last for 47 days with events
being organized in five different sites. Also, it is planned
that the competition will include around 30 different
games with over 7000 competitors. The games include
well established competitions such as RoboCup and
the Micromouse competition discussed in the previ-
ous subsections as well as new ones.

RoboFesta is the first attempt to cover the full
range of work in robotics, from simple introductory
single robot games to complex tasks for teams of robots,
from small robots to the very large ones, and from
land-based to aquatic and air-borne robots.

3 Benchmarks

Many benchmarks have a bad reputation in the re-
search community because they are often (mis)-used
for marketing purposes. However, there are also some
legitimate reasons for using benchmarks. Most impor-
tantly, to evaluate progress in the field quantifiable
measures are needed. A well designed set of bench-
marks that accurately reflects real world usage pat-
terns can direct research and highlight deficiencies.

3.1 Cars

When buying a car, one quickly finds out that there
is a staggering variety of different makes and mod-
els: family station wagons, the 4x4 jeeps, exotic sports
cars. In spite of this variety, there are a set of com-
monly used measurements, such as maximum speed,
acceleration from 0 to 100 km/h, fuel consumption in
city traffic, that are used by buyers to rate and com-
pare cars.

In most applications, these numbers would present
little useful information for mobile robots. For exam-
ple, a robot’s maximum speed and the top speed at
which the robot can be controlled safely are usually
two very different speeds. The latter speed is prob-
ably more important than the former for a user of a
mobile robot. But “to control safely” is not precisely
defined and depends on the current situation.



3.2 Processor Benchmarks

Researchers working on computer architecture and
organization are also faced with the problem of accu-
rately measuring the performance of a complex hard-
ware/software system.

A very early method of evaluating processor perfor-

mance were “millions of instructions per second (MIPS)”

and “millions of floating point operations per second
(MFLOPS)” ratings. These were used commonly un-
til the late 1980’s. However, once RISC processors ap-
peared on the market, the main weakness of these rat-
ings became readily apparent; instructions and float-
ing point operations are not clearly defined.

Equivalent measures for a mobile robot systems are
for example the video frame rate, the control cycle
time, or the path planning time. However, the prob-
lem is similar to that of MIPS ratings. For example,
the function of the video processor is not precisely de-
fined. Most video servers in the RoboCup return infor-
mation about the position and orientation of objects
in the domain, but some also compute their velocities,
errors from the desired positions etc.

Researchers realized that processor performance is
determined by three factors: the number of instruc-
tions, the average clocks per instructions, and the clock
frequency. Trying to evaluate performance using a
subset of these features leads to meaningless results.
Processors must be evaluated using real world appli-
cations.

Early popular benchmark programs were small toy
programs such as the popular Dhrystones and Wheat-
stones benchmarks. The fact that these programs were
easy to understand and their behavior easy to ana-
lyze lead to some people exploiting the benchmarks
for marketing purposes. For example, DEC used a
C compiler with a special DHRYSTONE flag. This
flag would turn on some optimizations in the com-
piler which in general would reduce the efficiency of
the generated code, but would improve performance
dramatically on the Dhrystone benchmark.

These shortcomings led a number of companies to
form the SPEC group in 1999. The SPEC CPU bench-
mark consists of parts from eight real applications
ranging from Neural Net simulators to the GNU C
compiler[4].

3.3 AI Benchmark Problems

For a long time, there has been little quantitative
and comparative evaluation in Al research in general.
Since the real world version of the problems are of-
ten too difficult, researchers have often used synthetic

problems or domains. When doing robotics research,
the actual hardware was abstracted and the problem
was solved in a computer simulation. Often, these
problems, domains, or simulation environments were
created by the designer of the program to be tested.
It is thus hardly surprising that relatively few failures
of AT systems have been reported. Since the designer
can be god in the simulated world, she can make the
world fit the program. Even when trying her best
to design a fair simulation environment, it is hard to
avoid implicit assumptions creeping into the design of
the problem as well as the solution.

Comparing Al systems on a test suit is difficult
since representation languages for the problems, do-
mains, simulation were incompatible and since these
representations could have a dramatic effect on the
performance of an Al system.

A few simple toy domains such as the blocks world
(stacking and unstacking of blocks), the Towers of
Hanoi, or the 15 piece sliding puzzle have been used
in AI. However, the representation of a domain can
greatly influence the performance of a system and this
representation was not standardized. A clver designer
can encode a lot of information about the problem
in the representation. For example, a planner in the
blocks world can be sped up by several orders of mag-
nitude if the planner is told that a block can never be
on top of itself.

