All Botz
The University of Auckland RoboSoccer Team

Jacky Baltes, Nich Hildreth, Robin Otte, Yuming Lin
University of Auckland
Email: j.baltes@auckland.ac.nz
www.tcs.auckland.ac.nz/"jacky

October 28, 1998

Abstract

This paper provides general information about research at the University of
Auckland into autonomous agents in highly dynamic environments, in particular
in the RoboCup environment. The first part of this paper describes the design of
our vision server and our camera calibration method and shows some of our expe-
riences in developing our RoboCup entry. This may help other interested parties
in avoiding similar pitfalls in the future. The second part of the paper describes
our general architecture, which consists of a distributed, cooperative agent archi-
tecture with powerful path planning and controller components. The path planner
is an anytime planning algorithm that supports reactive as well as strategic rea-
soning of the agent. The controller uses a fuzzy logic approach. Lastly, the paper
describes our work on the design of a case-based reinforcement learner.

1 Introduction

This paper describes current research at the University of Auckland on RoboSoccer.
The Centre for Imaging Technology and Robotics (CITR) is a part of the Computer
Science Department with strong links to Electrical Engineering. In 1998, the CITR
offered for the first time a graduate course on “Intelligent Active Vision.” This focus of
this course are issues in intelligent control of autonomous vehicles in complex, highly
dynamic environments. The course emphasizes high level reasoning and the integration
of strategic planning with low level reasoning processes (behaviors, real time control).

As a practical environment for students to work in, we set up an “Intelligent Active
Vision” laboratory. We purchased commercially available toy RC cars. The cars allow
for proportional control of steering and velocity. The transmitter of these RC cars were
disassembled and we built a parallel port interface for the transmitters. The parallel
port interface uses a PIC micro controller and gives us 33 different speed settings (16
forward, halt, and 16 backwardsand 33 different steering angles (16 right, straight,
and 16 left).

Position and orientation feedback are controlled by a global vision system, which
will be described in more detail in section 2.

1In hind-side, it turns out that all of the forward speed were too fast



The task of the students was to control the car around a simulated race track. This
race “Aucklandianapolis” was very successful and proved to be very popular among
students. Staff and students even from other faculties attended the races. A more
detailed description can be found in [Bal98].

Given the surprisingly successful completion of the time trials, students decided
that they would like to tackle more challenging problems, which lead us to look at
Robo Soccer as a new domain.

This paper presents work in progress. The video server used by our system is de-
scribed in section 2. Section 3 introduces the architecture of our system. Two important
subcomponents of this architecture, the path planner and the controller are described in
sections 4 and 5 respectively. Section 6 describes extensions to the controller that allow
it to learn the correct control output using reinforcement learning. Section 7 concludes
and indicates directions for future research.

2 Video Server

Currently, we are using a Pentium 200 PC running Linux as our video server. The
video server hosts a Matrox Meteor compatible frame-grabber and is connected to a
commercially available Cam-corder.

The camerais mounted on a tripod (about 2.7m above the playing field). Given the
current setup, our playing field is limited by the field of view of the camera (approxi-
mately 2x4m). Because the camera is mounted at an angle, the exact playing area is a
trapezoid rather than a rectangle.

2.1 Camera Calibration

The problem of camera calibration is a very fundamental problem in Computer Vision.
The input to a calibration method is a set of known coordinates and the output is a set
of external and internal parameters of the camera model. Given this calibrated camera
model, it is possible to determine the real world coordinates of image points (if at
least one dimension is known) or compute the image coordinates for known real world
coordinates.

Traditional camera calibration relies on the availability of known image coordi-
nates for some known world points, that is the real world coordinates for at least 12
image points must be known. Once a sufficient number of matching points have been
found, well known camera calibration techniques can be used. For example, the Tsai
calibration method uses an eleven parameter model with six external and five internal
parameters [Tsa87]. In our work, we are using a public domain implementation of the
Tsai calibration method, which is available from the WWW [Wil95].

Since we are often asked to give demos of our system for different occasions, we
needed an accurate, cheap, portable, and fast method for camera calibration.

The need for portability and speed of the calibration method ruled out traditional
methods of using feature points inherent in the scene (since these feature points will
not be available when moving to different rooms) or of painting feature points into the
scene (a labor intensive and error prone task for a large set of points). The creation
of a special calibration pattern of sufficient size and with a sufficient number of points
proved to be impractical. For example, a large wooden board with calibration points (a)
would be difficult to move, (b) may not fit into rooms that do not have similar geometry



Figure 1: Calibration Pattern as seen by the Camera

(e.g., a part of the rectangle is cut out by a wall), and (c) expensive and labor intensive
to manufacture.

