
THE UNIVERSITY OF CALGARY

DoLittle: A Learning Multi{Strategy Planner

by

Hansj�org Baltes

A DISSERTATION

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JUNE, 1996

c
Hansj�org Baltes 1996

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Fac-

ulty of Graduate Studies for acceptance, a dissertation entitled \DoLittle: A

Learning Multi{Strategy Planner" submitted by Hansj�org Baltes in partial

ful�llment of the requirements for the degree of Doctor of Philosophy.

Supervisor, Dr. Bruce MacDonald Dr. Steven Minton

Department of Computer Science External Examiner

Dr. Lisa Higham Dr. Laurence Turner

Department of Computer Science Department of Electrical Engineering

Dr. Brian Gaines

Department of Computer Science

Date

ii

Abstract

Multi-strategy planning focuses on the selection and combination of di�erent

problem solving methods. Since planning is intractable in complex domains,

researchers have developed di�erent methods to restrict, restructure, or re-

order the search space and to search the new space. These reformulations

of the search space are based on assumptions about the domain or other

features of the task such as the problem order, plan structure, or subgoal

hierarchy. These planners, then, work well in domains where the underlying

assumptions are met, and fail otherwise. Furthermore, in complex domains

it is possible that only parts of a task can be e�ciently solved with a given

planning method. But for other parts of the tasks, a di�erent planning strat-

egy may be appropriate. The goal of multi-strategy planning is to alleviate

this problem by selecting and combining di�erent problem solving methods

on a single problem.

First, planning is seen as search through the space of partial plans. Dif-

ferent planning strategies can be described by the language of partial plans,

the set of transformations on partial plans, and the search method.

Secondly, the thesis develops a theory of multi-strategy planning and

shows that a multi-strategy planner can exponentially improve performance

over a single strategy planner and derives su�cient conditions for this im-

provement.

Thirdly, the thesis proposes general operators (Strips operators with

added re�nements) as a representation for di�erent planning strategies and

iii

shows how general operators can represent di�erent planning methods.

Fourthly, the thesis develops a search control method that, given a plan-

ning method expressed as a general operator reduces the associated search

space similarly to the original problem solving strategy.

Since the generation of general operators may be cumbersome by hand,

and since the system is intended as a part of a learning apprentice system,

DoLittle learns new general operators from examples. The planning bias

learners are highly speci�c methods that have knowledge of DoLittle's

operator set and search method and create new general operators to exploit

a given planning bias.

Through an empirical evaluation, this research shows (a) that multi-

strategy planning improves the performance over single strategy planning

in some toy domains, (b) that multi-strategy planning can solve problems

in at least one complex domain (the kitchen domain), and (c) and that an

unordered subproblem coordinated multi-strategy planner performs better in

the kitchen domain than a problem coordinated one.

iv

Acknowledgements

This work was supported by an NSERC grant to my supervisor Dr. Bruce

MacDonald. I received a scholarship from the Alberta Microelectronics Cor-

poration ('91 { '94) and the MacMahon Stadium Society ('93). The computer

science department of the University of Calgary supported me with teaching

and research assistantships.

I owe a great deal to my supervisor, Dr. Bruce MacDonald, who helped

me in my years at the University of Calgary in many ways. He provided me

with guidance when needed, but also allowed me enough freedom to pursue

my own ideas. I learned a great deal from him. I also would like to thank

his wife Sue for tolerating many late night sessions. A special thanks also to

Dr. Lisa Higham for her comments on earlier drafts of the analysis chapter.

Graham Birtwistle always provided me with good advice on life, the uni-

verse, and everything over our tea times.

Cameron Patterson is not only a good friend, but also introduced me to

VHDL design. I enjoyed collaborating with him on the design of the VLSI

design course in Calgary.

My thanks to the other people in the research community with whom I

had many enjoyable moments discussing research: Robert Holte, John An-

derson, Qiang Yang, and Diana Gordon.

My greatest thanks go out to my mother Relinde, my father Johannes,

and my sister Beate for their love and continuing encouragement to strive for

perfection.

v

A special thanks belongs to the Moore family: Barry, Marguerite, Nick,

Tony, Lisa, Allison, Caroline and her family. They were my home away from

home and I will always remember the great times we spent together. My

only regret is that I haven't been out to Montreal yet.

There are also the many friends that I made: Graham Lai and his chess

lessons, Sami Cokar, Stella and William Lee, Beverly and Richard Haller,

Peter Graumann, and Randy Menzer. Many thanks also to the friends in

speed skating, the ice hockey team, my friends from the Malaysian student

club, and the aikido club for making me forget my work for a while.

Last but not least, this thesis would not have been possible without Ching

Ching Cheah's love and support. Although, we were thousands of miles apart,

we were never closer and I've got the phone bill to prove it.

vi

Table of Contents

Approval Page ii

Abstract iii

Acknowledgements v

Table of Contents vii

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Planning . 2

1.2 Problem solving and planning 3

1.3 Planning biases and strategies 4

1.4 Multi{strategy planning . 4

1.4.1 The need for multi-strategy planning 5

1.4.2 Requirements for multi-strategy planning 6

1.5 Learning general operators . 9

1.6 Outline of the thesis . 10

2 Scenario 12

2.1 The kitchen domain . 13

2.2 Comparison of di�erent planning methods 18

2.2.1 Means-ends Analysis 21

2.2.2 Case-based planning 23

2.2.3 Abstraction-based planning 24

2.2.4 Macro-based planning 25

vii

2.2.5 Multi-strategy planning 27

2.3 Conclusions . 29

3 Literature Review 30

3.1 The planning problem . 30

3.1.1 The GPS system . 31

3.1.2 The Strips system . 32

3.1.3 The Prodigy system 35

3.1.4 Partial order planning: Noah, Nonlin, Tweak 35

3.1.5 The Sipe system . 38

3.1.6 Relaxed abstraction hierarchies: AbStrips, AbTweak . 40

3.1.7 Reduced abstraction hierarchies: The Alpine System . 42

3.1.8 Case-based planning: Chef 43

3.1.9 Macro-operators . 45

3.2 Planning as plan space search 46

3.3 Representational Classi�cation 49

3.3.1 The Strips domain language 49

3.3.2 The Prodigy domain language 53

3.4 Operational classi�cation . 56

3.4.1 Forward chaining planning 57

3.4.2 Means-ends analysis 57

3.4.3 Partial-order planning 59

3.4.4 Case-based planning 60

3.4.5 Automatic subgoaling 60

3.4.6 Abstractions . 61

3.4.7 Macro operators . 62

3.5 Discussion . 62

4 Multi-strategy planning 64

4.1 Analysis of practical planning 65

4.2 Planning bias . 72

4.3 A model of abstraction . 74

4.4 Multi-strategy planning framework 78

4.4.1 Problem coordination 79

4.4.2 Subproblem coordination 85

4.5 Analysis of di�erent planning strategies 94

4.5.1 Analysis of automatic subgoaling 94

4.5.2 Analysis of two-level abstraction based planning 95

viii

4.5.3 Analysis of multi-level abstraction based planning . . . 96

4.5.4 Analysis of case-based planning 97

4.5.5 Analysis of macro-based planning 99

4.6 Analysis of multi-strategy planning example 101

4.6.1 MSP example: Means-ends analysis 102

4.6.2 MSP example: Case-based planning 102

4.6.3 MSP example: Abstraction-based planning 103

4.6.4 MSP example: macro-based planning 104

4.6.5 MSP example: multi-strategy planning 105

4.7 Discussion . 107

5 DoLittle: a multi-strategy planner 109

5.1 Why does DoLittle not include partial-order planning? 110

5.2 Requirements . 112

5.3 DoLittle's representation of planning

strategies . 112

5.4 DoLittle's decision procedure 114

5.5 Description of General Operators 115

5.5.1 Representation of planning strategies 119

5.5.2 Forward chaining . 124

5.5.3 Macros . 126

5.5.4 Cases . 128

5.5.5 Abstract operators . 128

5.5.6 Automatic subgoaling 130

5.5.7 Reactive rules . 132

5.5.8 Backward chaining . 134

5.5.9 Problem Speci�cation 136

5.5.10 Avoiding failure . 136

5.5.11 Discussion . 139

5.6 DoLittle's domain description language 141

5.7 DoLittle's search control method 142

5.7.1 DoLittle's plan structures 142

5.7.2 DoLittle's algorithm 144

5.7.3 Re�nement selection 145

5.7.4 APPLY plan transformations 148

5.7.5 DEBUG plan transformations 151

5.7.6 ADD plan transformations 156

5.8 Discussion . 160

ix

5.8.1 DoLittle as a means-ends analysis planner 160

5.8.2 DoLittle as a case-based planner 167

5.8.3 DoLittle as an abstraction-based planner 168

6 Learning Planning Knowledge 170

6.1 Learning of general operators 172

6.2 DoLittle's planner transformations 174

6.3 Simpli�cations of the transformation space 177

6.4 Simpli�cations in evaluation utility 178

6.4.1 Utility estimate of adding operators 180

6.4.2 Utility estimate of generalizing applicability conditions 184

6.4.3 Utility estimate of changing a re�nement 184

6.4.4 Utility estimate of merging general operators 185

6.4.5 Utility estimate of replacing operator references 185

6.5 Case learner . 185

6.6 Macro-operator learner . 191

6.6.1 The optimal tunneling heuristic 191

6.6.2 DoLittle's Macro-bias learner 192

6.7 Abstraction learner . 196

6.8 Discussion . 201

7 Evaluation 203

7.1 Experimental methodology . 203

7.2 Multi-strategy planning in the blocksworld 207

7.3 Multi-strategy planning in the towers of Hanoi 216

7.4 Multi-strategy planning in the kitchen domain 223

7.5 Discussion . 231

8 Related Work 232

8.1 Multi-strategy planning systems 232

8.1.1 McCluskey's FM system 233

8.1.2 The APS system . 234

8.1.3 The Alpine/EBL system 235

8.1.4 Segre's adaptive inference system 236

8.1.5 FLECS . 236

8.1.6 The SOAR system . 237

8.2 Macros . 238

8.3 Abstraction . 239

x

8.4 Prodigy/EBL . 240

8.5 Dynamic biasing . 241

9 Conclusion 244

9.1 Contributions . 244

9.2 Future work . 246

9.3 Epilogue . 248

A Implementation 252

B The blocksworld domain 254

B.1 Randomly generating problems in the blocksworld 254

B.2 Domain speci�cation of the blocksworld 255

B.3 Empirical results in the blocksworld 258

C The towers of Hanoi domain 269

C.1 Randomly generating problems in the towers of Hanoi 269

C.2 Domain speci�cation of the towers of Hanoi domain 270

C.3 Empirical results in the towers of Hanoi 272

D The kitchen domain 284

D.1 Randomly generating problems in the kitchen 285

D.2 Domain speci�cation of the kitchen domain 286

D.3 Empirical results in the kitchen domain 312

xi

List of Tables

2.1 Primitive operators in the kitchen domain 17

2.2 Making tea in the kitchen domain 19

2.3 Making instant co�ee with sugar in the kitchen domain 20

2.4 Means-ends analysis example 22

3.1 Tweak operator template example 38

3.2 Example: Operator in the prodigy domain language 55

3.3 Operational classi�cation of di�erent planning systems 58

4.1 Branching factor for Prodigy domains 69

4.2 Table of Symbols . 75

4.3 Expected cost of di�erent multi-strategy planners 93

5.1 Forward chaining . 125

5.2 Macro operator: Fill cup with water 127

5.3 Case operator: Make a cup of tea 129

5.4 Abstract operator: Make a cup of tea 131

5.5 Automatic subgoaling: Making co�ee in the kitchen domain . 133

5.6 Reactive rule: Get hot water 135

5.7 Backward chaining: Fill with Water 137

5.8 Problem speci�cation: Do not put honey in the fridge 138

5.9 Avoiding failure: No way to move the co�ee maker 139

5.10 DoLittle's search control algorithm 146

5.11 DoLittle's REFINE plan transformations 149

5.12 DoLittle's APPLY plan transformations 150

5.13 DoLittle's DEBUG plan transformations 154

5.14 DoLittle's ADD plan transformations 159

5.15 Example of DoLittle's ADD plan transformations 161

5.16 Abstraction in DoLittle: Towers of Hanoi 169

xii

6.1 Immediately justi�ed operator sequences in the plan to make

tea . 199

7.1 Results of the blocksworld . 217

7.2 Results of the towers of Hanoi 224

7.3 Results of the kitchen domain 230

xiii

List of Figures

2.1 The kitchen domain . 16

3.1 Planning as plan space search 50

4.1 Max. decision length as a function of the average branching

factor b and the node limit N 71

4.2 Ordered subproblem coordinated multi-strategy planning . . . 87

4.3 Unordered subproblem coordinated multi-strategy planning . . 91

4.4 Example: analysis of means-ends planning 102

4.5 Example: analysis of case-based planning 103

4.6 Example: analysis of abstraction-based planning 104

4.7 Example: analysis of macro-based planning 105

4.8 Example: analysis of multi-strategy planning 107

5.1 The plan data structure . 144

5.2 Comparison of Prodigy and Prodigy-DL 165

5.3 Comparison of Prodigy and Prodigy-DL 166

6.1 Comparison of Iba's and James' macro learners 192

7.1 Cumulative nodes in the Blocksworld 208

7.2 Cumulative running time in the Blocksworld 209

7.3 Running time versus time limit in the blocksworld 210

7.4 A good problem for DoLittle in the blocksworld domain . . 214

7.5 A bad problem for DoLittle in the blocksworld domain . . . 215

7.6 Cumulative nodes in the towers of Hanoi 219

7.7 Cumulative running time in the towers of Hanoi 220

7.8 Running time versus time limit in the towers of Hanoi 222

7.9 Cumulative nodes in the kitchen domain 226

7.10 Cumulative running time in the kitchen domain 227

xiv

7.11 Running time versus time limit in the kitchen domain 229

9.1 The �rst maze problem . 249

9.2 The second maze problem . 250

xv

Chapter 1

Introduction

The stumbling way in which even the ablest of the scientists in ev-

ery generation have had to �ght through thickets of erroneous ob-

servations, misleading generalizations, inadequate formulations,

and unconscious prejudice is rarely appreciated by those who ob-

tain their scienti�c knowledge from textbooks.

James Bryant Conant, Science and Common Sense, 1951.

Planning is a popular research area in arti�cial intelligence. Unfortunately,

theoretical results show that planning is indeed a di�cult problem and that

it can not be solved in general. However, by making assumptions about the

domain, planning methods have been developed that work well in domains

that satisfy the underlying assumptions. Unfortunately, these planning meth-

ods do not perform well in other domains. The main focus of this work is

multi-strategy planning, that is a system that can combine di�erent planning

strategies to improve its performance. There are three types of improvement.

Firstly, a multi-strategy planner can increase the coverage (i.e., the set of

problems that can be solved e�ciently) over single strategy planners, if for

example the coverage consists of the union of the individual strategies. Sec-

ondly, there may be problems that can not be solved e�ciently by a single

strategy, because no strategy can solve all resulting subproblems e�ciently.

1

CHAPTER 1. INTRODUCTION 2

These problems may be solvable by a multi-strategy planner if it contains

strategies for all subproblems. Thirdly, di�erent planning strategies can be

combined such that the disadvantages of one strategy can be alleviated by

some other strategy. For example, a strategy may lead to often re-occuring

subproblems which decreases the performance of the planner. By combining

this strategy with another (i.e., caching), this decrease in performance can

be alleviated. The improvement of a practical multi-strategy planner is in

general a combination of these three methods. Furthermore, a multi-strategy

planning system allows the analysis of di�erent strategies within a uniform

framework, which allows for better comparisons between strategies.

1.1 Planning

The ability to solve problems is one of the most interesting aspects of human

or arti�cial intelligence. In the broadest sense, problem solving can be inter-

preted as any goal directed behavior of an agent. However, this de�nition of

problem solving is vague and �ts almost all human behavior.

Therefore, this thesis focuses on a particular type of problem solving,

the strategic planning problem. Informally, strategic planning is the type of

planning humans do if they decide on a course of action before acting. Since

this type of reasoning is an integral part of the design of any autonomous

system, a domain independent planner is desirable so that the planner can

be reused.

There are many di�erent formalizations of strategic planning. At the

heart of a planning formalization is the representation of change. The sim-

plest representation is based on situations, snapshots of the world [?]. Other

more expressive possibilities include modal logics [?], procedural representa-

tions [?], and event-based representations [?].

This thesis focuses on the classical planning paradigm, based on a calculus

of situations. Situation calculus is based on these assumptions: (a) only one

CHAPTER 1. INTRODUCTION 3

event occurs per discrete time step, (b) time step duration does not matter,

and (c) that the state changes are important only at the start and end of a

time step, not during a time step.

1.2 Problem solving and planning

Planning has been an early and popular research area in arti�cial intelligence

[?, ?, ?, ?, ?, ?, ?, ?].

The classical planning problem is: Given (a) a set of operators, that

describe all possible actions of an agent, (b) a description of the world, called

the initial state, and (c) a description of a set of desired states, called the

goal, �nd a sequence of operators that transforms the initial state into a goal

state.

The set of possible actions is complete, and correct. The agent knows

all actions and all e�ects of the actions are known. Also, all relevant facts

about the world are known by the agent. An agent knows exactly whether

an action can be executed and what the result of this action will be.

Although this representation of planning is limited in its expressive power,

for example it can not deal with more than one agent acting at a time, it

is nevertheless of academic and practical importance. Even in this limited

representation planning is intractable. The di�culty of the planning problem

is its computational complexity: the time to �nd a plan grows exponentially

with the length of the solution. This means that planning is infeasible for

large problems with many primitive solution steps. Therefore, to solve a

problem, the search space has to be reduced. A search space can be reduced

by restricting, restructuring, or reordering the original space. The di�erent

methods of reducing the search space, their applicability conditions, and their

e�ect on the search space are of interest in planning research.

Planning is also of practical importance because it is fundamental in the

design of autonomous agents, robots as well as softbots [?]. These agents are

CHAPTER 1. INTRODUCTION 4

ultimately designed to alleviate the load on the user by performing tedious

tasks, such as household chores or cleaning up a �le system. Examples of

other domains of great practical importance are machine shop scheduling,

transportation problems, or VLSI layout. In these domains, the vast number

of possible situations and goals makes preprogrammed solutions infeasible.

1.3 Planning biases and strategies

Based on the notion of an inductive bias in machine learning [?], this the-

sis introduces planning bias to describe assumptions about the domain that

allow a designer to reduce the search space. Examples of planning biases

include assumptions about the structure of the search space, the domain de-

scription, the plan structure, the problem set, and the order of the problems.

A planning strategy is any method of restructuring, restricting, or reorder-

ing the search space of a planner to exploit some planning bias. Planning

systems based on particular planning strategies work well if the underlying

assumptions are met, and fail if they are not. Unfortunately, no single bias

has been found to be superior or even su�cient in all domains. This led

researchers to conclude that planners must use di�erent planning biases in

di�erent domains [?].

Comparison of strategies is made more di�cult, because the underlying

assumptions (planning biases) are often implicit and applicability conditions

for di�erent planning biases are not well understood. Furthermore, a plan-

ning strategy may only be appropriate for parts of a problem rather than the

complete problem.

1.4 Multi{strategy planning

The main contribution of this thesis is to develop a uni�ed method for using

multiple planning strategies on a single problem. Rather than developing

CHAPTER 1. INTRODUCTION 5

another planning bias, this thesis focuses on the selection and combination

of di�erent planning strategies on a single problem. This type of planning

is referred to as multi-strategy planning. There are a number of reasons

why a multi-strategy planner is desirable. This work focuses on improving

performance. Another advantage of a uniform framework is that it allows a

comparison of di�erent planning strategies. Since the planning biases of most

planning strategies are implicit, it is di�cult in general to predict how a given

planning strategy will perform on a given problem. A uniform framework

allows better comparison of di�erent planning strategies and thus allows a

mapping of planning problems to planning strategies. From this, the planning

biases of di�erent planning strategies can be determined and methods for

predicting the performance of a planning strategy can be developed.

1.4.1 The need for multi-strategy planning

This subsection motivates the need for a multi{strategy planning system with

a short example. As mentioned previously, there are many di�erent planning

strategies, three of the most prominent ones are case{based, abstraction-

based, and macro-based planning. The example will show that none of them

alone is su�cient, and that a combination of approaches is required to solve

the example problem e�ciently.

Assume that I want to
y with a small airplane from Calgary to Fair-

mont, a small airport about 100 miles west of Calgary. Before the
ight,

I create a
ight plan, detailing altitudes, speeds, and headings for the trip.

This scenario �ts well in the classical planning paradigm. Calgary is a big

international airport with standard procedures and my home base. Since

I am familiar with the airport, I can retrieve a case (Calgary, west bound

departure) for the �rst part of the
ight. When departing Calgary to the

West, there is a �xed sequence of legs that will lead me out of the Calgary

airspace. Once outside of Calgary, there are two \ways" to get to the desti-

nation Fairmont: either high and direct over the mountains, or low following

CHAPTER 1. INTRODUCTION 6

the valleys. However, the choice of exact route depends on many di�erent

factors, including forecasted weather (cloud levels and winds), purpose of the

ight (sight seeing vs. speed), and type of aircraft. With too many variables

case{based planning is unwieldy. Similar to abstraction-based planning, I

choose an abstract plan (direct or through the valleys) and re�ne it further.

Arriving at the destination, there is a standard procedure (
y a rectangular

pattern around the runway) for landing at a small airport. In contrast, to a

case, however, key aspects of this procedure are parameterized. For exam-

ple, the exact headings depend on the orientation of the runway. To create

this part of the
ight plan, a macro describing a variabilized version of the

pattern is most suited.

1.4.2 Requirements for multi-strategy planning

To combine di�erent planning strategies, a multi{strategy planner must pro-

vide the following capabilities:

1. a usable de�nition of planning strategies

2. a representation covering di�erent planning strategies

3. a decision procedure that determines when a planning strategy is ap-

propriate

4. a search control method that given a planning strategy in the above rep-

resentation results in similarly (preferably identical) structured search

spaces.

To achieve the �rst goal, this thesis interprets planning as search through

the space of partial plans. In this framework, a planning strategy is de�ned

by its language for describing partial plans, its transformations on evolving

plans, and its search method.

In this thesis, general operators are proposed as a solution to the second

problem. Syntactically, general operators are similar to Strips operators.

CHAPTER 1. INTRODUCTION 7

Associated with a general operator are not only the Strips pre-conditions

and e�ects, but also a set of re�nements. A re�nement is a sequence of op-

erators that guarantees that the e�ects of the parent operator are achieved,

but may have additional pre-conditions and/or e�ects. However, the seman-

tics of general operators are di�erent from primitive operators, since they

encode search control knowledge. A general operator contains applicability

conditions, that is a set of conditions that describe under what conditions

the planning strategies described by this general operator should be applied.

As will be shown in section ??, general operators are powerful enough to

represent many di�erent planning strategies, such as case-based planning,

macro-operators, abstraction-based planning, subgoals, reactive rules, for-

ward chaining, etc.

Since general operators include applicability conditions, they imply a de-

cision procedure as solution to the third requirement. The problem is that

for some planning strategies it is di�cult to determine whether they will be

able to reduce the search cost or not. The decision procedure described in

this thesis is equivalent to matching the applicability conditions of a general

operator.

The representation of a planning strategy is not su�cient as can be seen

in the following macro-operator example. Most macro-operator planners add

macros to the operator set and chain macros together to reduce the solution

length, whereas some systems generate a macro-operator set that completely

replaces the original operator set, for example Korf's MPS system [?]. An-

other example is the di�erence between cases and macros. The representa-

tion of macros and cases are similar, but the resulting search spaces are very

di�erent. Cases are retrieved and adapted to a new situation by possibly

substituting variables, inserting operators, and/or replacing operators. The

retrieval is based on a similarity metric, to �nd the most suitable candidate.

Macros are compiled decision steps and are used to create direct links be-

tween previously only indirectly connected nodes in the search space. Macros

CHAPTER 1. INTRODUCTION 8

are not adapted to a new situation, they are only chained together to form

a new plan.

Therefore, a multi-strategy planner must have a search control method

that takes advantage of di�erent planning strategies given their representa-

tion as general operators. This thesis proposes such a static uni�ed search

control method as a solution to the fourth requirement. The planner is

adapted through the generation of new general operators that are added to

the operator set. Another possibility would be to have one search control

method for each strategy. Then the combination of planning strategies is

more di�cult, since now the control of the planner has to be changed on

a program level instead of through a general operator. The main intuition

behind the search control method is that di�erent planning strategies can be

compared and ordered based on the size of the resulting search space.

We use a strongest-�rst heuristic: the planning strategy resulting in the

smallest search space is tested �rst. Checking a small search space �rst has

two bene�ts: (a) if a solution exists in that space, it can be found more

quickly, and (b) if no solution exists the failure can be recognized more

quickly. First, the most similar general operator to the current problem is

retrieved and tested. If the general operator represents a macro that exactly

matches the problem, a solution is found. If the objects do not match, the

general operator is adapted to the current situation by substituting variables.

If the plan still fails, the search method adapts the operator sequence further

by inserting, removing, and replacing operators. If the operator sequence

does not lead to a solution, a new subproblem space is created. There are

three types of subproblems spaces: an abstract subgoal, a serial subgoal,

and a general subgoal. The subgoals di�er by the constraints on the search

algorithm when trying to �nd a solution to the subproblem.

CHAPTER 1. INTRODUCTION 9

1.5 Learning general operators

Assuming an e�cient search control method that can use many di�erent

planning biases, the question remains how the system acquires suitable gen-

eral operators. Because general operators are a weak representation with few

constraints on the parent operator and its re�nements, the creation of gen-

eral operators must be carefully controlled to avoid increasing the branching

factor too much.

General operators can be pre-programmed, created automatically through

an analysis of the domain description, or acquired from supervised or unsu-

pervised learning. DoLittle, the implementation of multi-strategy planning

described in this thesis, is part of an instructable system and is able to learn

new general operators from previous problem solving episodes. After a prob-

lem is solved or aborted the derivation is passed on to a set of planning bias

learners that analyze the problem solving trace and create general operators

to speed up the planning process on similar problems in the future. The plan

derivation may be annotated by the user to control the learning.

Creation of new general operators is controlled by providing a set of plan-

ning bias learners, e.g., a case-based planning learner, that have knowledge

about the speci�c search control method that the planner uses. Therefore, a

planning bias learner knows su�cient conditions for improvement, i.e., the

learner knows that if a certain set of conditions are met, the addition of

a speci�c general operator will improve performance. However, the learn-

ing modules do not know the necessary conditions for improvement, since

those are too di�cult to analyze. This means that the learning modules are

over-conservative; in certain cases a learning module will reject a general op-

erator even though it would improve performance. The learning modules are

conservative, to balance the increase in the branching factor and the search

reduction.

DoLittle uses a dynamic �lter to check the performance of the learned

operators in subsequent problem solving episodes and to check whether the

CHAPTER 1. INTRODUCTION 10

su�cient conditions of the learner are true or not.

1.6 Outline of the thesis

Chapter ?? motivates multi-strategy planning through an extended example.

The domain is a simulated kitchen robot that is able to make beverages such

as tea, co�ee, or milk. The example shows that the minimum necessary

search length for a multi-strategy planner is signi�cantly less than that of

four single strategy planners: means-ends analysis, macro-based planning,

case-based planning, and abstraction-based planning.

Chapter ?? reviews a collection of important planning systems. These

planners represent common planning strategies or methods for improving

performance. In section ??, the plan space search paradigm is introduced

and the di�erent planning methods are compared within this paradigm. This

comparison results in a practical de�nition of planning strategies. A planning

strategy is de�ned by a plan language, a set of plan transformations, and a

search method.

Chapter ?? develops a theoretical framework for multi-strategy planning.

This framework is based on a model of abstraction developed in section ??.

The framework identi�es a number of dimensions for the comparison of multi-

strategy planning systems (problem coordinated vs. subproblem coordinated,

ordered vs. unordered, exhaustive vs. non exhaustive, and the decision proce-

dure). Section ?? shows that the planning strategies described in chapter ??

match the model of abstraction. Section ?? shows su�cient conditions un-

der which a multi-strategy planner exponentially reduces the cost of �nding

a solution compared to means-ends analysis, case-based, abstraction-based,

and macro-based planning.

Chapter ?? describes the design of the unordered subproblem coordi-

nated multi-strategy planner DoLittle. In section ??, the representation

of di�erent planning strategies is shown. The representation combines meta

CHAPTER 1. INTRODUCTION 11

knowledge (applicability conditions) with a description of a set of planning

strategies. Section ?? describes DoLittle's search control method, which

emulates di�erent planning strategies given their representation as general

operators.

Chapter ?? contains the description of DoLittle's planning bias learn-

ers. Currently, DoLittle contains three di�erent learners: cases, macros,

and abstractions. The di�erent learners illustrate the di�erent planning bi-

ases of the associated strategies.

Chapter ?? describes the empirical evaluation of DoLittle on three do-

mains; the blocksworld, the towers of Hanoi, and the kitchen domain. Multi-

strategy planning improves the performance over single strategy planning in

all domains. There best single strategy planner varied for each domain. The

case-based planner is the best single strategy planner in the blocksworld and

the kitchen domain, the abstraction-based planner is the best one in the tow-

ers of Hanoi domain. The experiments in the kitchen domain show that (a)

multi-strategy planning as implemented in DoLittle is able to solve com-

plex problems in the kitchen domain, and (b) that a subproblem coordinated

multi-strategy planner performs better than a problem coordinated one.

Chapter ?? compares DoLittle to other multi-strategy learning and

planning systems.

Chapter ?? summarizes the main contributions of this dissertation and

provides some comments about possible extensions to DoLittle and other

future work.

Chapter 2

Scenario

Few things are harder to put up with than the annoyance of

a good example.

Mark Twain, Pudd'nhead Wilson, (Chap. 1, Pudd'nhead

Wilson's Calendar).

In this chapter, the idea of multi-strategy planning is expanded through a

more detailed example: a simulated kitchen with a one-armed mobile robot

(described in section ??). The chapter introduces four common planning

strategies: means-ends analysis (subsection ??), case-based planning (subsec-

tion ??), planning using abstractions (subsection ??), and macro-operators

(subsection ??). Certain parts of the kitchen domain either support or violate

the di�erent underlying assumptions of the di�erent planning strategies.

This chapter simpli�es the description of planning in the example by

making the following assumption: The cost of planning is mostly determined

by the number of decision steps necessary to �nd a solution, i.e., the decision

length. A decision step is a choice point in the search, for example choosing

an operator from a set of operators or an instantiation for a variable. In most

planning systems, the decision length is identical to the solution length, that

is the number of primitive operators in the solution. As will be shown in

chapter ??, the decision length is the dominant factor in planning cost and

12

CHAPTER 2. SCENARIO 13

is mostly insensitive to the branching factor.

In the kitchen domain, none of the described planning strategies is suf-

�cient by itself. Although the planning strategies solve parts e�ciently, the

violation of some underlying assumptions means that other parts are solved

ine�ciently. This means that the planner has to search for a signi�cant

part of the solution and the cost of planning using the individual planning

methods is exponential in the length of the solution.

The example shows that multi-strategy planning (subsection ??) signi�-

cantly reduces the decision length and that the cost of planning is constant

in the decision length.

At the conclusion of this chapter (section ??), the results derived from

the kitchen domain are generalized to other domains.

2.1 The kitchen domain

Assume that we are designing a planning system for an intelligent domestic

robot; a robot that does common household chores, such as cleaning, cook-

ing, and painting the house. Although such a robot must be able to deal

with the complexities of the real world (uncertainty of actions, restrictions

on perception, or interactions among multiple agents), a strategic planning

component is nevertheless important. For example, strategic planning can

prevent the robot from painting itself into a corner. The robot is a simple

one, it can move around the house and it has one arm that it can use to

a�ect the environment.

As part of its job, the robot is required to prepare simple beverages such

as tea, co�ee with cream, or milk with honey. The robot is used in varied

tasks around the house, so its strategic planner is designed as a domain-

independent planning system that reuses the planning and learning compo-

nents of the robot.

Figure ?? shows the simulated kitchen domain. Although I would be

CHAPTER 2. SCENARIO 14

extremely interested in a household robot to diversify my pizza and beer

diet, a simulation instead of a physical robot was used. Since the focus of

this research is on the strategical planning capabilities of such a robot a

simulation is an appropriate simpli�cation.

There are four separate locations in the kitchen: at the sink, the table, the

stove, and the fridge. The kitchen contains the following appliances: a sink,

a garbage-can, a microwave, a co�ee-maker, a stove, and a fridge with an ice

dispenser. A cupboard with cups and glasses and a drawer for silverware is

available. There is a co�ee maker on the table, and a kettle on the stove. On

a shelf which can be reached from the sink, there is a tea box with tea bags,

a jar of instant co�ee, and a co�ee jar, as well as jars with honey and sugar.

In this thesis, the robot's task are restricted to preparing beverages, such

as tea, co�ee with cream and sugar, or milk with honey.

A complete list of primitive operators is given in table ??. The complete

domain description of the kitchen domain in the Prodigy domain descrip-

tion language is shown in appendix ??. Although the domain is similar to

Hammond's Chef system [?], the primitive operators are at a lower level of

abstraction than the ones used by Hammond, for example pickup-from-

cupboard versus Chef's Stir-fry-vegetables.

This level of abstraction was chosen so that it is at least plausible to

implement the primitive operators as speci�c behaviors of the robot, similar

to Brooks's arti�cial life systems [?, ?]. For example, there are two di�er-

ent operators, Scoop-Instant-Coffee and Scoop-Honey, although both

have similar functions, i.e. using a spoon to add an ingredient. However, the

actions of the robot are di�erent when handling honey as opposed to in-

stant co�ee powder, since in the �rst case, the spoon has to be rotated to

stop the honey from running o�, whereas the spoon has to be kept still to

avoid dropping the instant co�ee powder. Combining the operators Scoop-

Instant-Coffee and Scoop-Honey into a single operator would make the

representation of the domain easier, but would make implementing the oper-

CHAPTER 2. SCENARIO 15

ators as behaviors more di�cult. In the following paragraphs, the di�erent

operator classes are described.

The operatorMove-Robot moves the robot from a location to a neigh-

boring location, e.g., (Move-Robot at-sink at-table). To move the

robot from the sink to the stove, two primitive moves are necessary: (Move-

Robot at-sink at-table) followed by (Move-Robot at-table at-

stove).

The second class of operators allows the agent to pick up and put down

objects in various locations. There is a separate version of the PickUp and

PutDown operator for the table, the drawer, the sink, and so on. There

is also a special operator that enables the robot to throw things into the

garbage can.

There are two primitive operators to open/close things. One handles

containers (e.g., the tea box, the honey jar, or the co�ee jar) and one handles

appliances (e.g., the microwave, the fridge, or the drawer).

The remaining operators use di�erent appliances and objects in the do-

main. For example, there are operators to use the microwave (Heat-Water-

in-Microwave), the silverware (Cut, Stir), and the water tab (Fill-

With-Water $Object, Turn-Water-Off).

There are also operators to handle ingredients, such as tea, milk, or sugar.

The robot can scoop ingredients (e.g., honey, sugar, or instant co�ee) with

a spoon into cups or glasses, stir beverages, and �ll the co�ee maker. It can

also pick up tea bags from the tea box.

The kitchen domain is a complex domain: plans often consist of hundreds

of primitive steps, the number of objects and operators in the domain is larger

than in other toy domains. Therefore, the kitchen domain is clearly beyond

the capability of brute force planners, such as simple depth-�rst search. Ta-

ble ?? shows the primitive steps to create a cup of tea. This plan contains

30 elementary steps. Prodigy is unable to �nd a solution to this problem

CHAPTER 2. SCENARIO 16

Figure 2.1: The kitchen domain

Fridge

Stove

Microwave

Table
Garbage

Can

Sink

Tap

CupboardShelf

Drawer

Kettle Milk

Ice-
dispenser

at-sink at-table at-stove at-fridge

Coffee-
maker

Coffee-can

Cup

Glass 1

1

2

2

3

3
Honey Sugar

Tea-box

Coffee
jar

Instant-coffee
jar

CHAPTER 2. SCENARIO 17

Table 2.1: Primitive operators in the kitchen domain

O1 Move-Robot $FromLoc $ToLoc

O2 Pick-Up-From -Drawer $Object,

-Table, -Sink, -Fridge,

-Microwave, -Cupboard, -Stove,

-Shelf

O3 Put-In -Drawer $Object

-Table, -Sink, -Fridge,

-Microwave, -Cupboard, -Stove,

-Shelf

O4 Put-In-Garbage-Can $Object

O5 Open-Door $Appliance, Close-Door $Appliance,

O6 Open-Container $Container, Close-Container $Container

O7 Heat-Water-In-Microwave, Heat-Milk-In-Microwave

O8 Cut $Object, Stir $Cup

O9 Fill-With-Water $Cont, Turn-Water-Off

O10 Get-Tea-Bag, Make-Tea $Cont,

O11 Scoop-Instant-Coffee, Make-Instant-Coffee $Cont,

O12 Scoop-Honey, Add-Honey-to-Milk $Cont,

Add-Honey-To-Tea $Cont

O13 Add-Sugar-to -Milk $Cont,

-Tea, -Instant-Coffee

Get-Sugar

O14 Pour-Milk $Cont, Add-Milk $Cont

CHAPTER 2. SCENARIO 18

in the resource limits allocated during the tests1.

2.2 Comparison of di�erent planning meth-

ods

Let us consider the methods that four di�erent planning strategies use in

the kitchen domain: means-ends analysis (subsection ??), case-based plan-

ning (subsection ??), abstraction-based planning (subsection ??), and macro

operators (subsection ??). The performance of these planning strategies is

compared to that of a subproblem coordinated multi-strategy planner, that

is a planner that can combine them on a single problem (subsection ??).

The problem in this example is to create a cup of instant co�ee with

sugar. The initial state for all problems is shown in �gure ??.

To simplify the problem, it is assumed that the planner has previously

made a cup of tea and remembered this plan. A solution to making tea is

shown in table ??.

A solution to the problem of making instant co�ee with sugar is similar

to the plan for making tea. However, after heating a cup of water in the

microwave, the robot must fetch the instant co�ee jar and a spoon. After

making instant co�ee, the robot must also fetch the sugar and add it to the

co�ee. The latter part of the solution to this problem is shown in table ??.

The total plan for making instant co�ee with sugar contains 42 steps.

To estimate the cost of solving the example problem using a given plan-

ning system, this thesis computes the minimum decision length of a problem.

The decision length is the number of choices the planner has to make to �nd

a solution. The only choice a forward chaining planner makes is to select an

operator and variable binding for an operator that is applicable to the current

state. Therefore, a forward chaining planner's decision length is equal to the

solution length, the number of operators in the solution. Chapter ?? gives

1The maximum of 15000 search nodes was exceeded.

CHAPTER 2. SCENARIO 19

Table 2.2: Making tea in the kitchen domain

1 open-door cupboard ; get a cup and �ll it

2 pick-up-from-cupboard cup1 ; with water

3 move-robot at-table at-sink

4 put-in-sink cup1

5 fill-with-water cup1

6 turn-water-off

7 pick-up-from-sink cup1 ; heat the cup with water in

8 move-robot at-sink at-table ; the microwave and put it

9 put-on-table cup1 ; on the table

10 move-robot at-table at-stove

11 open-door microwave

12 move-robot at-stove at-table

13 pick-up-from-table cup1

14 move-robot at-table at-stove

15 put-in-microwave cup1

16 close-door microwave

17 heat-water-in-microwave cup1

18 open-door microwave

19 pick-up-from-microwave cup1

20 move-robot at-stove at-table

21 put-on-table cup1

22 move-robot at-table at-sink

23 pick-up-from-shelf tea-box ; get a tea-bag and put it in

24 move-robot at-sink at-table

25 put-on-table tea-box ; the cup, dispose of it

26 open-container tea-box ; afterwards

27 get-tea-bag

28 make-tea cup1

29 move-robot at-table at-sink

30 put-in-garbage-can old-tea-bag

CHAPTER 2. SCENARIO 20

Table 2.3: Making instant co�ee with sugar in the kitchen domain

: : :

22 move-robot at-table at-sink ; identical to the

; plan for making tea

23 pick-up-from-shelf instant-coffee-jar ; replace tea-box

; with

24 move-robot at-sink at-table ; instant-co�ee-jar

25 put-on-table instant-coffee-jar

26 open-container instant-coffee-jar

27 open-door drawer ; add steps and use

28 pick-up-from-drawer spoon ; a spoon

29 scoop-instant-coffee

30 pour-instant-coffee cup1

31 stir cup1 ; stir instant co�ee

32 put-down-on-table spoon

33 move-robot at-table at-sink

34 pick-up-from-shelf sugar-box

35 move-robot at-sink at-table

36 put-on-table sugar-box

37 open-container sugar-box

38 pick-up-from-table spoon

39 scoop-sugar

40 add-sugar cup1

41 stir cup1

42 put-on-table spoon ; done

CHAPTER 2. SCENARIO 21

more details of those concepts. Since search is exponential in the decision

length, it is the dominating factor in the solution cost. Section ?? analyses

the dependency of search cost on decision length and branching factor.

2.2.1 Means-ends Analysis

Means-ends analysis looks at the di�erences between the current state and

the desired goal state and selects a di�erence. All operators are classi�ed

by the di�erence that they reduce2. Means-ends analysis then chooses a

relevant operator, that is an operator that reduces the selected di�erence,

and a variable binding. An operator may either be applied to the current

state (if all its preconditions are satis�ed) or it may be added to the sequence

of pending operators. The unsatis�ed preconditions of the operator yield new

subgoals.

Table ?? gives a brief summary of how means-ends analysis tries to gener-

ate a plan to make instant co�ee with sugar. First the di�erences between the

initial state and the goal state are found. Here there are three di�erences: (a)

the cup does not contain instant co�ee, (b) the cup is not on the table, and (c)

there is no sugar in the cup. This example assumes that the planner selects

the �rst di�erence and tries to achieve it. In the kitchen domain, there is

only one operator to make instant co�ee Make-Instant-Coffee and only

one variable binding will yield the desired e�ect ($Cup = cup1). Comparing

the preconditions of the operatorMake-Instant-Coffee shows, that there

are some un-satis�ed pre-conditions. Selecting an unsatis�ed pre-condition

creates a new subgoal and the planner is called recursively. In our example,

the planner selects (contains cup1 hot-water) as a new subgoal.

Means-ends analysis works well in domains with only a few relevant op-

erators and with linear subgoals. Subgoals are linear, if they can be achieved

in any order, and can be achieved without violating previously achieved sub-

goals [?]. These conditions are problematic in the kitchen domain; for ex-

2This classi�cation is computed automatically by analyzing the e�ects of an operator.

CHAPTER 2. SCENARIO 22

Table 2.4: Means-ends analysis example

Goal (contains cup1 instant-coffee)

(is-on cup1 table)

(contains cup1 sugar)

Initial State shown in �gure ??

Di�erences (contains cup1 instant-coffee)

(is-on cup1 table)

(contains cup1 sugar)

Select Di� (contains cup1 instant-coffee)

Select Op. and Binding Make-Instant-Coffee cup1

Compare Pre-cond (contains cup1 hot-water)

(holding spoon)

(contains spoon instant-coffee-powder)

(is-on cup1 table)

(is-at robot at-table)

Select Pre-cond and Subgoal (contains cup1 hot-water)

and create new subgoal

ample, there are eight operators that can achieve (holding $X) and plans

are often not linear. In the example above, the goal (contains cup1 hot-

tea) must be achieved before achieving (is-on cup1 table), since heating

up the cup requires that it is moved from the table, to the microwave. An-

other example of a non-linear subgoal is in the example, where (contains

cup1 hot-water) must be achieved before the other alternatives, such as

(holding tea-bag).

Prodigy, a means-ends analysis planner can not �nd a solution within

the resource limits (15000 nodes), since the search is not guided su�ciently.

Also, since means-ends analysis does not make use of previous planning

episodes, it will have to create a plan to make tea with sugar from scratch.

In our example, the solution length for making instant co�ee with sugar is 42

steps for means-ends analysis and the average branching factor in the kitchen

domain is around 3:5, which results in a worst case search space of around

CHAPTER 2. SCENARIO 23

7� 1022 nodes.

2.2.2 Case-based planning

This section gives a brief example of case-based planning. A more detailed

description can be found in section ??. Case-based planning attempts to

reduce the cost of planning by modifying a previously generated plan to �t

the new problem instead of creating plans from scratch. The changes include

substituting variables, replacing some operators, or removing operators from

the original plan.

One feature of case-based planning is its use of powerful indexing methods

to retrieve similar cases, since one expects the planner to contain many plans

in memory. The indexing is usually based on goal similarity.

The planning bias of case-based planning is that: (a) similar plans can be

found e�ciently through indexing, (b) plans can be quickly modi�ed to �t the

new situation, and (c) the individual adaptations are mostly independent.

In this example, a case-based planner has previously solved the problem

of making tea, and retrieves this plan when solving the problem of making

instant co�ee with sugar.

Next, the resulting plan is analyzed and problems are �xed. For example,

at step 23, the tea box has to be replaced with the instant co�ee jar, because

tea does not occur in the goal speci�cation. Ignoring the cost of removing

unnecessary operations, a successful solution requires the creation of a su�x

plan that gets the instant co�ee jar, a spoon, and the sugar. Then the robot

must scoop the instant co�ee and sugar into the cup. This su�x plan are

steps 23� 42 of the solution in table ??.

In absence of other knowledge, there is no more guidance for the creation

of the su�x plan, and a case-based planner uses a weak planner, such as

means-ends analysis, to create this plan.

Therefore, in this example, solving the instant co�ee problem requires a

search of depth 20. This is much better than the original decision length of 42

CHAPTER 2. SCENARIO 24

steps, but still expensive. This estimate is an underestimate, since it ignores

the cost of indexing, and of removing unneeded plan steps. However, in the

worst case the search space is still too large to allow case based planning to

solve this problem (around 76 billion nodes if the branching factor is 3:5).

The underlying requirement of case-based planning that is violated is that

the cost of the individual adaptation is small. In the example, the cost of

creating the su�x plan is too big.

2.2.3 Abstraction-based planning

Abstraction based planning ignores low level details in the beginning to create

an abstract plan. The abstract plan is then re�ned to include the omitted

low level details. For example, an abstract planner may ignore the existence

of hot water or the current location of the robot, and create an abstract plan

consisting of one abstract operator: either (a) brew fresh co�ee, or (b) use

instant co�ee. The abstract plan for making instant co�ee might look as

follows:

ABS-PLAN: Make-Instant-Coffee-With-Sugar

1) Fill cup with water

2) Heat water

3) Add instant co�ee

4) Add sugar
This abstract plan is then re�ned to include more details. For example,

step two (Heat-Water) is re�ned, by choosing a method to heat the wa-

ter (the stove or the microwave). If the planner uses the microwave, the

re�nement of step two is similar to the macro Get-Hot-Water shown in

the next section. The di�erences arise from lower level details such as the

current position of the robot or the status of the doors.

One disadvantage of abstraction-based planners is their inability to pro-

vide guidance in the search for an re�nement of abstract operators, which

can be a non-trivial search problem. For example, heating a cup of water in

the microwave is a common operation in the kitchen domain, but an abstract

CHAPTER 2. SCENARIO 25

planner has to search for a re�nement of this operator every time it is needed.

Getting a cup of water requires at least 6 steps in itself.

The crucial factor in abstraction-based planning is that all individual

search problems are small enough to be manageable. This requires that the

individual search problems are roughly of the same size. Subproblems should

have roughly the same size, since each subproblem's contribution to the �nal

solution is linear in the length of the subproblem, whereas the cost of �nding

a solution to the subproblem grows exponentially with its length. If one

subproblem requires many more solution steps than the other subproblems,

its cost will overwhelm any improvement on the other subproblems.

Alpine, a popular abstraction-based planner, creates a two-level abstrac-

tion hierarchy for the example. As will be shown in the analysis of two-level

abstraction hierarchies in subsection ??, the optimal partitioning of a prob-

lem into two abstraction levels is given if the abstract plan contains
p
l ab-

stract operators that each correspond to a ground level problem of lengthp
l. In our example, this will result in decision lengths of

p
42 � 7. The

total cost of abstraction-based planning in this example is thus the cost of

solving 1 abstract problem and 7 subproblems in the ground space each with

a decision length of 7 steps.

2.2.4 Macro-based planning

Macros are �xed sequences of primitive operators with parameterized argu-

ments. The idea is that by creating macros for often used subtasks, problems

that include these subtasks can be solved more e�ciently, since fewer reason-

ing steps are necessary. Objects in the subtasks are commonly generalized

so that learned macros are more widely applicable. Traditionally, a macro

learner extracts sequences of operators based on some operationality criteria,

generalizes them, and adds the resulting macro to the operator set. The dis-

advantage of adding a macro-operator to the search space is that it increases

the branching factor of the resulting space by adding extra connections be-

CHAPTER 2. SCENARIO 26

tween previously only indirectly linked states. Etzioni showed that even a

small increase in the branching factor must be accompanied by a large reduc-

tion in the search size to be useful [?]. This analysis is substantiated through

experimental results that show a slowdown for indiscriminate macro-learners

[?, ?, ?, ?].

Minton identi�es another problem of macro-based planning, the hidden

cost of matching macros. Since matching an operator to the current situation

is an expensive operation (exponential in the number of variables), Minton

shows that even if macros would not increase the branching factor, they may

still outweigh their bene�ts by increasing the cost of node expansion, since

at each node, the planner has to test whether a macro is applicable or not.

The goal of a macro-learner is to �nd common subsequences in plans and

to generalize them. In the scenario shown in this chapter, the planner has to

create two plans (fmake-teag and fmake-instant-co�ee-with-sugarg).
A common subsequence of these and many other plans in the kitchen

domain is captured by the macro Macro-Fill-with-water $Cup. The

operator Macro-Fill-with-water is useful, since it allows the planner

to get a cup of water using one operator as opposed to reasoning about 4

primitive operators necessary to achieve the goal.

MACRO: Macro-Fill-with-Water $Cup

1) Put-in-Sink $Cup

2) Fill-With-Water $Cup

3) Turn-Water-Off

4) Pick-Up-from-Sink $Cup

However, what if the robot is not at the sink, but at a di�erent location?

In this case the macro can not be used. Furthermore, the Fill-with-water

$Cup only works if the water is currently turned o�. Of course, a planner

might add macros for situations in which the robot is at the table, the stove,

and so on. But since the above conditions (location of the robot and state

of the water tab) are independent, a macro learner would have to create a

CHAPTER 2. SCENARIO 27

macro for each pair of conditions (location, water on/o�). Other conditions

are whether the water is needed at the end of the macro or not, or whether

the sink is empty or not.

This means that the number of macros to cover all situations may grow

exponentially in the length of the macros. This will result in a large increase

in the branching factor and the cost of expanding a node. In fact, macro

learners that augment the original operator set are based on the implicit

constraint that one or a few macros are su�cient to cover most situations.

Therefore, macros in general are short, widely applicable operator se-

quences. Long macros have the problem that since they can not be adapted

to the new situation, they are too speci�c. However, a macro must be useful

in a large set of instances to overcome the utility problem. Therefore, assume

that the longest macro contains 4 primitive operators. Four primitive oper-

ators seems to be the longest of reusable operator sequences. For example,

the macro described in section ?? created the macro Macro-Fill-With-

Water shown above. Now even under the optimistic assumption that a

planner has macros for all needed operator sequences of size up to 4, the de-

cision length of making instant co�ee with sugar is still dl=4e = d42=4e = 11.

Ignoring the cost of an increase in branching factor and the additional

match cost, macro-based planning is too expensive to be practical (roughly

1; 000; 000 nodes with a branching factor of 3:5 in the example).

2.2.5 Multi-strategy planning

The intuition behind a multi-strategy planner is that (as shown in the pre-

vious examples) planning systems are able to solve parts of a problem e�-

ciently, but have di�culties with other parts. The problem is seen as a set

of subproblems. There is an e�cient solution method for each subproblem,

but not a single one that works well for the whole problem.

The goal of multi-strategy planning is to design a planning system that

can:

CHAPTER 2. SCENARIO 28

1. break down the original problem into subproblems,

2. select an e�cient solution method for each subproblem and solve the

subproblems using this method

3. combine the solutions to the subproblems into a complete solution.

Assume that there is a planning system that combines four di�erent prob-

lem solving methods: means-ends analysis, cases, abstractions, and macros.

In the example, the planner �nds the shortest solutions, for example by using

an admissible search function, such as iterative deepening or breadth-�rst.

First, it will retrieve the plan to make tea and adapt it. This leads to

a new problem, the creation of a su�x plan that contains 20 primitive op-

erators. However, instead of using means-ends analysis to create the plan,

a multi-strategy planner can make use of an abstraction hierarchy. If the

planner creates a two-level abstraction hierarchy as in subsection ??, the in-

dividual subproblems will be of size
p
20 � 4. There is one abstract problem

and 4 ground space problems. Instead of solving the ground space problems

using means ends analysis, the planner has learned macros to solve them.

Therefore, the solution length of solving them is equal to 4=4 = 1. If the

planner also contains abstract macros, all subproblems can be solved by ap-

plication of a single operator. Then the decision length of multi-strategy

planning is a single step.

The important feature of a multi-strategy planner is its ability to solve

subproblems e�ciently and combine the resulting solutions. As can be seen in

the make-instant-co�ee-with-sugar example, the separation into subproblems

is dynamic, for example a macro was used to solve an abstract problem which

in turn generated a set of ground subproblems.

CHAPTER 2. SCENARIO 29

2.3 Conclusions

The previous example motivates multi-strategy through an example in the

kitchen domain. A multi-strategy planner was able to do signi�cantly better

(decision length of 1) than planners based on means-ends analysis (42), cases

(20), abstraction (7), or macros (11).

However, some details were omitted in the example for readability. For

example, the additional cost due to an increase in the branching factor, the

speci�c selection method for choosing di�erent biases, etc. These issues are

discussed in chapter ??.

Although, an e�cient planner in the kitchen domain is desirable, the goal

of this research is to provide a domain independent framework. Another ex-

ample of multi-strategy planning is shown in subsection ??. The kitchen

domain, however, contains a few features that make it a good example do-

main. Solutions contain many primitive operators. Also, there exist useful

abstraction hierarchies and macros, but the resulting subproblem spaces are

non-trivial. This distinguishes the kitchen domain from other commonly

used domains. For example, in the blocksworld domain with three blocks,

no nonlooping problem solution can contain more than six steps.

Chapter 3

Literature Review

Progress is the injustice each generation commits with regard

to its predecessors.

E. M. Cioran (b. 1911) Rumanian born French philoso-

pher, The Trouble with Being Born, ch. 8, 1973.

This chapter formalizes the concept of a planning problem and reviews previ-

ous work in this area. Section ?? lists some important previous approaches.

Section ?? describes a uni�ed framework for comparing planning strategies.

In this framework, planning is viewed as search through the plan space.

Di�erent planning strategies are shown to be equivalent to di�erent plan

languages, sets of transformations on evolving plans, and search methods.

This framework is used to develop a usable de�nition of a planning strategy.

Section ?? compares di�erent planning strategies by their transformation set

and their plan representation language.

3.1 The planning problem

A domain in planning is the subset of the world that the robot is interacting

with, for example, the kitchen domain described in chapter ??. The task of

30

CHAPTER 3. LITERATURE REVIEW 31

a domain independent planner is to �nd a description of a course of action

that transforms the domain from a given state into a desired state. The

domain description includes a set of operators. The operator set describes

all possible actions of an agent in the domain. The �rst problem is to �nd

a suitable representation for actions; one that allows reasoning about states

before and after application of an action.

Even given a suitable representation, the planning problem is di�cult.

Erol et al. prove that for a popular representation, it is EXPSPACE complete

[?]. The reason is that for some domains, the length of the optimal solution

(i.e., the number of primitive operators in the shortest plan to solve the

problem) grows exponentially with the input size. For example, adding one

disk to the tower of Hanoi puzzle doubles the length of the solution. This

result holds for function free description languages with delete lists (datalog

language), for example the Strips representation, a minimally adequate

representation language. Therefore, a planner must somehow reorder, reduce,

or restructure the search space based on some assumption about the domain.

This section reviews early planning work and the structure of their

search spaces. It �rst discusses totally ordered planners: the GPS (sub-

section ??), the Strips system (subsection ??), and the Prodigy system

(subsection ??). Secondly partial order planners are investigated (Subsec-

tion ??). Subsections ?? and ?? discuss relaxed and reduced abstraction

hierarchies respectively. Lastly, it introduces Chef as an example of a case-

based planner (subsection ??).

3.1.1 The GPS system

Early work in planning includes Newell's \General Problem Solver" (GPS)

[?, ?], a planner intended to both automatically solve interesting problems

and to test the plausibility of a theory of human problem solving. Newell et

al. analyzed human problem solving behavior by taking a detailed transcript

of subjects in a logic domain. This transcript included utterances and meta

CHAPTER 3. LITERATURE REVIEW 32

planning remarks of the user, for example, what particular goal a subject

was trying to achieve.

The main contribution of GPS was its distinction of task speci�c knowl-

edge and domain independent planning knowledge. Furthermore, through

analysis of transcripts of human problem solving episodes, Newell developed

the means-ends analysis search strategy. The basic idea behind means-ends

analysis is to reduce di�erences between the current and the goal state. Op-

erators are classi�ed by the di�erence they may reduce. The di�erences are

ordered according to their di�culty and more di�cult ones are reduced �rst.

An operator relevant to a selected di�erence is chosen. If the operator is ap-

plicable, it is applied and the search continues in a depth-�rst manner. If the

operator is not applicable, rather than rejecting the operator, the unsatis�ed

preconditions of the operator yield new subgoals. A more detailed example

of means-ends analysis is shown in subsection ??.

GPS was limited in its expressive power because of its representation of

objects. Ernst extended GPS by generalizing objects. The GPS system was

able to solve simple logic reformulation problems automatically.

3.1.2 The Strips system

This subsection discusses Strips, a planning system designed at SRI inter-

national by Fikes et al. Strips' main contribution to planning is the (strict)

Strips assumption, which states that only predicates mentioned in the ef-

fects of an operator are a�ected by the execution of an operator, all other

predicates remain unchanged. This assumptions provides a practical solution

to the frame problem.

Using the Strips assumption, it is easy to compute (a) the resulting state

for a sequence of operators, (b) the correctness of a sequence (preconditions

of all operators are satis�ed, and (c) whether a plan achieves a goal (resulting

state satis�es the goal).

The search control method used by Strips is a generalization of GPS's

CHAPTER 3. LITERATURE REVIEW 33

means-ends analysis. In contrast to GPS, however, it does not assign di�-

culty levels to classes of di�erences.

The Frame, Rami�cation, and Quali�cation Problems

At the heart of any reasoning about actions is the problem of specifying

the state of a complex world before and after application of an operator.

Although other formulations are sometimes used [?], the formulation of the

frame problem used in this thesis is the one �rst described by McCarthy

and Hayes [?]. It is the problem of representing what predicates are not

changed by an action. For example, the action Put-Cup-In-Cupboard in

the kitchen domain does not change the location of the microwave. Solving

these problems requires the addition of frame axioms that specify which pred-

icates remain unchanged after execution of an action. For example, a frame

axiom that speci�es that Put-Cup-On-Table does not change the location

of the cupboard. However, this approach may lead to a combinatorial explo-

sion in either the number of frame axioms needed or the computational cost

of applying those axioms.

The rami�cation problem is the complementary problem of specifying

which predicates are changed by an action [?]. For example, Put-Cup-In-

Cupboard does usually not change the location of the cupboard. What

about the case in which the cup is heavy enough to tear the cupboard of

the wall? The problem is that some e�ects of an operator may be context

dependent and that an encoding of all possible contexts for an operator is

intractable.