More recently, a few communities in AI have cre-
ated a set of benchmark problems that are now used
commonly in quantifying research results. The first
such community was the machine learning community
that created the UCSD ML benchmark problems [7].

It is obviously important that benchmark problems
are representative of problems in the real world. For
example, Holte showed that most of the problems in
the UCSD machine learning benchmarks were very bi-
ased [5]. He showed that even naive learning algorithm
could achieve more than 90% accuracy on most prob-
lems in the dataset. Most problems in the real world
are of course much more complex.

4 Mobile Robot Benchmarks

In contrast to cars and processors, mobile robots do
not (yet) have the advantage of a large user and ap-
plication base. Therefore, the design of useful bench-
marks is even more important. A strong user base
can identify weaknesses in the benchmarks through
anomalies between benchmark and real world results.

Using the lessons learned from the examples given
above, a number of guidelines for the design of mobile



robots benchmarks can be extrapolated:

A benchmark is a performance measurement with
respect to a particular task. Any benchmark that is
based on only subparts can be misleading. So a bench-
mark problem for mobile robots should include the full
sensing — perception — reasoning — acting cycle.

Benchmarks must be portable. A large variety of
different mobile robots should be able to execute them.
In particular, benchmarks that require expensive hard-
ware must be avoided. For example, holonomic wheeled
robots, non-holonomic wheeled robots, legged robots,
and humanoid robots with different physical dimen-
sions and different sensors must be able to perform
these benchmark tests.

The quantitative metrics of the benchmarks must
be easily observable without any detailed knowledge
of the underlying architecture. Therefore, the SPEC
benchmarks use execution time rather than number
of cache misses as metrics. For example, some archi-
tectures may not have an explicit representations of a
path, so it is impossible to test the speed of its path
planning component.

Benchmarks must be updated. The basic underly-
ing assumption is that these tasks reflect real world
applications. However, since new applications will be
developed, any benchmark must be seen as temporary
and must be amenable to adaptation and improve-
ments in the future.

This section will suggest a number of benchmarks
for mobile robots suitable to the current state of the
art in hardware and software. There are a number of
subproblems in mobile robotics, such as localization,
path planning, and control, that must somehow be ad-
dressed by the designer. The goal of the benchmarks
described in the following subsections is to test the
individual subparts as well as their combination.

4.1 Path and Trajectory Following

A funadmental problem for any mobile robot is
movement. The benchmark designed in this subsec-
tion is being used by our group to compare the perfor-
mance of different path following or trajectory follow-
ing algorithms. The path following benchmark uses a
path where all measurements are relative to the size
of the robot and its maximum turn radius.

Some of the robots used a global vision system to
control the robots, but this setup is also used to eval-
uate the performance of local vision robots.

Since the aim of this benchmark is to evaluate the
path following ability of the robot, the environment is
not specified. For example, when evaluating our local
vision robots, the path is marked on the floor using a

white line and suitable coloured markers are dispersed
over the environment to provide local and global po-
sition and orientation information. Note that even
in purely reactive systems, where there may not even
exist an explicit representation of a path (e.g., sub-
sumption architectures), the robot can be controlled
by providing the correct set of stimuli in the environ-
ment.

A global vision system is mounted overhead and col-
lects information about the path or trajectory tracking
for later analysis. The analysis is influenced by the ac-
curacy of the position information and by the frame
rate of the video-server. The video-server that we de-
signed is able to provide position information with less
than 3cm position error over a large area (25 m?)! at
50 updates/second, which is sufficient.

The global vision server observes the progress of the
robot. The metric reported for this benchmark is the
average and maximum position error as well as the
timing errors. QOrientation errors are not listed, since
they may or may not be important. For example, for
commonly used wheel chair robots, orientation errors
are not important since these robots can turn on the
spot. In the case of car-like robots, large orientation
errors lead automatically to large position errors.

We used this benchmark on three different mobile
robot platforms. The length of the robots were 15¢m,
18cm, and 40cm respectively. The majority of the
robots used global vision, but some of the robots used
local vision.

This benchmark has been used to evaluate the per-
formance of different control algorithms for car-like
mobile robots: three different bang bang controllers,
a Fuzzy Logic controller, a reinforcement learning con-
troller, and a look ahead controller. For example,
Fig. 1 shows the path followed by the reinforcement
learner controller using the 18cm robots and a global
vision system.