However, we clearly needed a portable calibration pattern, so we decided to use
readily available material. We looked at a number of possibilities including carpets
(have a dense texture and are expensive) and linoleum carpets (accurate pattern, but
expensive and has an undesirable warping property).

In the end, we decided to use a duvet cover (250x200cm) with a square pattern
on it. The back half of the duvet cover was removed to reduce artifacts due to the
transparency of the cloth material. The duvet cover is well suited for our environment,
since it is easily portable and can be adapted to different room otitByawbacks are
that the cloth material stretches and warps. Both drawbacks can be minimized through
the handy use of an iron. However, they can not be eliminated and thus introduce
errors, which limit the accuracy of the camera calibration that can be obtained.

Figure 1 shows a picture of the calibration duvet cover as seen by the video camera.

Given the picture shown in fig. 1, our system uses a semi-automatic method for
calculating the matching points. In the preprocessing step, the user removes unwanted
parts of the picture, such as the table top on the left side of the calibration picture.
Secondly, the color image is converted into a gray scale image and thresholded, so that
only the white squares are left in the image. Currently, we are only a global threshold
value on the red channel, which was sufficient for our environment.

After this initial preprocessing step, the system automatically computes the match-
ing points. First, the system uses a simple pattern to find the white squares in the
picture. This step ignores small artifacts and handles missing squares. The centre point
of each square is computed by calculating the moments along ainely direction.

Then, the squares are sorted. This sorting step is of critical importance, since if it is
done in the wrong order, the assigned real world coordinates will be wrong, which will
result in inaccurate calibration.

After approximate real world coordinates have been assigned to the centres of all
squares, the system uses four edge detection steps to find the coordinates of all four

2t is also a handy blanket for my graduate students when they get caught up in their work and end up
sleeping in the lab



Video Camera Frontal View of Image Plane

Centre of Gravity

shifted downwards \.

Image plane

Colored Spot
-

=

Figure 2: Distortion of a circle’s centre of gravity under perspective distortion. The
centre of gravity is shifted downwards as shown in the frontal view of the image plane.

corners. If a corner has been identified, it is assigned a real world coordinate by the
geometry of the calibration pattern (each white square is 8 cm by 8.1 cm).

This means that the assignment of the real world coordinates to the corners is in-
dependent of the assigned real world coordinates of the centres of the squares them-
selves. This is an important feature in our algorithm, since the centres of objects are
distorted by the perspective projection and are moved to the lower end of the picture,
which means that they are unsuitable for applications that require a high accuracy. This
problem is also discussed in section 2.2. Of course, given an accurate camera model,
this perspective distortion can be compensated for, but this leads to a chicken and egg
problem, since we are using this information to calibrate the camera.

Also we found in our tests that this two-stage approach (sort centre of squares, find
corners for each square) works better than assigning world coordinates to all corner
points. Missing squares or missing data points makes this one step assignment very
difficult and error prone.

After the computation of the matching points, we use a PD implementation of
Tsai’s camera calibration to compute the parameters of the camera model [Wil95].

2.2 Image processing

The video server provides the clients with information about position, orientation, and
velocity of objects in the domain. All this information is returned in real world coor-
dinates, which has the advantage that the camera calibration (as discussed in subsec-
tion 2.1) information is only required on the video server, not the clients who perform
all their calculations in real world coordinates.

To make this task easier, the cars use color coded dots (about 8cm in diameter).
Initially, two types of color coding were used: (a) two colored circles (one red, one
green) attached to the roof of the car. In both cases, the pixel coordinates of the position
of the car were determined by tlkeandy moments of the projection of a circle onto
the image plane, that is the centre of gravity of the circle. This method is fast, but
has the disadvantage that the moments of a circle are distorted when projected onto the
image plane (see Fig. 2). Currently, this effect is ignored, since the position information
returned from the video server is accurate enough (usually less than 3cm error) for our
applications.

After finding the real world coordinates of these circles, the orientation of the car
is determined by a line through the center of these two circles. However, since the
determined centers of circles are distorted, orientation information calculated using



Centre of .
Circles End points

of the colored
edge

Green

Green Red

Pattern 1 Pattern 2

Figure 3: Comparison between the two calibration patterns that we used in our work.
Pattern 1 calculates the orientation by the line through the centre of the two circles.
Pattern 2 uses the end points of the red-green colored edge.

this method has a larger error (about 10 deg).