The quali�cation problem is the problem that operators have usually

unspeci�ed preconditions [?]. For example, the operator Open-Door has

the following preconditions: (a) the arm is empty, (b) the door is closed, and

(c) the door can be reached from the current location of the robot. If those

conditions are satis�ed, the planner assumes that the operator will succeed

and the drawer will be open after applying it. However, what if the drawer

CHAPTER 3. LITERATURE REVIEW 34

is nailed shut, the handle is missing, and so on? Again, it is infeasible to

specify all conditions under which an action may fail.

The Strips representation

Most modern planning systems still use a variant of the Strips representa-

tion, e.g., Prodigy, Alpine, Tweak, and DoLittle. This subsection de-

scribes a popular version of the Strips representation. The original Strips

program allowed more complex preconditions, which in turn may require ar-

bitrarily complex theorem proving to check the correctness of a plan. The

Strips representation of operators consists of three lists, a list of precondi-

tions, an add-list and a delete-list. Preconditions describe sets of states in

which the operator is applicable. Add- and delete-lists specify which predi-

cates are added or deleted respectively from the state description after ap-

plication of this operator.

Strips, however, does not address the rami�cation or quali�cation prob-

lem. The e�ects of an operator only depend on the operator itself, instead

of the state in which the operator is applied. This means that the Strips

representation does not allow the representation of conditional e�ects. For

example, Strips can not describe an electric toggle switch (If the light is

on, then turning the switch results in the light being o�, and vice versa). In

practice this means that there may be more operators necessary to describe

a domain that one would expect. In the example above, the toggle switch

operator must be represented by two operators, one with the added precon-

dition that the light is one, one with the light being o�. In the blocksworld

domain, the absence of conditional e�ects requires four operators (UnStack,

Pick-Up) and (Stack, Put-Down), instead of the more natural (Pickup,

Putdown) operators.

Other approaches to the frame, rami�cation, and quali�cation problems

include unrestricted logics, such as general frame axioms [?] and circumscrip-

tion [?]. These approaches are computationally too expensive for practical

CHAPTER 3. LITERATURE REVIEW 35

planning.

3.1.3 The Prodigy system

Prodigy is an ongoing research project in planning, machine learning, and

knowledge acquisition at Carnegie Mellon University. The �rst version,

Prodigy2, was developed by Minton in 1988 [?]. Prodigy2 is a means-

ends planner similar to Strips. Whereas the original Prodigy system was

unable to interleave plans to achieve di�erent subgoals, and was thus unable

to �nd solutions to some problems (e.g., the famous Sussman anomaly), the

latest version of Prodigy4 supports non-linear planning by allowing inter-

leaving of di�erent subgoals. This is the main di�erence between the two

versions. The interleaving of subproblems greatly increases the search space.

Therefore, Prodigy4 uses some search reduction techniques to improve per-

formance: dependency-directed backtracking and look-ahead. Dependency-

directed backtracking removes binding nodes as backtrack candidates for un-

achievable subgoals. Lookahead removes nodes that, for example, necessarily

lead to a state or goal loop without computing a complete set of bindings.

Prodigy4's [?, ?] domain description language (PDL) is based on the

Strips assumption, but a number of extensions allow more expressiveness

and simplify the speci�cation of more complex domains. PDL represents

preconditions of actions in a typed �rst order predicate logic. It allows con-

junction, disjunction, negation, and quanti�ed (existentially and universally)

variables that may have a speci�c type. Furthermore, the e�ects of an oper-

ator may contain conditional e�ects.

3.1.4 Partial order planning: Noah, Nonlin, Tweak

This subsection discusses partial order planning. Partial order planning is

sometimes referred to as non-linear planning in the literature. In this thesis,

however, non-linear planning is the ability to interleave di�erent subgoals,

CHAPTER 3. LITERATURE REVIEW 36

whereas partial order planning is the generation of partially ordered as op-

posed to totally ordered plans. The intuition is that one partial order plan

can be completed into a set of totally ordered plans (total extension), and

that there may be an exponential number (n! for an partial order plan with n

unordered operators) of totally ordered plans that correspond to one partial

order plan.

Noah

Sacerdoti's Noah system was designed to instruct a human apprentice in

assembly tasks [?]. Noah extended the classical planning paradigm in three

important aspects:

� partial order planning

� plan critics and plan debugging

� hierarchical planning

Noah's representation language was based on the Strips assumption

and similar to the original Strips representation with some notable en-

hancements. Noah's operator representation encodes procedural as well as

declarative knowledge. In contrast to previously mentioned systems with

totally ordered plans, plans in Noah are partially ordered and hierarchical.

Operators consist of preconditions and e�ects as well as procedural nets. As-

sociated with an operator are a set of re�nements that expand into more

detailed subgoals. The original problem is replanned into a sequence of more

detailed subgoals, that will achieve the toplevel goal. At the lowest level,

there are goals that can be directly achieved by a primitive operator.

Noah's search strategy is a top down strategy. Noah tries to avoid

backtracking by delaying decisions as long as possible, which is why it is

sometimes referred to as least-commitment planning. The motivation is to

delay ordering and binding choices for operators until enough information is

CHAPTER 3. LITERATURE REVIEW 37

available to make the correct choice, instead of guessing and then possibly

having to backtrack. The expansion of an operator is controlled by \seman-

tics of user problems" functions. All domain knowledge is encoded in these

expansion functions.

The expansion of subgoals may lead to interacting subgoal problems.

Noah tries to overcome these problems by (a) not ordering subgoals unless

necessary, and by (b) debugging a developing plan.

To detect potential interaction problems,Noah creates a table of multiple

e�ects. Each entry in the table is a predicate that is either added or deleted

by more than one operator in the plan. Noah uses plan critics to resolve

con
icts in a plan. A plan critic is a domain speci�c or domain independent

repair method.

NonLin

One main disadvantage is the lack of backtracking in Noah. NonLin is an

extension of Noah that adds backtracking and more powerful plan critics.

The plan representation in Noah was extended in NonLin by a justi�cation

structure, so that the planner can keep track of why certain operators or

constraints are in the plan. The justi�cation structure allowed NonLin to

do a better job at debugging a
awed plan. For example, it was able to

deduce for how long a given e�ect had to be maintained.

Tweak

Chapman's Tweak system formalized non-linear planning and provided a

complete set of plan transformations and a heuristically adequate truth cri-

terion. Tweak uses a representation of actions that is similar to the Strips

representation. During the generation of a plan, not all parameters of an

operator need to be instantiated. For example, Tweak may contain the

operator template in table ??. The constraints show the possible constraints

on variables that Tweak supports.

CHAPTER 3. LITERATURE REVIEW 38

Table 3.1: Tweak operator template example

Operator Op1($X, $Y, $Z)

Preconds: : : :

E�ects: : : :

Constraints: ($X = object1)

$Y =(6=) $Z

Tweak supports the following variable constraints: (a) codesignation

(two variables must be equal), (b) non-codesignation (two variables must

not be equal), or (c) instantiation (a variable must be equal to a constant)

as is shown in the example above. Tweak's plan representation consists of

totally or partially ordered operator templates, called steps.

Tweak starts out with an empty plan and adds ordering constraints,

binding constraints, and operator templates until all preconditions of all op-

erators are established. Chapman proved that Tweak's algorithm is com-

plete, that is adding orderings, binding constraints, and operator templates

is su�cient to guarantee that Tweak can �nd a partial order plan that

subsumes a successful plan if one exists.

One problem of partial order planning is the cost of evaluating the truth

criterion. If all variables range over in�nite sets, a greedy algorithm can

be used to compute variable instantiations. If variables only range over

�nite sets, the complexity of �nding a binding of variables is NP-hard. More

powerful representations (such as including conditional e�ects, and quanti�ed

variables) make the truth criterion undecidable.

3.1.5 The Sipe system

The Sipe system [?] is a practical partial order planning systems. It provides

a powerful formalism (epistemological adequacy) for describing domains while

maintaining reasonable performance (heuristic adequacy). Sipe supports

CHAPTER 3. LITERATURE REVIEW 39

hierarchical descriptions of a domain through abstract operators and abstract

goals. It has a special resource reasoning component and is able to post and

reason about variable constraints. Sipe includes continuous variables and a

limited form of temporal reasoning. Sipe supports the creation of conditional

plans, that is plans, that contain more than one possible execution path.

The particular path taken depends on some condition that is tested during

execution time.

The operator representation language in Sipe is an enhanced

version of the Strips representation. Sipe supports typing of

and posting of constraints on free variables. The set of pos-

sible constraints includes (not)-is-value, (not)-same-as-variable,

(not)-with-attribute-equal. Variable constraints also support Sipe's

continuous variable reasoning system. The preconditions of an operator in

Sipe are slightly di�erent from previous planning systems. Sipe's precondi-

tions are used to encode meta-knowledge (when a certain operator should be

applied), instead of when it can be applied. Sipe does not subgoal on unsat-

is�ed preconditions, but applies operators only if the preconditions are true.

The purpose of an operator determines what goal the operator is supposed

to achieve. An operator may have an optional start time, which Sipe uses

to support primitive temporal planning. A operator may have a plot (re�ne-

ment) associated with it. The plot contains step by step instructions for the

action represented by the operator. A plot is a procedural network that con-

sists of the following node types: process, choice process, goal node. Process

nodes apply a given more concrete operator. Choice process nodes select one

operator from a set and apply it. Goal nodes require the achievement of a

given predicate. This is Sipe's mechanism for subgoaling on preconditions as

in means-ends analysis. Sipe supports conditional e�ects through a deduc-

tive causal theory. The deductive theory greatly simpli�es the speci�cation

of complex domains.

CHAPTER 3. LITERATURE REVIEW 40

3.1.6 Relaxed abstraction hierarchies: AbStrips,

AbTweak

This section discusses a speci�c type of abstraction-based planning, relaxed

abstraction hierarchies. Another type of abstraction, reduced abstraction

hierarchies are discussed in the next subsection ??.

The main motivation of any abstraction-based planner is to overcome the

tyranny of detail that a planner that works only in ground plans is faced

with. For example, when planning a trip from New York to Los Angeles,

it seems reasonable to �rst create an abstract plan (go to the airport, take

plane) and then re�ne this plan to more detailed levels (go to telephone, call

taxi, and so on).

AbStrips

Sacerdoti extended the original Strips system to support abstractions in

AbStrips [?]. AbStrips is similar to Strips, but creates abstract operators

by dropping preconditions. Each predicate that occurs in the precondition

of an operator is assigned a criticality value. For example, in the kitchen

domain, the Pick-Up-From-Drawer operator has the precondition (Open

Drawer). Dropping this literal results in an abstract operator that picks

up an object from the drawer independently of whether the drawer is open

or not. This abstract operator will be re�ned by either adding a step to open

the drawer (if the drawer is closed) or by applying the primitive operator

Pick-Up-From-Drawer directly.

AbStrips plans in a hierarchy of problem spaces. At abstraction level i,

all preconditions of operators with criticality less than i are ignored. Removal

of preconditions results in additional links in the original state space, since

the abstract operator is applicable in a larger set of states. This type of

abstraction is called relaxed abstraction.

The criticality levels in AbStrips are �rst assigned by the user and

CHAPTER 3. LITERATURE REVIEW 41

further re�ned by the system. The user guesses at the importance of di�erent

precondition literals and creates a partial order of criticality value for these

literals. AbStrips then analyzes the precondition literals and changes them

according to the following rules:

� a literal that can not be a�ected by any operator, is the assigned the

maximum criticality value. These literals are called static literal.

� if AbStrips can �nd a short plan to achieve a precondition given that

the other preconditions are true, this precondition is assumed to be a

detail and is assigned a criticality value equal to the one assigned by

the user.

� if AbStrips can not �nd a short plan, the precondition is assigned a

criticality value higher than any value in the partial order.

The resulting abstraction hierarchy is based on the di�culty in achieving

a predicate and consists of three classes, static predicates at the highest level,

predicates for which no short plan can be found are next, and lastly details

(predicates for which a small plan can be found).

The original work [?] did not include an analysis and some parts of the

algorithm were unclear. Knoblock further analyzed AbStrips to �nd con-

ditions for improvement [?]. The work shows that since all preconditions are

tested in isolation, AbStrips is based on the implicit assumption that the

details are independent. Furthermore, since predicates are only removed from

the preconditions, and not from the goals, it is possible that AbStrips will

create an incorrect plan. When adding AbStrips to the Prodigy planning

system, performance is much worse than that of Prodigy alone (roughly by

a factor of six with respect to solution time). The combined Prodigy and

AbStrips system did however reduce the length of the generated plans.

CHAPTER 3. LITERATURE REVIEW 42

AbTweak

Yang added hierarchical planning to the partial-order planner Tweak. As

with the original Tweak system, AbTweak's main goal was to provide a

formalization of hierarchical partial-order planning and to prove completeness

of the resulting planning system.

3.1.7 Reduced abstraction hierarchies: The Alpine

System

Knoblock developed Alpine, an extension to the Prodigy system that au-

tomatically creates abstraction hierarchies based on the ordered monotonicity

property [?]. Knoblock shows that ordered monotonicity can reduce the com-

plexity of planning to be linear in the length of the solution under certain

assumptions. These assumptions are true for example in the towers of Hanoi

domain. The critical assumptions in the analysis are: that the abstraction

hierarchy divides the problem into roughly equal sized subproblems, and that

the solution found by Alpine is the optimal solution.

Each abstract problem space is created by dropping predicates from the

problem description (preconditions and e�ects of operators), so called reduced

abstraction. This is the major di�erence between Alpine and AbStrips.

Alpine's reduced abstraction removes predicates from preconditions, e�ects,

states, and goals, whereas AbStrips removes predicates from preconditions

only. Another di�erence is thatAlpine's abstraction hierarchies are problem

dependent (there is a di�erent abstraction hierarchy for each problem), in

contrast to AbStrips's domain dependent hierarchies (all problems in the

domain have the same abstraction hierarchy).

The ordered monotonicity property guarantees that a literal introduced

at a level will not be changed by re�ning the abstract plan at a lower level.

For example, if an abstract plan adds the literal (is-on Disk3 Peg1), the

large disk can not be moved during re�nement of the abstract plan to lower

CHAPTER 3. LITERATURE REVIEW 43

abstraction levels.

A comparison between Alpine and AbStrips in the STRIPS robot do-

main shows that Alpine improves the performance of Prodigy roughly by

a factor of three [?].

3.1.8 Case-based planning: Chef

This subsection discusses Hammond's Chef system [?]. Section ?? is a brief

example of case-based planning in the kitchen domain.

Chef is a case-based reasoning system that generates new recipes in the

szechuan kitchen domain. Instead of generating a new plan from scratch,

Chef retrieves a previous plan and adapts it to the new task. Chef �rst re-

trieves the most similar plan from its plan memory using a domain-dependent

similarity metric. Although a case-based planner will usually contain many

di�erent plans in its memory, the retrieval phase is assumed to be cheap.

The cost of case retrieval can be reduced by hash tables or discrimination

nets.

The retrieved plan is then super�cially adapted to the new situation by

substituting variables. An execution module simulates the plan and detects

possible failures. Chef analyzes the failures to determine why a given oper-

ator failed and what goal it was trying to achieve. Each failure is associated

with a thematic organizations packet. These TOPs associate a plan failure

with a domain-independent repair strategy. Chef uses TOPs to anticipate

failure and when learning from failure. The TOPs are also used to provide a

selection of repair strategies.

The set of repair strategies consists of 17 di�erent methods:

1. Replace an operator by one that achieves the same goal, but does not

have the same side-e�ect (ALTER-PLAN:SIDE-EFFECT).

2. Replace an operator by one that is missing a given pre-condition, but

achieves the same goals (ALTER-PLAN:PRECONDITION).

CHAPTER 3. LITERATURE REVIEW 44

3. Add an operator to re-establish a deleted side-e�ect before it is needed

(RECOVER).

4. Reorder the running of two steps (REORDER).

5. Increase the balance of two parts, e.g. water and
our (ADJUST-

BALANCE:UP).

6. Decrease the balance of two parts. (ADJUST-BALANCE:DOWN)

7. Add a concurrent plan step that removes an unwanted side-e�ect while

it is created (ADJUNCT-PLAN:REMOVE).

8. Add a concurrent plan step to provide a missing pre-condition

(ADJUNCT-PLAN:PROTECT).

9. Split one operator into two operators that achieve the same goal

(SPLIT-AND-REFORM).

10. Increase the duration of a plan step (ALTER-TIME:UP).

11. Decrease the duration of a plan step (ALTER-TIME:DOWN).

12. Replace an object by one that has all desired but none of the undesired

features (ALTER-ITEM).

13. Replace a tool by one that has no undesired side-e�ect (ALTER-

TOOL).

14. Move an operator before some operator (ALTER-

PLACEMENT:BEFORE).

15. Move an operator after some operator (ALTER-

PLACEMENT:AFTER).

16. Add a step that changes an undesired attribute to a desired one

(ALTER-FEATURE).

CHAPTER 3. LITERATURE REVIEW 45

17. Add a step to remove an undesired attribute (REMOVE-FEATURE).

The order of repair strategies depends on domain-dependent and domain-

independent control rules. For example, one rule states that adding a prepa-

ration step is easier than adding a cooking step. Another one states that it is

generally easier to add a single operator instead of a sequence of operators.

Chef's plan representation language is more expressive than the standard

Strips representation. It supports primitive temporal planning; operators

in a plan have a duration, and may be executed concurrently. Furthermore,

it supports a more powerful object representation: objects have attributes

(so-called features) and have speci�c types. Furthermore, Chef distinguishes

between ingredients and tools to reduce the bindings and plan adaptations.

3.1.9 Macro-operators

Almost as old as planning itself is the idea to speed it up by learning and

exploiting domain features. For example, the Chef system described in

subsection ?? learns from previous planning episodes.

Another popular method is to extract subsequences from successful plans,

generalize them, and add them to the operator set. The resulting new oper-

ator is called a macro operator or macro.

There are many di�erent methods, however, for generating new macro-

operators. Approaches range from domain compilation to event driven learn-

ing. Di�erent macro-learning methods are discussed in section ??. This sec-

tion focuses on the planning process, that is how are newly generated macros

used when solving a new problem.

The most popular method is to add the new macro to the operator set

[?, ?, ?, ?, ?, ?, ?, ?, ?]. When solving the next problem, the planner uses

the macro identically to a primitive operator.

Other planners ([?, ?, ?]) create an abstract search space that consists

of only macros. The planner �rst �nds a pre�x plan to reach a state in the

CHAPTER 3. LITERATURE REVIEW 46

macro-space from the initial state. Then it �nds a solution in the macro-

space. Lastly, it �nds a su�x plan from the �nal state in the macro-space

to the original goal. This method is similar to abstraction-based planning

discussed in subsection ??, with the main di�erence that the solution in the

macro-space implies a solution in the ground space and that there is no need

to search for the ground solution.

3.2 Planning as plan space search

Korf has previously analyzed the planning problem as a state space search

problem [?]. Starting from the initial state, operators are applied to create

new states. In this framework, the planning problem is identical to a graph

search problem: to �nd a path from the initial state to a state that satis�es

the goal predicate. The nodes of the graph correspond to possible world

states and the arcs to application of operators.

This framework does not lend itself to the analysis of more powerful

planning algorithms (such as partial-order, abstraction-based, or case-based

planning), because these strategies reason about sets of states and transitions

between them, rather than individual states. These planning strategies, how-

ever, are essential to simplify planning in richer domains, for example, the

kitchen domain described in section ??.

Therefore, this section describes the planning process as search through

the space of possible plans. This paradigm was developed from the plan

space search paradigm generally used to describe partial order planners. This

thesis, however, adds extensions to include other planning systems, such as

abstraction-based, case-based, and macro-based planning.

The planner maintains a set P of possible candidates for successful plans.

This plan set initially contains only the \null" plan. The planner repeatedly

executes the following loop until either a solution is found or no more plan

candidates are available:

CHAPTER 3. LITERATURE REVIEW 47

1. First a possible candidate p is retrieved from P and tested. If p is a

solution to the problem, the planner returns p. If there are no more

candidates, the planner signals failure. The plan set initially contains

the \null" plan.

2. If p is not a successful plan, a plan transformation t from a set of

possible transformations T is applied yielding a new candidate c. More

than one plan transformation may be applied or a plan transformation

may generate more than one new candidate. The resulting candidates

are collected in the new candidate set C. The new candidate set C

may be empty, if there are no more applicable transformations to the

current plan p in the set of transformations T .

3. The new candidate set C is added to the plan set, yielding a new P .

Goto step ??.

In this framework, a domain independent planner is de�ned as follows:

De�nition 1 (Planner) A planner P is a tuple (L
S
;L

G
;L

O
;L

P
; T ;M).

� L
S
is the state language, describing possible situations. A situation is

a snapshot of the world. A common state language L
S
consists of sets

of predicates, describing the true assertions in the situation.

� L
G
is a goal description language. An expression in L

G
assigns a truth

value to expressions in the state language L
S
. If a state expression

satis�es L
G
it is called a goal. Any plan that reaches a goal from the

initial state is called a solution.

� L
O
is a description language for operators, i.e., actions for the agent

to a�ect the world. An operator O is a function that takes a state

expression s 2 L
S
as its input and results in a new state s0 2 L

S
.

Application of an operator O results in the special state (nil), if the

operator is not applicable in state s.

CHAPTER 3. LITERATURE REVIEW 48

� L
P
is the plan language, the language describing evolving plans. The

plan language must be able to express plans, that is a set of operators,

an ordering on the operators in the set, and a set of constraints on

variable instantiations. Early planning systems supported only totally

ordered, fully instantiated plans, that is the ordering imposed on the

operators is a total order and the variable constraints only supported the

instantiation of variables. More recently, partial-order planners support

partially ordered plans with co- and non-codesignation constraints for

variable instantiations.

� T is a set of transformations. A transformation t is a function that

takes a plan expression from L
P
, and returns a new candidate plan c

expressed in L
P
.

� M is the plan selection method. Given a set of possible plans P ex-

pressed in L
P
, M selects the plan p to be tested next.

Figure ?? is a graphical representation of the plan space paradigm. First,

the world is represented in the representation language of the planner (L
S
,

L
G
, L

O
). The initial state is expressed in the state language L

S
, the goal

states are represented through a goal expression from L
G
, and the actions are

expressed as operators in L
O
. This domain dependent reformulation converts

the problem into a state space search problem. The initial state, goal descrip-

tion and operators are combined with the planning algorithm to reformulate

the state space search into a plan space search. The planning algorithm at-

tempts to �nd a sequence of transformations on expressions from L
P
to �nd a

plan that solves the problem. It de�nes the plan space search by de�ning the

nodes (expressions in L
P
) and transitions between nodes (transformations

from T). Once a solution is found, it is translated into a world solution by

executing the plan. Before execution, it may be necessary to compute a total

ordering of operators from the partial order and an instantiation of variables

that satis�es the constraints.

CHAPTER 3. LITERATURE REVIEW 49

Figure 3.1: Planning as plan space search

A B C

Table

Hand

World

A

B

C

Table

Hand

Solution

L = States
L = Goal predicate
L = Operators

S

G

O

Classical Planning
Paradigm

Plan Space Search

p1

p2 p3

L = Plans
T = Set of transformations
M = Search control method

P

Initial State, Goal description,
Operators

S

S'S''

O1 O2

State Space
T1 T2

Planning Algorithm

Plan SetP

p Pin

M

Transformations
T

New Candidates
C

Domain Dependent

Domain Independent

CHAPTER 3. LITERATURE REVIEW 50

To further simplify the classi�cation of di�erent planning systems, the

de�nition of the planner is broken up into two parts: the representational

classi�cation (consisting of L
S
, L

G
, L

O
) and the operational classi�cation

(consisting of L
P
; T ;M). The representational classi�cation determines the

translation of a real world domain into a state space search, and the opera-

tional classi�cation determines the search space.

3.3 Representational Classi�cation

The state L
S
, goal L

G
, and operator L

O
languages determine the description

of a domain. They determine the presentation of the input to the plan-

ner. The following subsections describe the Strips representation language

and the Prodigy description language (PDL), a more powerful domain de-

scription language, which is used by Prodigy and DoLittle. As most

modern planning systems, Prodigy and DoLittle still use a variation

of the Strips representation language, but support conditional e�ects and

quanti�ed variables.

3.3.1 The Strips domain language

Strips's state description language describes states as sets of non-negated

predicates with instantiated arguments. There are no variables and no

negated predicates allowed in a state description. The predicates form an

implicit conjunction. For example, the following is a description of a possi-

ble state in the blocksworld with three blocks:

Example: Strips representation of a state in the blocksworld

State S = f(on A B),

(on B C),

(on C table),

(clear A),

(hand-empty) g

CHAPTER 3. LITERATURE REVIEW 51

It describes a state in which the three blocks A, B, and C are stacked to form

a tower. To reduce the length of a state description, Strips makes the closed

world assumption: Predicates that are not mentioned in the state description

are assumed to be false. Therefore, there are no negated predicates in a

state description. Given the state expression above, it follows that all other

predicates, for example (on B table), are false.

The goal language is a set of predicates, that may contain free variables

and negated predicates. The free variables are implicitly existentially quan-

ti�ed. A goal predicate G is true for a state if there is an assignment to each

free variable, such that the state contains all positive predicates and none of

the negated predicates in G. The following expression is a goal description

that is satis�ed by state S.

Goal G = f (on $V1 B), (not (on B table)) g
In Strips operators are represented by three lists: the precondition-, add-

and delete-list. For example, the following is a Strips operator in the

blocksworld domain that picks up one block from another.

PickUp-from-Block($B1, $B2)

Preconds. f (hand-empty), (clear $B1)

(on $B1 $B2) g
Add-list f (clear $B2) (holding $B1) g
Del-list f (hand-empty) (on $B1 $B2) g

The preconditions of an operator are a set of possibly negated predicates

that may contain variables. The operator is applicable in a given state,

(i.e., does not result in the (nil) state), if and only if the preconditions

match the state. Free variables in the preconditions are implicitly existen-

tially quanti�ed. Therefore, the operator UnStack in the previous example

is applicable in the state S, if ($B1 = A) and ($B2 = B). The process of as-

signing atoms to variables is called binding. A binding must assign constants

to all free variables in the preconditions.

CHAPTER 3. LITERATURE REVIEW 52

The add and delete lists of an operator are also called its e�ects. All

free variables that only occur in the e�ects of an operator are assumed to be

universally quanti�ed. These variables are referred to as wildcards, since they

may match any object in the domain. An example of the use of wildcards

is shown in the description of the Prodigy domain language in the next

subsection (subsection ??).

The e�ects of an operator consist of lists of predicates that have either

atoms or variables as arguments. Existentially quanti�ed variables that oc-

cur in the e�ects of an operator must be mentioned in its pre-conditions.

The predicates in the add-list are bound using the binding suggested by the

preconditions and added to the current state description. Then predicates in

the delete list are removed from the state description respectively.

For example, applying operator UnStack to the state S results in the

new state S 0:

State S 0 = f(clear B), (holding A), (on B C), (on C table)g
This state language and operator language is adequate for small domains

and serves as a useful example. Many people have extended the standard

Strips language to include conditional e�ects, universal and existential

quanti�cation of variables, and other extensions to simplify description of

more complex domains. In section ??, an example of a richer description lan-

guage is provided. However, those extensions are still based on the Strips

assumption and do not increase the representational power of the description

language. In other words, it does not increase the set of domains that can

be described, but it simpli�es their description.

3.3.2 The Prodigy domain language

The Prodigy domain language includes a number of extensions to the Strips

operator representation language to simplify description of more complex do-

mains and to enhance the performance of the planner. The extensions include

conditional e�ects, universal and existential quanti�cation of variables, and a

CHAPTER 3. LITERATURE REVIEW 53

type hierarchy for variables. Furthermore, it does not always make the closed

world assumption. Using control rules, a user may encode domain speci�c

problem solving knowledge to speed up planning.

The representation of states (the state description language L
S
) in PDL

is similar to the Strips state description language. A state is a list of

fully instantiated literals that form an implicit conjunction. See the previous

subsection for an example. An important di�erence is that PDL supports

two types of predicates, closed-world and open-world. An open world literal

has three instead of two possible values: true, false, or unknown. An open

world predicate is unknown if it is absent from a state description. Therefore,

a state description may include positive or negative open world literals.

PDL's goal language L
G
extends the Strips representation by allowing

variables to be existentially or universally quanti�ed. The following expres-

sion de�nes a goal in the blocksworld:

Goal = (Exists $B1 (For-all$B2 (not (on $B2 $B1))))

The goal is satis�ed in all states, with a block that has no blocks on it.

Prodigy allows two di�erent types of actions: operators and inference

rules. Operators are similar to Strips operators with preconditions and

e�ects (add-/delete-lists). PDL also supports universally quanti�ed variables

and conditional e�ects in operators.

Inference rules are syntactically identical to operators, but have slightly

di�erent semantics. Whereas the literals in the e�ect of an operator are

assumed to be closed world literals, the literals in the e�ects of an inference

rule are assumed to be open world literals, that is the absence of such a literal

in a state description does not imply that its negation is true.

Prodigy4 also supports typed variables. A designer may specify a static

type hierarchy for objects in the domain. In general, variable types are �nite,

but Prodigy4 supports a special INFTYPE variable type that may be used

to describe variables that range over an in�nite set, e.g., integers. INFTYPE

variables must be used with a generator function, that is a function that for

CHAPTER 3. LITERATURE REVIEW 54

an unbound variable returns a \reasonable" set of bindings.

The Prodigy4 domain description language also allows a user to specify

domain speci�c knowledge as control rules. Control rules a�ect the search

of the planner and thus are not part of the representational classi�cation it-

self. Prodigy's means-ends analysis algorithm contains �ve di�erent choice

points: selection of (a) a node, (b) a goal, (c) a relevant operator, (d) a

set of bindings for the operator, and (e) whether to apply the operator or

subgoal on its preconditions. A control rule may select, reject, or prefer one

choice over another for any of the four possible choice types. The applicabil-

ity conditions for a control rule are restricted formulae of meta-predicates,

such as (current-goal) or (true-in-state). The user can specify meta-

predicates using arbitrary lisp code.

The following table (table ??) is a kitchen domain example of complex

operator descriptions in the prodigy domain language.

The operator PickUp illustrates the most important aspects of

Prodigy's domain description language. First, it shows the use of typed

variables and the syntax for variable descriptions. PickUp de�nes two vari-

ables $object and $location respectively. $object must be a movable

item and $location must be of type location. The free variable $obj is

in the e�ects, and is thus implicitly a universally quanti�ed variable. This

behavior is an extension of Strips' wildcard feature, since variables may

make use of the type-hierarchy. It also shows the use of conditional e�ects.

If any object, movable or stationary, is next to the object to be picked up, it

is not next to $object after application of PickUp.

The inference rule Infer-Arm-Full is an example of a rule that infers

an open world predicate and adds it to the state description. The absence

of (arm-full) does not automatically imply that it is false in the current

state. An inference rule has an associated mode, EAGER or Lazy, which

corresponds to eager or lazy evaluation of the inference rule. Eager inference

rules are evaluated for every state, whereas lazy inference rules are only

CHAPTER 3. LITERATURE REVIEW 55

Table 3.2: Example: Operator in the prodigy domain language

Operator: PickUp

Params $object $location)

Preconds ($object movable-items) ; typed vars.

($location location)

(and (arm-empty)

(is-at robby $location)

(is-reachable $object $location)

(clear $object)

E�ects ($obj2 (or movable-items stationary-items)

(del (arm-empty))

(del (is-reachable $object $location))

(add (holding $object))

(if (next-to $obj2 $object)

(del (next-to $obj2 $object)))

Inference-Rule: Infer-Arm-Full

Mode EAGER/LAZY

Params:

Preconds (Exists $obj (holding $obj)))

E�ects (add (arm-full))

Control-Rule: Make-Instant-Coffee

IF (and (candidate-goal (have-coffee))

(not (coffee-can-available))

THEN (select operator Make-Instant-Coffee)

CHAPTER 3. LITERATURE REVIEW 56

evaluated if they contain necessary e�ects.

The control rule Make-Instant-Coffee forces Prodigy to make in-

stant co�ee if no co�ee-can is available, presumably, because a plan using

the co�ee-maker will eventually fail.

3.4 Operational classi�cation

The operational classi�cation is determined by three components: the plan

description language L
P
, the method M to select a plan from the candidate

set, and the set of plan transformations T . The representational classi�ca-

tion in
uences the operational classi�cation, because the plan language has

to support the semantics of the representational classi�cation. However, the

operational classi�cation strongly in
uences the search process. Therefore, in

the following subsections, this thesis focuses on the comparison of di�erent

planning systems with respect to their operational classi�cation. Because

of the enormous number of planning systems, the comparison was based on

an archetypical example of a given problem solving strategy, for example

Tweak for partial-order planners. A list of the compared systems is shown

in table ??, summarizing the plan languages L
P
and the transformation sets

T . There are at least four popular search methods M : depth-�rst, breadth-

�rst, iterative deepening, or best-�rst. Although there are subtle in
uences

that the search method has on the plan language, the comparison in the table

ignores M . Also included in the table is the multi-strategy planner DoLit-

tle. Details about DoLittle's design are in chapter ??. Partial-order

planning is discussed in this section for completeness, but DoLittle cur-

rently does not support it. The reasons for leaving out partial-order planning

are discussed in section ??.

CHAPTER 3. LITERATURE REVIEW 57

Table 3.3: Operational classi�cation of di�erent planning systems

Planner Plan lang. L
P

Transform. set T

Forward Total order Append to plan head

Chaining Instantiated variables Advance current op.

Plan head

Means-ends Total order Append to plan head

Instantiated variables Prepend to plan tail

Plan head and plan tail Advance current op.

Case-based Total order Insert operator

Chef Instantiated variables Remove operator

Plan skeleton Reorder operator

Concurrent plans Replace operator

Change var. bindings

Move current op.

Auto. subgoals Total order Append to plan head

Stepping Stone Instantiated variables Prepend to plan tail

Relaxed Uniform trees Advance current op.

Abstraction Plan head and plan tail Create probl. space

Abstraction Total order Append op. at level i

Alpine Instantiated variables Prepend op. at level i

Uniform trees Advance curr. op. (i)

Plan head and plan tail Create probl. space (i+ 1)

Macros Total order Append op. sequence

MacLearn Instantiated variables Advance current op.

Plan head

Multi-strat. Total order Move current op.

DoLittle Instantiated variables Insert op. sequence

Plan skeleton Remove, -order, -place ops.

Non-uniform trees Change var. binding

Create problem space

Partial-order Partial order Add operator

Tweak Constrained variables Add variable constraint

Add operator ordering

CHAPTER 3. LITERATURE REVIEW 58

3.4.1 Forward chaining planning

This subsection investigates a simple planning system FC-Planner that

uses forward chaining. L
S
, L

G
, and L

O
are as described in subsection ??

above.

The planner repeatedly picks an applicable operator from the operator

set and applies it to the current state. Application of this operator results

in a new current state.

The plan language L
P
represents totally ordered sequences of instantiated

operators. There can be no free variables in an evolving plan. Also, for

e�ciency reasons, the plan language does not allow plans that contain state

loops, that is plans that visit the same state twice. If a plan that contains a

state loop is a solution, then in the classical planning paradigm, there is an

equivalent plan with the state loop removed that is also a solution.

The plan transformation set T contains one method: appending a fully

instantiated operator to an evolving plan. Although there is only one plan

transformation method, there is possibly more than one successor plan, since

there may be more than one possible operator that is applicable, or more

than one variable binding for an operator.

M picks a plan from the plan set using a depth �rst traversal, that is the

children of a candidate plan are picked from left to right. A planner using

breadth-�rst search or best-�rst search can be created by changing M only.

3.4.2 Means-ends analysis

Strips uses means-ends analysis, a search control method developed by

GPS. In contrast to forward chaining planning, means-ends analysis is a

backpropagation method. The di�erences between the current state and the

goal are computed. Then a relevant operator, that is an operator which re-

moves the di�erence is instantiated and added to the plan. There are two

possibilities for the addition of the operator: (a) add and apply the operator

CHAPTER 3. LITERATURE REVIEW 59

as the last operator of the plan head, or (b) add the operator as the �rst

operator of the plan tail. Adding and applying the operator in (a) leads to

a new current state, whereas in (b) the current state remains unchanged.

Additionally, applying method (a) can only be used if all preconditions of

the operator are satis�ed.

Partial plans (expressed in L
P
) of a means-ends analysis planner consist of

a plan head and a plan tail. Both plan sequences contain fully instantiated,

totally ordered operators. Plans including state loops and goal loops are

discarded. A goal loop exists, when an operator used to achieve a goal literal

requires achievement of the same goal literal to satisfy its preconditions.

There are two plan transformation methods in the transformation set T :

(a) as in forward chaining planning, an instantiated operator can be appended

to the plan head, or (b) a new relevant operator can be prepended to the

plan tail. The main di�erences between Prodigy2 and Prodigy4 are the

details of the implementation of method (b) in the transformation set T . In

Prodigy2 the transformation set T only supports addition of an operator

that is relevant to an unsatis�ed precondition of the �rst operator in the

plan tail, whereas Prodigy4's transformation method supports addition of

an operator relevant to any unsatis�ed precondition in the plan tail.

3.4.3 Partial-order planning

A partial-order planner, for example Tweak, supports a more powerful plan

representation language. The plan representation language L
P
supports a

partial order of an operator set and usually constraints on variable bindings

such as co-designation and instantiation.

The plan transformations in T allow addition of an operator to a plan,

adding an ordering constraint for an operator, and adding a binding con-

straint.

CHAPTER 3. LITERATURE REVIEW 60

3.4.4 Case-based planning

A case-based planner, such as Chef, retrieves a similar plan and adapts it

to the new problem. The plan language L
P
supports totally ordered, fully

instantiated sequences of operators.

The set of plan transformations T contains many transformation methods.

In contrast to other planners, the transformations are highly specialized. For

example, an operator in Chef may only be replaced by another, if it either

removes an unsatis�ed precondition or an unwanted side-e�ect. The plan is

not divided into a plan head and plan tail, a case-based planner may make

changes to the plan anywhere in the operator sequence.

3.4.5 Automatic subgoaling

This subsection describes automatic subgoaling as exempli�ed by Stepping

Stone in the plan space paradigm [?]. Automatic subgoaling creates a series

of goal expressions (descriptions of states, subgoals) that when traversed lead

an agent to the goal. Each subgoal generates a subproblem. The initial state

of the subproblem is the goal state of the previous subgoal, and the goal is

to reach a state satisfying the current subgoal.

The plan language L
P
describes a plan at two distinct levels. Since pre-

conditions and goal expressions both identify sets of states, the top level

can be interpreted as abstract operators describing a series of subgoals, and

the bottom level contains sequences of primitive operators that solve the

associated subgoals.

Stepping Stone uses a means-ends analysis planner to solve the under-

lying subproblems. Therefore, T contains the means-ends plan transforma-

tions as well as one additional transformation to create a new subproblem

and solve it. The subproblems are generally solved in left to right order.

Some automatic subgoaling systems are based on the serial subgoal as-

sumption. This means that the resulting subproblems are constrained to

CHAPTER 3. LITERATURE REVIEW 61

disallow all plans that undo previously achieved subgoals.

Automatic subgoaling is similar to abstraction-based planning, in that

both create a series of subproblems. The main di�erence is that abstraction-

based planning searches for a solution to the \abstract" problem, whereas

automatic subgoaling does not need to search for a solution to the abstract

problem. A relaxed abstraction is represented by an operator that has some

preconditions removed. The sequence of abstract operators generates a se-

quence of subgoals. Therefore, the plan language and set of plan trans-

formations of a relaxed-abstraction based planner is similar to that of an

automatic subgoaling planning system. The only di�erence is that a relaxed

abstraction-based planner may contain trees with any number of levels, as

opposed to automatic subgoaling which contains two levels.

3.4.6 Abstractions

This section discusses reduced abstraction-based planning (Alpine) in the

plan space paradigm. A reduced abstraction-based planner simply creates a

series of constrained problem spaces. It requires a separate planner to solve

the individual problems. Alpine uses Prodigy as its underlying problem

solver.

A partial plan expression in L
P
in Alpine represents a tree of abstract

or primitive operator sequences. There is one level in the tree for every

abstraction level. The tree is uniform, i.e., all subtrees at one level have the

same number of levels. The representation of operator sequences is based on

the representation of the underlying planner (Prodigy). Additionally, an

abstract operator at a level corresponds to a constrained subproblem at the

next lower abstraction level.

T is a superset of the transformation set of the underlying planner, in

this case Prodigy. Additionally to Prodigy's transformation set discussed

in subsection ??, Alpine's transformation set includes a transformation to

create an operator's associated subproblem. In Alpine, this transformation

CHAPTER 3. LITERATURE REVIEW 62

is limited to a left to right traversal. Other planning systems, for example

Sipe, allow the generation of subproblems in any order.

3.4.7 Macro operators

Since macros are compiled sequences of primitive operators, in general the

plan language L
P
and the set of transformations T are dependent on the

underlying planner. In Iba's MacLearn system, the underlying planner is

a simple depth-�rst planner, whereas most EBL-based macro-learners are

based on a means-ends analysis planner. However, in both cases, the plan

language L
P
and the transformation set T are generalized to handle sequences

of operators, instead of single operators only.

3.5 Discussion

This section summarizes the results of the comparison of di�erent planning

systems. The chapter describes a collection of important and popular plan-

ning systems (GPS, Strips, Prodigy, Noah, Sipe, AbStrips, Alpine,

Chef, and MacLearn). The idea is that these planning strategies have

been used with success previously and therefore should be included in a

multi-strategy planner.

The plan space paradigm is introduced because the popular state space

paradigm is unable to represent many of the planning systems. The plan

space search paradigm is commonly used to describe partial-order planners

but is extended here to cover also macro-based, abstraction-based, and case-

based planning. The plan space search paradigm distinguishes between the

representational and operational classi�cation of a planner.

The operational classi�cation of a planner allows us to create a workable

de�nition of a planning strategy: It is a plan language, a set of transforma-

tions on the expressions in the plan language, and a search method. This

CHAPTER 3. LITERATURE REVIEW 63

allows the comparison of di�erent planning strategies. The results of this

comparison are summarized in table ??.

From this comparison, a plan language L
P
and a set of plan transforma-

tions T powerful enough to be able to use the described planning strategies

(except for partial-order planning) is developed in chapter (chapter ??).

Chapter 4

Multi-strategy planning

The world can doubtless never be well known by theory: prac-

tice is absolutely necessary; but surely it is of great use to a young

man, before he sets out for that country, full of mazes, windings,

and turnings, to have at least a general map of it, made by some

experienced traveler.

Lord Chester�eld (1694-1773), English statesman, man of

letters. Letter, 30 Aug. 1749 (�rst published 1774; repr. in The

Letters of the Earl of Chester�eld to His Son, vol. 1, no. 190, ed.

by Charles Strachey, 1901).

This chapter introduces multi-strategy planning and develops a framework

for the comparison of di�erent multi-strategy planning systems. It then

analyses some of the planning systems described in the previous chapter

with respect to this framework. This leads to an analysis of an example

(based on the one shown in the scenario in chapter ??), which shows why

multi-strategy planning can outperform other planners.

The analysis of the example shows that under certain conditions the worst

case complexity of a multi-strategy planner based on case-based, macro-

based, and abstraction-based planning is better than that of the respective

single strategy planners. This means that this set of conditions describes

64

CHAPTER 4. MULTI-STRATEGY PLANNING 65

su�cient conditions under which a multi-strategy planner has a lower worst

case time complexity than the compared single strategy planners.

Section ?? summarizes previous complexity results for planning. Sec-

tion ?? introduces the concept of a planning bias and planning strategy.

An analytical model for a planning strategy is proposed in section ??. A

framework for multi-strategy planning is developed in section ??. Section ??

analyzes di�erent planning strategies introduced in chapter ?? with respect

to the multi-strategy framework. Section ?? derives conditions under which a

multi-strategy planner can produce an exponential speed up over three single-

strategy planners: abstraction-based, macro-based, and case-based planning.

4.1 Analysis of practical planning

Theoretical results show that the general planning problem1 is very hard.

Theoretical results about the complexity of planning can be grouped into two

di�erent classes: (a) results about the complexity of some particular domain,

and (b) results about the complexity of particular representation languages

(i.e., classes of domains). In the most general case the planning problem

is undecidable [?, ?]. The proof is based on the equivalence of a planning

problem to the halting problem of a turing machine or a logic program.

Some researchers have investigated the complexity of speci�c domains.

The results show that even for some toy domains, the problem of �nding an

optimal solution is NP-hard. Examples are the blocksworld ([?, ?]), or the

tile sliding puzzle [?].

More recently, researchers focused on the e�ect of the representation lan-

guage on the complexity of planning. This allows us to focus on the complex-

ity of classes of domains. Bylander investigates the complexity of planning

1Theoreticians use the term problem to refer to the general problem under investigation.

In planning research, a problem is a speci�c operator set, initial state, and goal state. This

would be referred to as a problem instance by theoreticians. This thesis uses planning

problem to refer to the general problem and problem to mean a problem instance.

CHAPTER 4. MULTI-STRATEGY PLANNING 66

using the Strips representation and a Strips representation with a deduc-

tive theory [?, ?]. Bylander also shows that planning is PSPACE-complete,

even if each operator in the operator set is limited to a maximum of two

preconditions and two e�ects. If the operators only contain one positive

precondition and two e�ects, planning is NP-complete.

Erol et al. show that planning is EXPSPACE-complete for operators with

delete lists given a function free description language with a �xed number

of constant symbols (datalog language, e.g., the Strips representation lan-

guage) [?]. If there is an in�nite number of ground terms (e.g., functions

are allowed), planning is undecidable. A problem belongs in the complex-

ity class EXPSPACE if the space required to solve the problem grows at

most exponentially in the length of the input. The complexity class 2EXP-

TIME is the set of general problems with a time complexity that grows at

most exponentially with an exponential function of the input size (doubly

exponential).

Since the following inequality holds,

EXPTIME � EXPSPACE � 2EXPTIME

it follows that the time complexity of planning is between exponential and

doubly exponential. Therefore, in the remainder of this chapter, the analy-

sis is concerned with the algorithmic complexity of planning algorithms, in

particular abstraction.

The worst case complexity of a planning algorithm A on a problem p

using the plan space search paradigm described in subsection ?? depends

on the branching factor bp and the decision length lp of the problem. The

branching factor bp is the maximum number of transformations applicable

to a plan expression. The decision length lp is the number of choices that

a planner has to make to derive a solution from the null plan. In the plan

space search paradigm introduced in chapter ??, the only decision a planner

makes is the selection of a plan transformation. Therefore, in the plan space

search paradigm, the decision length is the number of plan transformations

CHAPTER 4. MULTI-STRATEGY PLANNING 67

necessary to derive a plan from the null plan. For example, for a depth-�rst

and means-ends analysis planner, the decision length is equal to the number

of primitive operators in the plan, i.e., the solution length.

The thesis de�nes the abbreviation Problems(b; l) to mean the set of prob-

lems that are in the domain and have a branching factor less than b and a

decision length less than l. Using this abbreviation, the worst case time com-

plexity of planning with parameters b and l is the maximum cost of solving

any problem in the set of problems Problems(b; l).

Problems(b; l) =
[

p2Problems

p such that bp � b

lp � l

Cost(A; b; l) = maxfCost(A; p) p 2 Problems(b; l)g (4.1)

The cost Cost(A; p) is the actual cost of solving problem p using planning

strategy A. From the de�nition, it trivially follows that

Cost(A; p) � Cost(A; b; l)8p 2 Problems(b; l)

The worst case cost of means ends analysis is bounded by:

Cost(MEA; b; l) 2 O(bl) (4.2)

This is the size of a tree with depth l and a branching factor of b. A theoretical

result shows that EXPTIME is a proper superset of EXPSPACE. This shows

that an EXPSPACE-complete problem has a time complexity that is at least

exponential in the input length and therefore establishes a lower bound on

the time complexity of planning for any algorithm. Applying this result to

means-ends analysis planning leads to the following equation:

Cost(MEA; b; l) 2 �(bl) (4.3)

CHAPTER 4. MULTI-STRATEGY PLANNING 68

Table ?? summarizes the results of an experiment conducted to �nd the

average branching factor for various Prodigy domains. Prodigy was run

on a selection of its standard domains as well as the kitchen domain. The

calculation for the average branching factors included only successful prob-

lems with at least two steps in the solution, to rule out small problems with

large branching factors. Without this omission, the reported branching fac-

tors would have been even higher. For each problem, the average branching

factor was calculated, and the minimum and maximum branching factors for

a domain were recorded. The average branching factor for a domain was cal-

culated as the average of the branching factors in the corresponding problem

set. Table ?? contains the names of the domains, the number of problems

that were tested, the minimum, average, and maximum of the branching

factor for the domain as well as minimum, average, and maximum of the

solution lengths. The averages for the branching factors ranged from 1.24

(path-planning) to 3.55 (kitchen). The average solution length of the do-

mains varied from 3:47 to 62:40. Other researchers report similar results for

other problems with branching factors of at least 3 [?].

What makes planning impractical is that the complexity can be expo-

nential in the decision length. There are two possibilities to ameliorate this

complexity: concretization and abstraction. Concretization attempts to de-

crease the branching factor b. Examples of concretization are means-ends

analysis, partial-order planning, and Prieditis' concretization [?], which cre-

ates an abstract problem space by removing some operator choices. Abstrac-

tion aims at reducing the decision length, for example reduced or relaxed

abstraction-based planning, automatic subgoaling, and macro-operators2.

In the practical planning paradigm, typically (a) a solution includes hun-

dreds of primitive operators, and (b) there are resource limits on the amount

of computation that can be done in the planning stage. The practical plan-

2The term abstraction is overloaded in AI. This thesis uses abstraction as de�ned here

and uses (relaxed/reduced) abstraction-based planning to refer to speci�c algorithms such

as AbStrips and Alpine.

CHAPTER 4. MULTI-STRATEGY PLANNING 69

Table 4.1: Branching factor for Prodigy domains

Domain Problems b (min/avg/max) length l (min/avg/max)

blocksworld 15 (1:41=2:98=6:00) (2:00=3:47=10:00)

eightpuzzle 12 (1:03=1:30=2:00) (3:00=58:70=231:00)

eightpuzzle-II 6 (1:19=1:87=2:93) (4:00=12:00=32:00)

extended-bw 12 (1:55=2:48=3:46) (2:00=3:50=6:00)

extended-strips 5 (1:57=2:27=2:72) (2:00=4:00=8:00)

gridworld 10 (1:07=1:34=2:00) (3:00=21:30=75:00)

kitchen 5 (2:00=3:55=4:00) (6:00=23:20=49:00)

multirobot 10 (1:37=1:67=2:45) (2:00=5:80=10:00)

path-planning 5 (1:03=1:24=1:64) (5:00=62:40=183:00)

schedworld 8 (1:33=1:75=2:24) (4:00=6:50=13:00)

schedworld-II 11 (1:04=1:53=2:24) (4:00=10:80=26:00)

ning paradigm describes the kind of problems an intelligent agent is faced

with when operating in a complex domain, such as the kitchen domain or

an information system. A �rst observation is that a better planning method

must be used, since even a branching factor of 2 would lead to a complexity

of 2100 for a plan with 100 primitive operators in it3.

There are few problems in the Prodigy test suite that fall into the prac-

tical planning paradigm. Only the eightpuzzle and path-planning domains

include problems with more than 100 steps in the solution. These domains,

however, have unusually small branching factors (branching factor less than

1:3).

Common resource limits include a time bound or a bound on the number

of nodes that can be generated. Users would not be willing to wait inde�nitely

for a cup of tea. Given a resource limit, the lower limit of equation ?? can

be reformulated to show the maximum decision length as a function of the

3275 is the estimated number of particles in the universe.

CHAPTER 4. MULTI-STRATEGY PLANNING 70

branching factor b and the resource limit N (ignoring a term log k for some

constant k).

max. dec. length l � logN

log b
(4.4)

Figure ?? graphs this equation for di�erent values of N . Note that for

small values of b (less than 1:70, the maximum decision length drops rapidly

and for values of b greater than 1:70, the maximum decision length is less

than 30, even if the resource limit is 1; 000; 000 nodes. The graph shows that

the maximum decision length is largely insensitive to the speci�c resource

limit and the speci�c branching factor. There is a di�erence of less than 10

in the maximum decision length between a resource limit of 1; 000; 000 and

1; 000 nodes for any branching factor greater than 1:99. For example, a PC

486DX2-66 can solve around 100; 000 nodes in less than 1 hour. Furthermore,

the di�erence in the maximum decision length between a branching factor of 2

and 10 is only 13 steps for a resource limit of 1; 000; 000 nodes. Note that the

maximum decision length for a branching factor of 2 and 10 with a resource

limit of 1; 000; 000 nodes is a factor of about 3:3. What is important to

notice is that for reasonable practical values, this di�erence amounts to only

12 steps, since the maximum decision length decreases so quickly. Therefore,

the decision length is the dominant factor. For practical planning (l � 100)

within the resource limit N = 1; 000; 000, the branching factor must be less

than about 1:15. In this case, there are few candidate transformations to a

plan and the algorithm rarely has to make a choice.

Because of the dominant role of decision length l, most planning research

has focused on abstraction and not concretization methods and this thesis

will also focus on methods to reduce the decision length l. This does not

mean that a reduction in the branching factor can not lead to substantial

improvements, but that reducing the decision length by a constant factor

leads to much larger improvement than reducing the branching factor by the

same factor.

CHAPTER 4. MULTI-STRATEGY PLANNING 71

Figure 4.1: Max. decision length as a function of the average branching factor

b and the node limit N

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

N=1,000,000

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

N=1000

max. solution length

b

l

CHAPTER 4. MULTI-STRATEGY PLANNING 72

4.2 Planning bias

This section explains the notion of a planning bias. Similarly to the de�nition

of inductive bias in machine learning [?], a planning bias is de�ned as follows:

De�nition 2 (Planning Bias) A planning bias is a set of assumptions

with the aim of simplifying the current planning problem.

As mentioned previously, the reduction of the search space is based on as-

sumptions about the problem, such as the shape of the search space (heuristic

function, strong linearity), the structure of new and previous solutions (case-

based planning), the sequence of problems (easier to more di�cult ones),

etc.

A planning bias makes certain assumptions, that simplify planning. To

improve planning performance, these assumptions must be exploited e�-

ciently.

De�nition 3 (Planning Strategy) A planning strategy is a search

control method that exploits a given planning bias by restructuring the search

space and searches the associated space.

One method of restructuring a search space is to cut out certain parts of

the original search space, this is called restricting the search space. Another

method (reordering) changes the order in which the space is searched by for

example preferring plans with the least number of open goals. Restructuring,

however, also includes methods that change the original search space into a

di�erent one. This is generally referred to as problem reformulation [?].

Note that a planning bias may lead to several di�erent planning strate-

gies. For example, in a domain where most failures are generated because

of the wrong order of the operators (planning bias), partial order planning

(planning strategy) or plan reordering (planning strategy) can be used to

reduce the search. It is also possible that a planning strategy may arise

CHAPTER 4. MULTI-STRATEGY PLANNING 73

from di�erent planning biases. For example, a system may generate macro-

operators (planning strategy) to traverse di�cult parts of the search space

(planning bias) or to compile commonly used subtasks (planning bias).

For most planning systems, the underlying planning biases are implicit

and hard to determine. For example, only recently have the planning biases

of partial-order and total-order planning been investigated. Therefore, re-

searchers focus on the planning strategies as opposed to the planning biases.

Di�erent biases can be classi�ed with respect to their e�ect on the search

space. A strong bias is one that greatly reduces the search space; it makes

strong assumptions. A weak bias makes few assumptions and hence does

little to limit the search space. Of course, by cutting out large portions of

the search space, there is a danger of cutting out the part containing the

solution. A correct bias is one that does not prevent a system from �nding

the solution, otherwise a bias is incorrect . Since the search space for strong

biases is small, testing a strong bias is cheaper than testing a weak bias. If

a bias is incorrect, the system will have to search the complete associated

search space, before being able to conclude that a solution can not be found.

The de�nition of a planning bias allows the distinction between underlying

assumptions and their implementation in planning systems. Unfortunately,

most often people refer to their implementation instead of the underlying

assumptions. For example, cases and macros have similar representations,

but are based on di�erent assumptions about the domains. Even commonly

used representations, such as macros, can be based on completely di�erent

assumptions. For example, the Strips macro learner generates new macros

from successfully solved problems so that they may be reused as subtasks [?].

TheMacLearn system generates new macros using a peak to peak heuristic

to avoid valleys in the heuristic evaluation function [?]. Korf designed a macro

learner based on serial decomposability [?]. Although based on di�erent

assumptions, all systems are referred to as macro learners. This thesis uses

the term macro to refer to an operator sequence, and macro-based planning

CHAPTER 4. MULTI-STRATEGY PLANNING 74

to refer to extraction of common subsequences from a successful plan. For

example, Korf's MPS system generates macros, but is not a macro-based

planner.

4.3 A model of abstraction

This section introduces a model of abstraction and analyzes the e�ect of

abstraction on the complexity of planning. Korf used a similar analysis

to discuss the e�ect of macro-operators and mentions the relationship to

reduced abstraction-based planning [?]. Knoblock uses a similar analysis

to show that the complexity of reduced abstraction-based planning, under

certain assumptions, is linear in the solution length [?]. Other researchers

showed a reduction in search cost by using a similar analysis if a problem can

be divided into smaller subproblems [?]. The analysis in this section proposes

a model of abstraction to include combinations of di�erent planning systems

based on the plan space search paradigm described in chapter ??.

Table ?? summarizes the symbols used in the analysis and gives a brief

explanation of their meaning.

The analysis determines the worst case complexity of abstraction under

a set of (best case) assumptions. Clearly, abstraction can not reduce the

worst case complexity of the general planning problem. The previously men-

tioned theoretical results show that the worst case complexity of a planner

is exponential in the length of the solution. If the assumptions are not met,

the complexity of the planner is still exponential. The analysis is, however,

important because it identi�es a set of assumptions that, if valid, are guar-

anteed to reduce the complexity substantially over means-ends analysis. The

analysis shows the reduced worst case complexity of a set of problems (the

ones that satisfy the assumptions).

Abstraction transforms the original search problem into mA smaller

problems, with branching factors b1; b2; : : : ; bmA
and solution lengths of

CHAPTER 4. MULTI-STRATEGY PLANNING 75

Table 4.2: Table of Symbols

A1; A2; : : : problem solving strategies

b average branching factor of the ground space

b1; b2; : : : avg. branching factors of the abstract subproblems

bA max. branching factor for abstraction A

D decision procedure with cost Cost(D; b; l)

E;EA max. node expansion cost (for strategy A)

k number of levels in abstraction hierarchy

l decision length in the ground space

l1; l2; : : : ; lm decision length of the abstract subproblems

lA max. dec. length for subproblems generated by A

m minimum of the reduction factors

mA reduction factor of planning strategy A

�A applicability probability of planning strategy A

N resource limit (e.g., time or node limit)

n number of problem solving strategies

rA(l) blow-up function for an abstraction A

Problems(b; l) problems in the domain with bp � b and lp � l

Cost(A; p) actual cost of planning strategy A on problem p

Cost(A; b; l) worst case cost of A for Problems(b; l)

ECost(A; b; l) expected cost of A for Problems(b; l)

Good(A; b; l; �) problems in Problems(b; l) that A reduces

Bad(A; b; l; �) problems in Problems(b; l) that A can not reduce

Certain(A; b; l; D; �) problems that D classi�es in Good(A; b; l; �)

MEA means ends analysis

SUB automatic subgoaling, reduction factor, mS

A2 (AM) abstraction-based planning, mA2 (mAM)

CBP case-based planning, mC ; bC ; lC
MAC macro-based planning, mM ; b + bM ; lM
PC-MSP-O problem coordinated msp with oracle

PC-MSP problem coordinated msp without oracle

2-PC-MSP two planning strategy PC-MSP

O-SP-MSP ordered subproblem coordinated msp

SP-MSP unordered subproblem coordinated msp

CHAPTER 4. MULTI-STRATEGY PLANNING 76

l1; l2; : : : ; lmA
. The planner then solves the individual subproblems. The

solutions to the individual subproblems are combined to form a solution to

the original problem. There is also a setup cost function ci, that is the cost

of setting up subproblem i. This setup cost is assumed to be constant for

all problems. Therefore, the actual cost of abstraction for a problem p de-

noted by Cost(A; p) is given in equation ??, where EA is the constant node

expansion cost and bi;p (li;p) is the branching factor (decision length) of the

ith subproblem.