4.2 Static Path Planning

For a mobile robot to be useful, it must be in the
right position at the right time. This requires the
robot to create a path from its current position to
the goal position, so called path planning.

However, there are many different versions of the
path planning problem. Some path planning algo-
rithms use complete knowledge of the environment
and assume that obstacles do not move. Other plan-
ning methods assume only local knowledge and deal

IThe position error for smaller playing areas is significantly
smaller. For the RoboCup playing field (2.74m by 1.52m), the
error is less than lcm
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Figure 1: Path of the Reinforcement Learning Con-
troller

with dynamic environments. This great variability in
path planners makes it difficult to design a benchmark
that is applicable to all mobile robots.

The benchmark described in this subsection, there-
fore, limits itself to determining a robot’s ability to
reach a number of desired goal positions. The robot
must indicate when it reaches a goal position. For ex-
ample, a robot can flash an LED or simply stop for a
few seconds before proceeding to the next target.

In the absence of any obstacles, a simple greedy
path planner is able to create the shortest path for
a holonomic robot. However, given the dynamics of
the robot, this path may not be the quickest path. A
simple example is shown in Fig. 2. The first path is
shorter, but requires many more turns. The second
path is more suitable for a car-like robot.

Developing a metric to measure the performance
of a path planner is non-trivial. Simple metrics such
as the time to reach all goal locations, and the total
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Figure 2: Simple Path Planner Example. The fig-
ure shows the actual path and the approximated holo-
nomic path.

distance traveled are in large part determined by the
controller rather than the path planner. For example,
Fig. 3 is a trace of Balluchi’s controller following a
given path. Even for the straight line segment in the
lower right, it would be difficult to infer that the robot
is following a straight line. But, we do want to factor
out or at least minimize the influence of the controller
in this benchmark.

The general problem is one of plan deduction. Given
a trace of the observations from the robot’s behavior,
we have to infer the plan that the robot was trying
to follow. Possible path segments for a robot are un-
defined. For example, most path planners for wheel-
chair robots contain only straight lines and turns on
the spot. For most car-like robots, paths consist of
straight lines and maximum turns. Other path plan-
ners based on splines or potential field have a larger
set of possible path segments.

Since straight lines are path segments available to
most mobile robots, we use straight lines and changes
in orientation to deduce the plan of the robot. This is
clearly an approximation, but assuming that the goals
are not too close, this error will not be significant.
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Figure 3: Balluchi’s Controller Following a Simple
Path. It is difficult to infer the path (dots) from the
shown track.

Figure 2 shows the inferred plan for the two sample
paths shown.

Also note that our system deduces a plan for the
robot’s behavior, even if the robot itself does not have
an explicit representation of a plan, since it is based
on the observed behavior of the robot solely.

We have the static path planner benchmark with
four different path planners: Bicchi’s path planner [1],
an optimized planner for the RoboCup domain, an
adaptive planner, and an anytime planner.

4.3 Dynamic Path Planning

The task described above evaluates the performance
of the path planning component of a mobile robot in
static domains. However, all robots must deal with the
real world, which is dynamic and uncertain. There-
fore, we are currently working on the design of a new
benchmark for dynamic path planners.

The dynamic path planning problem is similar to
the path planning problem described in subsection 4.2
and is a game of catch between two robots.

The first robot, called the evader, is the dynamic
goal location and follows a predefined path. There
are many different possible path for the evader; for
our first experiments, we choose a simple oval shaped
path. The task of the robot, called the pursuer, is to
catch the evader.

The performance metric used for these benchmarks
is the total time that it takes the pursuer to catch the
evader. A better metric would be the number of times
that the robot changed its plan. However, from ob-

servation alone it is difficult to infer this information,
which is why this benchmark only provides a summary
score.

5 Conclusion

Although extremely popular and entertaining, robot
games by themselves do not allow to evaluate research
progress. Results such as 33:0 do not tell the complete
story. Quantitative performance measures for differ-
ent components of a mobile robot are needed.

This paper compares a number of different approaches
that have been used in other fields to evaluate the
performance of complex hard and software systems.
Based on the lessons learned in these fields, a set
of benchmark problems has been proposed: control,
static path planning, and dynamic path planning.

The current benchmarks should be seen as a first
step towards more quantifiable results at robot com-
petitions.
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