Another approach we tried was to use a pattern of two different colored semi-
circles. In this case, the orientation is determined by the end-positions of the edge.
This method is not susceptible to the problem of distortion due to the perspective pro-
jection. Initially, using an ad hoc method to calculate the end points of the edge resulted
in better orientation information (about 3 deg). Figure 3 shows the two different pat-
terns.

Currently, the video server is able to find the position of cars accurate to about 3cm
and their orientation accurate to within 10 degrees. Other clients connect to the video
server via UDP and the video server will send a message with the following information
for each object (e.qg., ball, car) : (a) the time stamp of the current frame, (b) whether
the object has been found in the current frame, (c) its position, (d) its orientation, (e) its
displacement along thecoordinate from the previous frame, (f) and its displacement
along they coordinate from the previous frame.

3 General Architecture

Figure 4 shows the overall architecture of the agent. The design goals for the agent
architecture were: versatility, extendibility, and robustness.

o Versatilityis the ability of an agent to be used for a variety of tasks. Instead of
being limited to a single task, albeit a very challenging one (e.g., playing soccer),
our research goal is to develop an architecture that can perform different tasks in
the mobile robot domain, such as parallel parking, time trials, and office delivery.

e RobustnessThe architecture should be robust in the sense that if some of its
capabilities are reduced or removed, it should still provide a reasonable level of
performance. This means in particular that if communication with other agents



Agent Architecture

G

Vision Server

Communication

i

- ;
™. ("Environment
Interpreter

W

1
|
|
|
G !
: Information
! Request
|
| Response
|
|
|
|
|
|
|
|
|

Other Sensors
Agent

Role Goals F———= .
Goas | Behavioural Planner

Active Plan List !
|
EEREREE o
<}----- —_———
_‘i]—/ Geometric Plan Problem
Car Controller Path Planner

Figure 4: The Agent Architecture.

is interrupted, the agent should be able to perform at least some limited function-
ality on its own.

o Extendibility. It should be easy to add additional behaviors and functionality to
the agent so that it is able to improve its performance on a task.

Our agent is based on a distributed role based architecture using a behavioral plan-
ner. Vision as well as other sensory information is received by the agent and processed
in the environment interpreterThis interpreter will pass some of the information on
directly to the agent, such as the current position or orientation. However, some other
features of the environment may require significant processing (e.g., is our team on
the offense or defense). The agent continually checks the incoming environment in-
formation and selects individual goals from its role goal base. As will be shown in
subsection 3.1, different players have different roles and are therefore trying to achieve
different goals.

Whenever the agent finds a suitable goal it is passed to the behavioral planner.
The behavioral planner contains a database of procedural information for achieving
different goals in different situations. For example, it contains a low level behavior
to orient itself towards the ball as part of its overall scoring behavior. If the agent is
unable to achieve a goal directly, it can invoke the communications or path planner
components.

The communication component can send and receive messages from other players.
In general, the communications can be grouped into three main categories: information
(“Iam trying to score a goal”), request (“I am open, pass the ball to me”), and response
communication (“I will pass the ball to you”).

The path planner solves geometrical problems, such as moving the player from
one position to another one. The details of the anytime path planner are described in
section 4.



Once a feasible plan has been found by the path planner, the plan is send to the
agent, who puts it onto th&ctive Plan List Therank of a plan in the queue is deter-
mined by the environment (e.g., if there is no opponent in the way, this plan is prefered
over one that has an opponent in the way.), the goal that the plan is trying to achieve
(e.g., we prefer to score goals over defensive goals), and the complexity of the plan
(e.g., we prefer small plans that have a higher chance of success).

The agent selects the most promising plan from the active plan list and compares its
rank with the currently executing plan. If the new plan has a higher rank, the currently
executing plan is pre-empted and put on the active plan list. The controller will then
start to execute the new plan. Details of the controller are described in section 5.

An important feature of the architecture is its extendibility. Other skills can be
added to an individual agent. The architecture uses the concept of roles, which are
described in subsection 3.1 to manage the possible explosions of actions that the agent
may perform.

3.1 Roles

Roles are as importantin RoboCup as they are in real soccer, since otherwise all players
would simply chase the ball and get into each others way. The idea is that invididual
agents are assigned specific roles on the playing field.