Cost(A; p) =
mAX
i=1

(ci + EA b
li;p
i;p) (4.5)

The abstract algorithm may �nd a suboptimal solution. Therefore, we de�ne

a \blow up function" rA(l), which is the maximum ratio of decision length l0

to optimal decision length l of abstraction A on any problem p in the domain.

Therefore, rA(l) makes it possible to bound the length of the solution found

by the abstraction. The following equation describes this relationship:

mAX
i=1

li = l0 � l rA(l) (4.6)

The following de�nitions of bA, lA, and cA allow us to bound the cost of

abstraction for all problems (Problems(b; l)) with a branching factor less

than b and a decision length less than l:

bA = maxfbi 8i 2 1 : : :mA; 8p 2 Problems(b; l)g
lA = maxfli 8i 2 1 : : :mA; 8p 2 Problems(b; l)g
cA = maxfci 8i 2 1 : : :mA; 8p 2 Problems(b; l)g

Then:

Cost(A; b; l) �
mAX
i=1

(cA + EA b
lA
A) = mA(cA + EA b

lA
A) (4.7)

For a given l0, the upper bound on the cost will be minimized for a givenmA, if

CHAPTER 4. MULTI-STRATEGY PLANNING 77

all subproblems have roughly the same cost. Each subproblem's contribution

to the complete solution only grows linearly in the length of its subproblem,

but the work required to �nd it grows exponentially with the subproblem

length. Therefore, if one subproblem is much larger than the remaining

ones, its cost will overshadow any savings in the other subproblems.

Since the actual cost Cost(A; p) is strongly in
uenced by the length of

the subproblem solutions lA, the analysis makes the assumption that the

subproblems have identical solution lengths. For example, any problem in

the towers of Hanoi domain can be broken up, such that the sizes of the

individual subproblems are identical [?]. Solving mA subproblems of length

lA must result in a plan of at least length l. Using this assumption, it follows:

lA = li 8i 2 1 : : :mA

mAlA = l0 � l rA(l)

lA � l rA(l)

mA

Replacing lA in equation ?? yields the following equation.

Cost(A; b; l) � mA cA +mAEA b
l r(l)
mA

A (4.8)

In the following subsection, the di�erent planning strategies are analyzed

with respect to their e�ect on the abstract branching factor bA and the deci-

sion length lA. It is assumed that the cost of setting up a subproblem cA is

minor compared to the search cost and that the abstraction �nds the optimal

solution (r(l) = 1). The analysis only concentrates on the search cost. The

expensive part of planning is the search cost, not for example the cost of

loading a problem or an operator set.

CHAPTER 4. MULTI-STRATEGY PLANNING 78

4.4 Multi-strategy planning framework

This section �rst de�nes multi-strategy planning and then describes a frame-

work for the comparison of di�erent multi-strategy planning systems.

De�nition 4 (Multi-strategy planning) A multi-strategy planner is

de�ned as a planning system that coordinates a set of two or more planning

strategies on a set of problems or on a single problem.

Multi-strategy planning extends the set of possible planning strategies by

allowing total and partial planning strategies. A total planning strategy re-

turns a plan, i.e., a ground solution; a partial strategy returns a partial plan,

e.g., a sequence of subproblems. Partial planning strategies can be converted

to total planning strategies by combining them with a weak planning method

such as forward chaining. Reduced abstraction hierarchies or automatic sub-

goals are examples of partial planning strategies, since they require another

planning strategy to re�ne the partial plan further. This categorization is

related to the completeness of a planning strategy, since a complete plan-

ner must be necessarily a total planner, and a partial planner is necessarily

incomplete. However, a total planner may or may not be complete.

One problem in machine learning is the distinction between a dynamic

bias and a �xed bias system. A similar problem occurs in the de�nition of

multi-strategy planning, because of the distinction between a set of planning

strategies and a single planning strategy. In both cases, one could argue that

even a dynamic biasing/multi-strategy planner executes a �xed algorithm

and that it therefore only uses an (albeit more complex) bias/planning strat-

egy. The thesis avoids this problem by being pragmatic and demanding that

a single planning strategy must be exploited by a single planner. If a system

uses more than one previously de�ned (i.e., referred to in the literature or

implemented as a unique planning system) problem solving strategy, it is

referred to as a multi-strategy planner. For example, case-based planning

(e.g., Chef) is considered a planning strategy, since it was implemented in

CHAPTER 4. MULTI-STRATEGY PLANNING 79

the Chef system. Other examples of single strategy planners are means-

ends analysis [?], relaxed abstraction based planning [?], and macro-based

planning [?].

The de�nition of multi-strategy planning emphasizes two of the main

features of multi-strategy planners: (a) the combination of di�erent planning

strategies, and (b) the emphasis on coordination of di�erent strategies.

The remainder of this section discusses di�erent approaches to multi-

strategy planning. The description progresses from simple to more complex

systems. The dimensions of comparison are problem vs. subproblem coordi-

nation and ordered vs. unordered coordination. The multi-strategy planning

framework is based on an extension to the analysis of abstraction as described

in section ??.

4.4.1 Problem coordination

From the discussion of abstraction in the previous section, a planning strat-

egy A can be seen as a method to transform a planning problem into mA

subproblems. To be useful, the total cost of all subproblems must be less

than that of the original problem. Otherwise, the abstraction does not lead

to a performance advantage. In general, a planning strategy A can not reduce

the complexity of all problems, but only improves performance on problems

that satisfy the underlying assumptions of the planning bias. Therefore, it

partitions the original problem set Problems into two sets Good and Bad.

The cost of solving problems in Good is reduced by the abstraction, the

cost of the other problems (Bad) is unchanged. A planning bias assigns a

complexity from more than two possibilities to each problem in the set of

problems. Some problems may lead to signi�cant reduction, some to smaller

reductions, and some to no reduction. In this case, a threshold � can be used.

The Good and Bad sets can be de�ned by a complexity limit � , which deter-

mines the maximum resource limit of a planner. All problems that are solved

within a resource limit � are considered \good" problems. An abstraction

CHAPTER 4. MULTI-STRATEGY PLANNING 80

may always generate problems with the same or even a higher complexity

than the original problem, in which case its Good set is the empty set, i.e., it

does not improve performance on any problem.

Good(A; b; l; �) =
S
p2Problems(b;l) p such that Cost(A; p) � �

Bad(A; b; l; �) =
S
p2Problems(b;l) p such thatp 62 Good(A; b; l; �)

If the abstraction �nds an optimal solution and id all subproblems have the

same solution length, the following equation describes a planning strategy

(see equation ??) and de�nes the worst case complexity of an abstraction A

with a maximum branching factor b and a maximum decision length l. The

node expansion cost EA is approximated by the maximum node expansion

cost. Recall that bA is the maximum branching factor of any subproblem and

mA is the number of subproblems generated by planning strategy A.

Cost(A; p) �
0
@ mAEA b

l=mA

A 8p 2 Good(A; b; l; �)

EA b
l 8p 2 Problems(b; l)�Good(A; b; l; �)

1
A

(4.9)

It is assumed that the decision length is the dominant factor, i.e., abstraction

is bene�cial if applicable, and that there is no extra cost otherwise. This

means that bA is not too big to negate the reduction in decision length.

mA b
l=mA

A � bl

The expected cost ECost(A; b; l) of a planning strategy A over a set of prob-

lems Problems(b; l) is de�ned as the cost of solving a problem weighted by

the probability that the problem occurs. The probability is determined by

a probability distribution over the set of problems. The Good (Bad) sets

are the sets of problems that require cost less than (greater or equal to) the

threshold.

CHAPTER 4. MULTI-STRATEGY PLANNING 81

ECost(A; b; l) �
X

p2Good(A;b;l;�)

mAEA b
l=mA

A �prob(p)+
X

p2Bad(A;b;l;�)

EA b
l�prob(p)

(4.10)

One factor in the expected cost of a planning strategy is the probability

of having to solve a problem in the Good set. Therefore, the analysis assigns

an applicability probability �A of getting a problem in the good set using

strategy A. This probability is dependent on the values of the maximum

branching factor and maximum decision length for the problems. The im-

plicit parameters b and l are omitted for readability. Therefore, �A should

be read as �A;b;l in the remainder of this chapter.

�A =
X

p2Good(A;b;l;�)

prob(p) 8b; l

Then equation ?? can be replaced by the following equation

ECost(A; b; l) � �A(mAEA b
l=mA

A) + (1� �A)EA b
l (4.11)

Problem coordinated multi-strategy planner with oracle

Assume that we are designing a multi-strategy planning system based on

the abstract planning strategies A1; A2; : : : ; An. The simplest form of multi-

strategy planner selects a problem, picks the best planner Ai for the problem,

and solves it using planning strategy Ai.

Let us for the moment consider that there is an oracle that, given any

problem p, returns the planning strategy with the smallest cost. This type of

multi-strategy planning is refered to as problem coordinated multi-strategy

planning with an oracle (PC-MSP-O). In this case, the expected cost of a

multi-strategy planner is the minimum of the costs of the individual strategies

Ai for problem p weighted by the probability that this problem occurs.

CHAPTER 4. MULTI-STRATEGY PLANNING 82

Cost(PC-MSP-O; b; l) =
X

p2Problems(b;l)

Min(Cost(Ai; p) 8i 2 1 : : : n)� prob(p)

(4.12)

The analysis assumes that all planning strategies have the same branching

factor b and node expansion cost E. Otherwise b can be approximated by

the maximum branching factor and E by the maximum node expansion cost,

and equation ?? is an upper bound on the cost of the simple multi-strategy

planner. The decision length (i.e., the number of reasoning steps necessary to

�nd a solution) is reduced by a factormi, such thatmi is the maximum of the

reduction factors of all planning strategies Ai such that p 2 Good(Ai; b; l; �).

The decision length is reduced by the maximum factor, because the ora-

cle provides us with the cheapest planning strategy to solve the problem. If

none of the planning strategies are able to reduce the decision length for some

problem, I assume that the last strategy An has a reduction factor of one

(mn = 1) and is applicable to all problems Good(An; b; l; �) = Problems(b; l).

If such a planning strategy does not exist, the planning strategy set can be

extended to include strategy An. If the good sets are not disjoint, the sets

can be changed by only keeping a problem in the good set with the maximum

reduction factor. The oracle returns only one planning strategy (the one with

the maximum reduction factor), which is used to solve the problem. There-

fore, whether the problem is an element of some other planning strategy with

a smaller reduction factor or not does not a�ect the complexity of the plan-

ner. Therefore, in the remainder of the analysis, the good sets are disjoint.

That is, each problem p belongs to exactly one good set Good(Ai; b; l; �) for

some planning strategy Ai. Then, the expected cost of problem coordinated

multi-strategy planning is given by equation ??, where �1 is the probability

of getting a problem in the Good set of A1, �2 is the probability of getting a

problem in the Good set of A2 and so on.

CHAPTER 4. MULTI-STRATEGY PLANNING 83

ECost(PC-MSP-O; b; l) � �1m1Eb
l=m1 + �2m2Eb

l=m2 : : : (4.13)

Problem coordinated multi-strategy planning has received considerable at-

tention in parallel systems, since it is easy to implement on a parallel system.

The advantage is that there is little communication overhead, since the dif-

ferent planning strategies are independent.

Problem coordinated multi-strategy planner without oracle

Unfortunately, designing an oracle that determines a priori which planner

will result in good performance is a hard problem. In the worst case, a

planner may have to test all available planning strategies. For most planning

strategies, important factors in
uencing performance are either unknown or

expensive to test [?]. Therefore, it is unlikely that such an oracle exists. In

the worst case, a multi-strategy planner may coordinate at a problem level

and interleave, one step at a time, the execution of each planning strategy.

Then the planner will also �nd the optimal solution, but the cost is increased

by a factor of n, where n is the number of planning strategies used. The worst

case cost of a problem coordination planner without an oracle (PC-MSP) is

given by equation ??.

ECost(PC-MSP, b, l) � n[�1m1 Eb
l=m1 + �2m2Eb

l=m2 + �3m3 Eb
l=m3 : : :]

(4.14)

The di�culty is to determine for a planning strategy whether a problem is a

member of the good set. This equation shows that there is at most a factor

n di�erence between a problem coordinated planner with and without an

oracle. This cost is too expensive to be practical, so cheaper methods for

predicting the performance of a planner on a problem are necessary for this

type of multi-strategy planning. For example, Alpine's cost of creating an

CHAPTER 4. MULTI-STRATEGY PLANNING 84

abstraction hierarchy is linear in the length of the problem description [?].

Some other planning biases are harder to test. For example Bylander shows

that determining operator decomposability is PSPACE-complete [?].

In general, there is a trade-o� between the prediction accuracy and the

prediction cost. For example, a simple (cheap) prediction method may only

classify a few problems correctly as belonging to the good set. There-

fore the set Good(A; b; l; �) of a planning strategy A is replaced by a set

Certain(A; b; l; D; �), which is the subset of problems in Good(A; b; l; �) that

are known to be in the good set based on some decision procedure D. The

closeness of the match between Certain(A; b; l; D; �) and Good(A; b; l; �) de-

pends on the quality of the decision procedure D.

Cost(A; p) �
0
@ mAEA b

l=mA

A;p 8p 2 Certain(A; b; l; D; �)

EA b
l other problems in Problems(b; l)

1
A (4.15)

For example, the multi-strategy planner designed in the next chapter (chap-

ter ??) uses induction to �nd a description of the Good sets of di�erent

planning strategies. The applicability conditions of a planning strategy are

encoded as context, preconditions, and e�ects of a general operator. The

decision cost Cost(D; b; l) (cost of determining whether a problem is in the

good set) is the match cost of matching the applicability conditions of the

planning strategy, which is equal to the match cost of an operator.

Replacing the good sets Good(A; b; l; �) by the known good sets

Certain(A; b; l; D; �) in the computation of the applicability probability �

yields equation ?? which gives the cost of problem coordinated multi-strategy

planning with a decision procedure D. Note that this also changes the prob-

ability of getting a problem in the good set. Therefore, we de�ne the D

revised applicability probability of a planning strategy as follows:

CHAPTER 4. MULTI-STRATEGY PLANNING 85

�D;A =
X

p2Certain(A;b;l;D;�)

prob(p) 8b; l

In the remainder of this chapter, the decision procedure D is treated as

an implicit paramter of � and thus omitted.

ECost(PC-MSP; b; l) � nCost(D; b; l) + �1m1 Eb
l=m1 + �2m2Eb

l=m2 + : : :

(4.16)

4.4.2 Subproblem coordination

This subsection investigates multi-strategy planning systems that coordinate

di�erent strategies at a subproblem level instead of a problem level. In

contrast to problem coordinated multi-strategy planning, where a planning

strategy is selected to solve the complete problem, a subproblem coordinated

multi-strategy planner can change the planning strategy during solution of a

problem and select a strategy for each subproblem.

The classes of planning strategies that may be used in a subproblem coor-

dinated multi-strategy planner are larger than that of a problem coordinated

one. The former allows the use of partial, whereas the latter requires total

planning strategies.

All planning strategies used in subproblem coordinated multi-strategy

planning must have an associated decision procedure to determine the appli-

cability of a planning strategy. The cost of this decision procedure must be

less than the cost of solving the original problem. Once all strategies have

been applied, the subproblems are solved using some weak method, i.e. each

planning strategy is applied exactly once. This type of coordination is useful,

if a subproblem created by planning strategy Ai or resulting from applying

some other planning strategy Aj to it, can not be reduced further by Ai.

CHAPTER 4. MULTI-STRATEGY PLANNING 86

Ordered subproblem coordinated multi-strategy planner

The �rst subproblem coordinated multi-strategy planner uses a static order-

ing on the set of planning strategies. The �rst planning strategy is applied to

the problem p. If the problem p is in the known good set of the �rst strategy,

it will be transformed into m1 subproblems of size l=m1. If p is not in the

known good set, p is unchanged. Then the next strategy is applied to the

resulting set of subproblems or the original problem.

Examples of ordered subproblem multi-strategy planning systems are

Minton and Knoblock's Alpine/EBL system ([?]) and McCluskey's FM sys-

tem [?]. Since Alpine and automatic subgoaling are partial planning strate-

gies, they lend themselves to an ordered subproblem approach, since they

preprocess the domain to generate new problem speci�cations.

Figure ?? is an example of an ordered subproblem coordinated multi-

strategy planner with two planning strategies (2-O-SC-MSP) with �1 and

�2 being the probabilities that a problem p is in their respective disjoint

known good sets, and m1 and m2 being their reduction factors. There is also

no backtracking across planning strategies, that is, if a problem reduction is

found, it can be re�ned to a complete solution (downward solution property).

It is assumed that the subproblems are generated from the same probability

distribution as the original problem, that is the applicability probabilities �1

and �2 are the same for generated subproblems and user requested problems.

In practice, one would expect that the generated subproblems are somehow

similar and therefore, the probability that all of them are in the good set is

greater than that of a randomly chosen set of problems. This is based on a

strong independence assumption for the generated subproblems.

An exhaustive planning strategy A guarantees that all subproblems gen-

erated by planning strategy A are not in the good set of A. Such a planning

strategy reduces all problems as much as possible. For example, Alpine can

not further reduce an abstraction hierarchy that it created. The same is true

for FM's automatic subgoaling strategy. An exhaustive planning strategy

CHAPTER 4. MULTI-STRATEGY PLANNING 87

Figure 4.2: Ordered subproblem coordinated multi-strategy planning

b
l

b
ll/m2bb

l/m1b

l/m1b
l/m m1 2

1

1- 2

1- 1

1- 1

A1

A2

m1

m1

1- 2
m1

m1

2
m1

m2
m2

Cost(D)

Cost(D)

Cost(D)

2
1- 1

For exhaustive planning strategies,
replace with these values

2
m1

1- 1
() 2

m1

1- 1
()1-

results in di�erent conditional probabilities over the set of problems. The

new conditional probability is 0 for all problems in the good set of A, and

the conditional probability for all other problems is the original probability

normalized by 1��A. Figure ?? shows how the costs must be updated in the

left part of the tree, if planning bias A1 is an exhaustive planning strategy.

The analysis derives an upper bound on the cost of ordered subproblem

coordinated multi-strategy planning. If the reduction factors m1; m2; : : : ; mn

and the decision length l are large enough, then the cost is mostly deter-

mined by the subproblem with the largest decision length. Therefore, if all

subproblems have the same length, the cost can only be signi�cantly reduced

if all subproblems can be further reduced. Although the reduction of some

subproblems will improve the performance somewhat in practice, this per-

formance improvement is ignored in the analysis. An upper bound on the

cost of ordered subproblem coordinated multi-strategy planning with two

CHAPTER 4. MULTI-STRATEGY PLANNING 88

exhaustive planning strategies is given by:

ECost(2E-O-SC-MSP; b; l) �
�1
�

�2
1��1

�m1

m1m2Eb
l=m1m2 + �1

�
1�

�
�2

1��1

�m1
�
m1Eb

l=m1

+ �2m2Eb
l=m2 + (1� �1 � �2)Eb

l2Cost(D; b; l)

(4.17)

The cost of ordered subproblem coordinated multi-strategy planning consists

of three possibilities. First if all problems can be reduced, m1m2 problems

of size l=(m1m2) must be solved. Secondly, if only one strategy is applicable,

the reduction results in m1 problems of size l=m1 or m2 problems of size

l=m2. Thirdly, if none of the strategies can reduce the problem, the problem

complexity remains unchanged.

If the planning strategies are not exhaustive, the probabilities in the left

branch of �gure ?? are not normalized and the expected cost of ordered

subproblem coordinated planning is higher if the planning strategies are not

exhaustive. Equation ?? shows the cost of ordered subproblem coordinated

multi-strategy planning with two non-exhaustive planning strategies.

ECost(2-O-SC-MSP; b; l) �
�1�

m1
2 m1m2Eb

l=m1m2 + �1(1� �m1
2)m1Eb

l=m1 + �2m2Eb
l=m2

+ (1� �1 � �2)Eb
l + 2Cost(D; b; l)

(4.18)

From equation ??, two more conclusions can be drawn. First, it shows

that if all strategies have similar reduction factors, the cost of ordered sub-

problem coordinated planning is minimized if the strategies are checked in

increasing order of applicability probability. Given two strategies A1 and A2

with �1 > �2 and m1 = m2, A2 should be checked �rst. This result can

be derived by comparing the expected costs in both cases. The di�erence

in expected cost for the two planners (MSP12 uses A1 and then A2, MSP21

uses A2 and then A1) is given by

CHAPTER 4. MULTI-STRATEGY PLANNING 89

ECost(MSP21; b; l)� ECost(MSP12; b; l) =

�1�2(�
m�1
2 � �m�11)(mEbl=m �m2Ebl=m

2
)

This di�erence is negative, which implies that the planning strategy with

the lower probability should be tested �rst. Secondly, if the reduction fac-

tors are not equal (m1 > m2), but the two planning strategies have similar

applicability probabilities �, then testing the weakest (minimum reduction

factor) strategy MSP21 �rst minimizes the cost.

ECost(MSP21; b; l)� ECost(MSP12; b; l) =

��m2+1m2Eb
l=m2 + �m1+1m1Eb

l=m1 + (�m2+1 � �m1+1)m1m2Eb
l=m1m2

Assuming that the term involving m2 is the dominant term (m1 > m2)
bl=m2 � bl=m1), it follows that the di�erence is negative and that the expected

cost of MSP21 is less than that of MSP12.

This results also hold true, if we assume that the planning strategies gen-

erate similar subproblems, that is either all or no subproblem can be re�ned

further. This counter intuitive result holds true for an ordered subproblem

coordinated planner. The situation changes for an unordered subproblem

coordinated planner, since the question of which bias to apply �rst is mean-

ingless. Remember that the good sets are disjoint, so there is at most one

applicable planning strategy at each level.

Equation ?? shows the di�erence in costs between problem coordinated

planning with an oracle and ordered subproblem coordinated planning with

two non-exhaustive planning strategies. The di�erence for exhaustive strate-

gies would be greater by approximately a factor of 1=(1� �1)
m1 .

ECost(2-PC-MSP-O; b; l)� ECost(2-O-SC-MSP; b; l) = (4.19)

�1�
m1
2 E(m1 b

l=m1 �m1m2b
l=m1m2)� 2Cost(D; b; l)

CHAPTER 4. MULTI-STRATEGY PLANNING 90

If the decision cost Cost(D; b; l) is small enough compared to the search costs,

it shows that the expected cost of ordered subproblem coordinated multi-

strategy planning (O-SP-MSP) is only slightly lower than that of problem

coordinated multi-strategy planning with an oracle (PC-MSP-O). This hap-

pens because the probability of reducing all subproblems generated by A1 is

small �1�
m1
2 . In practice, reducing a subset of all subproblems will reduce the

cost, but this e�ect is ignored in the analysis. It is assumed that if only some

of the generated subproblems can be reduced further, the complexity of the

remaining ones will dominate the expected cost (m1 b
l=m1 � m1m2 b

l=m1m2).

The analysis shows that compared to a problem coordinated multi-

strategy planner with an oracle, subproblem coordinated planning has a

lower expected cost than problem coordinated one (with and without an

oracle). The expected savings decrease greatly with an increase in the num-

ber of generated subproblems if all subproblems must be reduced to improve

performance signi�cantly.

Unordered subproblem coordinated multi-strategy planner

The last multi-strategy planning system described in this framework is one

with subproblem coordination, but no ordering on the set of planning strate-

gies. This is denoted as unordered subproblem coordinated multi-strategy

planning (SP-MSP). The known good sets of the multi-strategy planners are

disjoint, i.e., a problem is exactly in at most one known good set. If all

planning strategies have the same reduction factor m, the di�erent planning

strategies can be approximated by a single strategy with an applicability

probability of �T =
Pn

i=1 �i and a common reduction factor of m.

Figure ?? is a graphical representation of unordered subproblem coordi-

nated multi-strategy planning with three reduction levels. The maximum

number of reductions is not limited by the number of planning strategies, as

CHAPTER 4. MULTI-STRATEGY PLANNING 91

in the ordered case. At the top level, the problem can not be re�ned with

probability 1��T , in which case the problem complexity is bl. Otherwise, the

problem generates m subproblems. Given that the solution length is large

enough, we assume that a search reduction can only improve performance

if all m subproblems can be re�ned further. The probability that all sub-

problems can be re�ned is �mT . The planning strategies are non-exhaustive

strategies. If some of the planning strategies are exhaustive, the following

cost is an overestimate, since the probabilities at the next level would have to

be normalized by the probability of the previously selected planning strategy.

Figure 4.3: Unordered subproblem coordinated multi-strategy planning

b
l

b

b

l/m
b

l/m
b

m2

m2

m2

m2

l/m2

l/m2

m

m

T

T

m
T

1- T

m1- T

1- T

n*Cost(D)

n*Cost(D)

n*Cost(D)

n*Cost(D)

Then the cost of unordered subproblem coordinated multi-strategy plan-

ning is given in equation ??, where k is the number of iterations that the set

of all problems can be reduced successfully. In the �gure, k is equal to the

CHAPTER 4. MULTI-STRATEGY PLANNING 92

number of level in the tree (3).

ECost(SP-MSP; b; l) � nkCost(D; b; l) +
kX
i=0

�
mi
�1

m�1

T (1� �m
i

T)miEbl=m
i

(4.20)

For two planning strategies, the reduction probability is (�T = �1 + �2).

The expected cost of ordered versus unordered subproblem multi-strategy

planning can be computed. The probability of solving a problem of size bl is

identical in both cases (1��T). The �rst di�erence occurs in the probability

of solving a problem of size bl=m. Because of the dominance assumption, the

remaining terms (bl=m
2
; : : :) are ignored.

ECost(2-O-SC-MSP; b; l)� ECost(2-SP-MSP; b; l) � (4.21)

((�1 + �2)
m+1 � �1�

m
2)mEb

l=m

Comparing the expected costs of both planners shows that unordered sub-

problem coordinated multi-strategy planning has a lower expected cost than

ordered one.

Table ?? summarizes the results in this section for two planning strategies.

It shows the expected cost of di�erent multi-strategy planning systems and

their relationship. The expected cost decreases from the top to the bottom.

As can be seen, unordered subproblem coordinated planning may improve

performance over ordered one, because the probability that a problem can

be further reduced is higher than that of any single strategy. The exact

improvement depends on the number of levels.

CHAPTER 4. MULTI-STRATEGY PLANNING 93

Table 4.3: Expected cost of di�erent multi-strategy planners

Problem coordinated, without oracle

Total planning strategies

ECost(2-PC-MSP; b; l) =

2Cost(D; b; l) + �1m1Eb
l=m1 + �2m2 Eb

l=m2 + (1� �1 � �2)Eb
l

Problem coordinated, with oracle

Total planning strategies

ECost(2-PC-MSP-O; b; l) =

�1m1Eb
l=m1 + �2m2Eb

l=m2 + (1� �1 � �2)Eb
l

Subproblem coordinated, ordered

Total or partial exhaustive planning strategies

ECost(2E-O-SC-MSP; b; l) =

+ 2Cost(D; b; l) + �1
�

�2
1��1

�m1

m1m2Eb
l=m1m2

+ �1
�
1�

�
�2

1��1

�m1
�
m1Eb

l=m1 + �2m2Eb
l=m2 + (1� �1 � �2)Eb

l

Subproblem coordinated, ordered

Total or partial planning strategies

ECost(2-O-SC-MSP; b; l) =

2Cost(D; b; l) + �1�
m1
2 m1m2Eb

l=m1m2 + �1(1� �m1
2)m1Eb

l=m1

+ �2m2Eb
l=m2 + (1� �1 � �2)Eb

l

Subproblem coordinated, unordered

Total or partial planning strategies

�T = �1 + �2, k is the number of levels

ECost(2-SP-MSP; b; l) =

2kCost(D; b; l) +
kX
i=0

�
mi
�1

m�1

T (1� �T)
mi

miEbl=m
i

CHAPTER 4. MULTI-STRATEGY PLANNING 94

4.5 Analysis of di�erent planning strategies

This section analyses di�erent planning strategies. The results of this analysis

is used to (a) show that these strategies �t into the framework described in

the previous section and (b) to motivate an unordered subproblem multi-

strategy planner based on case-based, abstraction-based, and macro-based

planning.

4.5.1 Analysis of automatic subgoaling

This subsection investigates the model of abstraction with respect to auto-

matic subgoaling. The abstract branching factors (i.e., the branching factor

of the search spaces for the subproblems) are equal to the branching factor

in the original search space, since the search space for solving subgoals and

the original problem are identical.

bS = b

Replacing bA and cA in equation ??, yields equation ?? to describe the cost

of automatic subgoaling.

Cost(SUB; b; l) = mS cS +mSEb
lr(l)
mS (4.22)

Automatic subgoaling improves performance if Cost(SUB; b; l) is less than

the cost of standard planning, that is:

Cost(SUB; b; l) � Ebl) mScS +mSEb
lr(l)
mS � Ebl

Ignoring the cost of setting up a problem, and a term of logmS, automatic

subgoaling is useful if

mS � r(l)

CHAPTER 4. MULTI-STRATEGY PLANNING 95

Automatic subgoaling is worthwhile, if the number of subgoals grows

faster than the \blow up function." In the special case that automatic sub-

goaling �nds the optimal (i.e., shortest) solution, then r(l) = 1 and automatic

subgoaling is bene�cial for any mS > 1.

Under those assumptions automatic subgoaling is identical to the model

of an abstraction Cost(A; b; l) (Equation ??) with mS = mA and bA = bS as

described in section ??.

4.5.2 Analysis of two-level abstraction based planning

This subsection analyses abstraction based planning with two levels of ab-

straction. As described previously, abstraction based planning solves a prob-

lem �rst in an abstract space with branching factor bA2 and lA2 and re�nes

the solution to a solution in the ground space. Each operator in the abstract

plan yields a subproblem in the ground space. Assume that an abstract plan-

ner yields mA2 subproblems, then there is a total of mA2 + 1 subproblems,

mA2 ground problems and one abstract problem. The ground problems have

a branching factor of b and solution length lA2.

Cost(A2; b; l) = EbmA2
A2 +

mA2X
i=1

EblA2 (4.23)

Since the ground problems are solved in the original search space, their

branching factor is equal to the original branching factor b. Furthermore, the

abstract problem space consists of sets of ground states, and therefore, the

branching factor in the abstract space is limited by the branching factor of

the ground space bA2 � b.

If the solution found by the abstraction based planner is identical to an

optimal solution, it follows that lA2 = l=mA2. The abstract solution length is

equal to mA2 to yield mA2 subproblems. Replacing bA; lA yields the following

cost:

CHAPTER 4. MULTI-STRATEGY PLANNING 96

Cost(A2; b; l) = EbmA2 +mA2Eb
l=mA2 (4.24)

Comparing equation ?? to this equation shows that automatic subgoaling

is cheaper than two-level abstraction based planning if both have the same

reduction factor. The di�erence is a constant bmA2 , since abstraction-based

planning searches for a sequence of suitable subgoals, whereas this sequence

is already known in automatic subgoaling.

The cost in equation ?? is minimized, if the two terms are the same size

mA2 � l=mA2 For a two-level abstraction-hierarchy, the cost is minimized for

mA2 =
p
l. Knoblock [?] derives an identical result, based on the ratio of

search space sizes.

The cost of the model of abstraction and the cost of a two-level abstrac-

tion hierarchy are almost identical (ignoring the cost of solving the abstract

problem) Cost(A2; b; l) � Cost(A; b; l).

4.5.3 Analysis of multi-level abstraction based plan-

ning

The analysis of two-level abstraction-based planning can be generalized to

abstraction hierarchies with multiple levels. A multi-level abstraction hier-

archy results in a tree of subproblems. Assume (1) that each abstract plan

yields mAM subproblems, (2) that again the abstraction based planner �nds

an optimal solution, and (3) that the branching factors in the abstract search

spaces are bounded by b, then it can be shown that an abstraction based plan-

ner with multiple levels of abstraction can reduce the complexity to be linear

in l rather than exponential:

The leaf nodes of the subproblem tree consist of ground level problems.

If k is the number of levels in the abstraction hierarchy, then there are mk
AM

ground problems, and each ground problem has a size of l=mk
AM . The number

of abstract problems is the size of the tree not including the ground level,

CHAPTER 4. MULTI-STRATEGY PLANNING 97

that is the number of nodes in a tree of depth k � 1. Since each abstract

problem generates mAM problems at the next level, there are
mk
AM

�1

mAM�1
abstract

problems, each of length mAM .

k�1X
i=0

mi
AM =

mk
AM � 1

mAM � 1

The total cost of multi-level abstraction based planning is thus given by,

Cost(AM; b; l) =
mk

AM � 1

mAM � 1
EbmAM +mk

AMEb
l=mk

AM (4.25)

The total number of problems is
mk
AM

�1

mAM�1
+mk

AM . For k = logmAM
l, the

terms in equation ?? yield roughly equally size subproblems, which minimizes

the cost. Substituting this value for k, the cost of multi-level abstraction

based planning can be approximated as

Cost(AM; b; l) � l � 1

mAM � 1
EbmAM (4.26)

Since b and mAM are constants, the cost in equation ?? is linear in the

original solution length.

The framework for abstraction introduced in section ?? describes a two

level abstraction hierarchy. Replacing bA = b, mA = mA2, and ignoring a

constant term of bmA2 transforms equation ?? into equation ??. Abstraction

hierarchies with k levels can be modeled by substituting mA = mk
AM and

bA = b ignoring the cost of solving the abstract problems.

4.5.4 Analysis of case-based planning

Case-based planning does not generate new plans from scratch, but adapts

previous plans to the new situation. Therefore, the determinant factor is the

similarity between the current problem and the retrieved plan. In general, the

cost of case-based planning is the sum of the costs for �nding and retrieving

CHAPTER 4. MULTI-STRATEGY PLANNING 98

a similar case and for adapting this plan to the new situation.

Case-based planning is memory intensive, many plans have to be stored

to cover enough problems. Plan retrieval, therefore, has to retrieve the most

suitable plan from a large set of cached plans. However, this retrieval can be

done cheaply, by using an indexing method (constant time) or a discrimina-

tion net (logarithmic in the number of cached plans).

Therefore, this subsection focuses on the case adaptation, which is a

search problem through the space of possible plan adaptations and is thus

the most expensive part of a case-based planner. Adaptation may be a

non-trivial task in itself and partitioning the adaptation process into smaller

subproblems may be necessary.

This analysis is based on the assumption that each adaptation forms an

independent subproblem and the number of adaptations is mC . For example,

a case-based planner may have to remove a pre�x plan from the case and

add a su�x plan to the case to solve the new problem. One assumption

of case-based planning is that these adaptations can be done from the head

to the tail of the plan without interference. If two plan adaptations are

not independent, they can be viewed as one macro plan adaptation with a

decision length that is equal to the sum of the individual adaptations. The

average branching factor for the adaptation space is bC and lC is the search

length for an adaptation.

Then the cost of case-based planning Cost(CBP; b; l) is given as:

Cost(CBP; b; l) = mCb
lC
C (4.27)

The important di�erence between case-based planning and other planning

strategies is that the branching factor bC and the decision length lC are

independent of the solution length and branching factor of the ground space.

The cost of case-based planning is determined by the syntactical similarity

of the retrieved case and the new problem.

It seems, nevertheless, reasonable to assume that the length of the adap-

CHAPTER 4. MULTI-STRATEGY PLANNING 99

tation is related to the length of the problem. If the length of the case

adaptation is a fraction of the original solution length, and that the number

of adaptations is dependent on this factor, case-based planning can also be

described by the model of abstraction proposed in equation ??.

A particular method of case-based planning is Hank's \Systematic Plan

Adaptor" (SPA) system [?]. SPA interprets plan generation as a special case

of plan adaptation. An e�cient method to unwind the derivation of a plan

is used and the adaptation methods contain the original operators plus one

extra operator to undo a previous planning decision. The branching factor

is increased by one, since there is only one branch for undoing a previous

planning step, since SPA guarantees systematicity, that is SPA guarantees

that each candidate plan is only created once. Also, rather than as individual

adaptations of smaller decision length, SPA views case-based planning as

the creation of a single larger adaptation. It follows that bC = b + 1, and

equation ?? can be rewritten as:

Cost(SPA; b; l) = E(b + 1)lC (4.28)

There is a philosophical di�erence between SPA and Chef. The former

one interprets case-based planning as planning with an additional operator to

undo previous planning decisions. Hammond's Chef system sees case-based

planning as an opportunity to partition the original problem into smaller

subproblems and to use the current plan failures to guide this partitioning.

Chef also shows that a small set of plan adaptations is su�cient to debug

many failures in at least one domain.

4.5.5 Analysis of macro-based planning

This subsection discusses the cost of macro-based planning. The planner

adds macros to the operator set to reduce the decision length. The branching

factor of the search space can be broken up into two parts: (a) the branching

CHAPTER 4. MULTI-STRATEGY PLANNING 100

factor b of the original search space, and (b) the additional branching factor

bM due to the new macro-operators. Let lM be the decision length of the

macro planner, then the cost of macro-based planning is given by:

Cost(MAC; b; l) = E(b + bM)lM (4.29)

The new decision length lM depends on the exact macro learner. This analysis

assumes that a macro planner reduces the decision length by a constant

factor mM . Reducing the decision length by a constant l � C will result in

no signi�cant improvement in search complexity, since O(l � C) = O(l).

The cost of a macro-based planner is given by:

Cost(MAC; b; l) = E(b+ bM)l=mM (4.30)

From this equation, a set of su�cient conditions for speed up can be derived

by comparing the costs of a planner with and without macros.

Cost(MAC; b; l) � Cost(MEA; b; l)) E(b + bM)l=mM � Ebl (4.31)

Solving this equation for mM leads to the following inequality:

mM � log(b + bM)

log b
(4.32)

This equation allows us to develop su�cient conditions for a speed up. For

example, if a single macro is applicable in all states (bM = 1), and that

the original branching factor b is three, then the decision length has to be

reduced by a factor of at least 1:26 to increase performance. In other words,

the decision length must be reduced by at least 20 percent.

This analysis ignores the matching cost of macros. Minton showed that

sometimes the cost of testing whether a macro is applicable or not (the match-

ing cost) may outweigh any possible gain of the macro [?]. The matching cost

CHAPTER 4. MULTI-STRATEGY PLANNING 101

of an operator grows exponentially with the number of free variables. This

additional cost increases the node expansion cost E and is incurred even if

the operator is not applicable and thus does not add to the branching factor,

but does increase the cost of expanding a node. However, this additional cost

contributes only a constant factor to the search cost and is thus ignored in

the theoretical analysis. For any constant increase in expansion cost, there

is a minimum decision length, such that the di�erence in complexity out-

weighs any di�erence in expansion cost. The matching cost is of practical

importance. That is why chapter ?? describes DoLittle's learning methods

which do consider the matching cost.

Comparing equation ?? and equation ?? and substituting bA = b + bM

and mA = mM shows that the framework in section ?? is an overestimate by

a factor of mM for macro-based planning. Since the cost is an over estimate

of the true cost of macro-based planning, the framework is a reasonable

approximation of macro-based planning.

4.6 Analysis of multi-strategy planning ex-

ample

This section analyzes multi-strategy planning and derives conditions under

which it can achieve an exponential speed up over three single-strategy plan-

ners (macro-based, case-based, and abstraction-based). The analysis is based

on a set of assumptions. Given those assumptions, the worst case complex-

ity of a multi-strategy planner is shown to be constant in the length of the

solution as opposed to the exponential complexity of an abstraction-based,

macro-based, and case-based planner. The costs derived for the individ-

ual planning strategies are underestimates, which means that the di�erence

in costs between multi-strategy and single strategy planning may be even

greater.

This analysis shows that multi-strategy planning is at least in one case

CHAPTER 4. MULTI-STRATEGY PLANNING 102

bene�cial, and the set of assumption used in the analysis determines appli-

cability conditions for multi-strategy planning. The analysis shows further-

more, that the coordination must occur at a subproblem level, instead of

at the problem level. In other words, an ordered subproblem coordinated

multi-strategy planner performs better than picking the best planner for a

given problem (problem coordinated multi-strategy planner with an oracle).

4.6.1 MSP example: Means-ends analysis

Assume that we are given a problem whose shortest solution contains l prim-

itive operators. The branching factor of this search space is given as b.

Therefore, the worst case complexity of a means-ends analysis planner is

given by:

Cost(MEA; b; l) = Ebl

Figure 4.4: Example: analysis of means-ends planning

Initial Goal

solution length = l

b

4.6.2 MSP example: Case-based planning

A simple case-based planner exists that can retrieve previous cases and adapt

them. It uses a means-ends analysis planner to create adaptations such

as pre�x or post�x plans. On average all but a fraction 1=mC of a case

is reusable. Therefore, the decision length of a case-based planner lC is

CHAPTER 4. MULTI-STRATEGY PLANNING 103

reduced from l to l=mC . Furthermore, since the case-based planner uses

means-ends analysis to search for adaptations, bC = b. Note that this is an

optimistic assumption, generally case-based planners have a higher branching

factor than means-ends analysis planner (for example SPA and equation ??).

Furthermore, this example assumes that only one adaptation is necessary.

Figure ?? is an example, where the case-based planner has to create a

su�x plan of length l=mC . Replacing the variables in equation ?? leads to

the following cost of case-based planning:

Cost(CBP; b; l) = Ebl=mC (4.33)

Figure 4.5: Example: analysis of case-based planning

Initial

Goal

bC

Case length (m -1)c

l
mc

l
mC

4.6.3 MSP example: Abstraction-based planning

Assume that for any problem in the domain, a two-level abstraction hier-

archy exists that can partition the original problem into mA2 equal-sized

subproblems. Also, there is no backtracking across levels. From the analysis

of two-level abstraction-based planning in subsection ??, it follows that the

cost of abstraction-based planning (equation ??) in this case is given as:

Cost(A2; b; l) = EbmA2 +mA2Eb
l=mA2 (4.34)

CHAPTER 4. MULTI-STRATEGY PLANNING 104

Figure ?? shows an example of abstraction-based planning. At the top

is an abstract plan of length mA2. Each abstract operator is re�ned by a

primitive operator sequence of length l=mA2.

Figure 4.6: Example: analysis of abstraction-based planning

Initial

Goal

AOp2 AOpk

Op1

Abstract solution length = mA2

Partial solution length = l/mA2

b

AOp1

bAbA bAbA bAbA

l/mA2 l/mA2

4.6.4 MSP example: macro-based planning

Each macro increases the branching factor of the search space as well as

the matching cost per node. Furthermore, the number of possible macros

increases exponentially with the length of the macro; there are blM possible

macros of length lM . Therefore, it is increasingly unlikely that a macro-

planner contains all necessary macros of a given length as this length in-

creases. The analysis assumes that the macro planner contains all necessary

macros of length less than or equal to some constant mM . The intuition is

that only a small subset of them are necessary to reduce the decision length

su�ciently. In this analysis, the additional operators add a small constant

term bM to the branching factor.

From equation ??, the cost of macro-based planning in this example is

given as:

CHAPTER 4. MULTI-STRATEGY PLANNING 105

Cost(MAC; b; l) = E(b+ bM)l=mM (4.35)

Figure 4.7: Example: analysis of macro-based planning

Initial

Goal

Macro solution length = l/mM

Macro length = mM

b+bM b+bM
b+bM

mM mM

4.6.5 MSP example: multi-strategy planning

This subsection analyses the cost of multi-strategy planning for the ex-

ample. The multi-strategy planner is combining the case-based (subsec-

tion ??), abstraction-based (subsection ??), and macro-based planning (sub-

section ??).

The multi-strategy planner uses a simple search control method, it has

access to all cases, abstractions, and macros. It uses an admissible search

control such as breadth-�rst or iterative deepening. An admissible search

method is one that guarantees that the �rst solution returned is the optimal

solution. This simple search control method is su�cient, since there is only

one necessary plan adaptation, the creation of a su�x plan. Furthermore,

abstract operators are re�ned in left to right order, after the top-level plan

has been created.

As mentioned previously, the motivation for cases is to generate operator

sequences that are long enough to support reuse. Macros, on the other hand,

are short, general operator sequences. Therefore, the following assumption

is used to relate the sizes of the respecting search spaces:

CHAPTER 4. MULTI-STRATEGY PLANNING 106

l=(mCmA2) � mM � l=mC ; l=mA2

First, the planner generates an abstract plan that solves the problem

(a) by retrieving a case, and (b) by adding an abstract su�x plan. As in

the previous analysis, the retrieval of the case is cheap and its cost ignored.

The abstract plan contains mA2 abstract operators, which each generate a

subproblem of size l=(mCmA2). Since the resulting search spaces are smaller

than mM , a macro exists to solve them.

The cost of multi-strategy planning is therefore, the cost of (a) retrieving

and adapting a suitable case, (b) generating an abstract plan of length mA2,

and (c) solving subproblems of size less than mM . Since mM is the maxi-

mum macro length, each subproblem can be solved by one macro operator.

Therefore, the total cost of multi-strategy planning is given by:

Cost(MSP; b; l) = Eb1MSP + EbmA2
MSP +mA2Eb

1
MSP

= (mA2 + 1)EbMSP + EbmA2
MSP

(4.36)

Since a multi-strategy planner allows the use of any operator, the branching

factor of the associated search spaces is given as the sum of the branching

factors of the individual search spaces.

bMSP = b+ bC + bA2 + bM (4.37)

Since bC , bA, bM , b, and kA are constants, this function is constant in

the solution length l. Comparing this to the cost of means-ends analysis bl,

case-based bl=mC , abstraction-based bl=mA2 , and macro-based planning bl=mM

shows that multi-strategy planning may lead to an exponential reduction in

search cost.

Figure ?? shows the performance of multi-strategy planning. Using a

previous case, the problem is reduced to one of �nding a su�x plan of length

CHAPTER 4. MULTI-STRATEGY PLANNING 107

l=mC . This problem is further subdivided by an abstraction hierarchy, which

results in ground subproblems of length mM . The ground subproblems are

solved using macros.

Figure 4.8: Example: analysis of multi-strategy planning

AOp2

Abstract solution length = mA2

AOp1

bAbA bAbA

Goal

b+bM

Initial

Case length (m -1)c

l
mc

Macro length mM mM

4.7 Discussion

This analysis, clearly, does not imply that a multi-strategy planner reduces

a NP-hard problem to a constant one. It does show that under certain

conditions, it may produce an exponential speed up over a single strategy

planner. In general, this depends on the ability of a multi-strategy planner

to divide a problem into smaller subproblems than a single strategy planner.

The analysis was based on a number of assumptions. The most crucial

assumption was that the subproblems created by the planning strategy are

roughly of equal size. On the other hand, if one subproblem is as di�cult or

even more di�cult than the original problem, the planning strategy will not

lead to a reduction in search cost. Another assumption is that the planner

�nds an optimal solution or one bounded by a blow-up function to bind the

otherwise possibly in�nite search spaces.

CHAPTER 4. MULTI-STRATEGY PLANNING 108

Nevertheless, the analysis is useful since it provides a insight into su�cient

conditions for improvement using a multi-strategy planning system. The

critical factors are the reduction of the search spaces associated with each

planning strategy, the applicability probability of the planning strategy, and

the cost of determining whether a problem belongs to the good set of a

planning strategy.

The analysis focused on a case-based, abstraction-based, and macro-based

planner as an example, but indeed can be extended to include other planning

strategies. Macros, cases, and abstractions were selected because of their

popularity in the literature.

However, this chapter only used a primitive method of selecting and coor-

dinating di�erent planning strategies. The analysis motivates the design of an

unordered subproblem coordinated multi-strategy planning system DoLit-

tle described in the next chapter (chapter ??).

Chapter 5

DoLittle: a multi-strategy

planner

It is to be noted that when any part of this paper appears

dull, there is a design in it.

Sir Richard Steele, 1672{1729, The Tatler.

Based on the analysis in chapter ??, this chapter describes the design of

an unordered subproblem coordinated multi-strategy planning system that

is able to combine most of the planning systems described in chapter ??.

The set of problem solving strategies includes forward chaining, means-ends

analysis, case-based, automatic subgoaling, abstraction-based, reactive rules,

and macro-based planning. The design and implementation shows the practi-

cal feasibility and allows the empirical evaluation of multi-strategy planning.

The uni�ed framework also allows comparison of di�erent planning strate-

gies. The design emphasizes three popular planning strategies: case-based,

abstraction-based, and macro-based planning. These planning strategies are

of interest because they require di�erent search control strategies, and are

based on di�erent planning biases. This makes them distinct enough, so that

combining them is non-trivial, and also of practical interest.

109

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 110

Section ?? argues for a particular design decision, the omission of par-

tial order planning. Section ?? speci�es the requirements of a multi-strategy

planning system. DoLittle's representation of planning strategies and its

decision procedure are described in sections ?? and ??. Section ?? describes

general operators and provides examples of the representation of popular

planning strategies in DoLittle. Section ?? is a description of DoLit-

tle's domain language, a version of Prodigy4's description language with

enhancements to support the representation of di�erent planning strategies

as general operator. Since a multi-strategy planner must be able to emu-

late di�erent planning strategies, it requires a search control method that

can emulate di�erent problem solvers (section ??). Section ?? discusses the

design of DoLittle with respect to its requirements.

5.1 Why does DoLittle not include partial-

order planning?

Although the superiority of partial-order over total-order planning was long

assumed by researchers, more recent research has focused on systematic com-

parisons. This work concluded that indeed, as with any other planning strat-

egy, partial-order planning performs well in some instances [?], but that there

are also domains in which a total-order planner is superior [?, ?].

Furthermore, a large part of partial-order planning's appeal is its ability to

solve non-linear problems, i.e., problems where subgoals must be interleaved.

However, the issue of linear vs. non-linear planning is di�erent from total

vs. partial-order planning, i.e., a partial-order planner may or may not be

a linear planner. For example, DoLittle and Prodigy4 are non-linear,

total-order planners.

The largest drawback to partial-order planning is the cost of calculat-

ing the truth criterion, i.e. whether a given predicate is true or not after a

partially ordered plan. This is especially true for complex domain descrip-

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 111

tion and plan languages. However, some progress has been made to include

them. For example, the UCPOP planner supports conditional e�ects [?].

The truth criterion is NP-hard for Strips like representations [?], and un-

decidable for more powerful ones [?]. Informally, this happens because in a

partially ordered plan with n operators, there are n! di�erent traces. In the

worst case, we have to test all n! traces to see whether a predicate is true

after execution of the operator sequence. Partial-order planners generally

restrict either the representation language or the computation of the truth

criterion to overcome this problem [?].

It is also harder to learn new operators from partial order plans, since

it is harder to estimate the savings of a new operator. Since DoLittle

is intended as part of an intelligent apprentice system, one constraint on

the design was that DoLittle should be able to learn to improve problem

solving inductively. Most learning methods are designed for totally-ordered

planners.

Lastly, as other researchers do, I agree that humans use plan debugging

instead of partial-order planning during problem solving [?]. Therefore, de-

bugging of plans is a very important aspect of planning. However, debugging

partial-order plans is complex, and there has been little research in this area.

So, the design emphasizes plan debugging at the expense of partial-order

planning. One direction of future work will be to incorporate partial-order

planning intoDoLittle. The main obstacle is to convert the plan debugging

methods to allow for partial order plans.

However, note that the omission of partial-order planning was a design

decision. There is nothing in the multi-strategy paradigm per se that dis-

allows partial-order planning. A multi-strategy planner can combine total

order and partial order planning, which in turn can reduce the expensive

truth criterion to a small subset of the plan, instead of the whole plan.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 112

5.2 Requirements

A multi-strategy planner must be able to break a problem up into subprob-

lems, pick an appropriate problem solving strategy for each subproblem, solve

the individual subproblems with it, and then combine the partial solutions

to create a solution to the original problem.

Therefore, the following requirements must be met for DoLittle to be

a practical multi-strategy planning system:

1. a representation language for di�erent planning strategies

2. a decision procedure D that determines whether a planning strategy is

appropriate

3. given a representation of di�erent planning strategies, a search control

method that emulates the e�ect that di�erent planning strategies have

on the problem space

4. a domain description language that is powerful enough to describe com-

plex domains

The solution to problems ?? and ?? are discussed in section ?? and ??.

Section ?? discusses DoLittle's domain description language. The search

control method developed to solve problem ?? is shown in section ??.

The ful�llment of those requirements is tested by an empirical evaluation

of a multi-strategy planning system in a set of domains. Chapter ?? shows

that DoLittle is able to solve di�cult problems in the kitchen domain.

5.3 DoLittle's representation of planning

strategies

Clearly, to be able to use di�erent planning strategies on a single problem,

a planner must be able to represent them. This section describes general

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 113

operators, a generalization of traditional Strips operators that allows the

representation of a large class of planning strategies. Subsections ?? to ??

show examples of how this representation is used.

De�nition ?? of a planning strategy in section ?? is too general to be

practical and to support e�cient planning. However, in chapter ??, the

plan space paradigm was introduced as a uni�ed framework for planning. In

this framework, di�erent planning strategies were categorized according to

their plan representation language and their set of plan transformations (see

table ??). The general operator representation is based on the assumption

that a planning strategy can be described by its applicability conditions and

its set of plan transformations.

Ignoring partial-order planning and concurrent plans in case-based plan-

ning, the plan representation language L
P
has to be able to represent the

following elements:

� Total order of operators

� Instantiated variables

� Plan skeleton

� Trees of problem spaces.

A plan skeleton is equal to a plan head and a plan tail where the cur-

rent operator may move backwards or forwards instead of only forwards.

Although, the problem solving strategies described in table ?? only require

uniform trees, it seems reasonable to expand this criteria to include also

non-uniform trees.

The following set of plan transformations T can be extracted from the

comparison of di�erent planning strategies shown in chapter ??:

� Move current operator

� Insert operator sequence

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 114

� Remove operator sequence

� Reorder operator sequence

� Replace operator sequence

� Change variable binding

� Create subgoal problem space

� Create serial subgoal problem space

� Create abstract subgoal problem space

The requirement to support macro-based planning requires that a multi-

strategy planner can use operator sequences instead of a single operators. In-

sertion of an operator sequence is a generalization of appending and prepend-

ing operators. Furthermore, the current operator may be moved anywhere

in the current plan, not just forward.

Practical planners have greatly extended the representation of operators

by adding condition types to predicates in the preconditions of an operator,

for exampleO-Plan2, Sipe, and Act. However, this additional information

is hard to extract from a problem trace alone without additional domain

knowledge.

5.4 DoLittle's decision procedure

First, the combination of di�erent planning strategies on a single problem

makes it necessary to be able to determine when a given planning strategy

should be applied. As is shown in the analysis in chapter ??, the cost of

the decision procedure D is multiplied by the number of planning strategies

for each reduction. The design of the decision procedure depends on the

allowable cost and the required �t between the Good and Certain sets of a

planning strategy.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 115

DoLittle bases the decision procedure on applicability conditions. The

applicability conditions refer to the current state of the planning process,

e.g., the current state, the goal that the planner is trying to achieve, the

current operator and binding, background knowledge about the domain. In

the remainder of this subsection, this thesis refers to this as the planner state.

Although, as will be described in the following paragraphs, the representation

of the planner state uses the same methods as that of primitive operators, it is

important to distinguish between the two, since one refers to the planner state

(a meta state), the other one describes the state of the world. There are many

di�erent features of a planning process that may be useful in determining

what planning strategy to apply, including the world state, the goal the

planner is trying to achieve, the current problem space, the operator and its

binding, the subgoal hierarchy, the results of the indexer, the current plan,

the set of rejected plans.

Many of these features depend on the speci�c planning algorithm used.

For example, there is no corresponding concept of subgoal hierarchy (means-

ends analysis) in case based planning and vice versa for results of the indexer.

Using those features would make it impossible to apply the general operator

representation to other planning strategies. Therefore, DoLittle's operator

representation is based on a common subset of planner state features: the

current state, the set of goals the planner is trying to achieve (open goals),

and the operators DoLittle is currently re�ning.

5.5 Description of General Operators

This section describes general operators, the representation of planning

strategies used in this thesis.

De�nition 5 (General Operator) A general operator O describes the

applicability conditions for a set of planning strategies. The applicability

conditions of a general operator are based on the current problem solving

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 116

context, the current state, and the set of open goals. It contains the following

elements:

1. an operator name, that must be unique.

2. a list of free variables.

3. a possibly empty set of context operators, that limit the problem spaces

in which an operator can be applied.

4. a set of preconditions, that identify the set of current states under which

the associated planning biases are applicable.

5. a set of open goals. The set of open goals form an implicit conjunction.

The general operator can only be applied to planner states that contains

all of its open goals.

6. a set of e�ects, that specify how the world is changed through application

of this operator.

7. a set of one or more re�nements, which represent planning strategies.

General operators assume that the important characteristics of the plan-

ner state are: (a) the current problem space, (b) the current world state, and

(c) the set of goals the planner is trying to achieve. As discussed in section ??

those features are applicable in all described strategies.

A general operator may have a context associated with it. For example,

if general operator GOp2 has a context entry of (context GOp1), GOp2

can only be used as part of �nding a re�nement for GOp1. This allows

DoLittle to restrict the problem spaces in which an operator may be ap-

plied. Since the context can be checked quickly (simply traverse the plan

structure), it also allows DoLittle to limit the match cost of an operator.

The default is the empty context list, in which case the general operator is

applicable in all problem spaces.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 117

The applicability conditions identify sets of world states and sets of goals,

in which the described planning strategy is appropriate. The Strips rep-

resentation already presents a method for describing sets of world states

through preconditions. Furthermore, general operators contain a conjunc-

tion of open goals. Although not necessary, DoLittle's learner restrict the

set of open goals to be a subset of the e�ects of a general operator, since

it provides better evidence that the operator is useful than only indirect

achievement of a goal. If the set of open goals is a subset of the e�ects, it is

guaranteed that the general operator will achieve at least one open goal. The

special open goal (INVALID) is used to disallow retrieval of an operator by

the plan transformations. Then the operator can only be used as part of a

re�nement. It can not be added or inserted on its own, but only as part of a

di�erent re�nement's operator sequence. See subsection ?? for an example.

Since the same operator sequence may occur more than once as re�nement

of a general operator, applicability conditions support unlimited disjunctions.

The representation of the applicability conditions is distributed over a num-

ber of general operators. However, trivial disjunctions are problematic since

they do not allow e�cient generalization and comparison of di�erent appli-

cability conditions. Therefore, preconditions and open goals form an implicit

generalization hierarchy. Preconditions may be generalized by (a) replacing

objects with variables, (b) changing the type of a variable, (c) replacing a lit-

eral in the preconditions with a disjunction, and/or (d) dropping terms from

the conjunction of literals. Similarly, open goals are generalized by dropping

goals.

A set of preconditions and open goals, however, is incomplete, because it is

unable to describe negations of goals, such as working on goal G1, but not on

goal G2. This ability is important because sometimes, a correct description

is easier to represent as a counter factual, that is, it is easier to describe what

states a planning bias should not be applied to.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 118

DoLittle represents this type of applicability conditions through a mod-

i�ed version space algorithm developed by me. A version space is a concept

learning technique developed by Tom Mitchell [?]. A version space orders the

set of possible concepts according to generality. It maintains a most speci�c

(S-set) and most general boundary (G-set) in this version space. Concepts

that are below the most speci�c boundary are not general enough, concepts

that are more general than the most general boundary are too general. The

two boundaries converge, until only a single concept is left. If the version

space collapses, that is there are no more concepts left, there is no concept.

One problem of version spaces is that the most general boundary G-sets

may grow exponentially. The symmetric version space algorithm overcomes

the problem of possibly in�nite G-sets and has successfully been used in the

string learner SHELL-CLERK. This subsection describes brie
y the imple-

mentation of the symmetric version space algorithm in DoLittle, a more

detailed description of the algorithm and the string learner SHELL-CLERK

can be found in the [?]. The main idea is that the symmetric version space

algorithm maintains a most speci�c description of all negative examples,

instead of a most general description of all positive examples. If the two

descriptions share an element, the closeness of the �t between the element

and the description is computed and the classi�cation is based on which

description yields the closer match.

Therefore, in DoLittle, the search control method only retrieves the

closest �t for a planning strategy. That is, if general operators op1 and op2

both match the current planner state, and op1 is a generalization of op2,

then only op2 is selected. Thus the condition \goal G1 and not goal G2" is

represented by a pair of applicability conditions, one that only has G1 in its

set of open goals, and one that has G1 and G2.

A more detailed example of DoLittle's applicability conditions and its

similarity metric is shown in subsection ??.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 119

Since only the closest match is retrieved, the representation of applica-

bility conditions is complete with respect to boolean formulae; in theory, all

applicability conditions based on the context, the current state, and the set of

open goals of the planner can be represented through general operators. The

representation allows conjunction (implicit), disjunction (distributed general

operators), and negation (closest match) of current state and goal predicates.

The reason the representation does not use boolean formulae is that the

representation is biased towards independent subgoals and assumes that there

is no harmful subgoal interaction. This allows a planner to break the original

goal conjunct into smaller subproblems and therefore this assumption is made

by most planning systems. The representation predicts that after achieving

a goal G1, the remaining one G2 can be solved without interfering with

the plan for the previous subgoal G1. However, if two subgoals G1 and G2

interfere, a general operator with both open goalsG1 and G2 must be created.

DoLittle guarantees that in this case, only the operator corresponding to

G1 and G2 is retrieved. In other words, DoLittle assumes that there is no

subgoal interaction unless it has evidence to the contrary.

5.5.1 Representation of planning strategies

The previous subsection describes the applicability conditions of a planning

strategy, that is when to apply a given strategy. The planning strategy itself,

that is what to apply, is represented by a set of re�nements.

The transformation set discussed in section ?? contains the following plan

modi�cation operators: moving the current focus anywhere in the plan, inser-

tion, removal, reordering, and replacement of operator sequences and creation

of simple, serial, and abstract problem spaces. To simplify comparison of dif-

ferent planning systems, DoLittle allows the user to assign a re�nement

type to limit the set of transformation operators. For example, if an operator

sequence is typed as a MACRO, only appending and prepending of the whole

sequence are allowed, not adaptation of the sequence. DoLittle's default

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 120

re�nement type is GENERIC, which allows use of all plan transformations.

The design uses re�nements to capture the set of plan transformations

that should be applied:

De�nition 6 (Re�nement) A re�nement R of a parent operator O is a

set of preconditions and e�ects and a possibly empty sequence of primitive or

general operators. It contains the following elements:

1. a type, to specify the type of the re�nement: e.g, macro, case, search

space, serial search space, abstract search space, or generic. The special

re�nement type failure forces DoLittle to backtrack.

2. a list of free variables, which is a superset of the parent's variables.

3. a set of preconditions, which is a specialization of the preconditions

of the parent operator O. The preconditions must guarantee that the

re�nement is applicable, but may be overconstrained.

4. a set of e�ects, which is a specialization of the parent operator's e�ects.

5. a possibly empty sequence of primitive/general operators.

A case is represented as a sequence of instantiated primitive operators

of type case. A re�nement represents macros as a sequences of primitive

operators with parameterized arguments of type macro. An abstract operator

is represented by two or more re�nements with specialized preconditions and

e�ects. Since the two re�nements belong to the same parent operator, they

share the same preconditions and e�ects as the parent operator, but may

have di�erent additional preconditions and e�ects.

An important point is that the preconditions of a re�nement may be

overconstrained. Since, the applicability conditions of the general operator

must be more general than those of any re�nement, the preconditions of

the re�nement specify a most speci�c boundary for the applicability condi-

tions. Adding an additional literal or forcing an instantiation of a variable

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 121

may produce correct applicability conditions, that would otherwise not be

possible.

For example, assume that the re�nement is the following operator se-

quence: Move-Robot at-table at-sink. Put-In-Microwave Cup.

This sequence is applicable, independently of whether the Cup contains water

or not. However, if this re�nement is part of a general operator to heat wa-

ter, then it should only be used if the cup contains water. However, this can

not be represented by the applicability conditions, because the preconditions

of the general operator would be more speci�c than those of the re�nement,

which violates the de�nition of a re�nement. This problem is solved by al-

lowing additional preconditions for re�nements, so called constraints. Then

(contains Cup water) can be added to the preconditions of the re�ne-

ment and the general operator. Although the operator sequence is applicable

with and without water, DoLittle will only use it if the cup contains water.

A more detailed description of the di�erent types of re�nements and how

DoLittle's search algorithm deals with them is given in subsections ??

to ??.

The following general operator is an example from the kitchen domain

and illustrates the key features:

General operator example

gen-pick-up-from-cupboard

Variables $object

Context

Preconds (arm-empty)

(is-at robby at-table)

(is-in $object Cupboard)

Open goals (holding $object)

E�ects (holding $object)

(not (is-in $object Cupboard))

(not (arm-empty))

Re�ne. 1 pick-up-from-cupboard($object)

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 122

Re�ne. 2 open-door(cupboard)

pick-up-from-cupboard($object)

The general operator gen-pick-up-from-cupboard can be used to pick

up an object from the cupboard independent of whether the cupboard is

open or not. First, the context of the operator is empty, which means that

it can be used in any problem space. If for example, the context contains

the two operators Gen-Make-Tea and Gen-Make-Coffee, the general

operator can only be used if re�ning eitherGen-Make-Tea or Gen-Make-

Coffee. In the remainder of the thesis, empty context �elds are omitted

for readability. Secondly, as described in subsection ??, the preconditions

and open goals refer to the planner state instead of the world state. The

preconditions of the operator establish that the planning strategies described

in the re�nements are applicable, if the current world state matches them,

i.e., the arm is empty, the robot is at the table, and $object is in the

cupboard. Furthermore, one goal that the planner is trying to achieve is

(holding $object). Adding another literal to the set of open goals results

in a conjunction. To represent a disjunction, a new general operator must

be created:

General operator example

gen-pick-up-from-cupboard-2

Variables $object

Context

Preconds (arm-empty)

(is-at robby at-table)

(is-in $object Cupboard)

Open goals (not (is-in $object Cupboard))

E�ects (holding $object)

(not (is-in $object Cupboard))

(not (arm-empty))

Re�ne. 1 pick-up-from-cupboard($object)

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 123

Re�ne. 2 open-door(cupboard)

pick-up-from-cupboard($object)

The two general operators together represent that the planning strategies

described in their common set of re�nements are applicable if the planner is

trying either to achieve (holding $object) or to negate (is-in $object

Cupboard).

General operator example (continued)

Refine. 1: MACRO

Variables $object

Preconds same as parent plus

(is-open cupboard)

E�ects (holding $object)

(is-in $object Cupboard)

(arm-empty)

Sequence pick-up-from-cupboard($object)

The �rst re�nement consists of the single primitive operator pick-up-from-

cupboard. This re�nement has the additional precondition that the cup-

board must be open when picking up the object. The deletion of (is-in

$object Cupboard) and (arm-empty) is a side-e�ect of pick-up-from-

cupboard.

General operator example (continued)

Refine. 2: MACRO

Variables $object

Preconds same as parent plus

(not (is-open cupboard))

E�ects (is-open cupboard)

(holding $object)

(not (is-open cupboard))

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 124

(not (is-in $object cupboard))

(not (arm-empty))

Sequence open-door cupboard

pick-up-from-cupboard $object

The second re�nement consists of the primitive operator sequence (open-

door(cupboard), pick-up-from-cupboard $object). Since to be able

to open a door, the door must be closed previously, the second re�nement has

the additional precondition of the cupboard door being closed. There is an

additional e�ect describing that the cupboard door is open after application

of this operator sequence.

The following subsections discuss some important planning strategies and

their representation as general operators in DoLittle. To make the oper-

ators more readable, the parameter lists are omitted, since they can easily

be derived from the preconditions and e�ects. Also in some instances, the

preconditions and e�ects of the parent operator are not repeated in the re-

�nements. Additional e�ects and preconditions in re�nements are underlined

for readability.

5.5.2 Forward chaining

This subsection describes representation of a forward chaining planner in

DoLittle. A forward chaining planner only supports appending an operator

to the plan head. Also, a operator need not be relevant to an open goal.

Table ?? is an example of an operator that forces DoLittle to use

forward chaining rather than means-ends analysis. The primitive operator

Pick-Up-From-Table is wrapped into a general operator. The precondi-

tions of the general operator are identical to the preconditions of the primitive

operator, but the set of open goals of the general operator is empty. This

means that the operator is only applicable if the preconditions match the

current state, but its applicability is independent of the set of open goals.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 125

Table 5.1: Forward chaining

General Operator: Pick-Up-From-Table-FC

Preconditions: (arm-empty)

(is-at robby at-table)

(is-on $object table)

Open goals: null

E�ects: (holding $object)

(not (arm-empty))

(not (is-on $object table))

Re�ne. 1: MACRO

Preconditions: (arm-empty)

(is-at robby at-table)

(is-on $object table)

E�ects: (holding $object)

(not (arm-empty))

(not (is-on $object table))

Sequence: PICK-UP-FROM-TABLE $Object

In this case, DoLittle behaves identical to a forward chaining planner.

Depending on the plan retrieval method M , it will result in a depth-�rst or

breadth-�rst planner.

Operator Pick-Up-From-Table-FC and the primitive operator Pick-

Up-From-Table di�er in one important characteristic: Pick-Up-From-

Table-FC can be added to the plan only when its preconditions are satis�ed.

DoLittle may not subgoal on its preconditions. Pick-Up-From-Table

can be added if at least one e�ect matches an open goal. DoLittle can

subgoal on the preconditions.

5.5.3 Macros

In macro-based planning, a macro compiles a sequence of primitive operators

into a new operator which is added to the operator set. In general, the

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 126

operator may be applied in lieu of a primitive operator, and the operator

sequence must not be adapted to the new situation. Using DoLittle's

representation, a macro is de�ned as a set of general operators with identical

preconditions, but di�ering sets of open goals. The general operators share

the same MACRO re�nement, that has identical preconditions and e�ects to

the top level operator.

The following example from the kitchen domain illustrates DoLittle's

representation of a macro to �ll a cup of water. The macro compiles the

following operator sequence into a single operator: move-robot at-table

at-sink, put-in-sink $Cup, fill-with-water $Cup, turn-water-off,

pick-up-from-sink $Cup, move-robot at-sink at-table. Instead of

adding this macro to all problem spaces, the macro is restricted to be only

used in the context of either making tea or making instant co�ee. The other

applicability conditions of a macro are equivalent to those of a primitive

operator (means-ends analysis), that is DoLittle may subgoal on any of

the operator sequence's precondition, and only one of the operator sequence's

e�ects needs to be on the open goal list. Since the operator sequence has two

e�ects ((contains $Cup water) and (not (contains $Cup nothing))),

DoLittle represents the macro as two general operators, one for each e�ect

(table ??). DoLittle is prevented from adapting the underlying operator

sequence by its re�nement type MACRO.

This example also illustrates that since DoLittle separates the appli-

cability conditions from the planning strategy, it allows control over when to

apply a macro operator. For example, it may be more e�cient to instanti-

ate partially the top level preconditions to at least include the (next-to)

constraints, since they can not be changed by any domain operator, and it

is futile to subgoal on them. Furthermore, if the macro operator should only

be used to achieve (contains $Cup water), the second general operator

fill-cup-with-water-m2 may be omitted.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 127

Table 5.2: Macro operator: Fill cup with water

General Operator: fill-cup-with-water-m1

Context: Make-Tea, Make-Instant-Coffee

Preconditions: null

Open goals: (contains $Cup water)

E�ects: (contains $Cup water)

(not (contains $Cup nothing))

Re�ne. 1: MACRO

Preconditions: (is-at robby at-table)

(next-to at-table at-sink)

(holding $Cup)

(contains $Cup nothing)

(sink-empty)

(water-off)

E�ects: (contains $Cup water)

(not (contains $Cup nothing))

Sequence: move-robot at-table at-sink

put-in-sink $Cup

fill-with-water $Cup

turn-water-off

pick-up-from-sink $Cup

move-robot at-sink at-table

General Operator: fill-cup-with-water-m2

Context: Make-Tea, Make-Instant-Coffee

Preconditions: null

Open goals: (not (contains $Cup nothing))

E�ects: (contains $Cup water)

(not (contains $Cup nothing))

Re�ne. 1: MACRO

< identical to Re�ne. 1 of fill-cup-with-water-m1 >

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 128

5.5.4 Cases

A case is similar to a macro operator, with the following important distinc-

tions: (a) its applicability conditions are not generalized, and (b) the operator

sequence may be adapted to the new situation. Using DoLittle's repre-

sentation a case consists of a general operator with preconditions and e�ects

that determine the indexing of the case. The top level preconditions and

open goals specify under what conditions this case is retrieved. DoLittle's

similarity metric is based on the match between those preconditions and open

goals, and the current planner state. Subsection ?? describes DoLittle's

case retrieval and indexing method. The general operator has one CASE re-

�nement with preconditions and e�ects derived from the operator sequence.

Table ?? is a case derived from the making tea plan shown in table ??.

The preconditions of the top level operator and the re�nement refer to the

preconditions of the complete operator sequence, which are roughly equiva-

lent to the initial state. The plan solves the problem of (contains $Cup

tea), which is therefore the only literal in the open goal list. The other

e�ects of the operator sequence are considered to be side e�ects. The only

re�nement is of type CASE, which allows DoLittle to adapt it by chang-

ing variable bindings, and/or inserting, removing, replacing, or reordering

operators.

5.5.5 Abstract operators

This subsection describes how DoLittle can create abstract operators or

problem spaces by dropping preconditions and e�ects from an operator. An

abstract operator consists of a general operator with abstract preconditions

and e�ects. Associated with the general operator is a set of re�nements

with more speci�c preconditions and e�ects. The type of re�nement may be

MACRO, CASE, SUBGOAL, SERIAL SUBGOAL, or ABSTRACT SUB-

GOAL. Of particular interest is the ABSTRACT SUBGOAL re�nement,

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 129

Table 5.3: Case operator: Make a cup of tea

General Operator: make-tea

Preconditions: < initial state >

Open goals: (contains $Cup tea)

E�ects: (contains $Cup tea)

(not (contains $Cup nothing))

(open microwave)

(is-on tea-box table)

: : :

Re�ne. 1: CASE

Preconditions: < initial state >

E�ects: identical to parent e�ects

Sequence: open-door cupboard

: : :

put-in-garbage-can old-tea-bag

which supports the creation of ordered monotonicity abstraction hierarchies.

An ABSTRACT SUBGOAL problem space rejects any plan that a�ects the

literal types mentioned in the preconditions and e�ects of the top level op-

erator with the exception of establishing an e�ect.

Table ?? is an example of an abstract operator in the kitchen domain. It

drops (is-at robby at-stove) and (is-open microwave) from the pre-

conditions of put-in-microwave. This general operator enables DoLit-

tle to put a cup into the microwave independently of whether it is closed

or whether the robot is at the stove. The �rst re�nement simply applies op-

erator put-in-microwave and has the additional preconditions (is-open

microwave) and (is-at robby at-stove). The second re�nement con-

sists of an adaptable operator sequence. The robot �rst puts the cup on

the table, opens the microwave door, and picks up the cup before putting it

in the microwave. The preconditions of this re�nement have the additional

literals (next-to at-stove at-table), (is-at robby at-stove), and

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 130

(not (is-open microwave)). To allow DoLittle further adaptation of

this operator sequence, it's typed as a CASE re�nement. The third re�ne-

ment creates an abstract problem space if the robot is not at the stove. Since

the problem space is typed as an ABSTRACT SUBGOAL, none of the literal

types in the top level preconditions or e�ects may be a�ected. This means

that the search space is constrained to rule out any plans that for example

include putting something on the table. The third re�nement has the addi-

tional precondition (not (is-at robby at-stove)) and also an additional

e�ect (is-at robby at-stove).

5.5.6 Automatic subgoaling

Automatic subgoaling assumes that a problem can be broken down into

smaller subproblems by identifying a series of goal predicates that must be

achieved to solve the problem. The planner solves the resulting subproblems

from left to right. An automatic subgoaling planning strategy in DoLittle

is represented by a general operator with one re�nement that speci�es the

order of the subgoals that have to be achieved. Furthermore, there is one

general operator for each subgoal. Subgoal operator i has subgoals 0; : : : ; i�1
as its preconditions and subgoal i as its e�ect. Each subgoal operator con-

tains either a SUBGOAL or SERIAL SUBGOAL re�nement, depending on

whether previous subgoals are protected or not.

For example, in the kitchen domain, any problem that contains the goal

literal (contains $Cup coffee) (as opposed to instant co�ee) can be bro-

ken down into a series of subgoals: (a) (contains coffee-maker water)

and (b) (contains coffee-maker coffee-grain), and (c) (contains

$Cup coffee).

Table ?? is an example of the general operator to make co�ee with the

co�ee-maker. Since the automatic subgoaling is applicable in all states, the

preconditions of the top level general operator make-coffee are empty.

There is only one goal, the cup contains co�ee. The only re�nement is a

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 131

Table 5.4: Abstract operator: Make a cup of tea

General Operator: abstract-put-in-microwave

Preconditions: (holding $object)

(microwave-empty)

Open goals: (is-in $object microwave)

E�ects: (is-in $object microwave)

(arm-empty)

(not (microwave-empty))

(not (holding $object))

Re�ne. 1: MACRO

Preconditions: same as parent plus

(is-open microwave)

(is-at robby at-stove)

E�ects: same as parent

Sequence: put-in-microwave $object

Re�ne. 2: CASE

Preconditions: same as parent plus

(is-at robby at-stove)

(next-to at-stove at-table)

(not (is-open microwave))

E�ects: same as parent plus

(is-open microwave)

Sequence: Move-Robot at-stove at-table

: : :

Put-In-Microwave $object

Re�ne. 3: ABSTRACT SUBGOAL

Preconditions: same as parent plus

(is-open microwave)

(not (is-at robby at-stove))

E�ects: same as parent plus

(is-at robby at-stove)

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 132

sequence of two general operators, corresponding to the sequence of subgoal

predicates. Each of those operators corresponds to a subgoal re�nement.

The �rst subgoal operatorMake-Coffee-SG1 contains the open goal (IN-

VALID). This means that it can only be used by reference in an re�nement.

For example, if the current goal is (contains coffee-maker water),

DoLittle will not retrieveMake-Coffee-SG1, whereasMake-Coffee-

SG2 is a candidate for putting co�ee-grain into the co�ee-maker.

The preconditions of operator make-coffee-sg2 consist of the precon-

ditions of all previous subgoals and the top level operator. Its e�ect is the

single goal predicate (contains $Cup coffee). Depending on the type

of problem space, the re�nements of the subgoal general operators make-

coffee-sg[1: : :3] may be of type SUBGOAL or SERIAL-SUBGOAL. If

the re�nement is of type SERIAL-SUBGOAL, the preconditions of the re-

�nements must not be a�ected. For example, when DoLittle re�nes make-

coffee-sg2, the literal (contains coffee-maker water) must not be

changed.

5.5.7 Reactive rules

Brie
y, a reactive rule is a planning strategy based on the planning bias that

for every initial state and every goal predicate, there is one operator that leads

the planner towards the goal. This type of planning is very e�cient since

there is no search needed [?, ?]. The planner looks up the correct operator

to execute. This lookup in DoLittle is represented by a general operator

with a MACRO re�nement. The re�nement consists of two operators, �rst

the primitive operator, and secondly a general operator that corresponds to

the remaining subproblem. The preconditions of the general operator are

identical to those of the re�nement. The preconditions of the remaining

subproblem operator are the postconditions of the primitive operator.

In the kitchen domain, a reactive rule may specify that any time the

goal is to have a cup of hot water, and the robot is in front of the closed

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 133

Table 5.5: Automatic subgoaling: Making co�ee in the kitchen domain

General Operator: make-coffee

Preconditions: null

Open goals: (contains $Cup coffee)

E�ects: (contains $Cup coffee)

Re�ne. 1: MACRO

Preconditions: null

E�ects: (contains $Cup coffee)

Sequence: make-coffee-sg1 $Cup

make-coffee-sg2 $Cup

General Operator: make-coffee-sg1

Preconditions: null

Open goals: (INVALID)

E�ects: (contains coffee-maker water)

(contains coffee-maker coffee-grain)

Re�ne. 1: SUBGOAL

Preconditions: null

E�ects: (contains coffee-maker coffee)

Sequence:

General Operator: make-coffee-sg2

Preconditions: (contains coffee-maker water)

(contains coffee-maker coffee-grain)

Open goals: (contains $Cup coffee)

E�ects: (contains $Cup coffee)

Re�ne. 1: SERIAL-SUBGOAL

Preconditions: (contains coffee-maker water)

(contains coffee-maker coffee-grain)

E�ects: (contains $Cup coffee)

Sequence:

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 134

microwave and its arm is empty, it should open the microwave, presumably

since we have to put the cup into the microwave sometime during the plan.

Table ?? is an example of this reactive rule in DoLittle's kitchen domain.

The re�nement of the top level general operator get-hot-water consists

of the primitive operator open-door and the general operator get-hot-

water-sg corresponding to the remainder of the problem. It is important

to note that the preconditions of the top level operator are identical to the

preconditions of the operator open-microwave. DoLittle will behave

opportunisticly, it will only open the microwave door if the preconditions are

already true in the current state. Another possibility would be to have an

empty set of preconditions; then DoLittle will subgoal on the unsatis�ed

preconditions of the open-microwave operator. Since reactive rules are a

form of forward chaining reasoning, DoLittle is prevented from subgoaling

on preconditions by promoting the preconditions of the re�nement to the

applicability conditions of the top level operator.

5.5.8 Backward chaining

Backward chaining is similar to a reactive rule, but instead of extending

the plan from the initial state, the planner propagates the goal conditions

through a primitive operator. The new goal conditions are the conditions

that guarantee that the su�x operator is applicable and will achieve the

goal state. A backward chaining planning strategy is represented similarly

to a reactive rule. The only di�erence is that the primitive operator and the

remaining subgoal operator are reversed and the preconditions and e�ects

are changed accordingly.

Assume in the following example (table ??) that the goal is to �ll object

$object with water. The general operator gen-fill-with-water instructs

DoLittle to �rst satisfy the preconditions of operator fill-with-water

using the general operator put-in-sink-sg and then apply operator fill-

with-water.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 135

Table 5.6: Reactive rule: Get hot water

General Operator: get-hot-water

Preconditions: (is-reachable microwave at-fridge)

(is-at robby at-fridge)

(arm-empty)

(not (is-open microwave))

Open goals: (contains $Cup hot-water)

E�ects: (contains $Cup hot-water)

(not (contains $Cup nothing))

Re�ne. 1: MACRO

Preconditions: (is-reachable microwave at-fridge)

(is-at robby at-fridge)

(arm-empty)

(not (is-open microwave))

E�ects: (contains $Cup hot-water)

Sequence: open-door microwave

get-hot-water-sg $Cup

General Operator: get-hot-water-sg

Preconditions: (is-reachable microwave at-fridge)

(is-at robby at-fridge)

(arm-empty)

(is-open microwave)

Open goals: (INVALID)

E�ects: (contains $Cup hot-water)

(not (contains $Cup nothing))

Re�ne. 1: SUBGOAL

Preconditions: (is-reachable microwave at-fridge)

(is-at robby at-fridge)

(arm-empty)

(is-open microwave)

E�ects: (contains $Cup hot-water)

Sequence:

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 136

Table 5.7: Backward chaining: Fill with Water

General Operator: gen-fill-water

Preconditions: null

E�ects: (contains $object water)

Re�ne. 1: MACRO

Preconditions: null

Open goals: (contains $object water)

E�ects: (contains $object water)

Sequence: put-in-sink-sg $object

fill-with-water $object

General Operator: put-in-sink-sg

Preconditions: null

Open goals: (INVALID)

E�ects: (not (water-on))

(is-at robby at-sink)

(arm-empty)

(is-in $object sink)

(contains $object nothing)

Re�ne. 1: SUBGOAL

Preconditions: null

E�ects: (not (water-on))

(is-at robby at-sink)

(arm-empty)

(is-in $object sink)

(contains $object nothing)

Sequence:

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 137

5.5.9 Problem Speci�cation

An interesting ability of case-based planners is to enhance the problem spec-

i�cation and add additional goals to avoid failure and increase the e�ciency

of the case retriever. DoLittle's general operators provide an easy and

e�cient method for predictiing failure: a general operator whose re�nement

consists of a problem speci�cation operator. The preconditions of the re�ne-

ment and the problem speci�cation operator are identical to the top level

preconditions, but there are additional e�ects in the re�nement and problem

speci�cation operator that correspond to the additional goals.

Assume that DoLittle was asked to create a plan to make a cup of hot

milk. During the execution of the plan, DoLittle put the honey into the

fridge as opposed to the shelf, and therefore, the honey is too hard at the

end of the plan. It is important to note that in this case, the failure is not

because of an incomplete domain description or uncertainty in the domain

actions, but because of an incomplete problem speci�cation. Table ?? is an

example of a general operator that adds an additional literal (not (is-in

honey-jar fridge)) to the set of goals.

5.5.10 Avoiding failure

DoLittle provides a special re�nement type FAILURE to avoid unsuc-

cessful search branches. A FAILURE re�nement simply forces DoLittle

to abandon the search branch and backtrack. Its representation consists of

a general operator with a FAILURE re�nement. This operator will force

DoLittle to backtrack any time it is in a planner state speci�ed in its

applicability conditions.

For example, assume that DoLittle is trying to make co�ee at the sink

instead of the table. Although all ingredients could be moved, there is no

operator in the kitchen domain that allows the robot to move the co�ee

maker, and thus this plan is doomed to failure. However, detecting this type

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 138

Table 5.8: Problem speci�cation: Do not put honey in the fridge

General Operator: gen-make-hot-milk

Preconditions: null

Open goals: (contains $object hot-milk)

E�ects: (contains $object hot-milk)

Re�ne. 1: MACRO

Preconditions: null

E�ects: (contains $object hot-milk)

(not (is-in honey-jar fridge))

Sequence: avoid-hard-honey

General Operator: avoid-hard-honey

Preconditions: null

Open goals: (INVALID)

E�ects: (contains $object hot-milk)

(not (is-in honey-jar fridge))

Re�ne. 1: SUBGOAL

Preconditions: null

E�ects: (contains $object hot-milk)

(not (is-in honey-jar fridge))

Sequence:

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 139

Table 5.9: Avoiding failure: No way to move the co�ee maker

General Operator: move-coffee-maker-failure

Preconditions: null

Open goals: (is-in coffee-maker sink)

E�ects: (is-in coffee-maker sink)

Re�ne. 1: FAILURE

Preconditions: null

E�ects: (is-in coffee-maker sink)

Sequence: FAILURE

of failure may be expensive, since the search tree will have to be searched

exhaustively. Furthermore, an analysis of static predicates (i.e., predicates

whose truth value is not changed by any operator) in the search space will

not detect it since some of the objects are movable. In table ??, move-

coffee-maker-failure forces DoLittle to backtrack whenever DoLit-

tle is trying to achieve the goal (is-in coffee-maker sink).

5.5.11 Discussion

This subsection compares DoLittle's general operator representation to other

operator representation languages. DoLittle trades o� expressibility and

simplicity of learning. For example, Prodigy allows the user to create meta-

predicates and use them in the design of control rules.

DoLittle augments the operators with meta-knowledge about when to

apply a given operator. The applicability conditions consist of the current

context, current state, and the open goals. A general operator contains the

applicability conditions for all its re�nements.

Sipe is a practical planning system, which also uses a powerful operator

representation [?]. It's representation is similar to other practical planning

systems, e.g. ACT. For details on Sipe's operator representation, refer back

to subsection ??. Comparing DoLittle's representation to Sipe's represen-

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 140

tation shows the following di�erences:

� Sipe's plans are partial-order plans. DoLittle's plans are totally

ordered plans.

� Sipe encodes applicability conditions as preconditions and the purpose

of an operator. DoLittle extends the applicability conditions to in-

clude also the current problem space.

� Sipe does not allow the negation or conjunction of open goals. DoLit-

tle supports negation and conjunction in the set of open goals.

� Sipe supports types and constraints on variables. DoLittle only

allows typing of variables.

� Sipe supports temporal reasoning and reasoning about resources.

DoLittle does neither support temporal reasoning nor reasoning

about resources. This may be added in the future.

� Sipe's plot may contain process, choice process, and goal nodes.

DoLittle supports process nodes similarly to Sipe. There are no

explicit choice nodes in DoLittle's representation, although they can

be represented by a set of re�nements. DoLittle may generate any

one of three di�erent types of goal nodes: serial subgoals, abstract

subgoals, and subgoals.

� Sipe supports conditional e�ects through a deductive causal theory.

DoLittle supports conditional e�ects as part of the operator descrip-

tion.

� Sipe can not constrain the plan transformation methods. DoLittle

can constrain the plan transformations by, for example, typing a re-

�nement as a macro or a case.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 141

The comparison shows that DoLittle's and Sipe's operator represen-

tations have di�erent focuses. Sipe focuses on adding special purpose rea-

soning, in particular temporal and resource reasoning. Sipe is based on the

assumptions that (a) the operator set contains only the necessary operators,

and that (b) the partial-order planning strategy is su�cient. DoLittle fo-

cuses on a powerful representation language for applicability conditions, since

there will be many general operators. Furthermore, DoLittle also focuses

on the use of multiple planning strategies. Therefore, a general operator can

constrain the set of plan transformations in its search space.

5.6 DoLittle's domain description language

This section describes the DoLittle domain description language and high-

lights di�erences to Prodigy4's domain description language. DoLittle's

domain description language is based on Prodigy4's domain description

language as described in section ??. The Prodigy4 domain language has

been used to describe many domains, such as the simple blocksworld or

the more complex machine shop scheduling domain. The Prodigy domain

description language provides a good trade o� between making it easy to de-

scribe a complex domain and yet still making reasoning using this language

tractable. Therefore, DoLittle's domain description language is similar

to Prodigy4's representation language, but supports general operators and

operator re�nements. There are some features in Prodigy4, that are not

supported by DoLittle because of the di�erent implementation languages.

Prodigy4 may contain arbitrary common lisp code, whereas DoLittle is

written in C. DoLittle does its best to parse this code, print a warning, and

ignore it. Therefore, the user should be able to read in Prodigy4 domain

�les, but the planners will behave di�erently because DoLittle ignores the

control rules.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 142

5.7 DoLittle's search control method

Section ?? shows that general operators are able to represent many di�er-

ent planning strategies. However, the representation of planning strategies

alone is not enough. A multi-strategy planner must also implement di�erent

planning strategies; it must emulate a given strategy when provided with its

general operator representation. For example, the representations of macros

and cases in planning systems are similar, whereas they represent di�erent

strategies and a�ect the search space in di�erent ways. Macros are concate-

nated only, but cases are adapted.

The search control method uses a static ordering of planning strategies

which are sorted according to strength. Stronger strategies are tried before

weaker ones. The reason for this ordering is that if the chosen strategy is

correct, the solution can be found faster. If the strategy is incorrect, the

failure will be detected more easily.

5.7.1 DoLittle's plan structures

Before describing DoLittle's search control method, this section describes

the data structures used in DoLittle. The most important data struc-

ture in DoLittle as well as other planners based on the plan space search

paradigm is the plan structure. DoLittle represents a plan as a tree of

fully instantiated operators. The operators form a tree since re�nement of

an operator yields a new problem space. The solution to this problem space

again is an operator sequence.

The leaves of the operator tree form the current plan sequence. The

plan sequence is divided into the plan head and the plan tail (a sequence of

pending operators). Associated with a plan is a current state, which is the

state resulting from applying the plan head to the initial state.

The sequence of pending operators consists of operators that are not

applied yet. The active operator is the head of the pending operator sequence.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 143

Also associated with the plan is a set of open goals. The set of open goals

contains the unsatis�ed preconditions of the operators in the plan tail. A

predicate is an open goal, if and only if it is an element of the preconditions

of some pending operator, and the predicate is not established by either the

current state or some pending operator that occurs before it. An operator

establishes a predicate for a target operator if (a) its add-list contains the

predicate and (b) there is no operator between it and the target operator

that contains the predicate in either its delete or add list. In other words, the

operator is the last operator before the target operator that adds the literal

and there is no other operator between it and the target that deletes the

literal. An e�ect is a necessary e�ect if it establishes a literal for a following

operator. These de�nitions are commonly used de�nitions in partial-order

planning [?].

Each problem space is initialized with a plan that contains dummy �rst

and last operators. The �rst operator has no preconditions and has e�ects

that establish the initial state. The last operator has the goal expression

as its precondition. The top level problem space initializes the operators

to establish the initial state and the goal expression. The initial state for

a re�nement problem space is the state prior to the general operator. The

goals of the re�nement problem space are the e�ects of the general operator.

Figure ?? is an example of a partial plan. The plan contains one general

operator with a two operator re�nement. One operator in the re�nement has

again a two operator re�nement. The current state and the set of open goals

are shown beside the active operator.

The �gure contains an example of an operator sequence. An operator

may mark the start or the end of an operator sequence. If an operator is

a MACRO-HEAD operator, then DoLittle will treat the whole operator

sequence up to and including the matching MACRO-TAIL as a single oper-

ator. For example, in the �gure, only the whole subsequence Put-Down-

On-Table Cup2, Open-Door Cupboard can be replaced or reordered.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 144

Figure 5.1: The plan data structure

(is-at Robby at-table)
(holding Cup2)
(not (is-open Cupboard)

+ (is-open Cupboard)
+ (arm-empty)
- (holding Cup2)

Macro-Open-Door Cup2 Cupboard

(is-at Robby at-table)
(holding Cup2)

+ (arm-empty)
- (holding Cup2)

Put-Down-On-Table Cup2
(is-at Robby at-table)
(arm-empty)
(not (is-open Cupboard)

+ (is-open Cupboard)

Open-Door Cupboard

(arm-empty)
(is-at Robby at-table)
(is-in Cup1 Cupboard)
(is-open Cupboard)

+(holding Cup1)
- (arm-empty)
- (is-in Cup1 Cupboard)

Pick-Up-From-Cupboard Cup1

(is-at Robby at-table)
(is-in Cup1 Cupboard)

+(holding Cup1)
- (is-in Cup1 Cupboard)

(Abs-Pick-Up-From-Cupboard Cup1)Initial-Operator
(is-at Robby at-stove)
(next-to at-stove at-table)
(holding Cup2)
(is-in Cup1 Cupboard)
(not (is-open Cupboard)

Move-Robot at-stove at-table
(is-at Robby at-stove)
(next-to at-stove at-table)

+(is-at Robby at-table)
- (is-at Robby at-stove)

Finish-Operator
(holding Cup1)
(is-at Robby at-table)
(is-on Glass1 table)

Active Operator

Current State Open Goals
(is-at Robby at-table)
(arm-empty)
(is-open Cupboard)
(next-to at-stove at-table)
(is-in Cup1 Cupboard)

(holding Cup1)
(is-on Glass1 table)

RefinementCurrent Operatorsequence

Macro-Head Macro-Tail

5.7.2 DoLittle's algorithm

Initially, DoLittle creates a subgoal problem space with the original initial

state and original goal description and the node list is reset.

Table ?? is a pseudo code description of DoLittle's main loop. First

(line ??), retrieves an unexpanded node from the node list. Node retrieval

depends on the retrieval method M . Currently, DoLittle supports depth-

�rst, breadth-�rst, hill climbing, and best-�rst (with a user speci�ed heuristic

function) retrieval methods.

DoLittle signals failure if there are no more open nodes. DoLittle

may be solving the original problem space or one that was created to �nd the

re�nement of a general operator. The function Update-Problem-Space

will either signal global failure when working in the top level problem space,

or will force the next higher problem space to backtrack.

Then, the current plan is tested to see whether it is complete (line ??). A

plan is complete if (a) there are no more open goals and (b) no more pending

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 145

Table 5.10: DoLittle's search control algorithm

1 proc DoLittle(Nodes)

2 Plan; State;Goals := Select-Node(M;Nodes);

3 if no-more-nodes then

4 Update-Problem-Space(Failure; nil);

5 elsif Complete-Plan(Plan; State;Goals) then

6 if Re�ne-Next(Plan; State;Goals) then

7 Apply-transformation(REFINE;Plan; State;Goals);

8 else

9 Update-Problem-Space(Success;Plan);

10 �

11 else

12 foreach t 2 fAPPLY ;DEBUG;ADDg
13 Apply-transformation(t;Plan; State;Goals);

14 od

15 �

16 DoLittle(Nodes);

operators. If the plan is complete, then either the next non-primitive operator

is re�ned (line ??), or if the plan is fully re�ned, the plan is returned as a

solution (line ??).

If the plan is not complete, a plan transformation t is applied to yield a

new planner state (line ??) and new candidates.

There are three classes of plan transformations: (a) apply the next op-

erator (subsection ??), (b) debug the plan so that the next operator can be

applied (subsection ??), or (c) add a new operator and binding to satisfy an

open goal (subsection ??).

The following subsections discuss the REFINE, APPLY, DEBUG, and

ADD plan transformations.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 146

5.7.3 Re�nement selection

At the heart of DoLittle is its powerful re�nement method. The plan

transformation REFINE re�nes the next non-primitive operator in the plan.

First, the possible re�nements are ordered with respect to how well, they

match the applicability conditions. The similarity metric is the same as for

adding operators and is described in subsection ??. Ties are broken using a

static ordering: macros, cases, abstract subgoals, serial subgoals, and generic

subgoals. As shown in section ??, a re�nement may have a type associated

with it, which means thatDoLittle will only use the type of the re�nement.

However, if the type of a re�nement is GENERIC, it will try all biases in the

order speci�ed above. This may involve the removal of a suggested operator

sequence to move from a case to an abstract subgoal.

Simon and Kadane show that if the cost of a search and the probability of

a search is known, the optimal strategy is to search the spaces in increasing

order of probability/cost ratios [?]. Assuming that the probabilities are equal,

this results in a cheapest �rst strategy. However, as shown in the analysis

in chapter ??, the situation is di�erent for a subproblem coordinated multi-

strategy planner, since there may be more than one level of reduction and

the probability of re�ning a problem further is of critical importance.

As will be shown in chapter ??, DoLittle maintains the estimates of

the success rate (application frequency) and the average re�nement cost of a

general operator, since they are important features that determine the utility

of a general operator. However, it does not maintain the success rate and

cost of each re�nement and re�nement type. Providing su�ciently accurate

estimates for those features is too costly.

Therefore, DoLittle does not take the probability of further re�nement

into consideration. However, the static bias selection method approximates

the optimal selection method. The di�erent re�nement methods have a large

di�erence in their cost. For example, re�ning an operator by a macro does

require little work. Cases are somewhat more costly, but the work required

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 147

is linear in the length of the case. The three type of search spaces are

ordered with respect to their sizes. If the di�erence in costs is large enough,

the di�erence in success rates and probability of further re�nement can be

ignored. This approximation seems to work well in practice. The reason is

that the cost of a re�nement in the static order is many times that of the sum

of the costs of the previous biases. Therefore, even if instead of estimating

the success of a re�nement type, the system is given the correct re�nement

type for a general operator, the sum of the costs of the previous biases is

small compared to the cost of the correct bias.

The �rst two re�nement types (macros and cases) yield a sequence of

operators that is added as the children of the operator to be re�ned. Given

a macro re�nement, the resulting operator sequence is added to the new

plan and further adaptation is disallowed by adding a MACRO-HEAD and

MACRO-TAIL marker to the head and tail of the sequence respectively.

Cases allow substitution of variables and the operators are prepended to the

pending operator sequence. This means that DoLittle's method for com-

pleting (insertion of an operator in the pending operator set) and debugging

(removing and replacement of an operator in the pending operator set) plans

may be applied. The latter three re�nement types create new subproblem

spaces. The initial state is the current state previous to the operator to be

re�ned and the set of goals is the conjunction of the parent operator's e�ects.

The three subgoal re�nement types di�er in the restrictions that are placed

on the search space. An abstract problem space is one, in which none of

the literal types of the top level operator (preconditions and e�ects) may be

changed. In a serial subgoal problem space, the instantiated literals in the

preconditions of the general operator may not be changed. A subgoal re�ne-

ment has no constraints on the literals that are a�ected in the subproblem

space.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 148

Table 5.11: DoLittle's REFINE plan transformations

1 proc Apply-transformation(REFINE;Plan; State;Goals)

2 Op := First-Non-Re�ned-Operator(Plan);

3 Sorted-Ref := Sort(Re�nements(Op); Sim-Metric)

4 foreach Ref := Sorted-Ref

5 Binding := Select-Binding(Ref ; State;Goals);

6 if Type(Ref) = Macro _ Type(Ref) = Generic then

7 Add-Operator-Subtree(Op;Ref ;Binding);

8 Adv-Current-Operator(Op+1);

9 �

10 if Type(Ref) = Case _ Type(Ref) = Generic then

11 Add-Operator-Subtree(Op;Ref ;Binding);

12 Adv-Current-Operator(Op-1);

13 �

14 if Type(Ref) = Abstract-Search-Space

15 _ Type(Ref) = Generic then

16 Create-Abstract-Space(State;Goals);

17 �

18 if Type(Ref)=Serial-Subgoal-Search-Space

19 _ Type(Ref) = Generic then

20 Create-Serial-Subgoal-Space(State;Goals);

21 �

22 if Type(Ref) = Subgoal-Search-Space

23 _ Type(Ref) = Generic then

24 Create-Subgoal-Space(State;Goals);

25 �

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 149

Table 5.12: DoLittle's APPLY plan transformations

1 proc Apply-transformation(APPLY ;Plan; State;Goals)

2 Active-Seq := Head(Plan-Tail(Plan));

3 Preconds := CalcPreconditions(Op-Sequence(Plan;Active-Seq));

4 if Match(Preconds;Current-State(Plan)) then

5 Plan'; State';Goals' := Apply-Operators(Plan;Active-Seq);

6 if State-Loop(Plan') then

7 return(nil);

8 else

9 return(Node(Plan'; State';Goals'));

10 �

11 else

12 return(nil);

13 �

5.7.4 APPLY plan transformations

There are two di�erent transformations, that advance the active operator:

apply a single operator, or apply a sequence of operators. Application of a

single operator is equivalent to the standard means-ends analysis transforma-

tion. The head of the plan tail, the active operator, is applied yielding a new

current state. For this transformation to be successful, the preconditions of

the operator must be satis�ed in the current state. DoLittle also supports

the application of sequences of operators. A sequence of operators may be

delimited by a MACRO-HEAD, MACRO-TAIL pair, in which case DoLit-

tle will not break it up, and only handle it as a single operator. The whole

sequence may be applied or replaced. An operator sequence is classi�ed as a

MACRO, if it was added to the plan as a re�nement of type MACRO.

Table ?? describes the plan transformations that apply operators. In

line ??, the active operator sequence is retrieved. If the active operator is

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 150

the start of a macro, the tail of the operator sequence is found. Macros may

be constructed recursively, so that MACRO-HEAD, MACRO-TAIL combi-

nations may be nested. If the operator is not the start of a macro, the trivial

operator sequence consisting of only this operator is created. The precondi-

tions of the operator sequence are computed (line ??) and tested against the

current state (line ??). If the preconditions match, the operator sequence is

applied (line ??), otherwise an error is signaled.

If the new plan results in a stateloop, it is rejected (line ??), otherwise

it is returned as a new candidate plan. This means that when applying an

operator sequence, the plan may indeed pass through a state a second time

within the operator sequence. The plan is only invalid if the �nal state of

the operator sequence leads to a state loop.

5.7.5 DEBUG plan transformations

DoLittle's plan debugging is based on Chef's plan debug methods (see

subsection ??). Chef uses a more knowledge intensive plan representation

language, (e.g., tools, ingredients, continuous variables, object features), so

that not all of Chef's debugging methods are applicable in the Strips

or DoLittle representations (e.g., ADJUST-BALANCE:UP, ADJUNCT-

PLAN:PROTECT). From Chef's 17 debugging methods, 9 have equivalents

in DoLittle's representation. The following table compares DoLittle's

to Chef's repair strategies. Note that in DoLittle the debugging methods

are not limited to a single operator, but include operator sequences. For

example, DoLittle can replace a complete macro sequence, instead of just

one operator.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 151

Method Chef DoLittle

ALTER-

PLAN:

SIDE-

EFFECT

Replace an op. by one

that has no unwanted side-

e�ects

Includes op. sequences

ALTER-

PLAN:

PRECOND

Replace an op. by one

that has no missing

preconditions

Includes op. sequences

RECOVER Add an operator to re-

establish a deleted side-

e�ect

ADD-OPERATOR in

means-ends analysis

REORDER Reorder running of two

steps

Includes op. sequences

ADJ-BAL:

UP/DOWN

Increase/Decrease the bal-

ance of two parts

no continuous variables

ADJUNCT-

PLAN:

REMOVE/

PROTECT

Add a concurrent plan step

that removes an unwanted

side-e�ect/provides a miss-

ing precondition

no concurrent plans

SPLIT-AND-

REFORM

Split one operator into two

operators

Replace an operator by

non-primitive operator

ADJ-TIME:

UP/DOWN

Increase/Decrease the du-

ration of a plan step

no temporal reasoning

ALTER-

ITEM/TOOL

Replace an object/tool by

one that has all desired

but none of the undesired

features/side-e�ects

change var. binding (no

distinction between tools

(ALTER-TOOL) and

items (ALTER-ITEM))

PLACE:

BEFORE/

AFTER

Move an operator be-

fore/after some operator

Includes op. sequences

ALTER-/

REMOVE-

FEATURE

Add a step that changes

an undesired attribute to

a desired one/removes an

undesired attribute

Similar to ADD-

OPERATOR in means-

ends analysis, but no

constraint on features

REMOVE Not implemented in Chef Remove an op. sequence

with no necessary e�ects

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 152

DoLittle adds a repair strategy, REMOVE, which simply removes an

operator with no necessary e�ects from the plan. Fink and Yang comment

on the bene�ts of justifying a plan in plan adaptation [?]. By applying this

repair strategy repeatedly, DoLittle will only generate well-justi�ed plans.

A well-justi�ed plan is one where the removal of a single operator does not

a�ect the validity of the plan. A plan is perfect-justi�ed if there is no set of

operators (possibly disjoint) that can be removed without making the plan

invalid. The problem of �nding perfect-justi�ed plans is NP-complete [?], and

thus DoLittle only tests for well-justi�ed plans. Fink and Yiang suggest a

greedy, approximate algorithm to compute perfect justi�ed plans. However,

well-justi�ed plan seem to be a good enough approximation in DoLittle's

domains.

The repair strategies can be easily converted into an algorithm to im-

plement the corresponding DEBUG plan transformations. It is important to

note that this algorithm ensures that the applicability conditions of all opera-

tors are satis�ed, even after the transformation. The applicability conditions

for general operators require that a general operator's context matches the

current context, that the operator's preconditions must match, and that all

of its open goals are used in the remainder of the plan. Primitive operators,

as mentioned previously, have an implicit means-ends bias associated with

them. This means that the applicability conditions of a primitive operator

are satis�ed, if one of its e�ects is necessary.

However, there is a subtle di�erence between the applicability conditions

of the general operator when adding and debugging a plan. In the later case,

the applicability conditions are only checked to see whether the operator

could be added during some derivation, which is not necessarily the one that

was used in this planning episode. This slight di�erence does not seem to

cause any problems in practice, since the plan debugging methods are highly

speci�c and in general more constrained than the applicability conditions

themselves.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 153

Table 5.13: DoLittle's DEBUG plan transformations

1 proc Apply-transformation(DEBUG;Plan; State;Goals)

2 Active-Seq := Head(Plan-Tail(Plan));

3 if Unnecessary-Operator(Active-Seq;Plan) then

4 Remove-Operator(Active-Seq;Plan);

5 �

6 foreach Binding := Replace-Vars(Active-Seq;Plan)

7 Replace-Binding(Plan;Active-Seq;Binding);

8 od

9 foreach Clobber1 := First-Clobberer(Active-Seq;Plan)

10 Place-After(Plan;Active-Seq;Clobber1);

11 Reorder(Plan;Active-Seq;Clobber1);

12 Place-Before(Plan;Active-Seq;Clobber1);

13 od

14 foreach Op' := Missing-Precondition(Active-Seq;Plan)

15 Replace-Operator(Plan;Active-Seq;Op');

16 od

17 foreach Op';Clobber := Unwanted-Side-E�ect(Active-Seq;Plan)

18 Replace-Operator(Plan;Clobber;Op');

19 od

The order of the repair strategies is based on a minimal change heuristic.

DoLittle tries to make the fewest changes necessary to �x the plan: (a)

remove an unnecessary operator, (b) change an operators bindings, (c) change

the position of two operators in the sequence, and �nally (d) replace an

operator with a di�erent one.

DoLittle �nds �rst the active operator sequence. This is either the

single operator at the head of the plan tail or an operator sequence that

starts at the head of the plan tail with MACRO-HEAD and extends to the

matching MACRO-TAIL operator.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 154

Then, DoLittle checks whether the active operator sequence does have

necessary e�ects (line ??), i.e., at least one e�ect of the sequence must be

used in the remainder of the plan. If the active operator has no necessary

e�ects, it is removed from the plan. This will generate exactly one new node.

Since the active operator sequence is the head of the plan tail, the current

state State remains unchanged.

The second plan adaptation attempts to �nd new variable bindings that

satisfy all preconditions of the active sequence. If such a binding exists, the

variable binding is replaced (line ??). The current state remains unchanged

for this plan transformation. However, changing a variable binding might

lead to the violation of an operators applicability conditions. For example,

assume that an open goal of the planner at this state is (holding glass).

Now, if DoLittle changes the variable binding from ($V1 = glass) to

($V1 = cup), and (holding cup) is not an open goal, the applicability

conditions of the operator are violated and the new plan is rejected. Oth-

erwise, the algorithm creates the new nodes and adds them to the search

space.

In line ??, DoLittle tries to �nd an operator that (a) is the �rst opera-

tor that clobbers a missing precondition, and (b) has no necessary e�ects up

to the active operator sequence. If such an operator can be found, DoLittle

tries three reorder transformations: Place-After puts the clobberer after the

active sequence (line ??). The active sequence is updated to the next oper-

ator. Reorder swaps the active sequence and the clobberer (line ??). If the

resulting new plan is not valid, it is discarded, otherwise the active operator

remains unchanged. Place-Before puts the active operator sequence before

the clobberer (line ??). DoLittle automatically checks the applicability

conditions in the new position.

Next, DoLittle tries to �nd an operator that has the same e�ects as

the active sequence but is missing some of the un-satis�ed preconditions

(line ??). This step generates a list of new nodes, since (a) more than one

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 155

precondition may not be satis�ed, (b) more than one operator may miss this

precondition, and (c) more than one binding of the new operator may match

the current state.

Lastly, DoLittle checks the plan head to �nd an operator Clobber,

that is the last operator to undo a missing precondition of the active operators

(line ??). If the missing precondition is not used in the remainder of the plan,

it is a side-e�ect and DoLittle tries to replace operator Clobber with one

that has the same necessary e�ects as the clobberer, but does not a�ect the

missing precondition. This step also generates a list of children for similar

reasons than the previous step. The new active operator is the operator after

Clobber.

5.7.6 ADD plan transformations

This subsection describes how DoLittle chooses an operator or operator

sequence to add as new head of the plan tail. Means-ends analysis planners,

such as Prodigy, generally choose a relevant operator and order operators

with respect to how well their preconditions match the current state. That

is, an operator that is directly applicable in the current state is preferred over

one that has unsatis�ed preconditions. This approach works well with small

sets of operators. However, with larger sets of operators, it does become

impractical.

DoLittle uses an indexing method to retrieve the most similar operator

to the current planner state. DoLittle extends Chef's indexing mecha-

nism by considering both initial state and goals in the indexing. DoLittle

retrieves all most speci�c general operators that match the current planner

state (context, current state, and set of open goals), and collects the corre-

sponding re�nements.

A general operator mso is a most speci�c general operator if and only if

(a) it matches the current planner state, and (b) there is no other general

operator o2 in the operator memory that matches the current planner state

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 156

and mso is more general than o2. An operator o1 is more general than

operator o2 if the planner states identi�ed by the applicability conditions of

o2 are a proper subset of those identi�ed by the applicability conditions of

o1.

Most case-based planning systems emphasize the indexing mechanism,

and have developed sophisticated indexing methods. Unfortunately, these

methods require additional domain knowledge, which is not available in a

domain independent planner. For example, Chef's indexing method is based

on the knowledge that peas are di�erent from water chestnuts. DoLittle's

indexing method is based solely on the applicability conditions.

The key issue is to �nd quickly a plan that requires few adaptations to

the new situation. Most case-based planning systems including DoLittle

use the goal structure to guide the indexing. In a case-based planner such

as Chef features of the goal may also be used to predict interactions that

should be avoided.

Table ?? is the algorithm that DoLittle uses when adding a new op-

erator. The algorithm handles primitive and general operators di�erently.

DoLittle assumes that relevancy is the default applicability condition for

primitive operators. An operator is relevant if at least one e�ect matches an

open goal (line ??). The operators binding is then completed and the new

plan is created if the added operator does not result in a goal loop.

An operator leads to a goal loop if it either directly or indirectly supports

a literal that is one of its unsatis�ed preconditions. For example, assume that

DoLittle is working on the goal (is-at Robby at-stove). To achieve this

goal, the operatorMove-Robot at-table at-stove is added to the plan.

If the robot is not at the table already, this results in a new open goal (is-at

Robby at-table). One way of achieving this goal is to add the operator

Move-Robot at-stove at-table. However, this results in a goal loop,

since the unsatis�ed precondition (is-at Robby at-stove) (otherwise, it

wouldn't have been an open goal in the �rst place) is part of the operator

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 157

sequence to achieve (is-at Robby at-stove).

For general operators, DoLittle �rst checks the applicability conditions

(preconditions, open goals in line ??, context in line ??) and then tests

whether there is a more speci�c general operator that matches the current

planner state. The generalization hierarchy is explained in section ?? in de-

tail. DoLittle then completes the variable bindings and adds the operator

as the new active operator (line ??). Again, the new plan is rejected if it

leads to a goal loop.

Lastly, the new nodes are sorted with respect to the similarity metric

(line ??). The similarity metric is based on the goodness of the �t between

the applicability conditions and the planner state (context, current state,

and open goals). The similarity of a general operator to the current planner

state is the sum of the ratios of matched to total number of preconditions

and e�ects. The count is reversed for negated preconditions and del-e�ects,

for example, a delete e�ect is counted if it does not occur in the open goals,

and vice versa. Ties between instantiated operators are broken arbitrarily.

Table ?? is an example of DoLittle's indexing mechanism. There are

seven operators in the operator set, three primitive and four non-primitive

ones. In this example, all operators are di�erent instantiations or generaliza-

tions of the operator Move-Robot. The current state and the set of open

goals is shown at the top. The applicability of primitive operators depends

on an operator's e�ects, whereas for general operators, it depends on the set

of open goals. Therefore, the table lists the e�ects for primitive operators

and the set of open goals for general operators.

Primitive-Op-1 and Primitive-Op-2 are examples of relevant opera-

tors. Primitive-Op-3 is rejected since none of its e�ects matches an open

goal.

DoLittle-Op-1 is rejected because its preconditions do not match the

current state. Compare this to Primitive-Op-2, which is applicable, al-

though its preconditions do not match. DoLittle-Op-2 is not applicable

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 158

Table 5.14: DoLittle's ADD plan transformations

1 proc Apply-transformation(ADD;Plan; State;Goals)

2 Nodes := nil

3 foreach Op 2 Primitive-Operators

4 if Relevant(Op;Goals) then

5 foreach Binding := Possible-Bindings(Op; State;Goals)

6 Plan'; ;Goals' := Add-Operator(Op;Binding;Plan);

7 if (not(Goal-Loop(Plan'))) then

8 Nodes := Nodes + Node(Plan'; State;Goals');

9 �

10 od

11 �

12 od

14 foreach Op 2 General-Operators

15 if Matches(Preconds(Op); State) ^ Matches(Open-Goals(Op);Goals)

16 ^ Matches(Context(Op);CurrentContext)

17 ^ Most-speci�c(Op; State;Goals;Operator-Set) then

18 foreach Binding := Possible-Bindings(Op; State;Goals)

19 Plan'; ;Goals' := Add-Operator(Op;Binding;Plan);

20 if (not(Goal-Loop(Plan'))) then

21 Nodes := Nodes + Node(Plan'; State;Goals');

22 �

23 od

24 �

25 od

26 Nodes := Sort-Nodes(Nodes; Sim-Measure);

27 return(Nodes);

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 159

because the literal (not (is-at Robby at-stove)) is not an open goal.

This means that this fact is not used in the remainder of the plan and is

a side-e�ect. The main e�ect is that the robot is now at the table. In

contrast to DoLittle-Op-2, operator Primitive-Op-1 is applicable. Op-

erator DoLittle-Op-3 is more speci�c than DoLittle-Op-4, since the

preconditions and open goals of DoLittle-Op-4 are a subset of those of

DoLittle-Op-3. Therefore, operator DoLittle-Op-4 is rejected since it

is not the most speci�c matching operator. Operator DoLittle-Op-5 has

more general open goals than operator DoLittle-Op-3, but its precondi-

tions are di�erent. Thus it is applicable.

Therefore, only operators Primitive-Op-1, Primitive-Op-2,

DoLittle-Op-3, and DoLittle-Op-5 are applicable. The similarity

measure is the sum of the ratios of matching preconditions and e�ects.

The operators are therefore selected in this order: DoLittle-Op-3,

DoLittle-Op-5, Primitive-Op-1, and Primitive-Op-2.

5.8 Discussion

This section discusses the design of DoLittle, a multi-strategy planner.

Since DoLittle attempts to emulate di�erent planning system, it compares

DoLittle's implementation of a given problem solving strategy to other

implementations: means-ends analysis, a macro-based planner, a case-based

planner, and an abstraction-based planner. This comparison shows that

DoLittle is able to mimic the essence of those planning strategies and that

it can make use of the same planning biases.