Our architecture currently includes the following five players: center, striker, de-
fense, and right and left wing. The individual players have a number of restrictions put
on them to simplify planning. Firstly, each role has a certain set of possible goals, i.e.,
things that it is trying to achieve, associated with it. Secondly, the individual players
are assigned certain zones, which limits their movement. Figure 5 shows the zones of
the different players.

For example, a striker only has one possible goal in its behavioral planner, scoring a
goal, and is limited to the striker zone (3/4 of the playing field closest to the opponents
goal).

A defense player’s only goal is to stop a ball from going into its team’s goal. There-
fore, a defensive player will never even attempt to shoot at the other goal and is limited
to movement in its own quarter of the field.

The right and left wing players have a variety of possible goals, which include
scoring as well as blocking opponents and passing a ball. They are limited in movement
to the right and left half of the field respectively, but can move along the full length of
the field.

The center player is the only player with no restrictions on its movement. Its pri-
mary goal is to stay close to the ball and to support the striker.

The roles of a player are static and will not change during execution of the game.
The different roles are implemented through different sets of behaviors in the behav-
ioral planner.

4 Path planner

Path planning is an important problem in strategic planning for a mobile robot. Given
the current position and the desired goal configuration, the mobile robot must come up
with a sequence of movements that will take it from the initial state to the goal.
Currently, we are using Bicchi’'s path planner [BCS95]. This planner is based on
Reeds and Shepp curves and finds the shortest path of bounded curvature amongst



\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

S5

Left Wing Zone

|tz |

Own goa

[e09 Weuoddo

Defender Zone

T T T s

Figure 5: The zones of the individual soccer player roles in our architecture are shown
in this figure. The zone of the right wing is symmetric to that of the left wing, but is
left out for readibility.

polynomial obstacles. . This planner is very similar to visibility graph based planners
in holonomic vehicles, but the vertices are augmented by circles of maximum turning
radius. The planner adds circles with the maximum turn radius around the vertices of
all obstacles and then finds the shortest path consisting of arcs around the circles and
straight lines between circles from the start to the goal. The straight lines between
circles connect the points on the circle with identical tangents. Thus there are at most
four lines between circles. Any lines that intersects an obstacle is removed. A very
simple example is shown in Fig. 6.

To find the shortest path, the planner performs a search through the space of possi-
ble plans. We currently us&* with the distance to the goal as heuristic function. This
works well as long as the car does not need to backup to reach the goal. Execution
times on a Pentium 200 PC are between one to ten seconds for most problems. How-
ever, our cars have a comparatively large turning radius (ca 90cm) for our playing area,
so that the car often has to backup to complete a turn. In this case, execution times are
much worth, since almost always does the car have to move away from the goal. Since
the heuristic evaluation function is based on the distance to the goal, the planner will
search all possible ways of moving forward first, before backing up.

Working in a highly dynamic environment, the agent must often react very quickly
(“instinctively”) to oncoming threats and will therefore have not sufficient time to gen-
erate a complete path. Often even the problem of formalizing the domain in a represen-
tation suitable to support planning is too expensive. Therefore, in recent years, planners
with very limited representations and quick reaction times have been successfully de-
veloped for a number of domains, the most famous one being Agre’s Pengi system. On
the other hand, however, strategic planning is important for the agent to achieve some
long term goal. This will, for example, prevent the agent from painting himself into a
corner.

We suggest an anytime path planner. As for any planning system, the input is a
description of the current state and the goal states and the output of the path planner is



Circles of max. turn radius
around vertices Straight lines between

circles

Goal

Figure 6: Sample execution of Bicchi’s path planner is a simple path planning problem.

a plan to reach the goal state. However, the space of possible plans is searched in such
a way that the controller can continously ask the path planner for the current best plan.
This means that if a truck is threatening to crush the agent, the controller can ask for a
plan to get out of the way right now. In this case, the planner will return its best guess
immediately. On the other hand, if more processing time is available, the planner will
continue working on the plan and improve it.

The initial plan is formed by finding the orientation from the current position to the
goal, which can be done very quickly and will provide the initial guess. The anytime
path planner then checks to see whether the current plan is free from obstacles or not.
Should the direct route intersect the side of an obstacle, the two vertices on either side
of the obstacle become the goal nodes and the planner is called recursively to generate
plans from the initial state to the obstacle vertex and from the vertex to the goal. An
example of the operation of the any-time path planner for the same problem as the one
shown in Fig. 6 is shown in Fig. 7. The initial plan directly from the start to the goal
fails. The vertices of the side that are first intercepted by the plan are used as subgoals.
In this case, a plan for the upper vertex is generated. This plan will also fail and the
refinement of the plan continues recursively.