5.8.1 DoLittle as a means-ends analysis planner

This subsection compares DoLittle as a means-ends analysis planner to

other means-ends analysis planners, in particular Prodigy4. Means-ends

analysis is the underlying planning strategy of DoLittle. This comparison

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 160

Table 5.15: Example of DoLittle's ADD plan transformations

Current State Open Goals

(is-at Robby at-stove) (is-at Robby at-table)

(holding Cup1) (arm-empty)

(is-open cupboard)

Primitive-Op-1 1=3 + 1=2

Preconditions E�ects/Open goals

(is-at Robby at-stove) (is-at Robby at-table)

(not (is-at Robby at-stove))

Primitive-Op-2 0=3 + 1=2

(is-at Robby at-sink) (is-at Robby at-table)

(not (is-at Robby at-sink))

Primitive-Op-3 not relevant

(is-at Robby at-stove) (is-at Robby at-sink)

(not (is-at Robby at-stove))

DoLittle-Op-1 no match for preconditions

(is-at Robby at-sink) (is-at Robby at-table)

DoLittle-Op-2 no match for e�ects

(is-at Robby at-stove) (is-at Robby at-table)

(not (is-at Robby at-stove))

DoLittle-Op-3 2=3 + 2=2

(is-at Robby at-stove) (is-at Robby at-table)

(holding Cup1) (arm-empty)

DoLittle-Op-4 too general (DoLittle-Op-3)

(is-at Robby at-stove) (is-at Robby at-table)

(arm-empty)

DoLittle-Op-5 2=3 + 1=2

(is-at Robby at-stove) (is-at Robby at-table)

(is-open cupboard)

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 161

ignores DoLittle's enhancements so that there are only the primitive op-

erators in the operator set and that none of the plan debugging methods are

used. There are four main di�erences between Prodigy and DoLittle:

(a) control rules, (b) matcher, (c) backtracking, and (d) operator selection.

The �rst three di�erences simpli�ed the implementation of DoLittle

and could be added to DoLittle. Only the di�erent operator selection

scheme is due to the fact that DoLittle is a multi-strategy planner.

First, Prodigy allows the user to de�ne meta-predicates and control

rules for a domain in common lisp. The implementation of control rules in

DoLittle would be more di�cult because it was implemented in C. Control

rules are not part of the standard means-ends analysis planning paradigm,

but are Prodigy's method for encoding search control knowledge.

Secondly, Prodigy4 also contains a more complex matcher [?], based on

a RETE network. The matching cost depends on the number of free vari-

ables in the operator. DoLittle's matcher was implemented as a simple

match tree. The worst case complexity of both algorithms is exponential

in the number of free variables. However, the cost per match attempt is

smaller for a RETE network as opposed to a simple match tree. There-

fore, Prodigy's matcher will outperform DoLittle's matcher if there is a

large set of possible instantiation for a variable. The domains in this thesis

use a type hierarchy to restrict the possible instantiations of variables, and

thus there is generally only a small set of possible instantiations. I pro�led

DoLittle's code to determine the cost of the matching algorithm. This ex-

periment showed that the matcher accounted for less than �ve percent of the

running time. Therefore, the current implementation of the matcher seems

to be reasonable e�ective.

Thirdly, Prodigy4 extends means-ends analysis with two search reduc-

tion techniques: dependency directed backtracking and look-ahead. Depen-

dency directed backtracking removes binding nodes that lead to an unachiev-

able subgoal. Look-ahead removes nodes that necessarily lead to a goal loop,

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 162

without computing a complete set of bindings. It is possible to use the same

techniques in DoLittle, because they a�ect the backtracking mechanism

only. Dependency-directed backtracking backtracks to an operator selection

instead of a binding selection, if no set of bindings can possibly achieve

the goal. Look-ahead saves work by predicting that a node can not lead

to a solution without computing a complete set of bindings. However, the

amount of search reduction is limited if combined with abstraction hierar-

chies [?]. Therefore, the bene�t of a smarter backtracking algorithm in a

multi-strategy planner is unclear, especially since DoLittle includes plan

debugging methods to reduce the amount of backtracking. Plan debugging

is similar to dynamic backtracking, a backtracking method that is trying

to maintain as much of the previous work as possible when undoing an in-

correct choice by moving a shallow node in the search tree to a lower level

[?]. DoLittle, therefore, does not use look-ahead and only uses a simple

backtracking method (chronological backtracking).

Lastly, the main di�erence between DoLittle and Prodigy4 is the

operator selection mechanism. Prodigy4 selects an operator by picking

a goal from the open goal list, �nding an operator that is relevant to the

goal, selecting a binding for the operator and adding the operator to the

plan. DoLittle's method is case based, operators are retrieved based on a

domain independent similarity metric Sim-Metric. The similarity metric is

based on the number of matching e�ects and preconditions.

However, DoLittle still guarantees that a selected operator is relevant

to at least one goal in the open goal list. Therefore, if no primitive operator is

a generalization of another primitive operator, the di�erent operator selection

criteria lead to a di�erent order of expansion, but the candidates are identical.

Using breadth-�rst search, the searches are synchronized after each level.

To estimate the e�ect of the di�erences between DoLittle and

Prodigy, the following experiments compare DoLittle running in

Prodigy mode (no adaptations, no general operators) to Prodigy with

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 163

and without dependency directed backtracking.

The three planners (Prodigy-DL, Prodigy-Dep, and Prodigy) were

run on a randomly selected set of 250 problems in the blocksworld. The algo-

rithm for generating random problems is described in section ??. Figure ??

shows the number of expanded nodes for all three planners. All planners

use depth-�rst search, since the di�erences in performance are greater for

depth-�rst search than for breadth-�rst. In breadth �rst search, the di�erent

operator selection methods do not play such an important role, since the

search will only di�er in the last level of the search tree. There was a node

limit of 15; 000 nodes and a time limit of 600 CPU seconds.

Figure ?? shows that Prodigy-DL's performance is similar to

Prodigy's with chronological backtracking (Prodigy) and with depen-

dency directed backtracking (Prodigy-Dep) when measured by the num-

ber of expanded nodes. Using a paired t-test, it can be shown that indeed

the di�erence between the number of nodes expanded by DoLittle and

Prodigy-Dep is not statistically signi�cant with an � level of 0:05.

Figure ?? compares the running time of the three planners. It shows that

DoLittle runs roughly twice as fast as Prodigy. The speed up is caused

by DoLittle's implementation in C instead of Common Lisp. The �gure

also shows that in the blocksworld, the extra cost of dependency directed

backtracking outweighs the reduction in expanded nodes.

These tests also show that Prodigy-DL is indeed an e�cient planning

system, comparable to another state of the art planner Prodigy. This fact

is important in the evaluation of DoLittle, since it shows an improvement

of multi-strategy planning over single strategy planners and Prodigy-DL.

The baseline in this comparison is important because a rule of thumb is that

the more ine�cient a system is to begin with, the easier it is to improve its

performance.

I also tried to compare the performance of Prodigy-DL and Prodigy

in the kitchen domain. Unfortunately, Prodigy-DL and Prodigy are not

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 164

Figure 5.2: Comparison of Prodigy and Prodigy-DL

Cumulative nodes in the blocksworld

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Problems

Prodigy4.0 Prodigy-Dep
Prodigy-DL

Planner

N
o
d
e
s

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 165

Figure 5.3: Comparison of Prodigy and Prodigy-DL

Cumulative times in the blocksworld

0

4000

8000

12000

16000

20000

24000

28000

32000

Problems

Prodigy4.0 Prodigy-Dep
Prodigy-DL

Planner

T
i

m
e

i
n

s
e
c
s
.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 166

able to solve anything but the simplest problems in the kitchen domain.

5.8.2 DoLittle as a case-based planner

This subsection compares DoLittle and Chef, a case-based planner. Plan

retrieval in Chef and DoLittle di�er, because Chef's indexing mecha-

nism is domain-dependent, whereas DoLittle uses a domain-independent

scheme. Chef retrieves a plan only at the top-level of the search tree,

whereas DoLittle allows retrieval of a case any time an operator is added

to the plan.

The plan debugging methods of Chef and DoLittle are similar. The

main di�erence is that Chef has a more expressive representation language,

that for example includes object features and concurrent plans.

Chef associates a thematic organizations packet TOP with a plan fail-

ure. DoLittle associates repair strategies directly with the failure. The

main function of TOPs in Chef is to predict failure. DoLittle supports

the prediction of failure using a general operator (see subsection ??). In con-

trast to Chef this prediction is instantiated (e.g., (not (is-soggy broc-

coli))) as opposed to meta-level comments (e.g., (not (not-prevent-

goal soggy))).

The order of plan repairs in DoLittle is based on the least-

change heuristic: REMOVE-OPERATOR, CHANGE-BINDING,

PLACE-BEFORE, PLACE-AFTER, REORDER, REPLACE-MISSING-

PRECONDITION, REPLACE-UNWANTED-SIDE-EFFECT. DoLittle

prefers plan debugging methods that make fewer adaptations to the plan.

Chef's ordering of plan adaptations is based on domain-dependent knowl-

edge, such as \Prefer adding a preparation step to adding a cooking step."

Some of those ordering heuristics are domain-independent and similar to

DoLittle's least change strategy, such as \It is better to add one step than

to add many steps."

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 167

5.8.3 DoLittle as an abstraction-based planner

This subsection shows that DoLittle can represent relaxed abstractions

(e.g., AbStrips). The following table is a description of the towers of Hanoi

domain, that emulates AbStrips's abstraction hierarchy.

Table ?? is the operator set that DoLittle uses in the towers of Hanoi

domain with three disks. In addition to the three primitive operatorsMove-

Small, Move-Medium, Move-Large, it contains two sets of operators

that represent the abstraction hierarchy. The �rst set enables DoLittle to

move the medium disk independent on where the small disk is. The second

set enables DoLittle to move the large disk and ignoring the two smaller

disks.

CHAPTER 5. DOLITTLE: A MULTI-STRATEGY PLANNER 168

Table 5.16: Abstraction in DoLittle: Towers of Hanoi

Move-Small $PegX $PegY

Preconditions E�ects

(is-on Small $PegX) (is-on Small $PegY)

(not (is-on Small $PegX))

Move-Medium $PegX $PegY

Preconditions E�ects

(is-on Medium $PegX) (is-on Medium $PegY)

(not (is-on Small $PegX))(not (is-on Medium $PegX))

(not (is-on Small $PegY))

Move-Large $PegX $PegY

Preconditions E�ects

(is-on Large $PegX) (is-on Large $PegY)

(not (is-on Small $PegX))(not (is-on Large $PegX))

(not (is-on Small $PegY))

(not (is-on Medium $PegY))

(not (is-on Medium $PegY))

Abs-Move-Large-1 $PegX $PegY

Preconditions Open Goals

(is-on Large $PegX) (is-on Large $PegY)

Abs-Move-Large-2 $PegX $PegY

Preconditions Open Goals

(is-on Large $PegX) (not (is-on Large $PegX))

Abs-Move-Medium-1 $PegX $PegY

Preconditions Open Goals

(is-on Medium $PegX) (is-on Medium $PegY)

Abs-Move-Medium-2 $PegX $PegY

Preconditions Open Goals

(is-on Medium $PegX) (not (is-on Medium $PegX))

Chapter 6

Learning Planning Knowledge

We learn through experience and experiencing, and no one

teaches anyone anything. This is as true for the infant moving

from kicking to crawling to walking as it is for the scientist with

his equations. If the environment permits it, anyone can learn

whatever he chooses to learn; and if the individual permits it, the

environment will teach him everything it has to teach.

Viola Spolin (b. 1911), U.S. theatrical director, producer.

Improvisation for the Theater, ch. 1 (1963).

The focus of this thesis is the design of a multi-strategy planner. This, how-

ever, leaves the question: \How can suitable general operators be found?"

This chapter describes some example learners for acquiring general operators

inductively. These learners are simple versions of common speed up learning

methods, included here to facilitate an empirical evaluation. By no means are

these the only ways to generate new operators. DoLittle's design does not

include the planning bias learners, but treats learning methods as \plug ins,"

and other methods (e.g., explanation based learning, discourse analysis, or

user supplied functions) are also possible. The inductive acquisition of plan-

ning knowledge is a requirement that does not stem from the multi{strategy

planning paradigm per se, but from the instructable system paradigm, which

169

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 170

is the intended application for DoLittle.

The required inputs and outputs of the learning modules depend on

DoLittle's requirements. DoLittle's planning activity focuses on gen-

eral operators for macros, cases, and abstractions. DoLittle also focuses

on one particular type of problem solving event, a successful (partial) solu-

tion, to learn new operators. There are many other problem solving events

that allow opportunities for learning, for example learning from failure [?],

subgoal interaction [?], or impasses [?]. DoLittle's planning bias learners

focus on learning solely from success to emphasize a main point of this thesis,

the separation of a planning biases' implementation (planning strategy) and

its underlying assumptions. That is, there may be more than one way of ex-

ploiting assumptions about the domain, and there may be more than one set

of assumptions that may lead to the same planning strategy. For example,

two di�erent learning systems may generate a new macro, but may be based

on completely di�erent motivations. Planning system A creates a macro by

extracting commonly used sequences from a successful plan. Planner B cre-

ates macros from complete previous solutions to generalize subtasks. Planner

B's planning bias is that the problems are presented in increasing order of

di�culty and that solutions to earlier problems are important subtasks of

later solutions.

Section ?? describes Gratch and DeJong's framework for adaptive plan-

ning. This framework interprets adaptive planning as search through the

space of planner transformations. This framework identi�es two main prob-

lems in adaptive planning: (a) the size of the transformation space, and (b)

the cost of evaluating the utility of a transformation. As can be seen in sec-

tion ??, there is a vast set of possible planner transformations in DoLittle.

Section ?? describes methods for restricting the search through possible plan-

ner transformations. Methods for reducing the cost of estimating the utility

of a planner transformation in DoLittle's representation are described in

section ??. Section ?? introduces the sample DoLittle case-based learner.

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 171

The macro-operator learner is shown in section ??. Section ?? describes

DoLittle's abstraction-based learner. Section ?? summarizes this chapter.

6.1 Learning of general operators

The complexity of planning has led to signi�cant interest in speed up learning

[?, ?, ?, ?]. The idea is to create an e�cient domain-dependent planner by

training a domain-independent one. Ideally, we would like to create a domain

independent planner that, given only a domain description, starts solving

problems in the domain. The system then gathers domain speci�c knowledge

during the planning process and exploits this domain speci�c knowledge im-

proving its planning performance. Thus, after running the planner on enough

problems, it is transformed into an e�cient domain-dependent planner.

Although this idea is appealing, learning to improve planning performance

is not a simple problem. Therefore, many learning planners make (justi�ably

or unjusti�ably) simplifying assumptions to reduce the cost of learning.

This section describes a framework for adaptive planning suggested by

Gratch and DeJong [?]. This framework identi�es three problems that an

adaptive planning system must overcome. Sections ?? and ?? describe how

DoLittle's planning bias learners solve the two main problems.

Similarly to the plan space search paradigm described in section ??, this

framework views learning to plan as a search through a set of possible planner

transformations. These transformations include, among others, addition of

a macro-operator, creation of a chunk, or generation of a control rule.

For example, through generation of a macro, a macro-learner transforms

the original planner into a new system which contains the previous operators

and the new macro. The task then is to �nd a sequence of transformations

that adapts the original planner into a more e�cient one. The e�ciency of a

planner may be de�ned in terms of the average solution time, the number of

solved problems, or the solution quality. In the instructable system paradigm,

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 172

the user will have to wait for the planner to create a plan to do some task.

Therefore, in this thesis, the e�ciency of the planner is determined by the

expected cost of �nding a solution over a set of problems (see section ??).

The utility of a planner is the negative of the expected cost and may be

formalized as follows:

UTILITY(planner) = �
X

p2Problems

Cost(p; planner)� prob(p) (6.1)

The utility or e�ciency of a planner is a function of the cost of a problem

weighted by the probability of this problem appearing. This formalization

of e�ciency is too expensive to compute in practice. There are three prob-

lems that make exhaustively searching the space of planner transformations

infeasible:

1. the space of transformations is too large. For example, the set of pos-

sible macro-operators that may be added to a planner is extremely

large.

2. estimating the e�ciency of a transformation (or even the incremental

utility) of a transformation is too expensive.

3. the necessary observations are too expensive to be extracted from the

environment.

To alleviate these problems, learning planning systems generally make

simplifying assumptions (learning bias) when evaluating the e�ciency of se-

quences of transformations. For example, many planners use operationality

conditions to approximate e�ciency [?, ?, ?].

Section ?? shows the approach of DoLittle's learners to the �rst prob-

lem. Section ?? describes the solution to the second problem. The third

problem is not that critical in DoLittle's representation, since the nec-

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 173

essary information for the learners can easily be extracted from the search

tree.

6.2 DoLittle's planner transformations

This section discusses the space of possible planner transformations in

DoLittle. In the framework described in section ??, a planner can be char-

acterized by its plan language L
P
, its set of plan transformations T , and its

search method M . Theoretically, a planner can be adapted by changing any

of those components. However, adapting the plan language or the search

method is di�cult. Therefore, most adaptive planning systems, including

DoLittle, control the planner through the operator set. In DoLittle, the

set of plan transformations is controlled by the set of general operators.

DoLittle provides a much larger set of planner transformations than

other macro learners, for example MacLearn. DoLittle allows cre-

ation/deletion of operator sequences, and allows organization of those se-

quences using a generalization hierarchy and a set of re�nements. Note that

the space of planner transformations is not searched exhaustively because it

is too big. As will be shown in section ??, DoLittle uses an event-driven

approach to learning. The learners identify possibilities for improvement

during the search for a problem solution.

DoLittle may change any part of a general operator as long as the

resulting general operator still satis�es the requirements in de�nition ??.

The following list describes the set of possible planner transformations in

DoLittle's representation:

1. Create a new general operator

2. Delete a general operator

3. Generalize applicability conditions (context, preconditions, open goals)

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 174

4. Specialize applicability conditions

5. Add a re�nement to a general operator

6. Remove a re�nement from a general operator

7. Change the type of a re�nement

8. Add a constraint to a re�nement

9. Remove a constraint from a re�nement

10. Merge two general operators

11. Split a general operator into two general operators

12. Replace an operator reference by a set of re�nements

13. Replace a set of re�nements by an operator reference

General operators include meta knowledge, the applicability conditions

(context, preconditions, open goals) of a general operator. DoLittle may

adapt the search by generalizing or specializing these applicability conditions.

For example, if a general operator was successful in �nding a solution to the

problem of making co�ee with sugar, but not co�ee, a learner may change

the applicability conditions to only use this operator if a plan requires co�ee

and sugar. One constraint on the specialization of applicability conditions

is that they have to be at least as general as the common preconditions and

e�ects of the re�nements.

DoLittle can also add or remove a re�nement of a general operator. The

purpose of adding a re�nement is to reduce the cost of �nding a re�nement

for a general operator. For example, assume that there is a general operator

that has two re�nements, one with the additional precondition (is-at Robby

at-stove), and one with the robot being at the table (is-at Robby at-

table). If DoLittle is re�ning this general operator and the robot is at

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 175

the fridge, DoLittle retrieves one re�nement (e.g., the �rst re�nement)

and creates a new subgoal (is-at Robby at-stove). This search may

be prevented if a third re�nement with the additional precondition (is-at

Robby at-fridge) is added.

The preconditions of a re�nement may have additional constraints that

can be added or removed from a re�nement. However, the preconditions

of a re�nement must always guarantee the applicability of the associated

operator sequence. In other words, the preconditions of the re�nement must

be at least as strong as the preconditions of the associated operator sequence.

Merging two general operators creates a new general operator (a) whose

context, preconditions, open goals, and e�ects are the intersection of the two

original ones, and (b) whose set of re�nements is the union of the re�nements

of the original operators. If there are two general operators that have similar

applicability conditions and e�ects, but di�er in one precondition literal,

DoLittle can create an abstraction of those two operators. The inverse

planner transformation of splitting a general operator is also possible. For

example, this may be useful, if a proposed abstraction turns out to be not

useful, because it is too general.

Replacing an operator reference by a set of re�nements creates a new set

of re�nements for a general operator, that has all references to a general op-

erator replaced by a subset of its re�nements. Since general operators may be

interpreted as AND/OR trees, this is equivalent to promoting a disjunction.

For example, a general operator Op1 has one re�nement that contains a ref-

erence to another general operator Op2 with three re�nements. However, in

the context of the �rst general operator Op1, only two of the re�nements

(R1 and R2) of Op2 are useful. In this case, a learner may replace the ref-

erence to the second general operator Op2 with the two useful re�nements.

The original re�nement of Op1 is replaced by two new re�nements that are

created by replacing the reference to Op2 with R1 and R2 respectively. In-

versely, a learner can also replace an operator sequence of a re�nement by

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 176

an operator reference.

DoLittle's special open goal literal (INVALID) allows a learner to

replace all references to a general operator by its set of re�nements.

6.3 Simpli�cations of the transformation

space

The �rst problem in adaptive planning is the size of the transformation space.

For a set of n transformations, there are 2n possible sets of transformations.

Therefore, a common simpli�cation made by learning planners is to assume

that the utility of a transformation is independent of the utility of other

transformations. Then a space of n planner transformations can be searched

in n steps, rather than 2n. Even if the set of transformations is not indepen-

dent, the transformations may be grouped into equivalence classes. Rather

than all transformations in a class only one candidate from each class must

be tested.

Generation pruning reduces the space of possible planner transforma-

tions by limiting the set of transformations that are being considered. Even

if transformations are independent, the space of possible transformations

may be very large. For example, the space of macro-operators consists of

all legal operator sequences. Some systems use an event driven approach to

macro-operator creation, that is only macro-operators that occurred during

problem solving are being considered. This problem is worse in DoLittle's

representation than in the macro learner representations since, as shown

in section ??, its set of planner transformations contains many more plan-

ner transformations than simple macros. Thus DoLittle's transformation

space is extremely large and must be restricted.

Composition pruning reduces the space of transformations by only check-

ing one sequence of n transformations instead of n! possible sequences. The

assumption is that the order in which the planner transformations are made

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 177

is not important. For example, Prodigy/EBL's set of planner transforma-

tions consists of the set of control rules that may be added to the planner.

But, Prodigy/EBL uses the learned control rules in the order in which

they were acquired, so that a di�erent sequence of examples may lead to a

di�erent planning system.

To reduce the planning cost, DoLittle's planning bias learners use event

driven learning and assume that the learned operators are independent and

insensitive to the order in which they were acquired. This greatly reduces the

size of the transformation space, which is why this approach is used by many

other planning systems [?, ?]. The independence assumption is justi�able in

DoLittle's representation, since it provides a more powerful language for

applicability conditions than simple macro learning systems. This means that

the possibility of interference between di�erent general operators is reduced.

The insensitivity assumption is justi�ed because the selection mechanism for

selecting general operators and re�nements is based on a domain-independent

similarity metric and is thus mostly insensitive to the order in which the

operators/re�nements were acquired. The order of planner transformations

only a�ects the selection of operators with identical similarity measures.

6.4 Simpli�cations in evaluation utility

The second problem in learning to plan is to determine accurately the utility

of a suggested planner transformation. That is, after application of a planner

transformation, the new performance of the planner must be estimated, to

verify that the applied planner transformation indeed increases the utility of

the planner. The e�ciency depends on the (possibly unknown) distribution

of problems in the domain. The brute force approach of testing the planner

with and without transformation on all problems in the domain is clearly too

expensive.

Some systems (Alpine,Static) overcome this problem by focusing

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 178

on syntactic features of the domain and do not learn from examples.

Prodigy/EBL takes a sample of some of important features that deter-

mine the utility and averages the utility over the sample. However, there is

no concept of con�dence and so those systems can not determine how many

examples are necessary to have an accurate enough approximation of the

utility.

Palo [?] and Composer [?] use a formal approach to operator learning.

In particular, they guarantee that the �nal planner will indeed be a locally

optimal planner with respect to the set of planner transformations. However,

these systems are not applicable in our learning paradigm, since they require

many training problems, to compute the necessary statistics for estimating

the utility of a transformation. An instructable system is trained on a small

set of examples.

DoLittle's sample learners use an estimate of the utility similar to

the estimate used by Prodigy/EBL. The motivation is to �nd a set of

su�cient conditions, that is a set of assumptions that allow the prediction of

a positive utility of a planner transformation. If the assumptions are met, it

is guaranteed that the planner's performance will increase after application

of a planner transformation. This does not mean that DoLittle can not

perform poorly, if the assumptions are not met. There is a separate set of

su�cient conditions for each planning bias learner.

Using the de�nition of utility in equation ??, incremental utility (�U) is

de�ned as the di�erence in e�ciency before and after application of a trans-

formation. If the probability distribution is constant for the two planners,

the incremental utility of a planner P with respect to a transformed planner

P 0 is given by

�U =
X

p2Problems

(Cost(p;P)� Cost(p;P'))� prob(p)

The incremental utility is the sum of the di�erences in cost between the

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 179

new and the old planning system on a problem weighted by the probability

that this problem occurs. It is assumed that the expensive part of the planner

is the search. So, the analysis ignores e�ects such as increases in loading times

of a domain because of the additional operators.

The following subsections discusses how DoLittle's planning bias learn-

ers derive an estimate for the incremental utility of di�erent planner trans-

formations. The learners estimate the incremental utility of a planner trans-

formation by comparing the actual cost due to the planner transformation

to an estimate of its savings.

6.4.1 Utility estimate of adding operators

Consider the case, where a learner has created a new general operator. At

each node in the search space, DoLittle has to check whether the appli-

cability conditions (context, preconditions, open goals) of the new operator

are satis�ed. To verify that the context �eld is satis�ed can be done quickly,

because DoLittle simply checks whether the planner is currently re�ning

at least one operator mentioned in the context �eld. Testing the precondi-

tions and open goals requires the computation of a binding for free variables

and checking to see whether the instantiated operator is the most speci�c

operator to match the current planner state (current state, open goals).

Computing a binding is equivalent to the match cost of the new general

operator, which is exponential in the number of free variables. To check

whether an operator is the most speci�c operator to match the current plan-

ner state, DoLittle must compare the applicability conditions of all oper-

ators that match the current planner state. A matching operator is rejected

if its preconditions and open goals are a subset of some other matching op-

erator's preconditions and open goals. The worst case complexity of this

comparison is the maximum number of preconditions and open goals of an

operator multiplied by the number of matching operators.

If the general operator does not match the current planner state, it has

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 180

no further e�ect on the search. On the other hand, if the operator matches,

DoLittle will have to re�ne it. To re�ne a general operator, DoLittle

must compute a binding for all re�nements of the operator, and sort them

with respect to the similarity metric. After selection of a re�nement, the

general operator is replaced by the re�nement in the partial plan. There

is a re�nement cost associated with each type of re�nement. For example,

replacing a general operator with a macro has a negligible cost, whereas

replacing an operator with a subproblem search space means that DoLittle

must search for a solution of a possibly non-trivial subgoal.

In this model, the incremental utility of a new general operator is given by

equation ??. The utility of a general operator is determined by the di�erence

between its bene�t and its cost. The bene�t is determined by the search cost

that is saved. The cost is determined by the cost of �nding a re�nement

and the cost of matching the general operator. This equation is similar

to Minton's utility evaluation, but includes a term to describe the cost of

re�ning and one for the match frequency. The re�nement cost corresponds

to the cost of applying a given planning strategy. Since Prodigy/EBL only

adds control rules, there is no notion of re�nement cost. The match frequency

is the ratio of number of times the operator was matched (preconditions and

open goals) to the total number of nodes. DoLittle may reject an operator

quickly, if it has a highly specialized context. Prodigy/EBL computes a

binding for all control rules, so the match frequency for all search control

rules in Prodigy/EBL is one. Also DoLittle is more conservative than

Prodigy/EBL, since it uses the maximum rather than the average match

cost. In other words, DoLittle is more likely than Prodigy/EBL to reject

a planner transformation. The intuition is that DoLittle can more easily

�nd a good planner transformation because it has a larger set of planning

strategies than Prodigy/EBL.

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 181

�U = AvrSearchCost � ApplicFreq

� AvrRe�nementCost � ApplicFreq

�MaxMatchCost �MatchFreq

(6.2)

DoLittle's planning bias learners use the following approximations in esti-

mating the incremental utility of adding a general operator:

� AvrSearchCost is the average cost of �nding a solution to the plan-

ner state identi�ed by the applicability conditions of the new general

operator without the new operator.

� AvrRe�nementCost is the average cost of �nding a re�nement for

the general operator.

� ApplicFreq is the ratio of successful attempts to match the applica-

bility conditions of the new general operator to the total number of

nodes.

� MaxMatchCost is the worst case cost of searching for a binding of

the free variables.

� MatchFreq is the ratio of the number of times the operator was

matched to the total number of nodes

Prodigy/EBL measures the run time of the planner to determine the

costs/savings of the di�erent factors. DoLittle's learners use the number

of nodes, since as a parallel system, it may execute on processors with di�er-

ent speeds. On a single processor an experiment in the blocksworld showed

a strong correlation between run time and number of expanded nodes (90

percent), which means that the number of nodes can be used as an approxi-

mation of run time.

The most di�cult factor in determining the incremental utility of a gen-

eral operator is to determine its average search cost. To estimate accurately

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 182

the average search cost, a planner would have to solve a problem with and

without the general operator and compute the di�erence in running times or

number of expanded nodes. This is a clearly an expensive proposition. How-

ever, for the example that was used to generate the new operator the search

cost is known, since it was solved without the suggested operator and the

search cost of the new general operator can be computed from the example.

To illustrate, when learning a case operator, the search cost is the total cost

of solving the problem. Therefore, DoLittle's learners use the search cost

of the �rst example as the average search cost estimate of the rule.

The average re�nement cost, application frequency, and match frequency

in equation ?? can be estimated during successive problem solving episodes.

The estimate of the re�nement cost of a single re�nement is the cost of

�nding a binding for any free variables and the cost of re�ning the operator.

This cost depends on the type of re�nement. Macro operators are re�ned with

a cost of one node. Case re�nements cost one node for each operator in the

sequence. The estimates of costs for serial subgoals, abstract subgoals, and

subgoal re�nements are the costs of the search of the resulting subproblem

space. The estimated cost of a generic re�nement is the sum of the re�nement

costs for re�nements of a stronger type (macro, case, abstract subgoal, serial

subgoal, subgoal) than the intended one. The estimate of the re�nement cost

of a set of re�nements is the cost of selecting a re�nement plus the maximum

of the costs of the individual re�nements.

Equation ?? also provides two quick methods for ruling out expensive

general operators. First, any new general operator whose re�nement cost

is greater than its average search cost will not lead to an improvement and

is immediately discarded. Secondly, since the application frequency is al-

ways smaller than one, comparing the di�erence of average search cost and

re�nement cost to the maximum match cost allows DoLittle's planning

bias learners to rule out new general operators, that will never lead to an

improvement (even if the match frequency were one). This second check is

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 183

also used by Prodigy/EBL. However, in contrast to DoLittle's represen-

tation, each rule in Prodigy/EBL has the same �xed re�nement cost and

its match frequency is one.

6.4.2 Utility estimate of generalizing applicability con-

ditions

Generalizing or specializing the applicability conditions of a general operator

will a�ect the application frequency, the match cost, and the match frequency

of a general operator. For example, replacing an object by a variable in the

applicability conditions can greatly increase the match cost.

Since DoLittle's learners compute the new match cost and maintain

statistics of the application and match frequency of a general operator, the

impact of those changes can be checked.

However, generalization and specialization may also have an e�ect on the

average search cost of an operator and the average re�nement cost. This is

especially true if the applicability conditions are too general and the general

operator does not lead to a solution. In this case, the search is led astray

and the cost of trying to �nd a re�nement for the general operator is in vain.

Since the average re�nement cost, i.e., the average cost of re�ning a gen-

eral operator is checked, DoLittle's learners will detect the problem of

over-generalization by its high re�nement cost and therefore poor utility.

In this case, the general operator can either be deleted or its applicability

conditions specialized.

6.4.3 Utility estimate of changing a re�nement

Adding, removing, changing the type, adding a constraint, or removing a

constraint of a re�nement only changes the re�nement cost and possibly

the average search cost of a general operator. It does not a�ect the match

cost and frequency of the general operator or its application frequency. Any

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 184

change in the re�nement cost is monitored in the following problem solving

episodes and DoLittle's learners can thus verify that a proposed change

indeed did increase performance.

6.4.4 Utility estimate of merging general operators

Merging of two general operators, requires computation of a new estimate

for the average search cost of the new operator. DoLittle's planning bias

learners use the maximum of the individual search costs as the new search

cost estimate for the merged operator.

6.4.5 Utility estimate of replacing operator references

Replacing an operator by an operator reference is equivalent to removing

a general operator but maintaining its re�nements. This means that the

match cost of the general operator is reduced to zero, since the operator is

removed from consideration. DoLittle will never try to match the operator.

However, the general operator may still occur as part of an operator sequence

in a re�nement. The only cost associated with this operator is then the

re�nement cost. The application frequency for an operator that can only be

used by reference is one, since the operator is implicitly always applicable as

part of the operator sequence.

6.5 Case learner

The following section describes some important characteristics of a case

learner and DoLittle's case learner in particular. The motivation behind

a case learner is to be able to solve the same or structurally similar prob-

lems more e�ciently in the future. This requires that the planner (a) has a

cache of previous solutions, and (b) has an indexing mechanism that returns

a suitable plan from the cache to solve a new problem.

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 185

DoLittle's indexing mechanism is described in subsection ??. The task

of the case learner is to create new general operators that will speed up

performance in the future.

DoLittle's case learner creates general operators with case re�nements

from a successful plan or partial plan. A successful plan is a solution to

a problem, a successful partial plan is a plan that was generated to re�ne

a general operator. For example, a general operator that has only a serial

subgoal re�nement generates a partial plan during re�nement of the general

operator.

First, the preconditions and e�ects of the successful operator sequence

are computed. As in Chef, the operator sequence is not generalized (e.g.,

replace objects with variables) a priori, instead, DoLittle's repair methods

generalize the operator sequence as required when creating a new plan. This

is similar to Chef's delayed generalization policy.

The problem is to determine the applicability conditions of this new gen-

eral operator, that is to �nd a characterization of the planner states in which

this operator should be applied. So far, there was only one planner state in

which the case was successful, the problem space of the problem or partial

problem. Therefore, DoLittle's case learner extracts preconditions and

e�ects for the general operator from the initial state and the goals of the

problem space.

The following example shows the acquisition of a case to make tea in the

kitchen domain. First, DoLittle is given the problem of making tea in the

kitchen domain. The initial state is the one depicted in �gure ??, and the

goal is to have a cup of tea. Additionally, the goal contains some constraints

on the plan, so that the kitchen is not a mess afterwards.

Case learner example

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 186

Problem: Make tea in the kitchen domain

Initial State: see �gure ??

Goals: (contains $Cup tea)

(water-off)

(is-in old-tea-bag garbage-can)
DoLittle solves this problem and creates a plan containing 30 primitive

operators. The successful plan is the one shown previously in table ??.

DoLittle's case learner �rst generates a case re�nement by (a) computing

instantiated preconditions and e�ects of the operator sequence, (b) comput-

ing the parameter list, and (c) generating the list of operator references. This

information creates the following re�nement.

Case learner example (continued)

Re�nement CASE-REF1

Mode GENERIC

Preconditions (is-reachable cupboard at-table)

(is-reachable table at-table)

(is-reachable microwave at-stove)

(is-reachable shelf at-sink)

(is-reachable garbage-can at-sink)

(next-to at-table at-sink)

(next-to at-table at-stove)

(next-to at-table at-stove)

(not (is-open cupboard))

(is-in Cup1 cupboard)

(contains Cup1 nothing)

(not (is-open microwave))

(microwave-empty)

(not (water-on))

(sink-empty)

(is-on tea-box shelf)

(not (is-open tea-box))

(is-at Robby at-table)

(arm-empty)

E�ects (is-open cupboard)

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 187

(not (is-in Cup1 cupboard))

(is-on Cup1 table)

(not (contains Cup1 nothing))

(contains Cup1 tea)

(is-hot Cup1)

(is-open microwave)

(not (is-on tea-box shelf))

(is-on tea-box table)

(is-open tea-box)

(is-at Robby at-sink)

(not (is-at Robby at-table))

(is-in old-tea-bag garbage-can)

Sequence Open-Door Cupboard

: : :

Put-In-Garbage-Can Old-Tea-Bag

Next, DoLittle's case learner computes the applicability conditions for the

new case. The re�nement is associated with a general operator and the pre-

conditions and e�ects of the operator are computed as follows. First, the

objects in the preconditions and e�ects are parameterized. The open goals

of the general operator are the subset of the e�ects of the re�nement that

match the goals of the original problem space. In the example, the origi-

nal goal literal (arm-empty) is missing from the set of open goals, since it

is already established by the preconditions. The preconditions are the pa-

rameterized preconditions of the re�nement. Since the preconditions are the

weakest conditions that guarantee achievability of the goals, the applicability

conditions are therefore not based on the entire initial state, but only on the

ones relevant to the current goal. This is similar to case-based planning in

Prodigy, which is based on foot-print literals [?].

Case learner example (continued)

Operator CASE-MAKE-TEA

Params $Loc1,$Loc2,$Loc3,$Cup

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 188

Preconditions (is-reachable cupboard $Loc1)

(is-reachable table $loc1)

(is-reachable microwave $Loc2)

(is-reachable shelf $Loc3)

(is-reachable garbage-can $Loc3)

(next-to $Loc1 $Loc2)

(next-to $Loc1 $Loc3)

(not (is-open cupboard))

(is-in $Cup cupboard)

(contains $Cup nothing)

(not (is-open microwave))

(microwave-empty)

(not (water-on))

(sink-empty)

(is-on tea-box shelf)

(not (is-open tea-box))

(is-at Robby $Loc1)

(arm-empty)

Open goals (contains $Cup tea)

(is-in old-tea-bag garbage-can)

E�ects (is-open cupboard)

(not (is-in $Cup cupboard))

(is-on $Cup table)

(not (contains $Cup nothing))

(contains $Cup tea)

(is-hot $Cup)

(is-open microwave)

(not (is-on tea-box shelf))

(is-on tea-box table)

(is-open tea-box)

(is-at Robby $Loc3)

(not (is-at Robby $Loc1))

(is-in old-tea-bag garbage-can)

Re�nements CASE-REF1 (see above)

DoLittle's case learner proposes one new general operator for each suc-

cessful (partial) plan. The table above shows the general operator that was

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 189

generated after solving the problem of making tea.

The new general operator is then tested to see whether it satis�es the

su�cient conditions of the case learner. The su�cient conditions for a case

learner are derived from an analysis of a simpli�ed model of DoLittle, as

described in subsection ??.

The average search cost is estimated as the total search cost of the current

problem. Since the new case is a generic re�nement, the new case is �rst tried

as a macro, and only if that fails as a case. The re�nement cost for a macro

is simply the cost of re�ning a general operator with one operator sequence.

The re�nement cost of a case is the re�nement cost of a macro plus the

cost of re�ning one general operator with an operator sequence and applying

each operator in the operator sequence. DoLittle's case learner uses this

estimate for the re�nement cost. In the worst case, the match cost is the cost

of searching the space of possible instances for all free variables. The match

cost can thus be estimated as the product of the size of the possible instance

sets for all free variables.

For example, solving the problem of making tea required 4586 nodes. The

average search cost of the case is estimated as 4586 nodes. Since there are

no additional re�nements and no additional free variables, the re�nement

cost is 31, the cost of applying a macro (1) and then an operator sequence

with 30 steps in it (30). There are three location variables with four possible

instantiation, and one container variable with three possible instantiations.

The total match cost is thus 192 nodes. Using these estimates, the new

general operator passes both plausibility checks, the one to limit the re�ne-

ment cost (AvrSearchCost > AvrRe�nementCost), and the one to limit the

match cost (AvrSearchCost�AvrRe�nementCost > MatchCost). Therefore,

DoLittle's case learner adds a plan to make tea to its general operator set.

Putting these values in equation ??, and solving for the application fre-

quency shows that this operator must be applicable with a frequency of at

least four percent if its match frequency is one.

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 190

6.6 Macro-operator learner

The earliest approaches that fell into this category were EBL based macro-

operator learners [?, ?]. More recently, there have also been inductive meth-

ods

6.6.1 The optimal tunneling heuristic

This section �rst describes Iba's peak to peak heuristic ([?]) and then James'

optimal tunneling heuristic [?]. Iba's motivation for the peak to peak heuris-

tic is that a macro learner must consider the relative di�culty of a problem.

Since each macro increases the branching factor and the cost of node expan-

sion, a macro should be general, so that it can be applied in a variety of

instances and thus speed up the search.

Many macro-learners use a heuristic function to learn useful subsequences.

DoLittle's macro-learner is based on Iba's [?] MacLearn system and

James's optimal tunneling system [?]. The aim is to generate macros that

allow the planner to traverse di�cult parts of the search space.

Figure ?? is a graphical representation. It shows the value of the heuristic

function along the operator sequence of the plan. The heuristic function

increases with distance to the goal. From the start state, the search progresses

smoothly up to point A. At this point, the search follows a local minimum

in the heuristic evaluation function to point B. The planner has to search

the surface of the valley to escape the local minimum, since each point on

the surface has a better heuristic value than point C. Point E is the next

local minimum in the search. Iba's system creates macros from one local

minimum in the search space to the next. Therefore, MacLearn creates a

macro from point B to point E. James' system creates a macro from the

local minimum to the �rst point in the search that has a lower heuristic value

than the local minimum. For example, James' optimal tunneling heuristic

will create a macro from point B to D. The intuition is that after point D,

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 191

the search follows the heuristic function and thus there is no need for search

control knowledge past point D. Therefore, James' system is able to create

shorter, and hence more general macros. This need not always be the case.

For example, if the next local minimum is at a higher heuristic value than

the previous local minimum, James' system may create longer macros than

MacLearn. James' design assumes best-�rst rather than depth-�rst search.

Figure 6.1: Comparison of Iba's and James' macro learners

Operator Sequence

H
e
u
r
i
s
t
i
c

V
a
l
u
e

Op 1 Op 2 Op 3 Op n

A

B

C

D

E

James Macro

MacLearn Macro

6.6.2 DoLittle's Macro-bias learner

Applying James' optimal tunneling heuristic to DoLittle's representation

is not straight-forward, since DoLittle does not use a heuristic function.

Therefore, DoLittle's macro learner extends Minton's work on the MOR-

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 192

RIS system ([?]) by inferring heuristic values for nodes on the solution path

as shown in the remainder of this section. The problem is how to determine

that we are in a valley of the heuristic evaluation function.

As MacLearn does, DoLittle's macro learner separates the genera-

tion of a plan into di�cult and easy sections. The goal is to create a macro

that allows the planner to skip a di�cult section. However, unlike the for-

ward chaining planners described in the previous section, the application of

this principle to a means-ends analysis planner is made more di�cult since

a means-ends planner inserts operators at the end of the pre�x plan and at

the beginning of the su�x plan. Furthermore, DoLittle with its even more

powerful plan transformations may also reorder or replace operators. How-

ever, since applying an operator, adapting a plan, and selecting a re�nement

are more constrained than adding an operator, DoLittle's macro learner

focuses on the cost of adding an operator. When adding an operator, there is

much less information available than during the other plan transformations,

and thus a higher chance that the planner makes the wrong choice and has

to backtrack later. This means that DoLittle's macro learner may create

operator sequences that do not occur in the solution, but were added sequen-

tially to the plan. In the �nal solution, however, the order of the operators

may be changed or operators may even be replaced by other operators or

removed entirely.

Following is an example of DoLittle's macro-bias learner in the kitchen

domain. The making tea problem contains the following subsequence: Pick-

Up-From-Cupboard Cup1, Move-Robot at-table at-sink. Adding

this subsequence requires 287 nodes and it is thus proposed as a new macro.

The preconditions and e�ects of this subsequence are computed and objects

are parameterized, to generate a re�nement for the macro operator.

Macro learner example

Re�nement MACRO-REF1

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 193

Mode GENERIC

Variables $Curr-Loc,$New-Loc,$Cup

Preconditions (is-reachable cupboard $Curr-Loc)

(next-to $Curr-Loc $New-Loc)

(is-open cupboard)

(is-in $Cup cupboard)

(contains $Cup nothing)

(is-at Robby $Curr-Loc)

E�ects (holding $Cup)

(not (arm-empty))

(not (is-in Cup1 cupboard))

(is-at Robby $New-Loc)

(not (is-at Robby $Curr-Loc))

Sequence Pick-Up-From-Cupboard $Cup

Move-Robot $Curr-Loc $New-Loc

To complete the macro-operator, DoLittle's macro learner creates a set of

associated general operators. One for each e�ect that is used as a subgoal.

There are two e�ects of the operator sequence that DoLittle subgoaled

on: (holding $cup) and (is-at Robby $new-Loc). The �rst generated

general operator is shown below. This general operator is only applicable if

the planner is trying to achieve (holding $cup).

Macro learner example (continued)

Operator MACRO-OP1

Variables $Curr-Loc,$New-Loc,$Cup

Preconditions (is-reachable cupboard $Curr-Loc)

(next-to $Curr-Loc $New-Loc)

(is-open cupboard)

(is-in $Cup cupboard)

(contains $Cup nothing)

(is-at Robby $Curr-Loc)

Open goals (holding $cup)

E�ects (holding $Cup)

(not (arm-empty))

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 194

(not (is-in Cup1 cupboard))

(is-at Robby $New-Loc)

(not (is-at Robby $Curr-Loc))

Re�nements MACRO-REF1 (see above)

The second general operator that is applicable when trying to achieve (is-at

Robby $New-Loc) is shown below.

Macro learner example (continued)

Operator MACRO-OP2

Variables $Curr-Loc,$New-Loc,$Cup

Preconditions (is-reachable cupboard $Curr-Loc)

(next-to $Curr-Loc $New-Loc)

(is-open cupboard)

(is-in $Cup cupboard)

(contains $Cup nothing)

(is-at Robby $Curr-Loc)

Open goals (is-at Robby $New-Loc)

E�ects (holding $Cup)

(not (arm-empty))

(not (is-in Cup1 cupboard))

(is-at Robby $New-Loc)

(not (is-at Robby $Curr-Loc))

Re�nements MACRO-REF1 (see above)

The estimate of the utility of the general operator is based on a similar

analysis as that of the case learner. The average search cost is estimated as

the number of nodes expanded during the search for the subsequence. In this

example, DoLittle expanded 287 nodes to generate the subsequence. The

re�nement costs of a macro re�nement is the additional match cost of the

operator sequence. Since there are no additional variables in the re�nement,

and since there is only one re�nement, the re�nement cost is estimated to be

1. The match cost is computed identically to that of the case learner, here

48. The macro passes both plausibility checks and the two general operators

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 195

are added to the operator set. The application frequency of both general

operators must be at least 16 percent.

DoLittle has the additional advantage that re�nement costs, applica-

tion frequencies, and match cost are collected separately for each general

operator. If for example, the general operator Macro-Op2 yields a low

success rate (since it seems silly to pick up a cup just to move the robot),

it may be removed from the operator set, independently of general operator

Macro-Op1.

6.7 Abstraction learner

DoLittle's abstraction learner is based on Knoblock's ordered monotonicity

abstraction generator Alpine [?]. The Alpine system is a partial planning

strategy and thus not well suited to be compared to the case and macro

learner. It is also too conservative in the creation of abstraction hierarchies.

Alpine is unable to create an abstraction hierarchy for the blocksworld and

can only create a two level abstraction hierarchy for the kitchen domain.

This is because Alpine's abstraction hierarchies attempt to reduce the cost

by preventing goal interferences in all problems.

The design of DoLittle's abstraction learner is one that is similar to

the case and macro learner described in the previous sections, but it is based

on di�erent assumptions. DoLittle's abstraction learner generates a new

abstract operator from a subsequence of a successful plan.

There is a strong relationship between justi�ed plans and ordered abstrac-

tion hierarchies. For example, Knoblock's de�nition of ordered monotonicity

is based on backwards justi�ed plans [?]. Ordered monotonicity is a su�cient

condition to guarantee that all generated plans are backwards justi�ed.

DoLittle's abstraction learner uses backwards justi�ed plans in a

slightly di�erent manner. Instead of guaranteeing that all generated plans

are backwards justi�ed, the abstraction learner focuses on backwards justi�ed

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 196

operator sequences to guarantee that some plans are backwards justi�ed. Al-

though a sequence of backwards justi�ed operators is not guaranteed to lead

to ordered monotonic abstraction hierarchies in all cases, it leads to abstract

operators that in at least one instance resulted in backwards justi�ed plans.

This means that DoLittle's abstraction learner is less constrained than

Alpine's abstraction creator, that is it is able to generate abstractions for

which Alpine is unable to generate any. On the other hand, DoLittle's

abstraction learner may generate abstract operators that do not improve

performance; the empirical evaluation system will remove those operators

because of their poor utility. As will be shown in section ??, the abstraction

hierarchies generated by DoLittle's abstraction learner and Alpine are

similar in the towers of Hanoi domain.

An operator O1 establishes a literal l for another operator O2 if and only

if (a) O1 comes before O2 in the plan, (b) if the literal l is a precondition

of operator O2, and (c) there is no other operator between O1 and O2 that

either also establishes or negates literal l. Using the de�nition of establish-

ment, a backwards justi�ed operator is one that establishes a precondition

for either a goal or another backward justi�ed operator.

An operator is immediately backwards justi�ed if operatorO1 establishes

a literal for operator O2, and O2 is the successor of O1 in the plan.

DoLittle's abstraction learner extracts sequences of immediately back-

wards justi�ed operators from a successful plan to create abstract operators.

The immediately backwards justi�ed operator sequence is grouped together

with the operator whose preconditions are established (the last operator in

the sequence). The immediately backwards justi�ed sequence and the last

operator of the sequence form the set of re�nements of a new abstract general

operator. The intuition behind this method is that immediately backwards

justi�ed operator sequences are in the plan simply to set up the preconditions

of the last operator.

For example, given the plan to make tea shown in table ??, there are

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 197

11 immediately justi�ed operator sequences. The sequences are shown in

table ??. Steps 6 and 7 yield no sequences. Six sequences (3,4,5,8,9,11)

lead to abstract operators that drop the current position of the robot from

the preconditions of the following operator. Similarly, two sequences (1,7)

abstract the state (open/closed) of an appliance (cupboard/microwave). The

remaining sequences drop more than one literal.

Next, DoLittle's abstraction learner extracts a sequence, for example

sequence 10, and generates one re�nement for this sequence with param-

eterized arguments. The preconditions and e�ects of this sequence are as

follows:

Abstraction learner example (Sequence 10)

Re�nement ABSTRACT-REF1

Mode GENERIC

Variables $from-loc,$to-loc,$cup

Preconditions (next-to $from-loc $to-loc)

(is-at robby $from-loc)

(is-reachable table $to-loc)

(holding tea-box)

(not (is-open tea-box))

(contains $cup hot-water)

E�ects (is-at robby $to-loc)

(not (is-at robby $from-loc))

(is-on tea-box table)

(not (holding tea-box))

(is-open tea-box)

(not (contains $cup hot-water))

(contains $cup tea)

(holding old-tea-bag)

Sequence move-robot $from-loc $to-loc

put-on-table tea-box

open-container tea-box

get-tea-bag

make-tea $cup

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 198

Table 6.1: Immediately justi�ed operator sequences in the plan to make tea

1 open-door cupboard Sequence 1

2 pick-up-from-cupboard cup1

3 move-robot at-table at-sink Sequence 2

4 put-in-sink cup1

5 fill-with-water cup1

6 turn-water-off

7 pick-up-from-sink cup1

8 move-robot at-sink at-table Sequence 3

9 put-on-table cup1

10 move-robot at-table at-stove Sequence 4

11 open-door microwave

12 move-robot at-stove at-table Sequence 5

13 pick-up-from-table cup1

14 move-robot at-table at-stove Sequence 6

15 put-in-microwave cup1

16 close-door microwave

17 heat-water-in-microwave cup1

18 open-door microwave Sequence 7

19 pick-up-from-microwave cup1

20 move-robot at-stove at-table Sequence 8

21 put-on-table cup1

22 move-robot at-table at-sink Sequence 9

23 pick-up-from-shelf tea-box

24 move-robot at-sink at-table Sequence 10

25 put-on-table tea-box

26 open-container tea-box

27 get-tea-bag

28 make-tea cup1

29 move-robot at-table at-sink Sequence 11

30 put-in-garbage-can old-tea-bag

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 199

Then, a second re�nement is generated that contains only the last operator

make-tea of the immediately backwards justi�ed operator sequence.

Abstraction learner example (continued)

Re�nement ABSTRACT-REF2

Mode GENERIC

Variables $to-loc,$cup

Preconditions (is-reachable table $to-loc)

(is-at robby $to-loc)

(is-on $cup table)

(holding tea-bag)

(contains $cup hot-water)

E�ects (contains $cup tea)

(not (contains $cup hot-water))

(holding old-tea-bag)

(not (holding tea-bag))

Sequence make-tea $cup

In the next step, DoLittle's abstraction learner creates a general operator

to group the two re�nements. The abstract operator's preconditions/e�ects

are the intersection of preconditions/e�ects of the two re�nements. The open

goals of the abstract operators are the necessary e�ects (i.e., the e�ects that

are used in the remainder of the plan) of the abstract operator.

Abstraction learner example (continued)

Operator ABSTRACT-MAKE-TEA

Variables $to-loc,$Cup

Preconditions (is-reachable table $to-loc)

(contains $cup hot-water)

Open goals (contains $cup tea)

E�ects (contains $cup tea)

(not (contains $cup hot-water))

(holding old-tea-bag)

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 200

Re�nements ABSTRACT-REF1 (see above)

ABSTRACT-REF2 (see above)

The match cost of the abstract general operator Abstract-Make-Tea is

12 nodes, since there is one variable of type location (four instances) and

one of type cup (three instances). The cost of selecting a re�nement is

the number of re�nements 2. Re�nement ABSTRACT-REF1 has an ad-

ditional free variable, which means it has an additional match cost of 4.

ABSTRACT-REF1 has no additional variables, and thus a match cost of

1. The re�nement costs of a set of re�nements is the maximum of the indi-

vidual re�nement costs. Thus, the re�nement cost of the abstract operator

is given as

AvrRe�nementCost = 2 + 4 + 1 +Max(2; 6) = 13

The search cost of solving the associated search space was 217 nodes.

Therefore, the abstract operator passes both plausibility tests and is added

as a new general operator. It must be applicable with a probability of at

least �ve percent.

6.8 Discussion

This chapter describes three sample planning bias learners for DoLittle: a

case, macro, and abstraction learner. These learners are simple examples of

planning bias learners, for illustrative purposes. Since DoLittle separates

the design of the learners from that of the planner, many more di�erent

planning bias learners and more sophisticated methods are possible. The

only requirements of a planning bias learner in DoLittle is that it can take

the plan derivation as input and changes the operator set as a result of its

analysis. This means that a planning bias learner can use other knowledge

sources for learning such as examples, partial speci�cations, or comments

CHAPTER 6. LEARNING PLANNING KNOWLEDGE 201

from the user.

An important aspect of DoLittle's learning mechanism is the use of a

two level method for estimating the incremental utility of a planner transfor-

mation. The estimate is based on an approximation of incremental utility.

These simpli�cations are necessary, since otherwise the complexity of learning

is prohibitive, especially in the instructable learning paradigm which is based

on the assumption that a planner must learn from few examples. The most

signi�cant assumption is that of independence, that is the learned general

operators do not interfere. This assumption is made by many learning sys-

tems [?, ?, ?]. However DoLittle with its powerful applicability conditions

is better able to reduce interference between di�erent operators.

The incremental utility of a general operator is based on its average search

cost, its average re�nement cost, its application frequency, its maximum

match cost, and its match frequency. The average search cost is based on

the example from which the general operator was generated. The remaining

factors are estimated and two plausibility tests eliminate poor general opera-

tors. The average re�nement cost, the application frequency, and the match

frequency are sampled in the following problem solving episodes.

The utility measurement in DoLittle's planning bias learners is based

on Minton's work, with the main di�erence being thatDoLittle's estimates

are more conservative. It uses the worst case match cost instead of the

average match cost in the estimate. In other words, DoLittle's learners

are less likely than Prodigy/EBL to generate a rule. DoLittle's learners

o�set this by having a more powerful language for planner transformations,

and thus a larger set of possible transformations.

Chapter 7

Evaluation

The brightest
ashes in the world of thought are incomplete

until they have been proved to have their counterparts in the

world of fact.

John Tyndall, Fragments of Science, vol. II, Scienti�c Ma-

terialism.

The goal of this chapter is to establish two claims made in the thesis. First,

the superiority of multi-strategy planning over three single strategy planners

in two toy domains (blocksworld and towers of Hanoi) is shown. Secondly,

the results in this chapter show that multi-strategy planning is able to solve

problems in a more complex domain, the kitchen domain. In this domain,

unordered subproblem coordinated multi-strategy planning performs better

than a problem coordinated planner with an oracle.

7.1 Experimental methodology

In chapter ??, we have seen examples of how multi-strategy planning can lead

to an exponential speed up on some problems. Although this is important,

the real test for a planning system is its performance on extended use. Testing

202

CHAPTER 7. EVALUATION 203

the performance of a planner on many problems instead of a single problem

is important for intelligent assistants because in complex applications, it is

impossible to foresee all problems, which is exactly the reason for providing

the agent with a planning component.

Ideally, there would be a set of test domains, that a learning planning

system can be compared against, similar to the machine learning database.

This idea has the main advantage that it simpli�es the comparison of many

di�erent planning systems. However, its two disadvantages are: (a) that

since the test domains are known in advance, a program may be speci�cally

optimized to do well on them, and (b) that the test domains may not match

the problems that the system encounters in practice. In spite of those prob-

lems, this approach is nevertheless the most useful way of testing planning

systems in practice.

Unfortunately, a set of test domains for planners is not as well established

as the machine learning database. This is because the performance of a

planner depends critically on the particular speci�cation of a domain. For

example, Knoblock's Alpine system creates an abstraction hierarchy that

reduces the complexity exponentially for one speci�cation of the towers of

Hanoi domain. However, for another equally intuitive and valid speci�cation

of this domain, Alpine is unable to create an abstraction hierarchy, and is

therefore unable to reduce the complexity [?]. The problem is that a domain

speci�cation is not unique and allows the user to add control knowledge.

Obviously, adding this knowledge will greatly a�ect a planner's performance.

However, there are some popular domains that have been used in the

evaluation of other planners. These include the blocksworld, the towers of

Hanoi, the Strips world, and the machine shop scheduling domain. These

domains are part of the Prodigy4 release as well as other planning systems.

The domains used in the empirical evaluation of DoLittle are taken from

the set of Prodigy4 domains. To show that DoLittle performance scales

up to more complex domains, it was also tested on the kitchen domain,

CHAPTER 7. EVALUATION 204

described in chapter ??.

All tests were run using the following methodology. First, to establish the

performance of the single strategy planners, the experiments were run with

DoLittle restricted to a single learning/planning method (case, macro, and

abstraction). For example, in one experiment, the planner was trained and

tested with only the macro planning bias learner enabled. The learners were

also restricted to generate a speci�c type of re�nement instead of a generic

re�nement, which is generated by default. The macro learner generated

general operators with macro re�nements. The case learner generated case

re�nements. The abstraction learner generated abstract general operators

with two macro re�nements. Next, to evaluate the multi-strategy planning

approach, DoLittle was run with all planning bias learners and re�nement

types enabled. The planning bias learners generated only generic re�nements.

After this training phase DoLittle was run on a set of newly randomly

generated problems (250) with no learning enabled and with the respec-

tive learned general operator sets for macros, abstractions, cases, and multi-

strategy planning.

The comparison included the following set of planners:

� Prodigy-DL is DoLittle running in Prodigy emulation mode,

i.e., no adaptations, no general operators.

� Case is DoLittle running in DoLittle mode (with adaptations and

general operators) with only the case learner turned on and all other

planning bias learners turned o�.

� Macro is DoLittle running in DoLittle mode with only the macro

learner turned on.