Currently, the planner uses depth-first search, which means that the returned plan is
not necessarily optimal. Therefore, the planner uses a quality function that will reject
inefficient plans, for example plans that contain a lot of reversals.

Note that the generated plan is a holonomic plan and may violate some of the
non-holonomic constraints of the car (e.g., an immediate turn by 90 degrees). A post-
processing step is therefore necessary to turn the holonomic plan into a feasible non-
holonomic one. Assuming that the environment is not too cluttered with obstacles,
sufficient free room should be available for this conversion.

The plan generated by the path planner consists of straights and maximal turns to
the left and to the right. However, because of uncertainty in the actuators, there is a



Obstacle
Intersection

Plan 1 (Invalid)

Initial Plan Goal

(Invalid)

Figure 7: Sample execution of the anytime path planner on a simple path planning
problem.

significant error when, for example, going along a straight line. Therefore, we need a
controller to supervise the execution of the plan.

5 Controller

The task of the controller is to follow and execute a path or trajectory that was generated
by the path planner. As mentioned previously, a path consists of either straight lines
or maximum turns to the right or left. We are currently focusing on the path tracking
problem, but hope to extend our work to the trajectory tracking problem in the near
future.

We used Balluchi’s sliding mode controller [BBBC96]. This controller makes two
simplifying assumptions: (a) the velocity of the car is static, and (b) the control outputs
are maximum turns left or righbéng-bang contrgl In other words, the controller
does not change the speed setting and only chooses between full right and full left.
The controller does not use knowledge about the structure of the path, in particular the
path’s curvature, but only uses the distance and heading errors to the nearest point on
the path. One disadvantage of sliding mode controllers is that inputs to the actuators
are discontinuous, that is the controller may try to steer the car instantaneous from full
left to full right, which is a physical impossibility. A smoothing function is used to
smooth out the controls.

This controller performed well in simulations, but in practice caused some prob-
lems. In fact, most of the time spent on Aucklandianapolis by students was trying to
improve the control. The first problem was the bang-bang control itself. Imagine being
a passenger in a car whose driver turns full left as soon as he drifts a few centimeters to
the right of the centre line. Should you survive such a ride, you may just decide to use
public transport more often. This problem was overcome by smoothing out the control

10



Path 1 Path 3

Car

! ’ Path

Orientation Orientation

—_
distance error

Figure 8: Problem showing the need for at least partial knowledge of the path curvature.

of the car whenever it is close to the desired path, i.e., its distance and error headings
are small. In this case, instead of full turns, the controller would use small turns only.
Although this works well for tracking straight lines, it is detrimental when trying to
follow a maximum turn circle, which is often created by the path planner. In this case,
anything but full turns will lead to the car drifting off the desired track very quickly.

Another disadvantage of the bang-bang controller is that it is very sensitive to delay.
There is a small but noticeable delay between a frame being captured by the video
camera and the information being received by the client (controller). In a sense, a bang
bang controller waits for the last possible instance to change the direction of the car, but
since the car has already traveled further in the delay between the information being
send from the video server and being received by the the controller, the controllers
output will occur too late.

Another big disadvantage is that the controller ignores the curvature of th& path
A problem that illustrates the need to know the curvature of the path is shown in Fig. 8.
Although the position and orientation errors are identical for all three parts, turning to
the right is only correct if following path 2 or 3. If the car follows path 1, a full turn to
the right forces the car to intercept the path at almost a 90 degree angle (a configuration
that is difficult to recover from).

Based on these observations, we are currently developing a fuzzy logic controller
for the car. The fuzzy controller mimics the behavior of Balluchi’s controller if either
the distance or orientation error are large, since in these cases Balluchi’'s controller
works very well.

However, the fuzzy logic controller uses as inputs the distance error, orientation
error, and curvature of the path. Instead of only controlling the steering angle, the
fuzzy controller controls velocity as well as steering. An example of a fuzzy rule is
shown below:

if  distance error is SMALL and orientation error is

SMALL and curvature is STRAIGHT,
then go STRAIGHT ahead and go FAST

3Balluchi et al show how the controller uses the sign of the curvature, however, we found while imple-
menting the controller that the sign of the curvature cancels in the equations

11



The fuzzy sets (e.g., SMALL) used in the controller are indicated by uppercase
in the example rule. Simulation has shown some promising results in the inverted
pendulum domain for the fuzzy controller.