� Abstraction is DoLittle running in DoLittle mode with only the

abstraction learner turned on.

CHAPTER 7. EVALUATION 205

� DoLittle is DoLittle running in DoLittle mode with the macro,

case, and abstraction learner enabled.

� PC-MSP-O is a hypothetical problem coordinated planner with an

oracle. The time and number of nodes entry for this planner are gener-

ated by taking the planner that generated the minimum running time

for the problem from the macro-, case-, and abstraction-based planners.

All planners used depth-�rst search during the tests. The reason for

this choice is that admissible search strategies are too expensive in practice,

especially in complex domains. To �nd an optimal (shortest) solution, the

planner generally has to search the whole space. Depth �rst search only

�nds the �rst solution and can thus in general �nd a solution faster. Of

course, the solution is not guaranteed to be optimal. To some degree, depth

�rst search can trade o� solution quality for solution length. DoLittle

generates many new general operators which will greatly increase the search

space of a breadth-�rst planner, whereas depth-�rst search uses DoLittle's

indexing mechanism.

To compare the performance of the planners, the cumulative numbers

for the expanded nodes and the running time are compared. These features

are intuitive ways to compare the performance of di�erent planning systems.

However, the di�culty is that at some point the experimenter has to decide

that a problem is unsolvable and terminate the planner. In general, this is

done by choosing a resource limit for the number of expanded nodes or the

running time. However, Segre et al. show that a comparison based on those

statistics alone may be biased by the chosen resource limit [?]. Therefore, the

experimental methodology also shows the total running time as a function

of the time limit. This comparison shows the absolute performance of the

planners, the percentage of solved problems, and allows the prediction of the

planners behavior should the time limit be extended further.

CHAPTER 7. EVALUATION 206

7.2 Multi-strategy planning in the

blocksworld

This section compares the performance of the described planning systems in

the blocksworld. It shows that multi-strategy planning in the blocksworld im-

proves performance by a factor of three over the best single strategy method

(Cases) and by a factor of eight over a non-learning system (Prodigy-DL).

DoLittle also does slightly better than a hypothetical problem coordinated

multi-strategy planner with a perfect oracle in the blocksworld.

First, the performance of multi-strategy planning in the blocksworld is

compared against that of using a single strategy. For the learning meth-

ods (macros, cases, abstractions, and multi-strategy planning), each system

was trained on a set of 100 training problems. The training problems were

randomly generated, using exactly the same procedure as the one used to

generate random test problems (see appendix ??). The case learner gener-

ated 8 new general operators. The macro learner created 14 new general

operators. The abstraction learner created 4 new general operators.

The test phase consisted of running DoLittle on 250 newly randomly

created problems. The results of this run are summarized in �gure ?? and

�gure ??. The �gures list the cumulative number of nodes and the cumulative

running times over the problem set. A detailed listing of the blocksworld

domain description, the procedure to generate random problems, and the

results is given in appendix ??.

Figure ?? graphs the total running time of the system with increasing

cut o� values (time limit). The time limit was varied from 0 to 100 seconds.

The absolute value of the curves shows the total time that the system takes

to solve all problems as the time limit is increased. The slope of the curve

shows how many more problems can be solved by an increase in the resource

limit. If the value of the function does not increase, all problems have been

solved. The shape of the curves suggests the future performance of a system

CHAPTER 7. EVALUATION 207

Figure 7.1: Cumulative nodes in the Blocksworld

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Problem

Prodigy-DL Case Macro Abstraction

DoLittle PC-MSP-O

Planner

N
o
d
e
s

CHAPTER 7. EVALUATION 208

Figure 7.2: Cumulative running time in the Blocksworld

0

2000

4000

6000

8000

10000

12000

14000

Problem

Prodigy-DL Case Macro Abstraction

DoLittle PC-MSP-O

Planner

T
i

m
e

i
n

s
e
c
s
.

CHAPTER 7. EVALUATION 209

as the resource limit is increased further.

The graph shows that the multi-strategy planners solved most problems.

Prodigy-DL requires a higher time limit (50) to solve most of its problems,

whereas the curves for the multi-strategy planner indicate that they were able

to solve most problems in less time too. Increasing the time limit even further

would not lead to a large increase in the running time of the multi-strategy

planners.

Figure 7.3: Running time versus time limit in the blocksworld

0

2000

4000

6000

8000

10000

12000

8 28 48 68 88

Prodigy-DL Case Macro Abstraction

DoLittle PC-MSP-O

Planner

T
o
t
a
l

T
i

m
e

Time Limit

The performance of the planners as seen in the values of the curves shows

the same absolute performance as �gure ??. DoLittle does slightly better

than PC-MSP-O, followed by the three learning planners (cases, macros,

abstractions). Prodigy-DL has the worst performance. The abstraction-

CHAPTER 7. EVALUATION 210

based planner has the highest ratio of unsolved problems.

The results in the �gures show that single strategy planners did improve

the performance. The case learner provided the best speed up for the single-

strategy planning systems. It reduced the number of expanded nodes by a

factor of 2:1 and the total running time by a factor of 2:20. The reduction

factors for the macro learner are 1:72 and 1:53 respectively. This is similar to

the speed up reported by Minton for the Prodigy/EBL system of around 2.

The abstraction learner did improve performance slightly , but did provide

the least speed up of the learning planning systems. The number of nodes

was reduced by a factor of 1:52 and the running time by a factor of 1:24.

This is consistent with the observation that Alpine is unable to create any

abstraction hierarchy for this domain. One would expect, therefore, that even

a slightly less conservative abstraction learner will not be able to generate

useful abstractions.

The reduction factors for the running time are smaller than those of the

number of nodes, because of the match cost of the additional operators. The

node generation rates of the di�erent planners are: Prodigy-DL (120:47

Nodes/sec.), case (126:26 Nodes/sec.), macro (107:80 Nodes/sec.), and ab-

straction (99:28 Nodes/sec.). The node generation rate of the case learner

is better than that of DoLittle since the cases are more specialized ver-

sions of some of the primitive operators and variable bindings must only be

computed once, but are used for all primitive operators in the case. The

learned macros are more general and DoLittle generated more macros, so

the macro learner has a high match cost. This leads to a decrease in the

node generation rate. The abstraction learner has the lowest node genera-

tion rate, since the match cost of an abstract general operator includes the

cost of matching any of the re�nements if the abstract operator is applicable.

Since each of the four operators has two re�nements, the node generation

rate is decreased because DoLittle may have to compute a matching for

the general operator as well as its two re�nements, and must compare the

CHAPTER 7. EVALUATION 211

two re�nements.

Multi-strategy planning provided an even greater improvement. DoLit-

tle was able to do better than the problem coordinated multi-strategy plan-

ner with an oracle, since it is able to combine planning strategies at a sub-

problem level, whereas PC-MSP-O can only combine strategies at a problem

level. DoLittle learned fewer operators than the sum of the learned oper-

ators for the single strategy planners, since learning a speci�c operator can

reduce the cost of solving successive problems. This in turn may lead to a

smaller utility for newly suggested operators, which then may be rejected.

DoLittle reduced the number of nodes by a factor of 8:6 and the running

time by a factor of 8:0. Its node generation rate was 113:04 Nodes/sec.

The hypothetical planner PC-MSP-O led to a reduction factor of 6:5 for the

nodes and the running time. DoLittle achieves this impressive speed up

somewhat at the expense of the solution quality. The average length of the

solutions generated by DoLittle are larger than that of the PC-MSP-O

planner.

There are two reasons for the good performance of DoLittle in the

blocksworld. Firstly, DoLittle learns cases that take a stack of blocks and

unstacks all the blocks on the table. Cases are suitable in this situation since

there are many di�erent variations in initial states. Secondly, it uses macros

to build towers of di�erent sizes by picking up blocks from the table and

stacking them.

Figure ?? is an example of DoLittle's improvement over single strategy

planners. In this example, a macro and case are used to solve a problem e�-

ciently. Figure (a) shows a case that DoLittle learned in previous planning

episodes. The case reverses a tower of height three. Figure (b) is a macro

that builds a tower of height three. The new problem is shown in �gure (c).

It is similar to the problem in �gure (a), but after putting block (A) on the

table (shown in �gure (d)), DoLittle interrupts the execution of the case

and adapts it to the new situation by adding the macro to the plan. Then

CHAPTER 7. EVALUATION 212

the remainder of the plan is executed to complete the solution. In this case,

very little search is necessary. If the case were not available, DoLittle has

to search for a solution to the problem of reversing the tower. Similarly, if

the macro were not available,DoLittle has to build a tower of height three.

On the other hand, DoLittle does not solve all problems more e�ciently

than the single strategy planners. There are some problems that the case

or macro-learner solve more e�ciently than DoLittle. The reason for this

is that the applicability conditions of a general operator are not alwayys

correct, and thus may lead DoLittle away from a solution. Figure ?? is

an example of such a situation. In this example a combination of a case and

macro leads DoLittle astray.

First, �gures (a) and (b) show a case and macro that DoLittle acquired

during the training phase. The macro is identical to the one used in the

good example, because all block references are parameterized in a macro.

The names of the blocks were changed to show the instantiation of these

variables. The new problem is shown in �gure (c). Although super�cially

similar to the problem in �gure (a), the solution is very di�erent. In fact,

the solution only requires three block movements (each movement consists

of a Pick-Up,Stack pair).

Given the additional case and macro, however, DoLittle starts applying

the case, until all the blocks are unstacked. At this point, DoLittle applies

the macro and continues with the case, which leads to the current state shown

in �gure (e). Solving the problem from this state is much more di�cult (12

block moves), andDoLittle fails eventually because it runs out of resources.

On the other hand, given only the macro or the case, DoLittle still is able

to solve the problem.

In this case, the cost of re�nement for the case and macro are high, so

that their utility estimates are decreased. Should the expected utility become

negative, DoLittle will remove the o�ending operator. DoLittle may,

however, maintain these operators, if they lead to improved performance in

CHAPTER 7. EVALUATION 213

Figure 7.4: A good problem for DoLittle in the blocksworld domain

CHAPTER 7. EVALUATION 214

Figure 7.5: A bad problem for DoLittle in the blocksworld domain

CHAPTER 7. EVALUATION 215

other problems. For example, the macro was used successfully in the good

example.

To establish the statistical signi�cance of those results, a paired t-test is

used. With 95 percent con�dence, the di�erence between Prodigy-DL and

the abstraction-based planner is statistically signi�cant (p-value 0:04) as is

the di�erence between the case-based planner and the PC-MSP-O planner

(p-value 2:23 � 10�8). The di�erence between PC-MSP-O and DoLittle

is statistically not signi�cant (p-value 0:15). The p-value shows that the

observed di�erence in the mean of the running times (7:78 for PC-MSP-O

and 6:59 for DoLittle) occurs statistically 15 percent of the time, even if

both systems have identical mean running times.

Table ?? summarizes the results of the experiments in the blocksworld.

The �rst row of each entry contains the total number of nodes and the total

running time for solving all 250 problems. The second row contains the

node generation rate and the number of successfully solved problems. The

third row contains the average length of the solutions and the number of

primitive and learned operators in the domain. The number of operators

of the hypothetical planner PC-MSP-O is not given since the operator set

depended on the most e�cient planner for a given problem.

7.3 Multi-strategy planning in the towers of

Hanoi

This section describes the results of the experiments run in the towers of

Hanoi domain. The towers of Hanoi domain is a very popular domain. There

are four disks of di�erent size (small, medium, large, huge) and three pegs.

The rules state that a disk can be moved from one peg to another if only if

it does not end up on top of a smaller disk.

The experiments in the towers of Hanoi domain used the same method-

ology as the ones in the blocksworld. First, the learners are trained on 100

CHAPTER 7. EVALUATION 216

Table 7.1: Results of the blocksworld

Prodigy-DL 1; 588; 614 Cum. Nodes 13; 186:96 Cum. Secs.

120:47 Nodes/sec. 161 Solutions

3:54 avg. sol. length 4 + 0 operators

Abstraction 1; 061; 028 Cum. Nodes 10; 686:94 Cum. Secs.

99:28 Nodes/sec. 183 Solutions

4:02 avg. sol. length 4 + 4 operators

Macro 907; 051 Cum. Nodes 8; 414:15 Cum. Secs.

107:80 Nodes/sec. 190 Solutions

4:41 avg. sol. length 4 + 14 operators

Case 741; 144 Cum. Nodes 5; 870:16 Cum. Secs.

126:26 Nodes/sec. 201 Solutions

4:42 avg. sol. length 4 + 8 operators

PC-MSP-O 245; 533 Cum. Nodes 1; 945:70 Cum. Secs.

126:19 Nodes/sec. 234 Solutions

3:19 avg. sol. length

DoLittle 186; 320 Cum. Nodes 1; 648:22 Cum. Secs.

113:04 Nodes/sec. 238 Solutions

4:74 avg. sol. length 4 + 16 operators

CHAPTER 7. EVALUATION 217

randomly generated training problems. Then, the systems are tested on 250

randomly generated test problems. A detailed listing of the domain descrip-

tion, the procedure used to generate problems, and the results is given in

appendix ??.

The abstraction learner generated one new operator. This new operator

moved the large disk ignoring the position of the small and medium disk.

A more detailed analysis showed that the learner also suggested abstract

operators for the other disks. However, the abstract operators for the small

and medium disk were rejected since they did not lead to su�cient savings.

The abstract operator to move the huge disk was removed from the operator

set, since its re�nement cost was too high.

The macro learner generated four new operators, the case learner gener-

ated 14 new operators, and DoLittle created �ve new operators. DoLit-

tle created the same abstract operator to move the large disk as the abstract

operator. The other four operators created by DoLittle were created by

the case learner.

Figures ?? and ?? summarize the results of the test runs. The graphs

display the cumulative number of expanded nodes and running time respec-

tively.

In the tower of Hanoi domain, the abstraction learner proved to be the

best single strategy planner. The abstraction learner reduced the total num-

ber of nodes by a factor of 2:2 and the total running time by a factor of 2:5.

This is not surprising, since the towers of Hanoi domain lends itself very well

to abstraction-based planning [?, ?]. The performance of the abstraction

learner is comparable to that of Alpine. Knoblock shows that although

Alpine leads to an exponential reduction for admissible search procedures,

it leads to only a moderate improvement for depth �rst search. In fact, the

performance of the abstraction learner is better than the reduction factor

(1:25) reported by Knoblock.

Somewhat surprising was the poor performance of the case learner. Fur-

CHAPTER 7. EVALUATION 218

Figure 7.6: Cumulative nodes in the towers of Hanoi

0

200000

400000

600000

800000

1000000

1200000

1400000

Problem

Prodigy-DL Case Macro Abstraction

DoLittle PC-MSP-O

Planner

N
o
d
e
s

CHAPTER 7. EVALUATION 219

Figure 7.7: Cumulative running time in the towers of Hanoi

0

2000

4000

6000

8000

10000

12000

Problem

Prodigy-DL Case Macro Abstraction

DoLittle PC-MSP-O

Planner

T
i

m
e

i
n

s
e
c
s
.

CHAPTER 7. EVALUATION 220

ther investigation showed that the problem was that plan adaptation in the

towers of Hanoi domain is more di�cult than in the blocksworld or kitchen

domain, since the towers of Hanoi domain is very restricted. For example,

assume that DoLittle retrieves a plan to move the largest disk, but has

to replace Peg1 with Peg2 during adaptation of the plan. In the towers

of Hanoi domain, this requires a change of all other peg assignments in the

remainder of the plan. In the blocksworld, it requires only two changes (for

the supporting block and the block on top).

The worst performance was that of the macro learner which reduced the

total number of nodes by a factor of 1:5 and the running time by a factor of

1:1.

Comparing the performance of the multi-strategy planners shows that

DoLittle does better than the abstraction learner, but slightly worse than

the hypothetical PC-MSP-O planner. DoLittle reduces the total number

of nodes by a factor of 2:4 and the total running time by a factor of 2:7.

The reduction factors are smaller in this domain as compared to the

blocksworld, since Prodigy-DL is already a relatively e�cient planner in

the towers of Hanoi domain. This is especially true when using depth �rst

search. The number of goal interactions is reduced since the Prodigy-DL

will simply move a disk again, if it was moved to the wrong spot.

Figure ?? shows the e�ect of the time limit on the total running time

of the system. Apart from the cumulative running time, which is the ab-

solute value of the curve, the slope of the curve shows how many problems

remain unsolved. Most problems are solved quickly by the planners. The

multi-strategy planners had solved signi�cantly more problems than the sin-

gle strategy planners. The graph shows that an increase in the time limit

will not change the results substantially. The predicted performance of the

planners is similar to the one described.

A paired t-test was used to test the statistical signi�cance (95 percent

con�dence) of the results in the towers of Hanoi domain. Comparing the

CHAPTER 7. EVALUATION 221

Figure 7.8: Running time versus time limit in the towers of Hanoi

0

2000

4000

6000

8000

10000

8 28 48 68 88

Prodigy-DL Case Macro Abstraction

DoLittle PC-MSP-O

Planner

T
o
t
a
l

T
i

m
e

Time Limit

CHAPTER 7. EVALUATION 222

performance of Prodigy-DL and the abstraction learner shows that this

di�erence is statistically signi�cant (p-value 8:2 � 10�13). The di�erence be-
tween the abstraction learner and DoLittle is not statistically signi�cant

(p-value 0:07) and neither is the di�erence between DoLittle and the PC-

MSP-O planner (p-value 0:32). These results indicate that the observed

di�erence occurs with a probability of 7 and 32 percent, even if both plan-

ners have the same mean running time. There is a high correlation between

DoLittle and the other two planners (0:94 for the abstraction learner, 0:92

for PC-MSP-O).

Table ?? summarizes the results of the experiments in the towers of Hanoi

domain. The �elds are identical to the ones in the summary table of the

blocksworld (table ??).

7.4 Multi-strategy planning in the kitchen

domain

This section shows that DoLittle is able to handle problems in at least one

complex domain, the kitchen domain. The kitchen domain is more complex

than the blocksworld or the towers of Hanoi, both in terms of the number of

objects and of the number of operators in the domain. For example, there are

four operators in the blocksworld and 51 operators in the kitchen domain.

Also, the blocksworld contains at most twelve blocks whereas the kitchen

domain contains between 45 and 51 objects, dependent on how many cups

and glasses are included.

The problem in the blocksworld is the deep level of subgoaling in the

domain, whereas the subgoaling in the kitchen domain is shallow. However,

solutions in the kitchen domain are much longer than in the blocksworld.

The kitchen domain is too complex to solve anything but simple problems.

Since DoLittle's case-, abstraction-, and macro-based learners currently

only learn from success, it follows that if the original training set is too

CHAPTER 7. EVALUATION 223

Table 7.2: Results of the towers of Hanoi

Prodigy-DL 1; 398; 419 Cum. Nodes 11; 237:25 Cum. Secs.

124:44 Nodes/sec. 158 Solutions

3:91 avg. sol. length 4 + 0 operators

Abstraction 633; 282 Cum. Nodes 4494:52 Cum. Secs.

140:90 Nodes/sec. 208 Solutions

3:28 avg. sol. length 4 + 1 operators

Macro 903; 242 Cum. Nodes 9; 960:81 Cum. Secs.

90:68 Nodes/sec. 190 Solutions

3:34 avg. sol. length 4 + 4 operators

Case 887; 357 Cum. Nodes 5; 553:56 Cum. Secs.

135:40 Nodes/sec. 191 Solutions

3:01 avg. sol. length 4 + 14 operators

PC-MSP-O 528; 130 Cum. Nodes 3; 859:19 Cum. Secs.

136:85 Nodes/sec. 215 Solutions

2:46 avg. sol. length

DoLittle 573; 333 Cum. Nodes 4; 100:14 Cum. Secs.

139:83 Nodes/sec. 212 Solutions

3:47 avg. sol. length 4 + 5 operators

CHAPTER 7. EVALUATION 224

di�cult, and DoLittle can only solve few problems, it may not be able to

generate any useful new general operators. Therefore, the training set was

(a) increased to 150 problems and (b) the di�culty of the problems in the

training set and the test set were gradually increased. The idea is that by

solving small simple problems in the beginning, DoLittle can learn the

necessary general operators to solve more complex problems in the future.

This method is similar to Minton's strategy for training selection [?] and is

also applicable in the instructable systems paradigm, which assumes that the

user teaches the system how to do complex tasks by solving simple ones �rst.

DoLittle used �ve groups of 30 problems in the training phase and �ve

groups of 50 problems in the test phase.

Note that the di�culty of the created problems does not increase strictly

monotonic, since the di�culty does only limit the maximum di�culty of a

problem, but does not guarantee that a problem with maximal di�culty is

generated. In the kitchen domain, the di�culty is determined by the number

and tye of drinks, that the robot has to create. The number of beverages in

the goal is uniformly distributed from 0 to the maximum number of beverages

(3).

The procedure for randomly generating the training and test problems is

shown in appendix ??. The case learner created 10 new general operators.

The macro learner created 23 new macros. The abstraction learner added 16

new general operators to its operator set.

The test phase consisted of running DoLittle on 250 newly randomly

created problems. The results of this run are summarized in �gure ?? and

�gure ??. The �gures list the cumulative number of nodes and the cumulative

running times over the problem set. The graphs show that DoLittle does

not perform as well as PC-MSP-O on small problems, but is better on the

tougher problems in the domain. In the left part of the graphs, PC-MSP-O

performs better than DoLittle. A detailed listing of the kitchen domain

description, the procedure to generate random problems, and the results is

CHAPTER 7. EVALUATION 225

given in appendix ??.

Figure 7.9: Cumulative nodes in the kitchen domain

0

400000

800000

1200000

1600000

2000000

2400000

2800000

Problem

Prodigy-DL Case Macro Abstraction

DoLittle PC-MSP-O

Planner

N
o
d
e
s

Similarly to the blocksworld, the single strategy planners did improve

performance. Case-based planning showed itself to be the best single strategy

method. This is not surprising, since the gradual increase in di�culty of the

problems lend itself to a case-based approach. In fact, the earlier problems

are subtasks of solving the more complex later problems. Since the graphs

show the cumulative number of nodes and running time, the gradual increase

in problem complexity can be seen through the change in slope of the curves.

The second derivative of the curves is positive. This is not strictly true,

since the experimental methodology limited the maximum complexity of a

problem, but did not force the problem generator to create a maximally

CHAPTER 7. EVALUATION 226

Figure 7.10: Cumulative running time in the kitchen domain

0

5000

10000

15000

20000

25000

30000

35000

40000

Problem

Prodigy-DL Case Macro Abstraction

DoLittle PC-MSP-O

Planner

T
i

m
e

i
n

s
e
c
s
.

CHAPTER 7. EVALUATION 227

di�cult problem. So, although the problem generator can possibly generate

a complex problem, it does not necessarily create one. In fact, also the length

of the optimal solution is known of a problem, it is hard to predict the exact

performance of a planner on such a problem, since it depends on the accuracy

of the applicability conditions of the di�erent operators.

The abstraction learner did better in this domain than the macro learner.

This can be attributed to the fact that plans in the kitchen domain contain

long sequences of immediately backwards justi�ed operators and that the

macro learner with the short macros was unable to solve many of the more

complex problems.

The case learner reduced the number of nodes and the running time by

a factor of 1:5 and 1:7 respectively. The reduction factors of the abstrac-

tion learner are 1:2 for the number of nodes and 1:1 for the running time.

The macro learner reduced the number of nodes by a factor of 1:2 and the

running time by a factor of 1:05. The reduction factors of the single strat-

egy planners is smaller than that in the blocksworld, because the learners

are simple strategies. Their greatest disadvantage is that they only learn

from success. In complex domains, such as the kitchen world, more powerful

learning methods are necessary. The restriction to the simple planning bias

learners, however, focuses the investigation on the e�ect of multi-strategy

planning, which is the goal of this thesis.

Multi-strategy planning provided a much greater speed up than any of

the single strategy planners or even the PC-MSP-O planner. The reduction

factors of multi-strategy planning are 3:5 for the number of nodes and 3:2

for the running time.

Figure ?? shows the relationship between the time limit and the total

running time of the system. The graph shows that DoLittle solved much

more problems than the other planners. The slope of the curves for the

other planners is much larger, indicating that there is a signi�cant number

of unsolved problems. Further increasing the time limit is unlikely to change

CHAPTER 7. EVALUATION 228

the results of the comparison.

Figure 7.11: Running time versus time limit in the kitchen domain

0

4000

8000

12000

16000

20000

8 28 48 68 88

Prodigy-DL Case Macro Abstraction

DoLittle PC-MSP-O

Planner

T
o
t
a
l

T
i

m
e

Time Limit

The statistical analysis of the results shows that the di�erence in per-

formance between the case-based planner and Prodigy-DL are statistically

signi�cant. The di�erence between DoLittle and PC-MSP-O in the kitchen

domain is statistically signi�cant with 95 percent con�dence and a p-value

of 0:0002.

Table ?? summarizes the results in the kitchen domain. Each entry con-

tains the total number of nodes expanded, the total running time, the node

generation rate, the number of solved problems, the average length of the

generated solutions, and the number of primitive and learned operators.

CHAPTER 7. EVALUATION 229

Table 7.3: Results of the kitchen domain

Prodigy-DL 2; 707; 539 Cum. Nodes 35; 899:92 Cum. Secs.

75:42 Nodes/sec. 74 Solutions

26:92 avg. sol. length 51 + 0 operators

Abstraction 2; 130; 899 Cum. Nodes 32; 419:71 Cum. Secs.

65:73 Nodes/sec. 121 Solutions

40:19 avg. sol. length 51 + 16 operators

Macro 2; 294; 079 Cum. Nodes 34; 116:80 Cum. Secs.

67:24 Nodes/sec. 110 Solutions

40:45 avg. sol. length 51 + 23 operators

Case 1; 781; 524 Cum. Nodes 21; 042:01 Cum. Secs.

84:67 Nodes/sec. 152 Solutions

53:54 avg. sol. length 51 + 10 operators

PC-MSP-O 1; 252; 990 Cum. Nodes 15; 432:88 Cum. Secs.

81:19 Nodes/sec. 192 Solutions

24:44 avg. sol. length

DoLittle 777; 477 Cum. Nodes 11; 080:69 Cum. Secs.

70:17 Nodes/sec. 228 Solutions

66:06 avg. sol. length 51 + 23 operators

CHAPTER 7. EVALUATION 230

7.5 Discussion

The empirical evaluation shows that multi-strategy planning can improve

performance over single strategy planning. In all three domains (blocksworld,

towers of Hanoi, and the kitchen domain) does DoLittle perform better

than the single strategy planners.

More importantly, the kitchen domain shows that an unordered subprob-

lem coordinated multi-strategy planner can perform better than a problem

coordinated multi-strategy planner with an oracle. The reason for this im-

provement in the kitchen domain is that the subproblems resulting from the

application of the �rst planning strategy are non trivial. In the blocksworld

and the towers of Hanoi domain, the performance of DoLittle and PC-

MSP-O was similar.

None of the single strategy planners is consistently better than the other

strategies. The case learner performs well in the blocksworld and the kitchen

domain, because the similarity metric returns appropriate plans. In the tow-

ers of Hanoi domain, the case learner is not as e�ective, because adapting a

plan to a new situation is more di�cult.

The abstraction learner performs well in the towers of Hanoi domain, since

this domain can be partitioned into four abstraction levels corresponding to

the four disks. It is interesting to note that DoLittle only maintains an

abstract operator for the third disk and rejects abstract operators for the two

smaller disks. Plans involving the two smaller disks do not lead to su�cient

savings.

Chapter 8

Related Work

This chapter compares DoLittle to other related work in the area. Sec-

tion ?? reviews previous work in multi-strategy planning. Section ?? com-

pares DoLittle's macro learner to other macro-based planning systems.

Section ?? compares DoLittle's abstraction learner to other abstraction-

based planners. Section ?? discusses the close similarities between DoLit-

tle's and Prodigy/EBL's utility estimates. Section ?? compares multi-

strategy planning to dynamic biasing systems in machine learning.

8.1 Multi-strategy planning systems

This section discusses other multi-strategy planning systems. This thesis fo-

cuses and develops a framework of multi-strategy planning. Obviously, these

previous systems are not described with respect to the framework developed

in this thesis. Often, the systems are not referred to as multi-strategy plan-

ning systems, but the underlying motivation of those systems is the desire to

combine di�erent problem solving methods.

231

CHAPTER 8. RELATED WORK 232

8.1.1 McCluskey's FM system

McCluskey and Porteous developed the FM system, which is aimed at com-

bining goal reformulation, abstraction hierarchies, and control heuristic ac-

quisition and re�nement. In the multi-strategy planning framework designed

in this thesis (chapter ??), FM is an ordered subproblem coordinated multi-

strategy planner.

The goal regression module attempts to create an ordering of subgoals

that avoids subgoal interactions. This ordering is computed by analyzing the

operators in a domain [?]. The output of the goal reformulator is an ordered

partitioning of goal predicates, such that all goal predicates in a partition

must be achieved before any of the goals in a later partition. CHAR creates

heuristics for selecting operators among the set of applicable operators at

a node. ABGEN generates reduced abstraction hierarchies with monotonic

re�nements. The algorithm is similar to Alpine. Lower level problems are

solved without a�ecting any of the literals at a higher abstraction level.

In contrast, DoLittle's combination of problem solving strategies is

unordered. The ordering of planning biases is static in FM. In FM, the goal

reformulator is called �rst, which generates subproblems for the abstraction

generator. The abstraction module creates problems that are handed to the

heuristics learner and the base planner (means-ends analysis). DoLittle

is able to change dynamically the problem solving strategy during problem

solving, from using cases to abstract operators for example.

Section ?? shows that DoLittle's representation is powerful enough to

represent sequences of subgoals, applicability conditions for operators, and

abstraction hierarchies. Therefore, it is possible to add the methods used by

FM to DoLittle and combine them with other planning strategies.

CHAPTER 8. RELATED WORK 233

8.1.2 The APS system

Another multi-strategy planning system is Gould's and Levinson's adaptive

predictive search (APS) system [?]. APS is a reinforcement learner. Re-

inforcement learning attempts to apply the best operator (i.e., the operator

that eventually will lead to the highest reward) to the current state. There-

fore, APS uses the state space paradigm of problem solving. Chapter ??

shows that the state space paradigm is unable to describe more powerful

planning strategies such as abstract operators or automatic subgoaling.

APS uses a pattern weight representation (pws) of control knowledge.

Patterns represent sets of states and weights correspond to their signi�cance

with respect to expected rewards. A pattern is a boolean feature of a state

in the search space. In general, a pattern matches a set of states and not

just a single state. A weight represents an expected value of reinforcement.

Search inAPS progresses by �nding all most speci�c patterns that match the

current state. From this set, the pattern with the largest weight is selected

and the associated operator is applied.

There are four methods for pws generation: search context rules, special-

ization and generalization, reverse engineering, and genetic operators. Search

context rules are the only method of adding new patterns to an empty pat-

tern set. Given a solution, a pattern that prefers making the right choice at

a given state is added. Generalization is combining di�erent patterns with

similar weights. A pattern is specialized if it requires large changes in its

weights. Reverse engineering generates a sequence of pws that represent a

macro. The weights along the macro increase, that is the second pws in the

macro has a greater weight than the �rst one and so on. The last pws in

the macro has the greatest weight. Genetic operators are domain dependent

methods for generating new patterns from the current pattern set.

APS uses only macro-operators as problem solving strategies, and focuses

on multi-strategy learning to create new macros, rather than multiple plan-

ning strategies. Its retrieval of matching patterns is similar to DoLittle,

CHAPTER 8. RELATED WORK 234

since only the most speci�c pattern matching a state is retrieved. DoLittle

adds a context to the applicability conditions of an operator. The context

identi�es the problem spaces in which the general operator can be applied.

APS does not contain the concept of a problem space.

8.1.3 The Alpine/EBL system

Knoblock and Minton describe experiments of combining two of Prodigy's

planning strategies, abstraction-based planning (Alpine) and explanation

based learning (Prodigy/EBL) [?]. In the framework described in this

thesis, Alpine/EBL is an ordered subproblem coordinated multi-strategy

planner.

The combination of the two strategies showed improved performance over

the individual planning methods, especially in the towers of Hanoi domain.

The speed up of abstraction-based planning is easily explained. Alpine cre-

ates a set of problem spaces, but has to search the individual problem spaces

using means-ends analysis. Prodigy/EBL can provide search knowledge to

speed up the search in the ground and abstract problem spaces. On the other

hand, Alpine can improve the performance of Prodigy/EBL since the in-

dividual searches are smaller. This may lead to non-recursive explanations,

whereas Prodigy/EBL would require recursive explanations. As Etzioni

showed, the utility of recursive explanations is often limited and since these

rules are often expensive, their cost outweighs their utility [?]. Also, abstrac-

tion can decrease the match cost of Prodigy/EBL rules, because rules are

only matched in nodes belonging to the most abstract relevant problem space

rather than all nodes. Since the search in the individual abstract spaces is

smaller than that of the original search space, abstraction can reduce the

savings of a rule.

CHAPTER 8. RELATED WORK 235

8.1.4 Segre's adaptive inference system

Segre describes an ordered subproblem coordinated multi-strategy inference

system (PROLOG interpreter) that combines EBL and subgoal caching [?].

The aim is to include other speed up techniques, such as antecedent order-

ing, dynamic abstraction, and domain theory revision. Success and failure

caching is a strategy that caches previous (successful or failed) subgoals. A

subgoal that is tested in the remainder of the proof can be retrieved from the

cache instead of the system having to prove it again. Because of the search

strategy used by the system (iterative deepening), it is guaranteed that sub-

goals are repeated (at least in the �rst iterations). There are two reasons

for a failure (unable to prove the subgoal or not enough resources to prove

it) and the adaptive inference system distinguishes between the two. In his

experiments, Segre showed that combining subgoal caching and EBL reduced

the search space over the individual strategies. This happened although the

EBL component run into the utility problem and did not improve perfor-

mance on its own. The reason for the improvement of the combined system

is that EBL's poor performance was due to the generation of redundant sub-

goals and that subgoal caching prunes redundant searches. Segre refers to

this phenomenon (one strategy alleviating another strategies's problem) as

speed up synergy.

8.1.5 FLECS

Veloso and Stone describe the FLECS system, an unordered subproblem

coordinated multi-strategy planner that combines eager and delayed oper-

ator ordering commitment strategies. Eager commitment results in totally

ordered plans and is useful in domains with di�cult operator selections.

Delayed commitment produces partially ordered plans and is useful in do-

mains with di�cult goal interactions. FLECS combines the two strategies

by maintaining a totally ordered plan head and a partially ordered plan tail.

CHAPTER 8. RELATED WORK 236

FLECS uses a toggle to switch between subgoaling which leads to partially

ordered plans and applying operators which leads to totally ordered plans.

For a speci�c arti�cial domain, Veloso and Stone show that to solve prob-

lems without unnecessary search, a strategy that is able to switch between

eager and delayed commitment is necessary. FLECS delayed commitment

strategy only delays the orderings of operators, but not the instantiation of

variables, and is thus not a traditional partial-order planner such as Tweak

with its variable constraints.

Veloso and Stone use heuristics to select which planning strategy to use.

For example, the subgoal always before applying (SABA) heuristic results

in delayed commitment. In DoLittle, a general operator would be associ-

ated with a new re�nement type, that enables DoLittle to prefer partially

ordered or totally ordered plans. A re�nement of this type would make

DoLittle change the value of the toggle. FLECS, however, is based on

the state space search paradigm and is unable to represent and include other

planning strategies such as case-based or abstraction-based planning.

8.1.6 The SOAR system

The goal of the SOAR project is the design of a plausible general cognitive

architecture [?]. It uses chunking as its sole learning mechanism and much

e�ort has been put into the demonstration of the di�erent types of learning

that SOAR is capable of. SOAR is a multi-strategy learner. DoLittle

is intended as a problem solver component of a instructable system and is

therefore only interested in speeding up planning and in extracting the neces-

sary information from planning episodes. More recently, there has been work

on multi-strategy planning in SOAR. Lee and Rosenbloom have investigated

monotonic multi-method planners, that is planners that use a set of plan-

ning strategies that are organized in a linear order based on their coverage.

The basic strategy is a strongest �rst method, similarly to the one used in

this thesis. SOAR's notion of a planning strategy is limited to restrictions.

CHAPTER 8. RELATED WORK 237

DoLittle's notion of a planning strategy is more general since it includes

restructuring of the search space. DoLittle also does not require that the

coverage of the planning strategies increases monotonically. The di�erent

planning strategies may cover di�erent parts of the search space. The focus

of the work in SOAR is to develop methods for switching from one speci�ca-

tion to another. One approach is to learn conditions under which a planning

strategy is guaranteed to fail and to skip those strategies. This saves SOAR

the e�ort of trying them and �nding out that they failed.

8.2 Macros

Korf describes the macro problem solver (MPS), a system that generates

a macro problem space [?]. This approach is similar to abstraction, since

in both cases is the original problem mapped into an abstract space. The

main di�erence is that once a solution is found in the macro space, it is

trivially re�ned into a ground solution. Korf identi�es the serial operator

decomposability as a su�cient condition for the e�ectiveness of this method.

A domain is serially decomposable, if there is an ordering of the operators

such that the e�ects of each operator only depend on the literals that precede

it in the ordering. The disadvantage of this approach is the cost of �nding

a correct set of macro operators. Determining whether a domain is serially

decomposable is PSPACE-complete [?].

Korf's MPS system is one that replaces the original operator set. In

general, many systems attempt to speed up planning through the addition

of macro operators to the general operator set. In all cases, the idea is to

extract commonly used subsequences and to add them to the set of primitive

operators. Two macro learners are described in chapter ??. DoLittle's

macro learner is based on James' optimal tunneling heuristic.

CHAPTER 8. RELATED WORK 238

8.3 Abstraction

DoLittle uses abstract operators to provide a planner with the ability

to ignore low level details. Although abstraction based planning is viewed

simply as another type of planning strategy in the multi-strategy planning

framework, it has proven itself to be of critical importance in practical plan-

ning systems. All use some form of abstraction to overcome the tyranny of

detail. Abstract operators have been used mainly in partial-order planners

such as Noah [?], NonLin [?], andMolgen [?]. These systems do not learn

abstract operators, but they must be provided by the user. DoLittle's ab-

straction learner generates new abstract operators from solutions based on

the immediately backwards justi�ed heuristic.

Wilkins' Sipe system uses di�erent encodings of a domain at di�erent lev-

els of abstractions. The di�erent encodings are hard to generate inductively.

Wilkins also identi�ed the problem of hierarchical inaccuracy, that is a plan-

ner may expand a part of the plan to a too detailed level before other parts

of the plan are expanded at all. DoLittle (like many other planning sys-

tems, e.g. Alpine,Noah,AbStrips) overcomes this problem by expanding

an abstract plan from left to right.

Knoblock de�nes ordered monotonicity as a su�cient condition for speed

up using reduced abstraction based planning. DoLittle uses the same

motivation, but applies it to the generation of operator-based abstraction

hierarchies. Yiang shows that ordered monotonicity is equivalent to generat-

ing backwards justi�ed plans only. DoLittle's abstraction learner extracts

immediately backwards justi�ed operator sequences to create abstractions.

Whereas Alpine uses an analysis of all possible interactions in a domain

to generate abstraction hierarchies, DoLittle's method is less conservative

and only uses the observed interactions to generate abstraction hierarchies.

Therefore, DoLittle will generate abstract operators in the blocksworld,

whereas Alpine is unable to �nd an abstraction hierarchy. On the other

hand, DoLittle may generate general operators that may decrease per-

CHAPTER 8. RELATED WORK 239

formance. Since the same problem occurs in macro learning, DoLittle

assumes that this case can be detected through the utility analysis and the

o�ending abstract general operator can be removed from the operator set.

Anderson [?] and Baltes [?] describe similar methods to learn abstract op-

erators from successful solutions. In both cases, sequences of operators are

extracted from a solution and compared to other operators in the planner's

operator set. If a general operator and the operator sequence share some ef-

fects, the di�ering preconditions and e�ects are abstracted and a new general

operator is created that contains the operator sequence and the other general

operator as re�nements. The di�erence between the two systems is that An-

derson's PLANNEREUS creates abstract operators for all pairs of operator

sequences and operators that share some e�ects, whereas Baltes' abstraction

learner is more constrained and only adds a new abstract operator if the

post conditions of the pair are identical. For example, in the towers of Hanoi

domain, the operator sequence Move-Small Peg1 Peg3,Move-Medium

Peg1 Peg2 and the operator Move-Medium Peg1 Peg2 have identical

postconditions. PLANNEREUS also creates abstract object hierarchies from

observing possible variable instantiations of operators. DoLittle's abstrac-

tion learner is closely related to those systems, but uses a di�erent selection

heuristic (immediately backwards justi�ed operator sequences).

8.4 Prodigy/EBL

Much of the design of DoLittle itself and its learning components is based

on Minton's work on explanation based learning [?]. In particular, the de-

termination of a learned operators' utility is based on an analysis similar to

that of Minton. The di�erence is that in DoLittle general operators have

di�erent re�nement costs, match costs, and match frequencies. The estimate

of incremental utility was extended to include these factors. DoLittle uses

general operators and Prodigy/EBL uses search control rules to represent

CHAPTER 8. RELATED WORK 240

planning knowledge. Search control rules are more
exible than general op-

erators in representing plan knowledge, because they may contain arbitrary

lisp code. However, the representation of planning biases as search control

rules would require complex code to be generated for each node, since a gen-

eral operator determines a planning strategy instead of a decision at a single

node. The re�nements of a general operator are meta level comments that

help DoLittle select a set of plan transformations. Therefore, a general op-

erator a�ects the performance of the planner in the subproblems space as a

whole. For example, if a re�nement is of type SERIAL-SUBGOAL, DoLit-

tle will not change literals that are contained in the preconditions of the

general operator when searching for a solution. This constraint is checked

for all nodes in the subproblem space. Compare this to a search control rule

in Prodigy/EBL, that speci�es to select a certain operator when trying to

achieve some goal. As is shown by the reactive rule operator, DoLittle's

general operators are powerful enough to represent selection of an operator.

One di�erence is that DoLittle uses induction instead of explanation

based learning. This design decision was made because of the instructable

system paradigm, which is also based on induction. Since DoLittle sepa-

rates the planning bias learners from the planning system, it is possible to

use other learning methods such as explanation based learning, supervised

or unsupervised learning, or discourse analysis.

8.5 Dynamic biasing

As mentioned previously, dynamic biasing and multi-strategy learning are

productive research areas in machine learning [?, ?, ?, ?]. Although these

systems do not combine di�erent problem solving strategies, they are rel-

evant, since machine learning as well as planning can be seen as a search

problem.

Provost introduces the search the bias space (SBS) framework for dynamic

CHAPTER 8. RELATED WORK 241

biasing methods. Di�erent dynamic biasing systems are compared to their

search of the bias space. For example, a system may pick a bias at random.

This method works well in cases where there are many strong correct biases.

Exhaustively searching the space of possible biases is only possible if the sum

of the costs is not too big. Therefore, this approach is only useful if there

are few high cost biases.

If there are many expensive biases, the bias space must be structured

to avoid high cost biases or the expensive biases must be removed from the

bias space. Given the cost of a bias, the bias space can be structured so

that biases are considered in increasing order of cost (iterative weakening).

Provost shows that this bias selection method is optimal. The situation

for subproblem coordinated multi-strategy planning is di�erent since it has

to take the probability of being able to reduce the problem further into

consideration. This shows in the analysis in chapter ??, which shows that

the weakest strategy should be used �rst in subproblem coordinated multi-

strategy planning.

In machine learning, the simple bias selection method works well. Provost

attributes this to the fact that many of the problems in the machine learning

database are simple [?].

The space of planning biases is di�erent from machine learning biases,

since there are few strong and correct biases. Provost suggest two meth-

ods to deal with the problem of few/no strong and correct biases. The �rst

method is based on the idea of using the results of the previous search in

selecting a new bias. Applied to the planning problem, this technique would

use results from previous searches in creation/selection of a new bias. For ex-

ample, DoLittle uses the results of previous searches by generating general

operators and maintaining a set of important statistics about the di�erent

general operators for future problem solving. The second method suggested

by Provost uses partial solutions to the learning problem. Planning supports

this method, since DoLittle can combine solutions that were generated by

CHAPTER 8. RELATED WORK 242

di�erent planning strategies.

Barley uses the notion of a planning bias to describe the trade-o� between

the coverage and the e�ciency of a planner [?]. Since planning is intractable

in many domains, the achievement of a sound and complete domain inde-

pendent planner is unachievable. The coverage and the speed of the planner

must be balanced. A planning bias as used in Barley's work is a restriction

on the planners algorithm. DoLittle's notion of a planning bias is more

general since it includes restriction as well as restructuring and reordering of

a search space.

Bhatnagar designed a single strategy planner FAILSAFE-2, that is based

on the idea of iterative weakening [?]. The systems learns speci�c rules (so

called heuristic censors) that cut out large parts of the search space from

failure using EBL. The learned heuristic censors are overly general, which

means they restrict the search space too much. If the heuristic censors pre-

vent FAILSAFE-2 from �nding a solution, the heuristic censor responsible

for preventing FAILSAFE-2 from �nding a solution is identi�ed and its ap-

plicability conditions specialized so that in the future FAILSAFE-2 will be

able to �nd a solution. DoLittle uses multiple strategies as opposed to a

single strategy in FAILSAFE-2. DoLittle focuses on methods of combining

di�erent methods as opposed to �nding applicability conditions.

Chapter 9

Conclusion

This chapter summarizes the contribution of the thesis and gives directions

for future research.

9.1 Contributions

This section describes the contributions made by this research. The general

intuition is (similarly to dynamic biasing in machine learning) to develop a

system that can select and combine di�erent planning strategies on a single

problem.

The �rst contribution is the development of a theory of multi-strategy

planning, which is discussed in chapter ??. This framework is based on a

model of abstraction which is an extension of previous models ([?, ?] that

distinguishes between problems that lead to a su�cient reduction and those

that do not. The framework identi�es important characteristics of a multi-

strategy planner: problem versus subproblem coordinated, ordered versus

unordered, exhaustive versus non exhaustive, and the decision procedure.

The analysis shows that the expected cost is least for an unordered subprob-

lem coordinated multi-strategy planner. Also based on this framework, it is

shown that multi-strategy planning can under certain conditions exponen-

243

CHAPTER 9. CONCLUSION 244

tially reduce the cost over that of a single strategy planner. The conditions

under which this speed up occurs are su�cient conditions for improvement

using a multi-strategy planner. The important conditions are the reduction

probability and the reduction factors.

Secondly, this thesis compares di�erent popular planning methods within

the plan space search paradigm (chapter ??). It shows that di�erent plan-

ning strategies can be described by their plan language and their set of plan

transformations. This provides a usable de�nition of a planning strategy.

Thirdly, a set of requirements for an unordered subproblem coordinated

multi-strategy planner are developed based on the multi-strategy planning

framework and the comparison of di�erent planning methods. The research

identi�es four features that are necessary for a practical multi-strategy plan-

ner:

� a representation language for di�erent planning strategies

� a decision procedure to determine whether a planning strategy is ap-

propriate

� a search control method that can emulate di�erent planning strategies

� a domain description language su�ciently powerful to describe inter-

esting domains

General operators are proposed as a solution to the �rst two problems.

General operators describe applicability conditions as well as planning strate-

gies. The applicability conditions imply a decision procedure. The search

control method combines di�erent planning strategies described as general

operators and emulates their behavior. The domain description language is

taken from Prodigy and extended to support general operators.

Fourthly, three learning methods (cases, macros, and abstraction) are de-

signed and implemented that learn popular planning strategies. The macro

and case learners built on previous work, but the abstraction learner is a new

CHAPTER 9. CONCLUSION 245

approach based on immediately backwards justi�ed operators. The learners

estimate the incremental utility of a new general operator based on a for-

mula, which is an extension of Minton's work. The main di�erence is that

DoLittle's general operators have di�erent re�nement costs, match costs,

and match frequencies associated with them.

Lastly, the performance of a multi-strategy planner (DoLittle) against

four single strategy planners (means-ends analysis, case-based, macro-based,

and abstraction-based planning) is empirically evaluated. The evaluation

shows that DoLittle is superior to the four single strategy planners in the

blocksworld and the towers of Hanoi and is able to solve problems in at least

one complex domain, the kitchen domain. The kitchen domain also shows

that an unordered subproblem coordinated multi-strategy planner performs

better than a problem coordinated one with an oracle.

9.2 Future work

This section discusses directions for future research. So far, the work has

focused on presenting a model of multi-strategy planning and to provide an

implementation that can be used as a testbed. The next goal is to better

understand the interaction of di�erent strategies and to provide methods for

selecting a set of strategies. One advantage of a multi-strategy planner is

that it can improve its coverage of a domain (the set of problems that can be

solved e�ciently) by combining planning strategies that are based on di�erent

planning biases. In this case, a set of planning strategies with di�erent good

sets is desirable. Another advantage of a multi-strategy planner is that it

can use one strategy to alleviate problems of another strategy (Segre refers

to this as speedup synergy).

As mentioned previously in section ??, DoLittle traded o� the ability

to use partial-order planning for the ability to use plan debugging e�ciently.

In the multi-strategy planning framework, partial-order planning is seen as

CHAPTER 9. CONCLUSION 246

another type of planning strategy. This view is shared by Veloso and Stone,

who propose a planning strategy that breaks a plan up into a totally ordered

plan head and a partially ordered plan tail [?]. One part of future research

is to add this planning strategy to DoLittle. Although FLECS does not

support all features of least commitment planners such as Tweak, it seems

to be a good compromise between the decrease due to a reduction of the

search space and the increase due to a NP-hard truth criterion.

The uniform representation in DoLittle makes it an ideal testbed for

the comparison of di�erent planning strategies. This research may lead to a

better understanding of the underlying planning biases for di�erent planning

strategies. This allows us to better predict the performance of di�erent plan-

ners on new problems and to develop better methods to determine whether

a planning strategy is suitable for a given domain.

So far, the main focus of DoLittle has been the methods of combining

di�erent sets of planning biases on a single problem. There are many more

aspects of DoLittle that warrant further investigation. The two main ones

are the acquiring of applicability conditions for planning biases, and the use

of di�erent learning strategies.

DoLittle provides a powerful language to describe the applicability con-

ditions of planning methods. The language includes conjunction, disjunction,

and negation of predicates and is based on the current state, the set of open

goals, and the re�nement structure. Future research will investigate methods

for comparing the performance of a planning method to its expected perfor-

mance and to change the applicability conditions to improve performance.

So far, DoLittle is a single-strategy learning system, since the planning

bias learners described in chapter ?? only generate new general operators

from successful solutions. There are many more problem solving events that

may prove helpful in improving performance, such as failure, subgoal inter-

action, or expensive re�nement. Furthermore, di�erent learning paradigms

can be used to extract the necessary information from the problem solving

CHAPTER 9. CONCLUSION 247

event such as supervised learning, examples provided by the user, or learning

by analogy.

9.3 Epilogue

This section generalizes the results of the thesis to problem solving in general.

The question is the apparent discrepancy between the complexity of planning

and the ease with which humans can solve many of the problems that are

hard for a computer. For example, no one would consider problems in the

kitchen domain especially challenging.

The problem is that a planner simple forges ahead and attempts to solve

the problem using its built-in strategy. Recently, there has been a lot of focus

on the in
uence of the representation on the performance of the problem

solver. This has lead to signi�cant interest in problem reformulation [?].

The motivation behind problem reformulation is the realization that some

problems require a radically di�erent representation from the original one,

so that they can be solved e�ciently. Simple restrictions on the search space

are often not su�cient.

This thesis adds another requirement to intelligent problem solvers: the

ability to select and use di�erent problem solving methods. For example,

consider the maze problem in �gure ??. The problem is to �nd a path through

the maze from the initial state to the goal. At some points in the maze, there

are doors, which have two possible states (1 and 2 in the �gure). A solution

is a path and the setting for all doors on the solution path. The �rst maze

problem can be solved quite easily. For example, the �rst door on the path

must be in position 2, since otherwise the path is blocked. Continuing in this

fashion, the user can easily �nd the path to the goal, since the status of all

doors is determined. No search is necessary.

No consider the second maze problem in �gure ??. Here, the previous

strategy does not lead to success. For example, the �rst door in the path

CHAPTER 9. CONCLUSION 248

Figure 9.1: The �rst maze problem

CHAPTER 9. CONCLUSION 249

can be in either position and thus provides no guidance for the rest of the

search. However, if the strategy is changed to start from the goal and work

towards the initial state, the problem can be solved without any problems.

In fact, the second maze is simply the �rst maze rotated by 180 degrees.

Figure 9.2: The second maze problem

Clearly, a single planning strategy is not su�cient to solve all maze prob-

lems e�ciently. A problem solver must have a variety of problem solving

strategies available and be able to select an appropriate one for the current

problem.

Other examples are logic and mathematical proofs. Over the centuries

people have developed methods for proving statements in either logic or

mathematics. Some well known ones are Aristotle's syllogism, enumeration,

reductio ad absurdum, or (mathematical) induction. Also in computer sci-

ence, there are a few well known programming methods, such as divide and

CHAPTER 9. CONCLUSION 250

conquer, enumeration, recursion, and generalization. Often, the hard part

is to �nd the correct problem solving strategy, �nding the actual solution is

then simple.

Appendix A

Implementation

This appendix describes DoLittle's implementation. It is intended mostly

for people that are interested in running DoLittle themselves. It also

contains details of the parallel implementation.

The implementation described in this thesis is the third version of a multi-

strategy planner. Previous prototype systems were used to design and test

particular parts of the system. First, an object oriented parallel system was

implemented on a set of transputers. Secondly, DoLittle's search control

mechanism was implemented and tested in common lisp on top of Prodigy.

The current implementation is written in NOWEB [?]. NOWEB is a

literate programming system based on Knuth's WEB system [?]. It is easily

ported to di�erent operating systems, extensible, and powerful. Its main

advantages is that it is independent of the underlying source language (C,

Common Lisp, etc.). Using a literate programming system such as NOWEB

makes it easy to generate documentation in a variety of formats from the

source (e.g., LATEX,HTML).

Since we are interested in a practical planning system, the system should

be able to take advantage of current state of the art hardware. Therefore, the

design of a practical planner should allow for e�cient parallel or distributed

implementation.

251

APPENDIX A. IMPLEMENTATION 252

The most expensive part of planning is the search itself. Furthermore,

learning new operators usually requires analysis of the plan derivation, the

expanded part of the search space. Therefore, this thesis focuses on paral-

lelization of the search and the operator learning.

The problem in distributing a planning search over a number of processors

is that the search spaces associated with planning problems are generally

highly irregular. Therefore, an a priori distribution is di�cult.

This work uses a dynamic load balancing system to distribute the search.

If a processor is �nished with its part of the search space, it requests new

work from neighboring processors.

General optimal dynamic load balancing itself is di�cult to achieve. How-

ever, an e�cient distribution is possible because of two additional assump-

tions. First, since the planner is solving similar problems, we assume that

cost estimates for the re�nement of an operator are accurate enough to sup-

port future load balancing. Note that these cost estimates are also used by

the dynamic �lter to check the usefulness of di�erent planner transforma-

tions. Secondly, since most planning biases aim to reduce the solution length

by possibly increasing the branching factor, the distribution algorithm dis-

tributes nodes in a breadth-�rst manner. For example, given a set of can-

didates for re�nement, the load balancer distributes the candidates instead

of trying to parallelize the search for a single candidate. This has the added

advantage, that, in general, di�erent re�nements are mostly independent, so

that communication between processors may be reduced.

Appendix B

The blocksworld domain

This version of the blocksworld domain is taken from the Prodigy distri-

bution.

All experiments were run on an IBM PC compatible computer with 16

MB of RAM and a 486-DX66 processor. The tables below compare DoLit-

tle running in Prodigy emulation mode (abstractions o�, no general op-

erators, relevant operator selection method) to two di�erent multi-strategy

planners (PC-MSP-O and DoLittle) and three single strategy planners

(Cases, macros, abstractions), based on the learning methods described in

chapter ??.

B.1 Randomly generating problems in the

blocksworld

The problems were created using an algorithm based on Minton's method

[?]. The initial state is generated as follows:

� Between three and twelve blocks are generated at random.

� Each block is placed on the table with probability 1=3 or put on a

randomly selected pile with probability 2=3.

253

APPENDIX B. THE BLOCKSWORLD DOMAIN 254

� The robot is holding the last block with probability 1=3, otherwise the

last block is handled exactly like the other blocks.

After creation of the initial state, a goal state is created by the same

procedure as for the initial state, with the exception that the goal state

contains the same blocks as the initial state.

All predicates that di�er from the initial state are marked as a potential

goal predicate. Predicates that are identical in the initial and the goal state

are marked as potential goal predicates with probability 1=3.

The goal is created by randomly selecting between three and ten potential

goal predicates and forming a conjunction of those predicates.

The main di�erence between this algorithm and Minton's method are

that (a) Minton slowly increased the di�culty of the problem by increasing

the number of nodes and the number of goals, and (b) Minton's algorithm

contained an additional check to see whether the problem is indeed solvable.

To show that DoLittle can break a problem up into useful subproblems,

it was trained on a randomly generated set of constant di�culty instead of a

slowly increasing one. The second di�erence is because Minton's system was

a linear planner, and thus the problems must be checked to make sure that

they can be solved in some linear order. Since Prodigy4 and DoLittle

are non-linear planners, this check is not necessary.

B.2 Domain speci�cation of the blocksworld

The representation of the blocksworld was taken from the Prodigy problem

set. It contains four operators to avoid the need for conditional e�ects.

The original domain �le that came with Prodigy4 did come with some

inline control rules. Although, DoLittle can parse these rules, it can not

evaluate the associated lisp code and these rules are thus ignored. Therefore,

the rules were taken out of the domain speci�cation. The variable constraint

on operator Stack is also not used by DoLittle. Therefore, DoLittle

APPENDIX B. THE BLOCKSWORLD DOMAIN 255

will generate Stack A A as an operator candidate. This however is ruled

out by the goal loop detection algorithm is the next step.

;; This is the blocksworld according to the proposed 4.0 syntax

(create-problem-space 'blocksworld :current t)

(ptype-of OBJECT :top-type)

;(pinstance-of blocka object)

;(pinstance-of blockb object)

;(pinstance-of blockc object)

(OPERATOR

PICK-UP

(params <ob1>)

(preconds

((<ob1> OBJECT))

(and (clear <ob1>)

(on-table <ob1>)

(arm-empty)))

(effects

() ; no vars needed

((del (on-table <ob1>))

(del (clear <ob1>))

(del (arm-empty))

(add (holding <ob1>)))))

(OPERATOR

PUT-DOWN

(params <ob>)

(preconds

((<ob> OBJECT))

(holding <ob>))

(effects

()

((del (holding <ob>))

(add (clear <ob>))

(add (arm-empty))

APPENDIX B. THE BLOCKSWORLD DOMAIN 256

(add (on-table <ob>)))))

(OPERATOR

STACK

(params <ob> <underob>)

(preconds

((<ob> Object)

(<underob> (and OBJECT (diff <ob> <underob>))))

(and (clear <underob>)

(holding <ob>)))

(effects

()

((del (holding <ob>))

(del (clear <underob>))

(add (arm-empty))

(add (clear <ob>))

(add (on <ob> <underob>)))))

(OPERATOR

UNSTACK

(params <ob> <underob>)

(preconds

((<ob> Object)

(<underob> Object))

(and (on <ob> <underob>)

(clear <ob>)

(arm-empty)))

(effects

()

((del (on <ob> <underob>))

(del (clear <ob>))

(del (arm-empty))

(add (holding <ob>))

(add (clear <underob>)))))

The following table is an example problem for the blocksworld domain.

It is the famous Sussman anomaly problem.

;; Sussman anomaly

APPENDIX B. THE BLOCKSWORLD DOMAIN 257

(setf (current-problem)

(create-problem

(name sussman)

(objects

(blockA blockb blockC object))

(state

(and (on-table blockA)

(on-table blockB)

(on blockC blockA)

(clear blockB)

(clear blockC)

(arm-empty)))

(goal

(and (on blockA blockB)

(on blockB blockC)))))

B.3 Empirical results in the blocksworld

This section summarizes the results of the experiments in the blocksworld.

The table contains the following columns:

� Prob is the problem number.

� Nodes is the total number of nodes expanded during the search. A

maximum limit of 15; 000 nodes was used in all tests. Because the

planner synchronizes only after certain node types, there is a chance

that slightly more nodes are expanded.

� Time is the total CPU time used. There was a time limit of 600 CPU

seconds imposed. However, in these experiments the node limit was

the determining factor, since it was exceeded �rst.

� Len is the number of primitive operators in the solution. It is 0 if no

solution exist or no solution was found within the resource limit.

APPENDIX B. THE BLOCKSWORLD DOMAIN 258

Prob Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p1 18 0.08 1 6 0.03 1 6 0.01 1

p2 18 0.06 1 6 0.03 1 6 0.01 1

p3 15 0.06 3 12 0.04 3 13 0.04 3

p4 639 2.52 3 12 0.06 3 13 0.04 3

p5 413 1.96 2 22 0.04 2 22 0.04 2

p6 12462 76.19 2 10 0.04 2 10 0.03 2

p7 15 0.08 4 17 0.04 4 18 0.06 4

p8 9 0.03 2 9 0.01 2 10 0.02 2

p9 12 0.06 2 9 0.02 2 10 0.03 2

p10 117 0.59 4 17 0.05 4 18 0.07 4

p11 12 0.11 3 20 0.05 0 14 0.04 3

p12 720 3.67 3 13 0.05 3 13 0.05 3

p13 720 3.47 3 13 0.04 3 13 0.05 3

p14 17 0.06 2 9 0.01 2 9 0.03 2

p15 14 0.06 2 9 0.02 2 9 0.02 2

p16 11 0.03 2 9 0.02 2 9 0.02 2

p17 11 0.03 2 9 0.02 2 9 0.02 2

p18 12 0.06 1 6 0.00 1 6 0.02 1

p19 12 0.06 1 6 0.01 1 6 0.02 1

p20 11 0.03 2 9 0.02 2 9 0.01 2

p21 637 2.49 3 12 0.06 3 13 0.04 3

p22 414 2.10 2 22 0.03 2 22 0.04 2

p23 14 0.06 2 9 0.02 2 10 0.03 2

p24 7128 39.03 6 17 0.05 0 34 0.16 4

p25 3483 21.78 6 27 0.10 0 31 0.21 6

p26 156 0.67 0 16 0.06 6 16 0.05 6

p27 12 0.08 3 20 0.05 0 14 0.05 3

p28 15 0.08 3 21 0.11 3 14 0.05 3

p29 15001 101.78 0 13 0.07 3 13 0.06 3

p30 15001 110.91 0 21 0.11 5 42 0.24 9

p31 15001 88.96 0 14 0.07 0 14 0.06 6

p32 12 0.06 3 13 0.02 3 14 0.03 3

p33 15 0.11 4 17 0.07 4 18 0.07 4

p34 1239 6.97 7 23 0.13 7 31 0.15 7

p35 10299 51.83 5 15001 112.42 0 23 0.12 5

p36 12 0.08 3 22 0.05 0 14 0.05 3

p37 12 0.08 3 20 0.07 0 14 0.04 3

p38 15001 199.78 0 89 0.95 0 89 0.96 13

p39 15001 158.34 0 19 0.11 5 28 0.19 5

p40 333 1.29 0 48 0.17 2 55 0.32 9

p41 61 0.34 3 15 0.10 3 20 0.10 3

p42 15001 99.74 0 17 0.06 0 17 0.07 4

p43 40 0.17 3 13 0.08 3 13 0.07 3

p44 15 0.11 4 42 0.09 0 18 0.08 4

p45 15001 103.35 0 13 0.04 3 13 0.05 3

p46 17 0.08 4 17 0.06 4 41 0.19 6

p47 17 0.11 4 17 0.05 0 34 0.15 4

p48 11971 74.62 6 33 0.14 0 16 0.08 6

p49 7348 56.90 6 14 0.06 0 14 0.06 6

p50 29 0.11 4 10 0.03 2 30 0.10 4

APPENDIX B. THE BLOCKSWORLD DOMAIN 259

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p51 1021 5.18 6 14 0.07 0 14 0.08 6

p52 716 3.81 4 10 0.04 2 13 0.08 3

p53 8467 59.22 4 17 0.12 0 17 0.13 4

p54 15001 182.87 0 28 0.19 5 55 0.61 6

p55 15001 117.85 0 33 0.27 7 41 0.48 9

p56 10299 52.56 5 15001 113.11 0 23 0.11 5

p57 10240 51.77 3 15001 112.22 0 23 0.14 5

p58 15001 151.40 0 16 0.21 0 41 0.33 6

p59 15001 97.61 0 27 0.14 0 33 0.13 6

p60 466 2.24 0 24 0.20 0 141 1.52 16

p61 1021 5.91 6 14 0.07 0 14 0.07 6

p62 5112 27.47 6 33 0.14 0 16 0.09 6

p63 1009 3.67 2 10 0.05 2 10 0.04 2

p64 756 3.70 5 6 0.05 1 134 0.48 5

p65 4931 26.99 4 17 0.07 4 17 0.06 4

p66 74 0.36 6 14 0.07 6 14 0.07 6

p67 15001 104.86 0 97 0.80 0 97 0.83 11

p68 15001 112.78 0 21 0.08 0 40 0.19 6

p69 4978 34.89 6 16 0.06 4 20 0.08 6

p70 87 0.31 3 16 0.07 3 20 0.07 6

p71 17 0.06 1 6 0.02 1 9 0.02 2

p72 69 0.31 4 17 0.05 0 17 0.05 4

p73 60 0.20 1 6 0.02 1 9 0.03 2

p74 93 0.48 7 37 0.24 0 15 0.08 7

p75 232 1.18 5 13 0.07 5 13 0.08 5

p76 15001 103.60 0 10 0.02 0 10 0.03 2

p77 14 0.08 2 9 0.01 2 10 0.03 2

p78 22 0.11 4 17 0.06 4 32 0.13 4

p79 60 0.22 1 6 0.02 1 6 0.02 1

p80 52 0.45 7 13 0.10 0 13 0.08 5

p81 15001 108.47 0 14 0.07 0 14 0.07 6

p82 912 5.18 6 52 0.24 0 52 0.23 6

p83 8982 58.44 4 20 0.07 0 20 0.09 4

p84 2038 10.05 0 21 0.18 0 22 0.16 2

p85 201 0.76 1 6 0.03 1 9 0.06 2

p86 17 0.06 1 6 0.01 1 9 0.02 2

p87 15001 135.07 0 31 0.16 0 32 0.18 4

p88 15001 111.36 0 39 0.32 0 39 0.40 8

p89 15001 98.76 0 65 0.42 0 73 0.44 11

p90 15001 106.82 0 33 0.27 0 38 0.35 7

p91 15001 163.97 0 53 1.46 0 55 1.98 11

p92 11 0.03 2 9 0.01 2 9 0.01 2

p93 15001 137.14 0 179 1.04 0 27 0.18 6

p94 15001 137.06 0 20 0.32 5 20 0.34 5

p95 31 0.25 5 19 0.10 5 24 0.11 5

p96 15001 124.80 0 179 1.27 0 62 0.92 10

p97 15001 103.18 0 17 0.07 4 17 0.07 4

p98 15001 198.49 0 24 0.47 6 25 0.16 6

p99 15001 177.16 0 13 0.05 5 37 0.16 5

p100 15001 132.30 0 34 0.61 0 34 0.60 8

APPENDIX B. THE BLOCKSWORLD DOMAIN 260

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p101 15001 141.93 0 20 0.22 0 21 0.31 8

p102 12 0.08 3 20 0.07 0 14 0.05 3

p103 115 0.62 4 15 0.08 4 18 0.06 4

p104 15001 143.78 0 6 0.03 1 9 0.06 2

p105 12 0.67 3 12 0.27 3 13 0.27 3

p106 15001 120.46 0 26 0.32 0 27 0.40 6

p107 15001 134.20 0 31 0.64 0 31 0.71 3

p108 2782 13.89 3 12 0.05 3 12 0.04 3

p109 12 0.06 3 13 0.02 3 14 0.03 3

p110 15001 151.51 0 47 1.54 0 51 3.86 11

p111 15001 125.69 0 17 0.14 6 92 0.76 6

p112 12810 68.29 5 47 0.31 5 88 0.39 5

p113 15001 91.62 0 15001 66.45 0 15010 181.50 0

p114 15001 131.15 0 16 0.15 6 60 0.66 6

p115 15001 162.57 0 15 0.42 4 18 0.11 4

p116 856 5.35 6 16 0.07 6 39 0.16 6

p117 15001 247.04 0 15001 160.69 0 15001 138.70 0

p118 17 0.08 2 9 0.02 2 10 0.02 2

p119 15001 138.77 0 33 0.39 0 52 0.81 12

p120 15001 145.43 0 24 0.63 0 26 0.25 6

p121 247 1.74 8 57 0.60 0 19 0.20 8

p122 18 0.08 1 6 0.03 1 6 0.01 1

p123 18 0.06 1 6 0.03 1 6 0.01 1

p124 15001 139.02 0 42 0.26 0 28 0.21 2

p125 15 0.06 3 12 0.04 3 13 0.04 3

p126 639 2.52 3 12 0.06 3 13 0.04 3

p127 413 1.96 2 22 0.04 2 22 0.04 2

p128 12462 76.19 2 10 0.04 2 10 0.03 2

p129 15 0.08 4 17 0.04 4 18 0.06 4

p130 12 0.06 2 9 0.02 2 10 0.03 2

p131 117 0.59 4 17 0.05 4 18 0.07 4

p132 12 0.11 3 20 0.05 0 14 0.04 3

p133 720 3.67 3 13 0.05 3 13 0.05 3

p134 720 3.47 3 13 0.04 3 13 0.05 3

p135 17 0.06 2 9 0.01 2 9 0.03 2

p136 14 0.06 2 9 0.02 2 9 0.02 2

p137 11 0.03 2 9 0.02 2 9 0.02 2

p138 11 0.03 2 9 0.02 2 9 0.02 2

p139 12 0.06 1 6 0.00 1 6 0.02 1

p140 12 0.06 1 6 0.01 1 6 0.02 1

p141 11 0.03 2 9 0.02 2 9 0.01 2

p142 637 2.49 3 12 0.06 3 13 0.04 3

p143 414 2.10 2 22 0.03 2 22 0.04 2

p144 14 0.06 2 9 0.02 2 10 0.03 2

p145 7128 39.03 6 17 0.05 0 34 0.16 4

p146 3483 21.78 6 27 0.10 0 31 0.21 6

p147 156 0.67 0 16 0.06 6 16 0.05 6

p148 12 0.08 3 20 0.05 0 14 0.05 3

p149 15 0.08 3 21 0.11 3 14 0.05 3

p150 15001 101.78 0 13 0.07 3 13 0.06 3

APPENDIX B. THE BLOCKSWORLD DOMAIN 261

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p151 15001 110.91 0 21 0.11 5 42 0.24 9

p152 15001 88.96 0 14 0.07 0 14 0.06 6

p153 12 0.06 3 13 0.02 3 14 0.03 3

p154 112 0.45 5 29 0.11 0 61 0.35 7

p155 15 0.11 4 17 0.07 4 18 0.07 4

p156 1239 6.97 7 23 0.13 7 31 0.15 7

p157 12 0.08 3 22 0.05 0 14 0.05 3

p158 12 0.08 3 20 0.07 0 14 0.04 3

p159 15001 199.78 0 89 0.95 0 89 0.96 13

p160 15001 158.34 0 19 0.11 5 28 0.19 5

p161 333 1.29 0 48 0.17 2 55 0.32 9

p162 61 0.34 3 15 0.10 3 20 0.10 3

p163 15001 99.74 0 17 0.06 0 17 0.07 4

p164 40 0.17 3 13 0.08 3 13 0.07 3

p165 15 0.11 4 42 0.09 0 18 0.08 4

p166 15001 103.35 0 13 0.04 3 13 0.05 3

p167 15001 112.28 0 6 0.03 0 94 0.32 5

p168 17 0.08 4 17 0.06 4 41 0.19 6

p169 17 0.11 4 17 0.05 0 34 0.15 4

p170 11971 74.62 6 33 0.14 0 16 0.08 6

p171 7348 56.90 6 14 0.06 0 14 0.06 6

p172 29 0.11 4 10 0.03 2 30 0.10 4

p173 1021 5.18 6 14 0.07 0 14 0.08 6

p174 716 3.81 4 10 0.04 2 13 0.08 3

p175 8467 59.22 4 17 0.12 0 17 0.13 4

p176 15001 182.87 0 28 0.19 5 55 0.61 6

p177 15001 117.85 0 33 0.27 7 41 0.48 9

p178 15001 134.62 0 15004 166.65 0 15001 176.96 0

p179 10240 51.77 3 15001 112.22 0 23 0.14 5

p180 15001 151.40 0 16 0.21 0 41 0.33 6

p181 15001 97.61 0 27 0.14 0 33 0.13 6

p182 466 2.24 0 24 0.20 2 141 1.52 16

p183 1021 5.91 6 14 0.07 0 14 0.07 6

p184 5112 27.47 6 33 0.14 0 16 0.09 6

p185 15001 114.10 0 15001 166.56 0 15001 114.14 0

p186 1009 3.67 2 10 0.05 2 10 0.04 2

p187 15001 103.68 0 15001 90.26 0 15001 94.46 0

p188 15001 120.37 0 15001 106.87 0 15001 99.28 0

p189 4931 26.99 4 17 0.07 4 17 0.06 4

p190 15001 106.04 0 15001 151.98 0 15001 81.65 0

p191 74 0.36 6 14 0.07 6 14 0.07 6

p192 15001 142.30 0 15001 97.14 0 15001 102.18 0

p193 15001 104.86 0 97 0.80 0 97 0.83 11

p194 15001 105.50 0 15002 116.95 0 15001 151.76 0

p195 15001 112.78 0 21 0.08 0 40 0.19 6

p196 4978 34.89 6 16 0.06 4 20 0.08 6

p197 87 0.31 3 16 0.07 3 20 0.07 6

p198 17 0.06 1 6 0.02 1 9 0.02 2

p199 69 0.31 4 17 0.05 0 17 0.05 4

p200 60 0.20 1 6 0.02 1 9 0.03 2

APPENDIX B. THE BLOCKSWORLD DOMAIN 262

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p201 93 0.48 7 37 0.24 0 15 0.08 7

p202 232 1.18 5 13 0.07 5 13 0.08 5

p203 15001 103.60 0 10 0.02 0 10 0.03 2

p204 14 0.08 2 9 0.01 2 10 0.03 2

p205 22 0.11 4 17 0.06 4 32 0.13 4

p206 60 0.22 1 6 0.02 1 6 0.02 1

p207 52 0.45 7 13 0.10 0 13 0.08 5

p208 15001 108.47 0 14 0.07 0 14 0.07 6

p209 15001 102.37 0 15001 103.25 0 15001 133.19 0

p210 912 5.18 6 52 0.24 0 52 0.23 6

p211 8982 58.44 4 20 0.07 0 20 0.09 4

p212 2038 10.05 0 21 0.18 0 22 0.16 2

p213 201 0.76 1 6 0.03 1 9 0.06 2

p214 17 0.06 1 6 0.01 1 9 0.02 2

p215 15001 135.07 0 31 0.16 0 32 0.18 4

p216 15001 111.36 0 39 0.32 0 39 0.40 8

p217 15001 98.76 0 65 0.42 0 73 0.44 11

p218 15001 106.82 0 33 0.27 0 38 0.35 7

p219 15001 163.97 0 53 1.46 0 55 1.98 11

p220 11 0.03 2 9 0.01 2 9 0.01 2

p221 15001 137.14 0 179 1.04 0 27 0.18 6

p222 15001 137.06 0 20 0.32 5 20 0.34 5

p223 31 0.25 5 19 0.10 5 24 0.11 5

p224 15001 124.80 0 179 1.27 0 62 0.92 10

p225 15001 103.18 0 17 0.07 4 17 0.07 4

p226 15001 198.49 0 24 0.47 6 25 0.16 6

p227 15001 177.16 0 13 0.05 5 37 0.16 5

p228 15001 132.30 0 34 0.61 0 34 0.60 8

p229 15001 141.93 0 20 0.22 0 21 0.31 8

p230 12 0.08 3 20 0.07 0 14 0.05 3

p231 115 0.62 4 15 0.08 4 18 0.06 4

p232 15001 143.78 0 6 0.03 1 9 0.06 2

p233 12 0.67 3 12 0.27 3 13 0.27 3

p234 15001 120.46 0 26 0.32 0 27 0.40 6

p235 15001 134.20 0 31 0.64 0 31 0.71 3

p236 2782 13.89 3 12 0.05 3 12 0.04 3

p237 12 0.06 3 13 0.02 3 14 0.03 3

p238 15001 151.51 0 47 1.54 0 51 3.86 11

p239 15001 125.69 0 17 0.14 6 92 0.76 6

p240 12810 68.29 5 47 0.31 5 88 0.39 5

p241 15001 119.20 0 103 1.30 0 103 1.41 11

p242 15001 91.62 0 15001 66.45 0 15010 181.50 0

p243 15001 131.15 0 16 0.15 6 60 0.66 6

p244 15001 162.57 0 15 0.42 4 18 0.11 4

p245 856 5.35 6 16 0.07 6 39 0.16 6

p246 15001 247.04 0 15001 160.69 0 15001 138.70 0

p247 17 0.08 2 9 0.02 2 10 0.02 2

p248 15001 138.77 0 33 0.39 0 52 0.81 12

p249 15001 145.43 0 24 0.63 0 26 0.25 6

p250 247 1.74 8 57 0.60 0 19 0.20 8

APPENDIX B. THE BLOCKSWORLD DOMAIN 263

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p1 6 0.02 1 6 0.03 1 16 0.02 1

p2 6 0.01 1 6 0.03 1 16 0.02 1

p3 12 0.04 3 13 0.03 3 22 0.05 3

p4 12 0.06 3 13 0.03 3 31 0.05 3

p5 34 0.07 2 22 0.04 2 35 0.07 2

p6 10 0.04 2 10 0.04 2 24 0.05 2

p7 17 0.06 4 17 0.04 4 142 0.65 4

p8 9 0.03 2 9 0.01 2 12 0.05 2

p9 9 0.03 2 9 0.02 2 12 0.04 2

p10 17 0.05 4 17 0.05 4 292 1.55 4

p11 15001 114.30 0 15001 146.32 0 20 0.05 3

p12 19 0.08 3 13 0.05 3 35 0.07 3

p13 19 0.07 3 13 0.04 3 35 0.07 3

p14 9 0.03 2 9 0.01 2 12 0.04 2

p15 9 0.03 2 9 0.02 2 11 0.04 2

p16 9 0.02 2 9 0.02 2 12 0.04 2

p17 9 0.03 2 9 0.02 2 13 0.05 2

p18 6 0.03 1 6 0.00 1 16 0.04 1

p19 6 0.02 1 6 0.01 1 16 0.02 1

p20 9 0.02 2 9 0.02 2 12 0.02 2

p21 12 0.06 3 13 0.04 3 31 0.05 3

p22 34 0.06 2 22 0.03 2 35 0.07 2

p23 9 0.03 2 9 0.02 2 12 0.04 2

p24 17 0.05 4 15001 114.36 0 15140 193.46 0

p25 31 0.16 6 27 0.10 6 15127 199.19 0

p26 16 0.06 6 48 0.18 6 77 0.23 6

p27 15001 115.77 0 15001 151.22 0 20 0.05 3

p28 21 0.11 5 21 0.11 5 22 0.09 3

p29 19 0.08 3 13 0.07 3 46 0.13 3

p30 35 0.20 5 21 0.11 5 144 0.38 9

p31 14 0.07 6 58 0.20 6 15113 223.13 0

p32 13 0.02 3 13 0.02 3 22 0.04 3

p33 17 0.06 4 17 0.07 4 442 2.74 4

p34 23 0.13 7 42 0.23 7 90 0.27 7

p35 15001 112.42 0 15002 134.53 0 15121 187.34 0

p36 15001 75.09 0 15013 150.04 0 22 0.05 3

p37 15001 81.17 0 15001 177.96 0 20 0.07 3

p38 89 0.95 13 15010 126.03 0 15159 162.02 0

p39 19 0.11 5 21 0.09 5 90 0.34 5

p40 62 0.31 2 48 0.17 5 1735 6.71 9

p41 15 0.10 5 20 0.10 3 59 0.13 3

p42 17 0.06 4 15001 119.55 0 43 0.09 4

p43 13 0.07 3 13 0.08 3 42 0.07 3

p44 15013 115.96 0 15005 128.78 0 42 0.09 4

p45 69 0.22 5 13 0.04 3 23 0.05 3

p46 17 0.06 4 42 0.15 4 25 0.09 6

p47 17 0.05 4 15001 114.59 0 25 0.09 4

p48 15001 128.67 0 33 0.14 8 15113 154.01 0

p49 14 0.06 6 58 0.23 6 15113 225.43 0

p50 10 0.03 2 40 0.10 4 16 0.04 4

APPENDIX B. THE BLOCKSWORLD DOMAIN 264

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p51 14 0.07 6 15001 154.24 0 70 0.18 6

p52 10 0.04 2 13 0.05 3 23 0.04 3

p53 17 0.12 4 15003 150.95 0 56 0.13 4

p54 28 0.19 9 54 0.27 5 92 0.25 6

p55 41 0.47 9 33 0.27 7 133 0.45 9

p56 15001 113.11 0 15002 134.28 0 15121 194.63 0

p57 15001 112.22 0 15002 136.61 0 15119 195.30 0

p58 16 0.21 4 15001 186.32 0 15199 224.30 0

p59 15001 134.75 0 27 0.14 6 64 0.18 6

p60 86 0.52 3 24 0.20 2 10015 52.22 0

p61 14 0.07 6 15001 155.03 0 70 0.22 6

p62 15001 121.53 0 33 0.14 8 15121 165.26 0

p63 10 0.04 2 10 0.05 2 946 4.01 2

p64 6 0.05 1 59 0.29 5 10 0.04 5

p65 17 0.12 4 17 0.07 4 49 0.11 4

p66 14 0.07 6 128 0.43 6 59 0.18 6

p67 15001 150.51 0 97 0.80 11 203 0.90 11

p68 21 0.08 4 15001 146.90 0 42 0.11 6

p69 16 0.06 6 36 0.12 4 60 0.16 6

p70 16 0.07 6 28 0.07 3 46 0.09 6

p71 6 0.02 1 9 0.02 2 9 0.04 2

p72 17 0.05 4 15007 118.58 0 25 0.09 4

p73 6 0.02 1 9 0.02 2 11 0.02 2

p74 15001 110.16 0 37 0.24 7 15126 179.95 0

p75 13 0.07 5 36 0.28 5 1810 7.65 5

p76 10 0.02 2 15008 108.83 0 16 0.04 2

p77 9 0.02 2 9 0.01 2 12 0.04 2

p78 17 0.06 4 39 0.14 4 26 0.09 4

p79 6 0.01 1 6 0.02 1 11 0.02 1

p80 13 0.10 5 62 0.47 9 15046 72.45 0

p81 14 0.07 6 15001 164.21 0 75 0.23 6

p82 15003 163.58 0 52 0.24 6 72 0.16 6

p83 20 0.07 4 15013 136.95 0 27 0.09 4

p84 23 0.16 3 21 0.18 2 15029 75.35 0

p85 6 0.03 1 9 0.05 2 17 0.05 2

p86 6 0.01 1 9 0.03 2 9 0.00 2

p87 15001 98.43 0 31 0.16 4 15155 197.17 0

p88 39 0.32 8 15015 148.63 0 15202 201.55 0

p89 65 0.42 11 421 3.80 9 15170 203.33 0

p90 33 0.27 9 38 0.29 7 15119 125.75 0

p91 55 1.97 11 53 1.46 11 15543 259.51 0

p92 9 0.02 2 9 0.01 2 11 0.02 2

p93 15001 125.85 0 179 1.04 10 284 1.28 6

p94 20 0.32 5 22 0.28 5 128 0.40 5

p95 19 0.10 5 21 0.10 5 52 0.11 5

p96 15002 150.75 0 179 1.27 13 3791 20.12 10

p97 19 0.11 4 17 0.07 4 58 0.14 4

p98 24 0.47 6 26 0.18 6 145 0.58 6

p99 13 0.05 5 34 0.14 5 81 0.20 5

p100 34 0.61 8 191 1.24 12 15208 168.89 0

APPENDIX B. THE BLOCKSWORLD DOMAIN 265

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p101 15001 202.92 0 20 0.22 3 15048 114.88 0

p102 15001 117.51 0 15001 150.33 0 20 0.07 3

p103 15 0.08 4 17 0.04 4 36 0.13 4

p104 6 0.03 1 9 0.06 2 19 0.07 2

p105 12 0.26 3 12 0.27 3 131 0.43 3

p106 27 0.92 8 26 0.32 6 15048 114.88 0

p107 31 0.64 3 15001 160.69 0 15112 94.73 0

p108 883 3.39 8 12 0.05 3 34 0.09 3

p109 13 0.03 3 13 0.02 3 17 0.05 3

p110 51 3.76 11 47 1.54 5 15048 114.88 0

p111 17 0.14 6 34 0.43 6 370 1.89 6

p112 47 0.31 7 88 0.40 5 205 0.61 5

p113 15001 66.45 0 15025 88.54 0 15023 81.81 0

p114 16 0.15 6 57 0.60 6 229 0.94 6

p115 15 0.42 4 17 0.10 4 111 0.36 4

p116 16 0.07 6 36 0.14 6 68 0.20 6

p117 15001 137.17 0 15001 160.69 0 15048 114.88 0

p118 9 0.04 2 9 0.02 2 14 0.07 2

p119 52 0.85 12 33 0.39 4 15130 135.00 0

p120 24 0.63 6 26 0.19 6 15028 84.94 0

p121 57 0.60 8 63 0.49 8 15229 216.61 0

p122 6 0.02 1 6 0.03 1 16 0.02 1

p123 6 0.01 1 6 0.03 1 16 0.02 1

p124 45 0.45 10 42 0.26 10 15185 215.62 0

p125 12 0.04 3 13 0.03 3 22 0.05 3

p126 12 0.06 3 13 0.03 3 31 0.05 3

p127 34 0.07 2 22 0.04 2 35 0.07 2

p128 10 0.04 2 10 0.04 2 24 0.05 2

p129 17 0.06 4 17 0.04 4 142 0.65 4

p130 9 0.03 2 9 0.02 2 12 0.04 2

p131 17 0.05 4 17 0.05 4 292 1.55 4

p132 15001 114.30 0 15001 146.32 0 20 0.05 3

p133 19 0.08 3 13 0.05 3 35 0.07 3

p134 19 0.07 3 13 0.04 3 35 0.07 3

p135 9 0.03 2 9 0.01 2 12 0.04 2

p136 9 0.03 2 9 0.02 2 11 0.04 2

p137 9 0.02 2 9 0.02 2 12 0.04 2

p138 9 0.03 2 9 0.02 2 13 0.05 2

p139 6 0.03 1 6 0.00 1 16 0.04 1

p140 6 0.02 1 6 0.01 1 16 0.02 1

p141 9 0.02 2 9 0.02 2 12 0.02 2

p142 12 0.06 3 13 0.04 3 31 0.05 3

p143 34 0.06 2 22 0.03 2 35 0.07 2

p144 9 0.03 2 9 0.02 2 12 0.04 2

p145 17 0.05 4 15001 114.36 0 15140 193.46 0

p146 31 0.16 6 27 0.10 6 15127 199.19 0

p147 16 0.06 6 48 0.18 6 77 0.23 6

p148 15001 115.77 0 15001 151.22 0 20 0.05 3

p149 21 0.11 5 21 0.11 5 22 0.09 3

p150 19 0.08 3 13 0.07 3 46 0.13 3

APPENDIX B. THE BLOCKSWORLD DOMAIN 266

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p151 35 0.20 5 21 0.11 5 144 0.38 9

p152 14 0.07 6 58 0.20 6 15113 223.13 0

p153 13 0.02 3 13 0.02 3 22 0.04 3

p154 15001 100.82 0 29 0.11 7 15028 130.73 0

p155 17 0.06 4 17 0.07 4 442 2.74 4

p156 23 0.13 7 42 0.23 7 90 0.27 7

p157 15001 75.09 0 15013 150.04 0 22 0.05 3

p158 15001 81.17 0 15001 177.96 0 20 0.07 3

p159 89 0.95 13 15010 126.03 0 15159 162.02 0

p160 19 0.11 5 21 0.09 5 90 0.34 5

p161 62 0.31 2 48 0.17 5 1735 6.71 9

p162 15 0.10 5 20 0.10 3 59 0.13 3

p163 17 0.06 4 15001 119.55 0 43 0.09 4

p164 13 0.07 3 13 0.08 3 42 0.07 3

p165 15013 115.96 0 15005 128.78 0 42 0.09 4

p166 69 0.22 5 13 0.04 3 23 0.05 3

p167 6 0.03 1 15010 116.76 0 9 0.04 5

p168 17 0.06 4 42 0.15 4 25 0.09 6

p169 17 0.05 4 15001 114.59 0 25 0.09 4

p170 15001 128.67 0 33 0.14 8 15113 154.01 0

p171 14 0.06 6 58 0.23 6 15113 225.43 0

p172 10 0.03 2 40 0.10 4 16 0.04 4

p173 14 0.07 6 15001 154.24 0 70 0.18 6

p174 10 0.04 2 13 0.05 3 23 0.04 3

p175 17 0.12 4 15003 150.95 0 56 0.13 4

p176 28 0.19 9 54 0.27 5 92 0.25 6

p177 41 0.47 9 33 0.27 7 133 0.45 9

p178 15004 166.65 0 15005 166.80 0 15277 150.28 0

p179 15001 112.22 0 15002 136.61 0 15119 195.30 0

p180 16 0.21 4 15001 186.32 0 15199 224.30 0

p181 15001 134.75 0 27 0.14 6 64 0.18 6

p182 86 0.52 3 24 0.20 2 10015 52.22 16

p183 14 0.07 6 15001 155.03 0 70 0.22 6

p184 15001 121.53 0 33 0.14 8 15121 165.26 0

p185 15001 112.58 0 15001 166.56 0 15086 83.02 0

p186 10 0.04 2 10 0.05 2 946 4.01 2

p187 15001 89.21 0 15001 90.26 0 15065 100.87 0

p188 15001 96.87 0 15001 106.87 0 15063 100.12 0

p189 17 0.12 4 17 0.07 4 49 0.11 4

p190 15001 80.93 0 15001 151.98 0 15086 106.58 0

p191 14 0.07 6 128 0.43 6 59 0.18 6

p192 15001 91.45 0 15001 97.14 0 15084 111.69 0

p193 15001 150.51 0 97 0.80 11 203 0.90 11

p194 15038 108.15 0 15002 116.95 0 15224 205.51 0

p195 21 0.08 4 15001 146.90 0 42 0.11 6

p196 16 0.06 6 36 0.12 4 60 0.16 6

p197 16 0.07 6 28 0.07 3 46 0.09 6

p198 6 0.02 1 9 0.02 2 9 0.04 2

p199 17 0.05 4 15007 118.58 0 25 0.09 4

p200 6 0.02 1 9 0.02 2 11 0.02 2

APPENDIX B. THE BLOCKSWORLD DOMAIN 267

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p201 15001 110.16 0 37 0.24 7 15126 179.95 0

p202 13 0.07 5 36 0.28 5 1810 7.65 5

p203 10 0.02 2 15008 108.83 0 16 0.04 2

p204 9 0.02 2 9 0.01 2 12 0.04 2

p205 17 0.06 4 39 0.14 4 26 0.09 4

p206 6 0.01 1 6 0.02 1 11 0.02 1

p207 13 0.10 5 62 0.47 9 15046 72.45 0

p208 14 0.07 6 15001 164.21 0 75 0.23 6

p209 15001 103.25 0 15003 151.54 0 15101 177.59 0

p210 15003 163.58 0 52 0.24 6 72 0.16 6

p211 20 0.07 4 15013 136.95 0 27 0.09 4

p212 23 0.16 3 21 0.18 2 15029 75.35 0

p213 6 0.03 1 9 0.05 2 17 0.05 2

p214 6 0.01 1 9 0.03 2 9 0.00 2

p215 15001 98.43 0 31 0.16 4 15155 197.17 0

p216 39 0.32 8 15015 148.63 0 15202 201.55 0

p217 65 0.42 11 421 3.80 9 15170 203.33 0

p218 33 0.27 9 38 0.29 7 15119 125.75 0

p219 55 1.97 11 53 1.46 11 15543 259.51 0

p220 9 0.02 2 9 0.01 2 11 0.02 2

p221 15001 125.85 0 179 1.04 10 284 1.28 6

p222 20 0.32 5 22 0.28 5 128 0.40 5

p223 19 0.10 5 21 0.10 5 52 0.11 5

p224 15002 150.75 0 179 1.27 13 3791 20.12 10

p225 19 0.11 4 17 0.07 4 58 0.14 4

p226 24 0.47 6 26 0.18 6 145 0.58 6

p227 13 0.05 5 34 0.14 5 81 0.20 5

p228 34 0.61 8 191 1.24 12 15208 168.89 0

p229 15001 202.92 0 20 0.22 3 15048 114.88 0

p230 15001 117.51 0 15001 150.33 0 20 0.07 3

p231 15 0.08 4 17 0.04 4 36 0.13 4

p232 6 0.03 1 9 0.06 2 19 0.07 2

p233 12 0.26 3 12 0.27 3 131 0.43 3

p234 27 0.92 8 26 0.32 6 15048 114.88 0

p235 31 0.64 3 15001 160.69 0 15112 94.73 0

p236 883 3.39 8 12 0.05 3 34 0.09 3

p237 13 0.03 3 13 0.02 3 17 0.05 3

p238 51 3.76 11 47 1.54 5 15048 114.88 0

p239 17 0.14 6 34 0.43 6 370 1.89 6

p240 47 0.31 7 88 0.40 5 205 0.61 5

p241 103 1.30 11 15001 142.29 0 15110 104.89 0

p242 15001 66.45 0 15025 88.54 0 15023 81.81 0

p243 16 0.15 6 57 0.60 6 229 0.94 6

p244 15 0.42 4 17 0.10 4 111 0.36 4

p245 16 0.07 6 36 0.14 6 68 0.20 6

p246 15001 137.17 0 15001 160.69 0 15048 114.88 0

p247 9 0.04 2 9 0.02 2 14 0.07 2

p248 52 0.85 12 33 0.39 4 15130 135.00 0

p249 24 0.63 6 26 0.19 6 15028 84.94 0

p250 57 0.60 8 63 0.49 8 15229 216.61 0

Appendix C

The towers of Hanoi domain

This version of the blocksworld is taken from the Prodigy distribution, but

was extended to four disks instead of three disks.

All experiments were run on an IBM PC compatible computer with 16

MB of RAM and a 486-DX66 processor. The tables below compare DoLit-

tle running in Prodigy emulation mode (abstractions o�, no general op-

erators, relevant operator selection method) to two di�erent multi-strategy

planners (PC-MSP-O and DoLittle) and three single strategy planners

(Cases, macros, abstractions), based on the learning methods described in

chapter ??.

C.1 Randomly generating problems in the

towers of Hanoi

This section describes the method used to create a random problem in the

towers of Hanoi domain. First, an initial state is created by placing disks on

the three pegs at random. Since a state in the towers of Hanoi domain is

only legal, if no bigger disk is on top of a smaller disk, this �xes the order of

the disks on the pegs. Then, a goal state is created using the same algorithm

268

APPENDIX C. THE TOWERS OF HANOI DOMAIN 269

and converted into a goal conjunction. Then literals that di�er between the

inital state and the goal state are collected and used to generate the goal

statement.

C.2 Domain speci�cation of the towers of

Hanoi domain

The representation of the towers of Hanoi domain is taken from the Prodigy

distribution and has been used by many other researchers.

;; The towers of Hanoi domain

(create-problem-space 'dl-abs-hanoi :current t)

(ptype-of Peg :top-type)

(ptype-of Disk :top-type)

(pinstance-of disk1 Disk)

(pinstance-of disk2 Disk)

(pinstance-of disk3 Disk)

(pinstance-of disk4 Disk)

(OPERATOR

Move-Small-Disk

(params <from> <to>)

(preconds

((<from> Peg)

(<to> Peg))

(and (on disk1 <from>)

(~ (on disk1 <to>))))

(effects

()

((del (on disk1 <from>))

(add (on disk1 <to>)))))

(OPERATOR

Move-Medium-Disk

APPENDIX C. THE TOWERS OF HANOI DOMAIN 270

(params <from> <to>)

(preconds

((<from> Peg)

(<to> Peg))

(and (on disk2 <from>)

(~ (on disk1 <from>))

(~ (on disk1 <to>))))

(effects

()

((del (on disk2 <from>))

(add (on disk2 <to>)))))

(OPERATOR

Move-Large-Disk

(params <from> <to>)

(preconds

((<from> Peg)

(<to> Peg))

(and (on disk3 <from>)

(~ (on disk1 <from>))

(~ (on disk2 <from>))

(~ (on disk1 <to>))

(~ (on disk2 <to>))))

(effects

()

((del (on disk3 <from>))

(add (on disk3 <to>)))))

(OPERATOR

Move-Huge-Disk

(params <from> <to>)

(preconds

((<from> Peg)

(<to> Peg))

(and (on disk4 <from>)

(~ (on disk1 <from>))

(~ (on disk2 <from>))

(~ (on disk3 <from>))

(~ (on disk1 <to>))

(~ (on disk2 <to>))

APPENDIX C. THE TOWERS OF HANOI DOMAIN 271

(~ (on disk3 <to>))))

(effects

()

((del (on disk4 <from>))

(add (on disk4 <to>)))))

The following is an example problem speci�cation. The problem is to

move the three smaller disks from Peg2 to Peg1 and the huge disk from

Peg3 to Peg2.

;;; Problem automatically generated by DoLittle

(setf (current-problem)

(create-problem

(name p20)

(objects

(objects-are peg1 peg2 peg3 Peg))

(state

(and (on disk1 peg2)(on disk2 peg2)

(on disk3 peg2)(on disk4 peg3)))

(goal (and (on disk1 peg1)(on disk2 peg1)

(on disk3 peg1)(on disk4 peg2)))))

C.3 Empirical results in the towers of Hanoi

This section summarizes the results of the experiments in the towers of Hanoi

domain in a table. The table contains the following columns:

� Prob is the problem number.

� Nodes is the total number of nodes expanded during the search. A

maximum limit of 15; 000 nodes was used in all tests. Because the

planner synchronizes only after certain node types, there is a chance

that slightly more nodes are expanded.

APPENDIX C. THE TOWERS OF HANOI DOMAIN 272

� Time is the total CPU time used. There was a time limit of 600 CPU

seconds imposed. However, in these experiments the node limit was

the determining factor, since it was exceeded �rst.

� Len is the number of primitive operators in the solution. It is 0 if no

solution exist or no solution was found within the resource limit.

APPENDIX C. THE TOWERS OF HANOI DOMAIN 273

Prob Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p1 12 0.01 2 6 0.01 1 6 0.01 1

p2 3 0.01 0 3 0.00 0 3 0 0

p3 15001 125.7 0 6 0.01 1 9 0.02 1

p4 34 0.06 7 17 0.05 4 17 0.05 4

p5 15001 134.2 0 22 0.15 0 22 0.15 14

p6 3 0 0 3 0.00 0 3 0 0

p7 15001 160.99 0 15001 96.38 0 15001 96.49 0

p8 15001 75.38 0 18 0.08 0 18 0.08 10

p9 944 3.25 16 15001 77.78 0 15001 78.64 0

p10 15001 130.66 0 137 1.20 0 15001 119.12 0

p11 6 0.01 1 6 0.01 1 6 0.02 1

p12 15001 213.26 0 15001 151.7 0 15001 152.3 0

p13 15001 130.73 0 20 0.09 0 20 0.09 4

p14 11 0.01 2 6 0.01 1 6 0.01 1

p15 15001 126.02 0 27 0.10 5 27 0.08 5

p16 7 0.01 1 6 0.01 1 6 0.01 1

p17 15001 78.99 0 15001 150.2 0 15001 154.82 0

p18 15001 220.25 0 45 0.28 0 45 0.28 11

p19 3 0 0 3 0.00 0 3 0.01 0

p20 34 0.05 7 17 0.05 4 17 0.06 4

p21 10 0.01 2 10 0.03 2 10 0.03 2

p22 24 0.04 5 24 0.06 4 24 0.07 4

p23 17 0.02 4 19 0.06 4 19 0.06 4

p24 197 0.43 7 10 0.03 2 10 0.02 2

p25 3 0.01 0 3 0.00 0 3 0 0

p26 15001 96.32 0 15001 81.71 0 15001 81.51 0

p27 15001 141.93 0 30 0.17 0 30 0.18 6

p28 25 0.04 5 19 0.07 4 19 0.05 4

p29 15001 117.36 0 25 0.12 0 25 0.1 5

p30 1968 5.11 7 6 0.01 1 6 0 1

p31 15001 48.75 0 13 0.03 3 13 0.03 3

p32 3 0 0 3 0.00 0 3 0 0

p33 10 0.02 2 10 0.03 2 10 0.03 2

p34 24 0.03 5 19 0.05 4 19 0.06 4

p35 24 0.04 5 21 0.06 4 21 0.05 4

p36 6 0.01 1 6 0.01 1 6 0.01 1

p37 7 0 1 6 0.01 1 6 0.01 1

p38 1968 5.51 7 6 0.01 1 6 0.01 1

p39 11 0.02 2 6 0.01 1 6 0.01 1

p40 15001 160.37 0 15001 153.5 0 44 0.28 14

p41 6 0.01 1 6 0.01 1 6 0.01 1

p42 36 0.07 8 10 0.02 2 10 0.03 2

p43 3 0 0 3 0.01 0 3 0 0

p44 10 0.02 2 6 0.01 1 6 0.01 1

p45 17 0.02 4 19 0.05 4 19 0.07 4

p46 982 3.55 17 15001 69.27 0 15001 71.18 0

p47 3 0 0 3 0.01 0 3 0 0

p48 15 0.02 3 10 0.01 2 10 0.03 2

p49 35 0.04 3 10 0.03 2 32 0.13 3

p50 11 0.02 2 6 0.00 1 6 0.02 1

APPENDIX C. THE TOWERS OF HANOI DOMAIN 274

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p51 15001 110.11 0 10 0.04 2 32 0.13 3

p52 3 0.01 0 3 0.01 0 3 0 0

p53 10 0.01 2 6 0.01 1 6 0.01 1

p54 95 0.24 11 37 0.17 0 37 0.17 7

p55 7 0.02 1 6 0.01 1 6 0.01 1

p56 7 0.01 1 6 0.01 1 6 0.02 1

p57 6 0.01 1 6 0.01 1 6 0.01 1

p58 15001 59.39 0 15001 82.89 0 15001 82.48 0

p59 15001 78.42 0 15001 84.58 0 15001 86.01 0

p60 15001 93.24 0 15001 104.8 0 15001 104.74 0

p61 6 0 1 6 0.01 1 6 0 1

p62 13 0.02 3 10 0.03 2 10 0.03 2

p63 116 0.24 9 22 0.06 0 22 0.09 6

p64 943 3.18 16 53 0.26 0 53 0.28 9

p65 15001 121.36 0 22 0.13 0 15001 106.02 0

p66 35 0.05 3 10 0.03 2 10 0.03 2

p67 11 0.01 2 6 0.01 1 6 0.01 1

p68 15001 88.37 0 33 0.15 0 33 0.14 6

p69 15001 41.39 0 19 0.04 3 19 0.05 3

p70 10 0.02 2 6 0.02 1 6 0.01 1

p71 15001 76.78 0 19 0.10 7 38 0.19 7

p72 15001 44.14 0 20 0.05 3 20 0.05 3

p73 15001 166.76 0 15001 163.0 0 15001 161.81 0

p74 6 0.01 1 6 0.01 1 6 0.01 1

p75 15001 149.55 0 43 0.24 0 43 0.2 8

p76 834 3.9 20 19 0.10 11 43 0.33 11

p77 12 0.01 2 6 0.00 1 6 0.02 1

p78 17 0.03 4 19 0.03 4 19 0.04 4

p79 14 0.02 3 10 0.03 2 10 0.03 2

p80 15001 90.85 0 15001 128.6 0 15001 128.52 0

p81 15001 76.73 0 15001 114.8 0 15001 115.27 0

p82 7 0.01 1 6 0.02 1 6 0.01 1

p83 6 0 1 6 0.01 1 6 0.01 1

p84 15001 78.71 0 14 0.05 6 14 0.05 6

p85 26 0.03 6 29 0.07 5 29 0.07 5

p86 39 0.09 9 14 0.06 3 18 0.07 3

p87 15001 98.94 0 20 0.05 4 20 0.07 4

p88 15001 86.39 0 10 0.04 2 24 0.08 2

p89 15001 109.53 0 10 0.04 2 32 0.12 3

p90 3 0 0 3 0.01 0 3 0.01 0

p91 3 0 0 3 0.00 0 3 0 0

p92 6 0.01 1 6 0.02 1 6 0.01 1

p93 15001 232.6 0 105 0.88 0 105 0.87 19

p94 3 0.01 0 3 0.01 0 3 0.01 0

p95 1968 5.17 7 6 0.01 1 6 0.01 1

p96 16 0.02 3 10 0.03 2 10 0.03 2

p97 11 0.02 2 6 0.00 1 6 0.02 1

p98 12 0.01 2 6 0.01 1 6 0.01 1

p99 3 0 0 3 0.01 0 3 0 0

p100 3 0.01 0 3 0.01 0 3 0 0

APPENDIX C. THE TOWERS OF HANOI DOMAIN 275

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p101 3 0.01 0 3 0.00 0 3 0 0

p102 7 0.01 1 6 0.02 1 6 0.01 1

p103 15001 141.22 0 9 0.02 2 13 0.03 2

p104 12 0.01 2 6 0.01 1 6 0.02 1

p105 3 0 0 3 0.00 0 3 0 0

p106 15001 98.64 0 25 0.12 0 25 0.12 5

p107 15001 45.15 0 13 0.03 3 13 0.03 3

p108 6 0.01 1 6 0.00 1 6 0.01 1

p109 12 0.01 2 6 0.02 1 6 0.01 1

p110 7 0 1 6 0.01 1 6 0.01 1

p111 10 0.02 2 10 0.03 2 10 0.02 2

p112 15001 140.51 0 15001 112.8 0 15001 113.09 0

p113 12 0.01 2 6 0.00 1 6 0.01 1

p114 12 0 2 6 0.02 1 6 0.02 1

p115 15001 190.43 0 15001 109.5 0 15001 111.33 0

p116 7 0.01 1 6 0.01 1 6 0.02 1

p117 36 0.07 8 10 0.03 2 10 0.04 2

p118 15001 116.32 0 17 0.09 9 17 0.08 9

p119 10 0.01 2 6 0.01 1 6 0.01 1

p120 25 0.04 5 23 0.07 4 23 0.06 4

p121 3 0.01 0 3 0.00 0 3 0 0

p122 6 0.01 1 6 0.01 1 6 0.01 1

p123 15001 134.29 0 33 0.13 0 33 0.16 6

p124 15001 100.18 0 39 0.22 0 39 0.23 8

p125 6 0.01 1 6 0.01 1 6 0.01 1

p126 195 0.36 7 10 0.02 2 10 0.03 2

p127 3 0.01 0 3 0.01 0 3 0 0

p128 15001 126.72 0 70 0.28 9 73 0.29 9

p129 12 0.02 2 6 0.01 1 6 0.01 1

p130 86 0.16 8 10 0.03 2 10 0.03 2

p131 15001 221.14 0 15001 99.62 0 15001 99.93 0

p132 11 0.01 2 6 0.01 1 6 0.01 1

p133 15001 101.41 0 19 0.10 9 35 0.17 9

p134 6 0 1 6 0.01 1 6 0 1

p135 3 0 0 3 0.00 0 3 0.01 0

p136 15001 187.35 0 15001 85.06 0 15001 83.11 0

p137 6 0.01 1 6 0.01 1 6 0.01 1

p138 6 0.01 1 6 0.01 1 6 0.01 1

p139 195 0.4 7 10 0.01 2 10 0.03 2

p140 15001 75.64 0 31 0.10 0 31 0.14 8

p141 3 0.01 0 3 0.00 0 3 0.01 0

p142 15001 230.84 0 15001 154.6 0 15001 155.13 0

p143 36 0.04 3 10 0.04 2 32 0.11 3

p144 15001 207.29 0 15001 110.6 0 15001 111.08 0

p145 86 0.15 8 10 0.04 2 10 0.03 2

p146 15001 110.24 0 15001 124.4 0 15001 127.1 0

p147 3 0.01 0 3 0.00 0 3 0.01 0

p148 49 0.05 3 10 0.01 2 10 0.04 2

p149 24 0.02 5 24 0.07 4 24 0.07 4

p150 7 0 1 6 0.01 1 6 0 1

APPENDIX C. THE TOWERS OF HANOI DOMAIN 276

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p151 12 0.01 2 6 0.01 1 6 0.01 1

p152 15001 86.32 0 18 0.09 9 39 0.21 9

p153 20 0.03 5 21 0.05 4 21 0.05 4

p154 6 0 1 6 0.01 1 6 0.01 1

p155 943 3.14 16 53 0.30 0 53 0.29 9

p156 12 0.02 2 6 0.01 1 6 0.02 1

p157 3368 7.95 5 10 0.03 2 10 0.03 2

p158 15001 71.98 0 15001 82.69 0 15001 82.93 0

p159 15001 53.29 0 10 0.03 2 10 0.02 2

p160 812 3.01 17 31 0.18 0 31 0.17 8

p161 15001 97.11 0 19 0.10 0 44 0.22 10

p162 7 0 1 6 0.01 1 6 0.01 1

p163 7 0.01 1 6 0.01 1 6 0.01 1

p164 15001 108.84 0 19 0.10 10 43 0.23 10

p165 6 0 1 6 0.01 1 6 0.01 1

p166 7 0.01 1 6 0.00 1 6 0.02 1

p167 10 0 2 6 0.01 1 6 0.01 1

p168 55 0.15 13 64 0.34 0 15001 65.76 0

p169 15001 264.75 0 15001 81.86 0 15001 84.81 0

p170 15001 133.88 0 18 0.05 4 40 0.15 6

p171 15001 45.09 0 19 0.04 3 19 0.04 3

p172 15001 168.53 0 15001 157.7 0 15001 157.82 0

p173 15001 140.86 0 42 0.21 8 42 0.23 8

p174 15 0.01 3 10 0.02 2 10 0.03 2

p175 46 0.08 5 10 0.02 2 10 0.03 2

p176 15001 218.55 0 15001 144.7 0 15001 147.87 0

p177 15001 47.04 0 13 0.04 3 13 0.04 3

p178 15001 107.31 0 37 0.25 0 37 0.26 10

p179 15001 125.8 0 28 0.10 5 28 0.13 5

p180 14 0.02 3 10 0.01 2 10 0.03 2

p181 15001 62.87 0 15001 99.29 0 15001 100.61 0

p182 25 0.03 5 22 0.06 4 22 0.05 4

p183 98 0.17 8 14 0.06 6 37 0.24 7

p184 15001 94.53 0 38 0.26 0 38 0.24 10

p185 15001 97.09 0 15001 127.6 0 15001 128.95 0

p186 15001 43.67 0 10 0.04 2 10 0.02 2

p187 10 0.02 2 6 0.01 1 6 0.02 1

p188 3 0.01 0 3 0.00 0 3 0 0

p189 7 0 1 6 0.01 1 6 0.01 1

p190 15001 225.22 0 31 0.18 0 42 0.31 11

p191 11 0.01 2 6 0.01 1 6 0.02 1

p192 15001 78.59 0 18 0.08 0 18 0.08 10

p193 15001 101.79 0 39 0.23 0 39 0.23 8

p194 15001 95.15 0 25 0.12 0 25 0.12 5

p195 7 0.01 1 6 0.01 1 6 0.02 1

p196 12 0.02 2 6 0.00 1 6 0.01 1

p197 25 0.04 5 19 0.05 4 19 0.06 4

p198 6 0 1 6 0.01 1 6 0.01 1

p199 15001 198.53 0 15001 66.92 0 15001 66.92 0

p200 15001 95.16 0 50 0.39 0 50 0.36 13

APPENDIX C. THE TOWERS OF HANOI DOMAIN 277

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p201 15001 118.67 0 15001 140.9 0 15001 140.93 0

p202 30 0.06 7 10 0.03 2 10 0.03 2

p203 10 0.01 2 10 0.03 2 10 0.03 2

p204 15001 73.01 0 14 0.05 0 15001 76.04 0

p205 15001 41.68 0 19 0.04 3 19 0.04 3

p206 16 0.01 3 10 0.03 2 10 0.02 2

p207 12 0 2 6 0.01 1 6 0.01 1

p208 15001 138.73 0 15001 74.06 0 15001 74.66 0

p209 6 0.01 1 6 0.01 1 6 0.01 1

p210 3 0 0 3 0.01 0 3 0 0

p211 15001 73.1 0 15001 82.00 0 15001 83.79 0

p212 12 0.02 2 6 0.01 1 6 0 1

p213 6 0.01 1 6 0.01 1 6 0.02 1

p214 10 0.01 2 6 0.02 1 6 0.01 1

p215 15001 127.04 0 19 0.09 11 62 0.42 11

p216 6 0.02 1 6 0.00 1 6 0.01 1

p217 10 0.02 2 6 0.01 1 6 0.01 1

p218 15001 264.62 0 15001 91.62 0 15001 93.07 0

p219 33 0.05 7 10 0.02 0 10 0.02 2

p220 15001 44.2 0 20 0.06 3 20 0.04 3

p221 6 0.01 1 6 0.01 1 6 0 1

p222 3 0.01 0 3 0.01 0 3 0.01 0

p223 36 0.06 8 10 0.03 2 10 0.03 2

p224 15001 41.61 0 19 0.05 3 19 0.05 3

p225 15 0.03 3 10 0.02 2 13 0.03 2

p226 11 0.02 2 6 0.01 1 6 0.01 1

p227 85 0.14 8 17 0.04 4 17 0.05 4

p228 10 0.01 2 6 0.01 1 6 0.01 1

p229 15001 128.66 0 27 0.11 5 27 0.1 5

p230 15001 342.09 0 38 0.22 0 38 0.23 7

p231 15001 67.77 0 33 0.15 0 33 0.14 6

p232 15001 44.93 0 20 0.05 3 20 0.05 3

p233 15001 210.53 0 15001 81.03 0 15001 80.62 0

p234 6 0.01 1 6 0.01 1 6 0.01 1

p235 15001 119.96 0 19 0.10 11 62 0.4 11

p236 17 0.02 4 19 0.04 4 19 0.06 4

p237 10 0.02 2 6 0.01 1 6 0.01 1

p238 14 0.02 3 15 0.03 3 15 0.03 3

p239 15001 133.12 0 15001 193.6 0 15001 195.2 0

p240 36 0.07 8 10 0.01 2 10 0.04 2

p241 12 0.01 2 6 0.01 1 6 0.01 1

p242 10 0.02 2 6 0.02 1 6 0.01 1

p243 694 1.53 7 10 0.04 2 10 0.03 2

p244 3 0 0 3 0.01 0 3 0 0

p245 3 0 0 3 0.00 0 3 0 0

p246 15001 255.29 0 15001 94.80 0 15001 94.87 0

p247 3 0.01 0 3 0.00 0 3 0 0

p248 15001 116.58 0 15001 71.49 0 15001 72.08 0

p249 15001 92.05 0 10 0.03 2 13 0.04 2

p250 24 0.04 5 19 0.05 4 19 0.05 4

APPENDIX C. THE TOWERS OF HANOI DOMAIN 278

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p1 6 0.01 1 6 0.02 1 6 0.01 1

p2 3 0.00 0 3 0.01 0 3 0 0

p3 6 0.01 1 13 0.04 3 9 0.02 1

p4 17 0.06 4 17 0.05 4 17 0.05 4

p5 22 0.15 14 90 0.6 14 15001 120.82 0

p6 3 0.00 0 3 0.01 0 3 0 0

p7 15001 189.0 0 15001 206.64 0 15001 96.38 0

p8 18 0.08 10 73 0.34 10 15001 71.44 0

p9 15001 77.89 0 15001 78.1 0 15001 77.78 0

p10 137 1.20 21 162 1.7 25 15001 116.72 0

p11 6 0.01 1 6 0.01 1 6 0.01 1

p12 15001 137.2 0 15001 134.16 0 15001 151.74 0

p13 15001 103.9 0 15001 155.69 0 20 0.09 4

p14 6 0.01 1 9 0.01 2 6 0.01 1

p15 27 0.08 5 27 0.11 5 27 0.1 5

p16 6 0.02 1 6 0.02 1 6 0.01 1

p17 15001 149.6 0 15001 231.1 0 15001 150.26 0

p18 15001 86.84 0 15001 192.21 0 45 0.28 11

p19 3 0.00 0 3 0 0 3 0 0

p20 17 0.06 4 17 0.06 4 17 0.05 4

p21 10 0.03 2 10 0.03 2 10 0.03 2

p22 24 0.07 4 24 0.06 4 24 0.06 4

p23 19 0.05 4 19 0.06 4 19 0.06 4

p24 10 0.03 2 10 0.03 2 10 0.03 2

p25 3 0.00 0 3 0.01 0 3 0 0

p26 15001 211.4 0 15001 406.68 0 15001 81.71 0

p27 15001 104.4 0 15001 103.84 0 30 0.17 6

p28 19 0.05 4 19 0.06 4 19 0.07 4

p29 15001 80.48 0 15001 183.98 0 25 0.12 5

p30 6 0.02 1 6 0 1 6 0.01 1

p31 13 0.03 3 13 0.03 3 13 0.03 3

p32 3 0.00 0 3 0.01 0 3 0 0

p33 10 0.02 2 10 0.02 2 10 0.03 2

p34 19 0.04 4 31 0.13 6 19 0.05 4

p35 21 0.06 4 21 0.04 4 21 0.06 4

p36 6 0.01 1 6 0.02 1 6 0.01 1

p37 6 0.01 1 6 0.01 1 6 0.01 1

p38 6 0.02 1 6 0.01 1 6 0.01 1

p39 6 0.01 1 6 0.01 1 6 0.01 1

p40 15001 85.18 0 15001 105.45 0 15001 153.55 0

p41 6 0.01 1 6 0.02 1 6 0.01 1

p42 10 0.03 2 10 0.03 2 10 0.02 2

p43 3 0.01 0 3 0 0 3 0.01 0

p44 6 0.01 1 6 0.02 1 6 0.01 1

p45 19 0.05 4 19 0.05 4 19 0.05 4

p46 15001 65.40 0 15001 65.34 0 15001 69.27 0

p47 3 0.00 0 3 0 0 3 0.01 0

p48 10 0.02 2 10 0.04 2 10 0.01 2

p49 10 0.03 2 17 0.04 4 32 0.1 3

p50 6 0.01 1 6 0.01 1 6 0 1

APPENDIX C. THE TOWERS OF HANOI DOMAIN 279

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p51 10 0.04 2 17 0.05 4 32 0.12 3