6 Reinforcement Learner

Although fuzzy controllers such as the one described in section 5 are conceptually sim-
ple, their success critically depends on the choice of parameter values. The controller
in section 5, for example, has about 60 parameters. Finding a good set of values for
these parameters is often non-intuitive.

Another approach to the problem of path tracking is the use of un-supervised learn-
ing methods. Especially Neural Nets (NN) and Genetic Algorithms (GA) have been
used successfully in a large number of domains.

Reinforcement learning and Q learning are other learning methods that have been
used extensively in robotics and Al [RN95]. The idea is to learn the correct actions
for an agent in different states. The difficulty is that in the environment, the effect
of actions can only be determined in some later stage. For example, a bad move in
chess may lead one to loose a game, but often the loss will not occur until many moves
later. Similarly in the path tracking domain, an incorrect steering command will only
sometime later lead the car to miss the ball when trying to kick it. This time delayed
reward leads to theredit assignment problenfror example, even though the controller
did do the correct control actions for the last ten steps, the car missed the ball because
of a steering decision eleven steps previously. The difficulty is to assign the blame for
the failure to the actions that caused the failure.

Q learning needs to be adapted when used in the path tracking domain. Firstly the
notion of discrete time and discrete actions (situation calculus) needs to be extended
to include the continuous time and actions in which the agents execute. Secondly, the
concept of a state needs to be defined.

In the reinforcement learner, we use a similar state representation as suggested by
the controller. A state is defined by three variables, the distance error, the orientation
error, and the curvature of the path. The reward is calculated as the sum of the position
and orientation errors over a fixed number of previous time steps. Note that in the
path tracking domain, reward is immediately available, since the current errors can be
easily determined. Our Q learner, however, sums up a number of previous errors to get
a better estimate of the quality of the current path.

To speed up the learning, the reinforcement learner uses a case based approach to
select reward values from similar states, when no Q values for a given state are known.

7 Conclusion

This paper describes some of the main aspects of our work on automatic navigation
of non-holonmic robots in highly dynamic environments and how we transfered our
approach to the domain of RoboCup.

This is work in progress. RoboCup is a very interesting and challenging problem.
Currently, we have far more questions than answers. For example, What is a good
balance between strategic and reactive planning in environments such as RoboCup?

We hope that the integration of a fast anytime path panner, a robust controller and
a distributed control architecture will lead to a system that will allow us to perform a

12



variety of tasks, such as parellel parking, racing, and RoboCup.

There are many possibilities for further research in this area. One possibility is
to move from a global vision system to a local one. This is a route that we would
definitely like to explore in the future. One of the advantages of the project so far are
its relatively small cost. All components can be readily purchased. On the other hand,
the use of toy RC cars caused some problems, which we hope to address in the future.
We are working on a microprocessor board that can be installed in the cars to connect
sensors and actuators as well as a motor drivers, which will improve our control over
speed and steering.

References

[Bal9o8] Jacky Baltes. Aucklandianapolis homepage. WWW, February
1998. http://www.tcs.auckland.ac.nz/ jacky/teaching/courses/415.703/-
aucklandianapolis/index.html.

[BBBC96] A. Balluchi, A. Bicchi, A. Balestrino, and G. Casalino. Path tracking con-
trol for dubin’s cars. IrProceedings of the IEEE International Conference
on Robotics and Automatiph996.

[BCS95] Antonio Bicchi, Giuseppe Casalino, and Corrado Santilli. Planning short-
est bounded-curvature paths for a class of nonholomic vehicles among ob-
stacles. IrProceedings of the IEEE International Conference on Robotics
and Automationpages 1349-1354, 1995.

[RN95]  Stuart Russel and Peter NorvidArtificial Intelligence: A Modern Ap-
proach chapter 20, pages 598-624. Prentice-Hall Inc., Englewood Cliffs,
New Jersey 07632, 1995.

[Tsa87] Roger Y. Tsai. A versatile camera calibration technique for high-accuracy
3d machine vision metrology using off-the-shelf tv cameras and lenses.
IEEE Journal of Robotics and AutomatioRA-3(4):323-344, August
1987.

[Wil95]  Reg Willson. Tsai camera calibration software. WWW, 1995.

13