p52 3 0.01 0 3 0 0 3 0.01 0

p53 6 0.01 1 6 0.01 1 6 0.01 1

p54 15001 75.84 0 15001 75.77 0 37 0.17 7

p55 6 0.01 1 6 0.01 1 6 0.01 1

p56 6 0.01 1 6 0 1 6 0.01 1

p57 6 0.01 1 9 0.02 2 6 0.01 1

p58 15001 82.17 0 15001 82.71 0 15001 82.89 0

p59 15001 158.5 0 15001 230.48 0 15001 84.58 0

p60 15001 105.4 0 15001 186.73 0 15001 104.82 0

p61 6 0.01 1 6 0 1 6 0.01 1

p62 10 0.04 2 10 0.03 2 10 0.03 2

p63 15001 67.02 0 15001 168.45 0 22 0.06 6

p64 15001 92.00 0 15001 199.31 0 53 0.26 9

p65 22 0.13 5 15001 84.02 0 15001 105.75 0

p66 10 0.03 2 10 0.02 2 10 0.03 2

p67 6 0.01 1 6 0.01 1 6 0.01 1

p68 15001 105.8 0 15001 150.76 0 33 0.15 6

p69 19 0.04 3 19 0.05 3 19 0.04 3

p70 6 0.01 1 6 0.02 1 6 0.02 1

p71 19 0.10 11 86 0.63 15 38 0.2 7

p72 20 0.05 3 20 0.05 3 20 0.05 3

p73 15001 153.8 0 15002 296.63 0 15001 163.04 0

p74 6 0.02 1 6 0.02 1 6 0.01 1

p75 15001 106.0 0 15001 127.64 0 43 0.24 8

p76 19 0.10 11 87 0.68 15 43 0.28 11

p77 6 0.01 1 6 0.02 1 6 0 1

p78 19 0.06 4 19 0.05 4 19 0.03 4

p79 10 0.04 2 10 0.03 2 10 0.03 2

p80 15001 128.6 0 15001 158.38 0 15001 128.63 0

p81 15001 114.9 0 15001 184.45 0 15001 114.82 0

p82 6 0.01 1 6 0.01 1 6 0.02 1

p83 6 0.01 1 6 0.02 1 6 0.01 1

p84 14 0.05 6 32 0.12 6 32 0.12 6

p85 29 0.08 5 29 0.08 5 29 0.07 5

p86 14 0.06 3 18 0.06 4 18 0.07 3

p87 21 0.07 4 22 0.06 4 20 0.05 4

p88 10 0.04 2 17 0.05 4 24 0.08 2

p89 10 0.04 2 17 0.04 4 32 0.11 3

p90 3 0.01 0 3 0 0 3 0.01 0

p91 3 0.00 0 3 0.01 0 3 0 0

p92 6 0.01 1 9 0.02 2 6 0.02 1

p93 15001 276.8 0 15001 299.22 0 105 0.88 19

p94 3 0.00 0 3 0 0 3 0.01 0

p95 6 0.01 1 6 0.01 1 6 0.01 1

p96 10 0.04 2 10 0.03 2 10 0.03 2

p97 6 0.01 1 6 0 1 6 0 1

p98 6 0.00 1 6 0.01 1 6 0.01 1

p99 3 0.01 0 3 0.01 0 3 0.01 0

p100 3 0.00 0 3 0.01 0 3 0.01 0

APPENDIX C. THE TOWERS OF HANOI DOMAIN 280

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p101 3 0.01 0 3 0.01 0 3 0 0

p102 6 0.01 1 6 0.01 1 6 0.02 1

p103 10 0.03 2 9 0.02 2 13 0.03 2

p104 6 0.01 1 6 0.01 1 6 0.01 1

p105 3 0.00 0 3 0.01 0 3 0 0

p106 15001 80.49 0 116 0.95 17 25 0.12 5

p107 13 0.03 3 13 0.04 3 13 0.03 3

p108 6 0.01 1 6 0.02 1 6 0 1

p109 6 0.01 1 6 0.01 1 6 0.02 1

p110 6 0.00 1 6 0.02 1 6 0.01 1

p111 10 0.03 2 10 0.03 2 10 0.03 2

p112 15001 108.3 0 15001 242.25 0 15001 112.86 0

p113 6 0.01 1 6 0.01 1 6 0 1

p114 6 0.01 1 6 0.01 1 6 0.02 1

p115 15001 110.3 0 15001 109.83 0 15001 109.58 0

p116 6 0.02 1 6 0 1 6 0.01 1

p117 10 0.03 2 10 0.03 2 10 0.03 2

p118 17 0.09 9 46 0.23 9 46 0.25 9

p119 6 0.01 1 6 0 1 6 0.01 1

p120 23 0.06 4 23 0.06 4 23 0.07 4

p121 3 0.00 0 3 0 0 3 0 0

p122 6 0.01 1 6 0.01 1 6 0.01 1

p123 15001 71.97 0 15001 72.03 0 33 0.13 6

p124 15001 83.12 0 15001 185.26 0 39 0.22 8

p125 6 0.01 1 6 0.01 1 6 0.01 1

p126 10 0.02 2 10 0.03 2 10 0.02 2

p127 3 0.00 0 3 0.01 0 3 0.01 0

p128 70 0.30 9 70 0.28 9 73 0.3 9

p129 6 0.01 1 6 0.01 1 6 0.01 1

p130 10 0.04 2 10 0.04 2 10 0.03 2

p131 15001 100.3 0 15001 175.94 0 15001 99.62 0

p132 6 0.01 1 6 0 1 6 0.01 1

p133 19 0.10 11 48 0.3 11 35 0.18 9

p134 6 0.01 1 6 0.01 1 6 0.01 1

p135 3 0.01 0 3 0 0 3 0 0

p136 15001 200.7 0 15001 89.95 0 15001 85.06 0

p137 6 0.01 1 6 0.02 1 6 0.01 1

p138 6 0.00 1 6 0.01 1 6 0.01 1

p139 10 0.03 2 10 0.03 2 10 0.01 2

p140 15001 73.20 0 15001 173.71 0 31 0.1 8

p141 3 0.00 0 3 0 0 3 0 0

p142 15001 153.7 0 15001 154.38 0 15001 154.65 0

p143 10 0.04 2 17 0.06 4 32 0.12 3

p144 15001 86.03 0 15001 193.03 0 15001 110.62 0

p145 10 0.01 2 10 0.03 2 10 0.04 2

p146 15001 133.4 0 15001 289.47 0 15001 124.4 0

p147 3 0.00 0 3 0.01 0 3 0 0

p148 10 0.03 2 10 0.04 2 10 0.01 2

p149 24 0.07 4 24 0.08 4 24 0.07 4

p150 6 0.00 1 9 0.02 2 6 0.01 1

APPENDIX C. THE TOWERS OF HANOI DOMAIN 281

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p151 6 0.01 1 9 0.01 2 6 0.01 1

p152 18 0.09 10 56 0.27 10 39 0.2 9

p153 21 0.06 4 21 0.07 4 21 0.05 4

p154 6 0.01 1 6 0.01 1 6 0.01 1

p155 15001 92.16 0 15001 199.63 0 53 0.3 9

p156 6 0.01 1 6 0.02 1 6 0.01 1

p157 10 0.02 2 10 0.02 2 10 0.03 2

p158 15001 128.1 0 15001 196.78 0 15001 82.69 0

p159 10 0.03 2 10 0.04 2 10 0.03 2

p160 15001 67.18 0 15001 175.01 0 31 0.18 8

p161 19 0.10 11 15001 188.93 0 44 0.24 10

p162 6 0.02 1 6 0 1 6 0.01 1

p163 6 0.01 1 6 0.01 1 6 0.01 1

p164 19 0.10 11 48 0.34 11 43 0.23 10

p165 6 0.00 1 6 0.02 1 6 0.01 1

p166 6 0.01 1 6 0.01 1 6 0 1

p167 6 0.02 1 6 0.01 1 6 0.01 1

p168 15001 65.67 0 64 0.34 11 15001 73.11 0

p169 15001 97.16 0 15001 97.17 0 15001 81.86 0

p170 33 0.13 6 18 0.05 4 40 0.14 6

p171 19 0.06 3 19 0.05 3 19 0.04 3

p172 15001 211.9 0 15001 115.45 0 15001 157.73 0

p173 67 0.42 12 67 0.4 12 42 0.21 8

p174 10 0.03 2 10 0.03 2 10 0.02 2

p175 10 0.04 2 10 0.02 2 10 0.02 2

p176 15001 91.38 0 15001 200.11 0 15001 144.72 0

p177 13 0.04 3 13 0.04 3 13 0.04 3

p178 15001 83.74 0 15001 189.33 0 37 0.25 10

p179 138 0.58 13 139 0.57 13 28 0.1 5

p180 10 0.04 2 10 0.02 2 10 0.01 2

p181 15001 104.3 0 15001 96.24 0 15001 99.29 0

p182 22 0.05 4 22 0.06 4 22 0.06 4

p183 14 0.06 6 29 0.11 6 37 0.23 7

p184 15001 72.81 0 112 0.87 16 38 0.26 10

p185 15001 128.6 0 15001 240.86 0 15001 127.64 0

p186 10 0.03 2 10 0.03 2 10 0.04 2

p187 6 0.02 1 9 0.02 2 6 0.01 1

p188 3 0.01 0 3 0 0 3 0 0

p189 6 0.01 1 6 0.01 1 6 0.01 1

p190 31 0.18 13 15001 231.92 0 42 0.3 11

p191 6 0.00 1 6 0.01 1 6 0.01 1

p192 18 0.08 10 73 0.32 10 15001 71.51 0

p193 15001 84.42 0 15001 190.16 0 39 0.23 8

p194 15001 109.8 0 15001 155.24 0 25 0.12 5

p195 6 0.01 1 6 0.01 1 6 0.01 1

p196 6 0.02 1 6 0.02 1 6 0 1

p197 19 0.06 4 19 0.05 4 19 0.05 4

p198 6 0.00 1 6 0.01 1 6 0.01 1

p199 15001 67.32 0 15001 69.07 0 15001 66.92 0

p200 15001 99.19 0 15001 214.93 0 50 0.39 13

APPENDIX C. THE TOWERS OF HANOI DOMAIN 282

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p201 15001 90.27 0 15001 91.69 0 15001 140.95 0

p202 10 0.03 2 13 0.03 3 10 0.03 2

p203 10 0.02 2 10 0.02 2 10 0.03 2

p204 14 0.05 6 32 0.13 6 15001 75.68 0

p205 19 0.05 3 19 0.04 3 19 0.04 3

p206 10 0.03 2 10 0.03 2 10 0.03 2

p207 6 0.02 1 9 0.03 2 6 0.01 1

p208 15001 96.40 0 15001 107.26 0 15001 74.06 0

p209 6 0.01 1 6 0.02 1 6 0.01 1

p210 3 0.01 0 3 0 0 3 0.01 0

p211 15001 128.7 0 15001 197.87 0 15001 82 0

p212 6 0.02 1 6 0.01 1 6 0.01 1

p213 6 0.01 1 6 0 1 6 0.01 1

p214 6 0.02 1 6 0.01 1 6 0.02 1

p215 19 0.09 11 60 0.43 12 62 0.39 11

p216 6 0.01 1 9 0.01 2 6 0 1

p217 6 0.01 1 6 0.01 1 6 0.01 1

p218 15001 92.37 0 15001 103.78 0 15001 91.62 0

p219 10 0.03 2 15001 82.82 0 10 0.02 2

p220 20 0.04 3 20 0.06 3 20 0.06 3

p221 6 0.02 1 6 0.01 1 6 0.01 1

p222 3 0.00 0 3 0 0 3 0.01 0

p223 10 0.03 2 10 0.03 2 10 0.03 2

p224 19 0.04 3 19 0.05 3 19 0.05 3

p225 10 0.02 2 13 0.03 3 13 0.02 2

p226 6 0.01 1 6 0.01 1 6 0.01 1

p227 17 0.05 4 17 0.06 4 17 0.04 4

p228 6 0.01 1 6 0.01 1 6 0.01 1

p229 27 0.11 5 27 0.1 5 27 0.11 5

p230 15001 105.5 0 15001 198.87 0 38 0.22 7

p231 15001 75.13 0 15001 75.21 0 33 0.15 6

p232 20 0.05 3 20 0.05 3 20 0.05 3

p233 15001 181.8 0 15001 279.42 0 15001 81.03 0

p234 6 0.01 1 6 0 1 6 0.01 1

p235 19 0.10 11 60 0.46 12 62 0.4 11

p236 19 0.05 4 19 0.06 4 19 0.04 4

p237 6 0.01 1 6 0.01 1 6 0.01 1

p238 15 0.04 3 15 0.04 3 15 0.03 3

p239 15001 150.3 0 15001 276.97 0 15001 193.6 0

p240 10 0.04 2 10 0.03 2 10 0.01 2

p241 6 0.01 1 6 0.01 1 6 0.01 1

p242 6 0.01 1 6 0.01 1 6 0.02 1

p243 10 0.02 2 10 0.02 2 10 0.04 2

p244 3 0.01 0 3 0.01 0 3 0.01 0

p245 3 0.01 0 3 0 0 3 0 0

p246 15001 88.56 0 15001 106.23 0 15001 94.8 0

p247 3 0.01 0 3 0.01 0 3 0 0

p248 15001 71.73 0 15001 72.11 0 15001 71.49 0

p249 10 0.03 2 13 0.04 3 13 0.02 2

p250 19 0.03 4 19 0.06 4 19 0.05 4

Appendix D

The kitchen domain

The kitchen domain simulates a one armed mobile robot that can make

di�erent beverages. Chapter ?? contains a more detailed description of the

kitchen domain. The kitchen domain consists of 51 objects and 51 operators.

All experiments were run on an IBM PC compatible computer with 16

MB of RAM and a 486-DX66 processor. The tables below compare DoLit-

tlerunning in Prodigy emulation mode (abstractions o�, no general op-

erators, relevant operator selection method) to two di�erent multi-strategy

planners (PC-MSP-O and DoLittle) and three single strategy planners

(Cases, macros, abstractions), based on the learning methods described in

chapter ??.

Since DoLittle's planning bias learners currently only learn from suc-

cess, the di�culty of the problems in the training phase and test phase was

gradually increased. The test phase consisted of 150 problems.

283

APPENDIX D. THE KITCHEN DOMAIN 284

D.1 Randomly generating problems in the

kitchen

The following algorithm was used to create a random problem in the kitchen

domain. The procedure uses one parameter DIFFICULTY, which ranges

from 1 to 5. After every 30 problems in the training set and every 50 problems

in the test set, the parameter DIFFICULTY is incremented.

In the �rst group (DIFFICULTY=1), goals were restricted to disallow

any goals asking for preparation of beverages (e.g., milk, tea, co�ee). So,

(contains cup1 tea) was not allowed, but (holding cup1) is a possible

goal. In the second group (DIFFICULTY=2), the problems may contain

problems that require �lling a cup with milk or water. The third group

(DIFFICULTY=3) includes problems that require making tea, instant cof-

fee, co�ee. The fourth group (DIFFICULTY=4) includes problems that have

a beverage and one ingredient, e.g., tea with milk. The �fth group (DIFFI-

CULTY=5) contains problems with a drink and two ingredients, e.g., tea

with milk and honey.

First the position of the cups and glasses is calculated. Each cup and glass

is with probability 0:5 on the table and otherwise in the cupboard. Next the

status of the doors is computed similarly (a door is open with probability 0:5).

The number of drinks is a uniformly distributed random variable between 1

and 3. Each drink has an associated container ((Cup1),(Cup2),(Cup3)).

For each container, the type of drink is determined based on the value of

the parameter DIFFICULTY. The possible goals for the �rst group contain

the single literal (contains CupX nothing). The drinks of the second

group contain the ones of the �rst group and also ((contains CupX wa-

ter), (contains CupX milk)). The third group adds drinks that contain

a simple beverage with no ingredients. The beverages are tea, instant co�ee,

and co�ee. In the fourth group, a beverage contains one ingredient (milk,

sugar, ice, and honey). In the �fth group, a beverage may contain two in-

APPENDIX D. THE KITCHEN DOMAIN 285

gredients such as cream and sugar. With probability 0:3, the goal (holding

CupX) is added. With probability 0:3, the conjunct (is-at Robby Loca-

tion) is added to the goal, where (Location) is selected at random from

the four locations of the domain ((at-sink), (at-table), (at-stove), and

(at-fridge)).

D.2 Domain speci�cation of the kitchen do-

main

The following is the description of the kitchen domain in DoLittle's rep-

resentation language.

(create-problem-space 'kitchen :current t)

(ptype-of object :top-type)

(ptype-of movable object)

(ptype-of silverware movable)

(ptype-of fillable movable)

(ptype-of microwavable fillable)

(ptype-of cup microwavable)

(ptype-of glass microwavable)

(ptype-of can fillable)

(ptype-of container movable)

(ptype-of kettle movable)

(ptype-of cutable movable)

(ptype-of location :top-type)

(ptype-of door object)

(ptype-of robot object)

(ptype-of drink object)

APPENDIX D. THE KITCHEN DOMAIN 286

(ptype-of ingredients object)

(pinstance-of knife silverware)

(pinstance-of fork silverware)

(pinstance-of spoon silverware)

(pinstance-of scissors silverware)

; Declare the instances of the different types

(pinstance-of cup1 cup)

(pinstance-of cup2 cup)

(pinstance-of cup3 cup)

(pinstance-of glass1 glass)

(pinstance-of glass2 glass)

(pinstance-of glass3 glass)

(pinstance-of kettle1 kettle)

(pinstance-of coffee-can can)

(pinstance-of tea-box container)

(pinstance-of instant-coffee-jar container)

(pinstance-of coffee-jar container)

(pinstance-of sugar-box container)

(pinstance-of honey-jar container)

(pinstance-of microwave door)

(pinstance-of drawer door)

(pinstance-of cupboard door)

(pinstance-of fridge door)

(pinstance-of milk-carton cutable)

(pinstance-of tea-bag movable)

(pinstance-of old-tea-bag movable)

(pinstance-of at-sink location)

(pinstance-of at-table location)

(pinstance-of at-stove location)

(pinstance-of at-fridge location)

APPENDIX D. THE KITCHEN DOMAIN 287

(pinstance-of robby robot)

(pinstance-of water drink)

(pinstance-of hot-water drink)

(pinstance-of milk drink)

(pinstance-of hot-milk drink)

(pinstance-of ice drink)

(pinstance-of tea drink)

(pinstance-of iced-tea drink)

(pinstance-of instant-coffee drink)

(pinstance-of coffee drink)

(pinstance-of instant-coffee drink)

(pinstance-of iced-coffee drink)

(pinstance-of iced-instant-coffee drink)

(pinstance-of nothing drink)

(pinstance-of table object)

(pinstance-of sink object)

(pinstance-of stove object)

(pinstance-of shelf object)

(pinstance-of coffee-maker object)

(pinstance-of garbage-can object)

(pinstance-of honey ingredients)

(pinstance-of sugar ingredients)

(pinstance-of little-milk ingredients)

; ---------- Move the robot around ----------

(OPERATOR MOVE-ROBOT

(params <robot-loc> <new-loc>)

(preconds

((<robot-loc> location)

(<new-loc> location))

(and (next-to <robot-loc> <new-loc>)

(is-at robby <robot-loc>)))

(effects

()

((add (is-at robby <new-loc>))

(del (is-at robby <robot-loc>)))))

APPENDIX D. THE KITCHEN DOMAIN 288

; ---------- Use the water tab ----------

(OPERATOR FILL-WITH-WATER

(params <object>)

(preconds

((<object> fillable)

(<robot-loc> location))

(and

(is-reachable sink <robot-loc>)

(arm-empty)

(~ (water-on))

(contains <object> nothing)

(is-at robby <robot-loc>)

(is-in <object> sink)

))

(effects

()

((add (water-on))

(del (contains <object> nothing))

(add (contains <object> water)))))

(OPERATOR TURN-WATER-OFF

(params)

(preconds

((<robot-loc> location))

(and

(is-reachable sink <robot-loc>)

(is-at robby <robot-loc>)

(water-on)

(arm-empty)))

(effects

()

((del (water-on)))))

; ---------- Using the silverware ----------

(OPERATOR CUT

(params <object>)

(preconds

APPENDIX D. THE KITCHEN DOMAIN 289

((<object> cutable)

(<tool> silverware)

(<robot-loc> location))

(and (is-reachable table <robot-loc>)

(holding <tool>)

(is-at robby <robot-loc>)

(is-on <object> table)

(~ (is-open <object>))))

(effects

()

((add (is-open <object>)))))

(OPERATOR STIR

(params <object>)

(preconds

((<object> microwavable)

(<robot-loc> location))

(and (is-reachable table <robot-loc>)

(holding spoon)

(is-at robby <robot-loc>)

(is-on <object> table)

(to-stir <object>)))

(effects

()

((del (to-stir <object>)))))

; ---------- Use the microwave ----------

(OPERATOR HEAT-WATER-IN-MICROWAVE

(params <object>)

(preconds

((<object> microwavable)

(<robot-loc> location))

(and

(is-reachable microwave <robot-loc>)

(~ (is-open microwave))

(is-in <object> microwave)

(is-at robby <robot-loc>)

(contains <object> water)

APPENDIX D. THE KITCHEN DOMAIN 290

(arm-empty)))

(effects

()

((add (is-hot <object>))

(del (contains <object> water))

(add (contains <object> hot-water)))))

(OPERATOR HEAT-MILK-IN-MICROWAVE

(params <object>)

(preconds

((<object> microwavable)

(<robot-loc> location))

(and

(is-reachable microwave <robot-loc>)

(~ (is-open microwave))

(is-in <object> microwave)

(is-at robby <robot-loc>)

(contains <object> milk)

(arm-empty)))

(effects

()

((add (is-hot <object>))

(del (contains <object> milk))

(add (contains <object> hot-milk)))))

; ---------- Stove ----------

(OPERATOR USE-STOVE

(params <object>)

(preconds

((<object> kettle)

(<robot-loc> location))

(and

(is-reachable stove <robot-loc>)

(is-at robby <robot-loc>)

(arm-empty)

(contains <object> water)

(is-on <object> stove)))

(effects

()

((add (contains <object> hot-water))

APPENDIX D. THE KITCHEN DOMAIN 291

(del (contains <object> water)))))

; ---------- Picking things up and putting them down ----------

(OPERATOR PICK-UP-FROM-TABLE

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(arm-empty)

(is-at robby <robot-loc>)

(is-on <object> table)))

(effects

()

((add (holding <object>))

(del (arm-empty))

(del (is-on <object> table)))))

(OPERATOR PUT-ON-TABLE

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and (is-reachable table <robot-loc>)

(holding <object>)

(is-at robby <robot-loc>)))

(effects

()

((add (is-on <object> table))

(add (arm-empty))

(del (holding <object>)))))

(OPERATOR PICK-UP-FROM-DRAWER

(params <object>)

(preconds

((<object> silverware)

(<robot-loc> location))

(and

(is-reachable drawer <robot-loc>)

APPENDIX D. THE KITCHEN DOMAIN 292

(arm-empty)

(is-open drawer)

(is-at robby <robot-loc>)

(is-in <object> drawer)))

(effects

()

((add (holding <object>))

(del (arm-empty))

(del (is-in <object> drawer)))))

(OPERATOR PUT-IN-DRAWER

(params <object>)

(preconds

((<object> silverware)

(<robot-loc> location))

(and

(is-reachable drawer <robot-loc>)

(holding <object>)

(is-open drawer)

(is-at robby <robot-loc>)))

(effects

()

((add (is-in <object> drawer))

(add (arm-empty))

(del (holding <object>)))))

(OPERATOR PICK-UP-FROM-SINK

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location)

(and

(is-reachable sink <robot-loc>)

(arm-empty)

(is-at robby <robot-loc>)

(is-in <object> sink)))

(effects

()

((add (holding <object>))

(del (arm-empty))

APPENDIX D. THE KITCHEN DOMAIN 293

(add (sink-empty))

(del (is-in <object> sink)))))

(OPERATOR PUT-IN-SINK

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and (is-reachable sink <robot-loc>)

(holding <object>)

(sink-empty)

(is-at robby <robot-loc>)))

(effects

()

((add (is-in <object> sink))

(del (sink-empty))

(add (arm-empty))

(del (holding <object>)))))

(OPERATOR PICK-UP-FROM-FRIDGE

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and

(is-reachable fridge <robot-loc>)

(arm-empty)

(is-at robby <robot-loc>)

(is-open fridge)

(is-in <object> fridge)))

(effects

()

((add (holding <object>))

(del (arm-empty))

(del (is-in <object> fridge)))))

(OPERATOR PUT-IN-FRIDGE

(params <object>)

(preconds

((<object> movable)

APPENDIX D. THE KITCHEN DOMAIN 294

(<robot-loc> location))

(and (is-reachable fridge <robot-loc>)

(holding <object>)

(is-open fridge)

(is-at robby <robot-loc>)))

(effects

()

((add (is-in <object> fridge))

(add (arm-empty))

(del (holding <object>)))))

(OPERATOR PICK-UP-FROM-MICROWAVE

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and

(is-reachable microwave <robot-loc>)

(arm-empty)

(is-at robby <robot-loc>)

(is-open microwave)

(is-in <object> microwave)))

(effects

()

((add (holding <object>))

(del (arm-empty))

(add (microwave-empty))

(del (is-in <object> microwave)))))

(OPERATOR PUT-IN-MICROWAVE

(params <object>)

(preconds

((<object> microwavable)

(<robot-loc> location))

(and

(is-reachable microwave <robot-loc>)

(holding <object>)

(is-open microwave)

(microwave-empty)

(is-at robby <robot-loc)))

APPENDIX D. THE KITCHEN DOMAIN 295

(effects

()

((add (is-in <object> microwave))

(add (arm-empty))

(del (microwave-empty))

(del (holding <object>)))))

(OPERATOR PICK-UP-FROM-CUPBOARD

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and

(is-reachable cupboard <robot-loc>)

(arm-empty)

(is-at robby <robot-loc>)

(is-open cupboard)

(is-in <object> cupboard)))

(effects

()

((add (holding <object>))

(del (arm-empty))

(del (is-in <object> cupboard)))))

(OPERATOR PICK-UP-FROM-STOVE

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and

(is-reachable stove <robot-loc>)

(arm-empty)

(is-on <object> stove)

(is-at robby <robot-loc>)))

(effects

()

((del (is-on <object> stove))

(del (arm-empty))

(add (stove-empty))

(add (holding <object>)))))

APPENDIX D. THE KITCHEN DOMAIN 296

(OPERATOR PUT-ON-STOVE

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and (is-reachable stove <robot-loc>)

(holding <object>)

(stove-empty)

(is-at robby <robot-loc>)))

(effects

()

((add (is-on <object> stove))

(add (arm-empty))

(del (stove-empty))

(del (holding <object>)))))

(OPERATOR PICK-UP-FROM-SHELF

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and

(is-reachable shelf <robot-loc>)

(arm-empty)

(is-at robby <robot-loc>)

(is-on <object> shelf)))

(effects

()

((add (holding <object>))

(del (arm-empty))

(del (is-on <object> shelf)))))

(OPERATOR PUT-ON-SHELF

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and (holding <object>)

(is-reachable shelf <robot-loc>)

APPENDIX D. THE KITCHEN DOMAIN 297

(is-at robby <robot-loc>)))

(effects

()

((add (is-on <object> shelf))

(add (arm-empty))

(del (holding <object>)))))

; ---------- Ice tray ----------

(OPERATOR GET-ICE

(params <object>)

(preconds

((<object> microwavable)

(<robot-loc> location))

(and

(is-reachable fridge <robot-loc>)

(is-at robby <robot-loc>)

(contains <object> nothing)))

(effects

()

((add (contains <object> ice))

(del (contains <object> nothing)))))

(OPERATOR MAKE-ICED-TEA

(params <cup1> <cup2>)

(preconds

((<cup1> fillable)

(<cup2> fillable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(contains <cup1> tea)

(contains <cup2> ice)

(is-on <cup2> table)

(holding <cup1>)

(is-at robby <robot-loc>)))

(effects

()

((del (contains <cup2> ice))

(del (contains <cup1> tea))

(add (contains <cup2> iced-tea)))))

APPENDIX D. THE KITCHEN DOMAIN 298

(OPERATOR MAKE-ICED-COFFEE

(params <cup1> <cup2>)

(preconds

((<cup1> fillable)

(<cup2> fillable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(contains <cup1> coffee)

(contains <cup2> ice)

(is-on <cup2> table)

(holding <cup1>)

(is-at robby <robot-loc>)))

(effects

()

((del (contains <cup2> ice))

(del (contains <cup1> coffee))

(add (contains <cup2> iced-coffee)))))

(OPERATOR MAKE-ICED-INSTANT-COFFEE

(params <cup1> <cup2>)

(preconds

((<cup1> fillable)

(<cup2> fillable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(contains <cup1> instant-coffee)

(contains <cup2> ice)

(is-on <cup2> table)

(holding <cup1>)

(is-at robby <robot-loc>)))

(effects

()

((del (contains <cup2> ice))

(del (contains <cup1> instant-coffee))

(add (contains <cup2> iced-instant-coffee)))))

; ---------- Things to do with a tea bag ----------

APPENDIX D. THE KITCHEN DOMAIN 299

(OPERATOR GET-TEA-BAG

(params)

(preconds

((<robot-loc> location))

(and (is-reachable table <robot-loc>)

(is-at robby <robot-loc>)

(arm-empty)

(is-on tea-box table)

(is-open tea-box)))

(effects

()

((add (holding tea-bag))

(del (arm-empty)))))

(OPERATOR MAKE-TEA

(params <object>)

(preconds

((<object> fillable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on <object> table)

(contains <object> hot-water)

(holding tea-bag)

(is-at robby <robot-loc>)))

(effects

()

((del (contains <object> hot-water))

(add (contains <object> tea))

(add (holding old-tea-bag))

(del (holding tea-bag)))))

; ---------- Handling instant coffee ---------

(OPERATOR SCOOP-INSTANT-COFFEE

(params)

(preconds

((<robot-loc> location))

(and (is-reachable table <robot-loc>)

(holding spoon)

(is-on instant-coffee-jar table)

APPENDIX D. THE KITCHEN DOMAIN 300

(is-open instant-coffee-jar)

(is-at robby <robot-loc>)))

(effects

()

((add (contains spoon instant-coffee)))))

(OPERATOR POURS-INSTANT-COFFEE

(params <object>)

(preconds

((<object> fillable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on <object> table)

(contains <object> hot-water)

(holding spoon)

(contains spoon instant-coffee)

(is-at robby <robot-loc>)))

(effects

()

((del (contains <object> hot-water))

(del (contains spoon instant-coffee))

(add (to-stir <object>))

(add (contains <object> instant-coffee)))))

; ---------- Honey ---------

(OPERATOR SCOOP-HONEY

(params)

(preconds

((<robot-loc> location))

(and (is-reachable table <robot-loc>)

(holding spoon)

(is-on honey-jar table)

(is-open honey-jar)

(is-at robby <robot-loc>)))

(effects

()

((add (contains spoon honey)))))

(OPERATOR ADD-HONEY-TO-MILK

APPENDIX D. THE KITCHEN DOMAIN 301

(params <object>)

(preconds

((<object> microwavable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on <object> table)

(contains <object> hot-milk)

(holding spoon)

(contains spoon honey)

(is-at robby <robot-loc>)))

(effects

()

((del (contains spoon honey))

(add (contains <object> honey))

(add (to-stir <object>)))))

(OPERATOR ADD-HONEY-TO-TEA

(params <object>)

(preconds

((<object> microwavable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on <object> table)

(contains <object> tea)

(holding spoon)

(contains spoon honey)

(is-at robby <robot-loc>)))

(effects

()

((del (contains spoon honey))

(add (contains <object> honey))

(add (to-stir <object>)))))

; ---------- Sugar ----------

(OPERATOR GET-SUGAR

(params)

(preconds

((<robot-loc> location))

APPENDIX D. THE KITCHEN DOMAIN 302

(and (is-reachable table <robot-loc>)

(is-on sugar-box table)

(is-open sugar-box)

(holding spoon)

(is-at robby <robot-loc>)))

(effects

()

((add (contains spoon sugar)))))

(OPERATOR ADD-SUGAR

(params <object>)

(preconds

((<object> microwavable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on <object> table)

(or (contains <object> hot-milk)

(contains <object> tea)

(contains <object> coffee)

(contains <object> instant-coffee))

(holding spoon)

(contains spoon sugar)

(is-at robby <robot-loc>)))

(effects

()

((del (contains spoon sugar))

(add (contains <object> sugar))

(add (to-stir <object>)))))

; --------- Milk ---------

(OPERATOR POUR-MILK

(params <object>)

(preconds

((<object> fillable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on <object> table)

APPENDIX D. THE KITCHEN DOMAIN 303

(contains <object> nothing)

(holding milk-carton)

(is-open milk-carton)

(is-at robby <robot-loc>)))

(effects

()

((del (contains <object> nothing))

(add (contains <object> milk)))))

(OPERATOR ADD-MILK

(params <object>)

(preconds

((<object> fillable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on <object> table)

(is-open milk-carton)

(or (contains <object> tea)

(contains <object> coffee)

(contains <object> instant-coffee))

(holding milk-carton)

(is-at robby <robot-loc>)))

(effects

()

((add (contains <object> little-milk))

(add (to-stir <object>)))))

; ---------- Coffee-maker ----------

(OPERATOR SCOOP-COFFEE

(params)

(preconds

((<robot-loc> location))

(and (is-reachable table <robot-loc>)

(holding spoon)

(is-on coffee-jar table)

(is-open coffee-jar)

(is-at robby <robot-loc>)))

APPENDIX D. THE KITCHEN DOMAIN 304

(effects

()

((add (contains spoon coffee)))))

(OPERATOR ADD-WATER-TO-COFFEE-MAKER

(params <object>)

(preconds

((<object> fillable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on coffee-maker table)

(~ (contains coffee-maker water))

(holding <object>)

(contains <object> water)

(is-at robby <robot-loc>)))

(effects

()

((del (contains <object> water))

(add (contains coffee-maker water)))))

(OPERATOR ADD-COFFEE-TO-COFFEE-MAKER

(params)

(preconds

((<robot-loc> location))

(and (is-reachable table <robot-loc>)

(is-on coffee-maker table)

(~ (contains coffee-maker coffee))

(holding spoon)

(contains spoon coffee)

(is-at robby <robot-loc>)))

(effects

()

((del (contains spoon coffee))

(add (contains coffee-maker coffee)))))

(OPERATOR USE-COFFEE-MAKER

(params)

APPENDIX D. THE KITCHEN DOMAIN 305

(preconds

((<robot-loc> location))

(and (is-reachable table <robot-loc>)

(is-at robby <robot-loc>)

(contains coffee-maker coffee)

(contains coffee-maker water)

(is-in coffee-can coffee-maker)

(contains coffee-can nothing)

(arm-empty)))

(effects

()

((del (contains coffee-can nothing))

(del (contains coffee-maker water))

(del (contains coffee-maker coffee))

(add (contains coffee-can coffee)))))

(OPERATOR PUT-IN-COFFEE-MAKER

(params <object>)

(preconds

((<object> can)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(holding <object>)

(coffee-maker-empty)

(is-at robby <robot-loc>)))

(effects

()

((add (is-in <object> coffee-maker))

(del (coffee-maker-empty))

(add (arm-empty))

(del (holding <object>)))))

(OPERATOR PICK-UP-FROM-COFFEE-MAKER

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and

APPENDIX D. THE KITCHEN DOMAIN 306

(is-reachable table <robot-loc>)

(arm-empty)

(is-at robby <robot-loc>)

(is-in <object> coffee-maker)))

(effects

()

((add (holding <object>))

(del (arm-empty))

(add (coffee-maker-empty))

(del (is-in <object> coffee-maker)))))

(OPERATOR POUR-COFFEE

(params <object>)

(preconds

((<object> fillable)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on <object> table)

(contains <object> nothing)

(holding coffee-can)

(contains coffee-can coffee)

(is-at robby <robot-loc>)))

(effects

()

((del (contains <object> nothing))

(add (contains <object> coffee)))))

; ---------- Kettle ----------

(OPERATOR POUR-FROM-KETTLE

(params <object>)

(preconds

((<object> microwavable)

(<x> drink)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on <object> table)

(contains <object> nothing)

APPENDIX D. THE KITCHEN DOMAIN 307

(holding kettle1)

(contains kettle1 <x>)

(is-at robby <robot-loc>)))

(effects

()

((del (contains kettle1 <x>))

(add (contains <object> <x>)))))

; ---------- Garbage-can ----------

(OPERATOR PUT-IN-GARBAGE-CAN

(params <object>)

(preconds

((<object> movable)

(<robot-loc> location))

(and (is-reachable garbage-can <robot-loc>)

(holding <object>)

(is-at robby <robot-loc>)))

(effects

()

((add (is-in <object> garbage-can))

(add (arm-empty))

(del (holding <object>)))))

; ---------- Opening and closing things ----------

(OPERATOR OPEN-DOOR

(params <object>)

(preconds

((<object> door)

(<robot-loc> location))

(and

(is-reachable <object> <robot-loc>)

(is-at robby <robot-loc>)

(arm-empty)

(~ (is-open <object>))))

(effects

()

((add (is-open <object>)))))

APPENDIX D. THE KITCHEN DOMAIN 308

(OPERATOR CLOSE-DOOR

(params <object>)

(preconds

((<object> door)

(<robot-loc> location))

(and

(is-reachable <object> <robot-loc>)

(is-at robby <robot-loc>)

(arm-empty)

(is-open <object>)))

(effects

()

((del (is-open <object>)))))

(OPERATOR OPEN-CONTAINER

(params <object>)

(preconds

((<object> container)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on <object> table)

(is-at robby <robot-loc>)

(arm-empty)

(~ (is-open <object>))))

(effects

()

((add (is-open <object>)))))

(OPERATOR CLOSE-CONTAINER

(params <object>)

(preconds

((<object> container)

(<robot-loc> location))

(and

(is-reachable table <robot-loc>)

(is-on <object> table)

(is-at robby <robot-loc>)

(arm-empty)

(is-open <object>)))

APPENDIX D. THE KITCHEN DOMAIN 309

(effects

()

((del (is-open <object>)))))

(INFERENCE-RULE INFER-STIRRED

(params <ob>)

(preconds

((<ob> object))

(~ (to-stir <ob>)))

(effects

()

((add (stirred <ob>)))))

The following is an example problem from the kitchen domain.

(setf (current-problem)

(create-problem

(name get-hot-water)

(objects)

(state

(and

(is-on tea-box shelf)

(is-on instant-coffee-jar shelf)

(is-on coffee-jar shelf)

(is-on honey-jar shelf)

(is-on sugar-box shelf)

(contains cup1 nothing)

(contains cup2 nothing)

(contains cup3 nothing)

(contains glass1 nothing)

(contains glass2 nothing)

(contains glass3 nothing)

(contains kettle1 nothing)

(next-to at-sink at-table)

(next-to at-table at-sink)

APPENDIX D. THE KITCHEN DOMAIN 310

(next-to at-table at-stove)

(next-to at-stove at-table)

(next-to at-stove at-fridge)

(next-to at-fridge at-stove)

(is-reachable sink at-sink)

(is-reachable garbage-can at-sink)

(is-reachable shelf at-sink)

(is-reachable cupboard at-table)

(is-reachable drawer at-table)

(is-reachable stove at-stove)

(is-reachable microwave at-stove)

(is-reachable fridge at-fridge)

(is-in scissors drawer)

(is-in knife drawer)

(is-in spoon drawer)

(is-in cup1 cupboard)

(is-in cup2 cupboard)

(is-in cup3 cupboard)

(is-in glass1 cupboard)

(is-in glass2 cupboard)

(is-in glass3 cupboard)

(is-on kettle1 stove)

(is-on coffee-maker table)

(is-in coffee-can coffee-maker)

(contains coffee-can nothing)

(is-at robby at-table)

(is-in milk-carton fridge)

(arm-empty)

(sink-empty)

(stove-empty)

(microwave-empty)

APPENDIX D. THE KITCHEN DOMAIN 311

(coffee-maker-empty)))

(goal (and (contains cup1 hot-tea))

(contains cup1 sugar))

))

D.3 Empirical results in the kitchen domain

This section summarizes the results of the experiments in the kitchen domain.

The table contains the following columns:

� Prob is the problem number.

� Nodes is the total number of nodes expanded during the search. A

maximum limit of 15; 000 nodes was used in all tests. Because the

planner synchronizes only after certain node types, there is a chance

that slightly more nodes are expanded.

� Time is the total CPU time used. There was a time limit of 600 CPU

seconds imposed. However, in these experiments the node limit was

the determining factor, since it was exceeded �rst.

� Len is the number of primitive operators in the solution. It is 0 if no

solution exist or no solution was found within the resource limit.

APPENDIX D. THE KITCHEN DOMAIN 312

Prob Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p1 282 3.42 13 451 6.86 0 307 4.21 16

p2 382 5.23 16 374 4.62 11 234 3.1 18

p3 599 6.97 17 310 4.02 11 262 3.66 19

p4 420 5.03 0 335 4.35 0 15146 223.87 0

p5 15001 206.77 10 337 3.87 13 294 3.9 8

p6 546 6.50 15 464 7.60 12 361 4.9 10

p7 339 3.88 9 416 6.02 13 162 2.09 10

p8 497 6.25 14 435 7.05 10 419 6.49 17

p9 579 7.25 10 476 8.13 0 226 3.48 13

p10 399 4.62 9 398 4.90 0 181 2.36 9

p11 443 5.50 11 266 3.44 11 329 4.64 13

p12 668 8.63 8 394 6.35 10 199 2.95 19

p13 540 6.40 14 232 2.73 0 445 6.2 12

p14 471 5.43 15 468 6.85 9 214 2.81 14

p15 685 8.17 11 263 4.23 13 306 4.13 11

p16 548 6.78 15 358 4.57 15 270 3.86 14

p17 411 5.02 16 287 4.39 0 272 4.14 16

p18 638 8.72 0 349 5.69 12 272 4 12

p19 15001 185.51 13 258 3.95 16 160 2.15 15

p20 505 6.76 12 298 4.36 0 435 6.18 11

p21 473 5.71 19 438 6.81 0 454 5.94 14

p22 741 9.05 15 566 8.43 11 15100 211.03 0

p23 348 4.54 18 284 4.53 8 294 4.17 11

p24 708 8.45 21 442 6.99 9 585 7.73 18

p25 354 4.46 0 414 5.96 0 446 5.82 11

p26 15001 183.10 11 374 4.29 12 435 6.61 12

p27 583 7.40 20 543 6.19 10 275 3.56 14

p28 477 6.54 14 356 4.62 11 585 8.18 15

p29 510 6.23 16 369 4.53 0 227 2.96 14

p30 677 8.48 16 357 4.36 9 537 8.07 18

p31 627 8.05 0 577 8.85 0 476 6.45 15

p32 15001 199.40 22 361 5.06 10 262 3.85 14

p33 511 5.98 16 432 5.51 12 233 3.56 11

p34 599 7.85 17 252 3.74 11 505 7.13 13

p35 723 9.45 15 279 3.35 9 596 8.8 13

p36 708 9.79 13 374 4.54 0 572 8.74 18

p37 705 9.04 12 512 7.05 0 295 4.52 17

p38 743 9.46 19 413 6.20 0 557 8.39 13

p39 388 4.47 15 235 2.87 0 256 3.97 16

p40 459 5.45 11 350 5.24 13 527 7.5 11

p41 497 6.34 21 360 5.96 8 300 4.24 11

p42 745 8.81 13 353 5.51 0 235 3.03 16

p43 571 6.83 14 316 3.85 0 446 5.88 12

p44 438 5.02 10 497 7.77 10 15263 230.04 0

p45 578 7.84 0 396 5.61 13 598 7.88 14

p46 15001 191.34 19 299 4.82 0 232 3.45 10

p47 361 4.28 18 333 5.69 0 341 4.45 16

p48 540 7.32 17 459 6.19 11 512 6.74 9

p49 655 8.64 22 344 3.93 11 385 5.23 9

p50 619 8.32 20 426 6.42 22 219 3.3 29

APPENDIX D. THE KITCHEN DOMAIN 313

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p51 1076 14.46 0 1172 15.66 0 349 5.05 24

p52 15001 199.81 0 550 6.59 0 371 4.87 34

p53 15001 187.12 28 593 8.37 21 359 4.68 21

p54 1441 18.90 0 1035 14.29 20 641 9.22 20

p55 15001 215.51 33 912 12.31 0 477 7.12 38

p56 739 8.53 0 1227 19.65 21 672 10.26 26

p57 15001 199.08 0 845 12.68 0 15263 211.24 0

p58 15001 223.09 25 930 11.63 0 878 12.44 27

p59 1363 17.11 18 840 13.57 0 510 7.53 23

p60 668 8.64 0 625 9.45 22 633 8.48 29

p61 15001 190.70 0 509 8.07 20 638 8.31 31

p62 15001 223.58 0 1020 12.54 0 691 9.02 20

p63 15001 218.39 0 506 7.91 0 732 9.81 18

p64 15001 215.52 0 944 14.75 0 492 7.03 30

p65 15001 224.60 24 835 12.42 18 746 11.41 21

p66 735 9.37 36 884 11.72 0 815 11.79 33

p67 1002 11.45 0 824 10.48 0 573 8.12 22

p68 15001 212.53 24 609 7.44 22 329 4.68 25

p69 1326 17.35 0 538 8.56 26 690 10.74 27

p70 15001 223.29 0 502 6.81 17 325 4.67 27

p71 15001 222.03 0 905 15.19 0 304 4.34 36

p72 15001 176.05 0 1134 17.86 31 755 11.09 35

p73 15001 214.21 29 502 8.40 0 643 8.87 30

p74 1317 16.49 0 685 10.48 0 516 6.71 28

p75 15001 219.46 0 1165 18.57 0 768 10.22 23

p76 15001 184.09 0 502 8.16 26 565 8.68 38

p77 15001 180.75 20 573 8.31 0 888 11.89 26

p78 1448 17.58 22 803 12.11 17 15099 203.74 0

p79 1353 16.13 0 949 13.63 0 765 11.46 28

p80 15001 209.05 33 607 7.47 22 540 8.26 20

p81 1012 12.46 0 895 13.72 0 775 11.21 28

p82 15001 200.63 0 701 9.09 25 712 10.05 26

p83 15001 212.30 22 1057 15.74 0 753 10.01 25

p84 660 7.84 0 1060 12.82 22 15272 216.69 0

p85 15001 177.62 18 980 11.59 22 15116 209.59 0

p86 1449 18.94 0 1136 18.11 0 476 6.22 24

p87 15001 186.73 24 842 10.02 17 734 10.17 23

p88 759 9.63 26 570 9.24 0 418 6.12 21

p89 1043 12.54 0 921 12.57 0 462 6.13 37

p90 15001 215.54 0 1161 17.22 0 445 6.63 19

p91 15001 200.18 23 937 11.90 0 517 7.46 31

p92 1483 18.52 44 1234 19.87 23 301 4.06 30

p93 724 10.06 0 614 7.32 20 823 12.09 24

p94 15001 220.69 0 732 9.89 0 542 6.98 30

p95 15001 175.14 0 1342 20.10 0 556 7.72 27

p96 15001 192.68 26 691 10.07 0 487 7.03 24

p97 891 11.50 0 775 11.97 21 704 10.22 29

p98 15001 176.84 42 561 9.26 0 852 12.6 21

p99 985 12.30 0 562 6.89 0 770 12.01 28

p100 15001 216.21 0 727 11.25 0 368 5 34

APPENDIX D. THE KITCHEN DOMAIN 314

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p101 15001 217.48 0 539 7.99 0 940 14.08 44

p102 15001 223.23 0 587 8.27 0 1865 26.8 54

p103 15001 206.08 0 1898 22.15 0 1426 20.14 47

p104 15001 199.85 0 1696 20.08 0 1463 18.8 58

p105 15001 197.61 0 1333 20.31 0 1085 15.38 42

p106 15001 193.59 37 1032 12.57 51 1999 26.18 40

p107 1868 25.92 0 2157 25.41 0 2183 29.25 45

p108 15001 196.26 52 15001 183.09 0 1046 14.78 48

p109 1164 14.91 0 2498 33.06 0 1071 16.33 34

p110 15001 205.81 0 1592 18.24 0 15213 241.23 0

p111 15001 184.23 0 1221 17.66 57 879 13.46 56

p112 15001 216.71 0 991 15.93 0 2094 27.59 50

p113 15001 202.14 76 1237 15.75 0 2184 32.41 79

p114 2994 39.65 0 1420 17.07 0 1600 21.6 48

p115 15001 222.97 0 1272 21.33 0 1176 16.21 62

p116 15001 222.88 60 15001 187.80 0 1440 18.72 46

p117 1057 14.63 59 15001 159.02 0 2087 28.47 46

p118 2301 31.82 0 15001 170.43 0 1402 19.94 81

p119 15001 183.74 0 1072 14.00 0 1352 20.95 79

p120 15001 216.22 0 2901 40.37 0 15209 234.24 0

p121 15001 178.28 0 774 12.63 0 1494 22.73 74

p122 15001 189.14 0 868 14.60 0 1663 21.96 46

p123 15001 184.41 0 1212 17.10 0 1752 26.69 42

p124 15001 185.52 0 1118 13.47 0 1721 24.04 62

p125 15001 200.35 0 15001 168.90 0 2245 31.07 76

p126 15001 175.88 0 1275 21.19 0 1066 14.31 57

p127 15001 185.42 0 1318 20.09 0 1334 18.81 58

p128 15001 214.90 0 1179 19.95 48 15242 207.01 0

p129 15001 184.64 0 1253 17.13 51 1017 13.11 66

p130 15001 197.15 49 580 9.05 42 2135 32.91 70

p131 2557 33.26 0 1208 18.90 0 1092 16.85 34

p132 15001 216.49 0 2000 30.66 0 1683 22.07 37

p133 15001 223.92 73 1424 19.31 0 15133 201.83 0

p134 1071 14.09 0 2249 30.41 0 1781 25.48 58

p135 15001 207.36 0 2200 33.09 0 772 11.78 51

p136 15001 209.29 0 1236 17.88 0 823 12.17 54

p137 15001 178.91 0 2129 25.18 0 1503 19.72 81

p138 15001 187.30 0 1894 28.20 0 1133 14.52 79

p139 15001 206.66 0 1622 18.89 0 993 14.32 58

p140 15001 210.43 0 15001 156.04 0 1732 23.16 44

p141 15001 177.51 0 1737 20.40 0 1021 14.61 42

p142 15001 222.58 0 1587 23.38 38 1262 16.88 61

p143 15001 185.27 0 2106 24.49 0 1415 18.28 71

p144 15001 220.85 0 2340 28.30 0 15213 198.2 0

p145 15001 185.85 0 1045 12.52 0 1225 15.74 54

p146 15001 203.03 0 1011 12.02 0 1205 18.43 64

p147 15001 183.70 0 15001 176.51 0 1478 21.45 77

p148 15001 183.96 0 1716 19.91 44 1930 26.96 50

p149 15001 175.34 0 1530 22.83 0 1085 16.14 62

p150 15001 208.92 0 15001 161.52 0 883 13.13 119

APPENDIX D. THE KITCHEN DOMAIN 315

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p151 15001 183.21 0 3830 52.52 0 3243 48.64 120

p152 15001 212.23 0 3358 42.05 0 15081 233.17 0

p153 15001 197.72 0 2171 24.78 0 3422 46.4 105

p154 15001 188.86 0 2286 34.24 86 1873 26.15 121

p155 15001 191.27 0 3880 58.14 0 2914 41.3 140

p156 15001 190.00 0 15001 190.00 0 3392 49.88 74

p157 15001 175.95 0 15001 190.00 0 2815 41.83 106

p158 15001 223.71 0 15001 190.00 0 3170 44.53 92

p159 15001 195.38 0 15001 167.25 0 2645 36.34 118

p160 15001 222.87 0 3167 51.51 0 2705 35.64 118

p161 15001 192.85 0 2866 41.05 100 1308 20.22 81

p162 15001 217.79 0 2126 30.81 82 1294 16.91 73

p163 15001 175.32 165 3756 45.77 0 2774 41.35 108

p164 5033 67.38 0 15001 196.38 0 1798 24.75 115

p165 15001 209.50 0 2992 36.51 0 1724 22.77 112

p166 15001 189.44 0 2584 36.85 0 3460 46.82 123

p167 15001 186.21 0 15001 152.31 0 2514 33.7 132

p168 15001 180.62 0 3430 55.54 0 1205 16.09 104

p169 15001 205.65 0 4618 55.02 0 3009 39.21 125

p170 15001 188.95 0 5091 62.85 0 2091 28.98 149

p171 15001 181.54 0 15001 151.57 0 1925 26.54 89

p172 15001 178.43 0 5689 89.26 0 15036 232.54 0

p173 15001 202.00 0 2716 35.00 0 1737 22.71 124

p174 15001 206.87 0 15001 168.23 0 3412 52.64 97

p175 15001 199.69 0 15001 167.94 0 2868 39.45 139

p176 15001 190.17 0 4380 60.67 0 2597 36.52 131

p177 15001 216.55 0 15001 164.01 0 15066 200.17 0

p178 15001 194.66 0 2051 30.65 0 2104 30.13 104

p179 15001 190.17 0 15001 156.33 0 1218 18.09 85

p180 15001 176.69 0 15001 188.16 0 2955 41.19 139

p181 15001 213.16 0 15001 174.05 0 2719 35.69 106

p182 15001 222.71 0 2127 27.14 0 2289 30.98 90

p183 15001 212.37 0 15001 167.89 0 3162 46.13 122

p184 15001 180.32 0 4590 61.33 0 2186 28.11 122

p185 15001 204.09 0 4240 48.85 0 2824 42.8 95

p186 15001 211.41 0 2302 38.26 0 3218 47.99 111

p187 15001 198.65 0 15001 167.26 0 2390 34.74 84

p188 15001 198.59 0 15001 157.04 0 15029 196.64 0

p189 15001 180.46 0 2087 28.59 0 3465 48.89 104

p190 15001 202.45 0 15001 154.99 0 1740 25.3 95

p191 15001 224.45 0 4017 51.09 0 2191 30.16 81

p192 15001 200.40 0 4555 55.67 0 2192 28.71 116

p193 15001 175.50 0 4816 60.76 0 2996 42.5 111

p194 15001 208.75 0 15001 179.37 0 2565 33.98 150

p195 15001 195.62 0 3902 58.89 0 3317 46.02 84

p196 15001 211.48 0 3769 54.05 0 3422 52.64 103

p197 15001 192.82 0 4349 64.10 0 2067 31.66 89

p198 15001 199.36 0 15001 179.47 0 2082 30.68 119

p199 15001 179.05 0 15001 191.02 0 1318 19.39 98

p200 15001 200.00 0 15001 193.83 0 2383 34.47 90

APPENDIX D. THE KITCHEN DOMAIN 316

Prob. Prodigy-DL PC-MSP-O DoLittle

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p201 15001 215.68 0 8956 148.82 0 6841 106.82 130

p202 15001 178.85 205 9425 122.20 0 5257 79.98 212

p203 3554 40.71 0 15001 156.72 0 4249 57.34 184

p204 15001 223.74 0 15001 157.03 0 5189 75.6 127

p205 15001 206.35 0 15001 181.15 0 6881 93.29 94

p206 15001 199.15 0 15001 194.32 0 2874 38.94 108

p207 15001 180.81 0 15001 179.37 0 6809 93.1 123

p208 15001 176.44 0 15001 168.33 0 5794 76.85 99

p209 15001 215.69 0 9752 116.86 0 6041 83.25 108

p210 15001 189.82 0 15001 169.65 0 3358 46.14 156

p211 15001 216.45 0 6384 90.16 127 6217 92.12 102

p212 15001 187.86 0 9463 122.16 0 3870 54.51 179

p213 15001 193.24 0 4992 76.16 0 6753 102.63 137

p214 15001 209.44 0 15001 194.43 0 5868 86.24 90

p215 15001 210.16 0 15001 199.35 0 7413 102.78 132

p216 15001 181.91 0 15001 182.99 0 6420 99.82 93

p217 15001 214.39 0 15001 197.91 0 4049 53.52 115

p218 15001 190.38 0 6261 88.56 0 2750 39.03 165

p219 15001 196.04 0 7191 113.95 0 3044 41.64 143

p220 15001 208.37 0 15001 167.58 0 5750 87.27 121

p221 15001 196.50 0 15001 179.05 0 15169 208.4 0

p222 15001 208.25 0 15001 172.56 0 15236 205.56 0

p223 15001 192.44 0 8850 121.92 0 4463 57.9 116

p224 15001 185.85 0 6484 79.54 0 2719 41.45 114

p225 15001 175.11 0 9480 134.51 0 3089 41.19 83

p226 15001 176.51 0 15001 183.72 0 3205 44.47 133

p227 15001 221.55 0 4945 73.69 0 3920 55.5 186

p228 15001 186.78 0 4870 74.64 0 3546 51.73 123

p229 15001 199.12 0 7624 95.34 0 3841 57.48 110

p230 15001 217.58 0 15001 195.38 0 4998 73 115

p231 15001 199.39 0 9297 148.78 0 2823 39.16 102

p232 15001 190.46 0 15001 180.87 0 3570 54.49 133

p233 15001 185.28 0 6736 92.20 0 15296 235.01 0

p234 15001 191.14 0 15001 167.53 0 15130 233.24 0

p235 15001 202.35 0 15001 172.20 0 3682 56.37 75

p236 15001 198.15 0 15001 164.63 0 15085 225.98 0

p237 15001 184.95 0 5137 80.94 0 4796 74.59 85

p238 15001 222.43 0 7872 101.30 0 6164 82.33 113

p239 15001 199.02 0 15001 150.58 0 5797 74.35 152

p240 15001 181.96 0 15001 156.81 0 5628 85.83 124

p241 15001 214.35 0 15001 167.71 0 5079 78.41 138

p242 15001 200.35 0 10543 120.46 0 15301 224.86 0

p243 15001 194.13 0 15001 199.20 0 6451 94.26 87

p244 15001 202.66 0 15001 183.83 0 5650 85.85 137

p245 15001 202.74 0 8819 117.96 0 4977 70.24 164

p246 15001 185.20 0 15001 168.32 0 6639 96.58 158

p247 15001 197.85 0 15001 153.56 0 5744 78.93 135

p248 15001 223.07 0 15001 193.65 0 7296 96.48 113

p249 15001 203.22 0 15001 182.33 0 5042 68.85 147

p250 15001 182.86 0 5946 85.27 0 5708 74.21 108

APPENDIX D. THE KITCHEN DOMAIN 317

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p1 537 7.03 12 15018 222.94 0 451 6.86 13

p2 374 4.62 15 578 7.95 11 595 9.28 16

p3 310 4.02 11 742 11.23 15 409 6.5 13

p4 335 4.35 13 15065 223.86 0 659 10.87 13

p5 337 3.87 18 450 6.48 13 706 11.91 18

p6 573 7.21 15 651 10.30 12 464 7.6 15

p7 541 6.62 20 416 6.02 14 747 10.66 13

p8 544 6.63 10 514 7.93 16 435 7.05 13

p9 15001 191.95 0 503 7.12 10 476 8.13 13

p10 398 4.90 16 15035 211.30 0 686 10.52 17

p11 266 3.44 12 594 8.22 11 399 6.28 12

p12 468 6.19 17 480 7.17 12 394 6.35 10

p13 232 2.73 14 15289 200.74 0 324 4.67 10

p14 547 6.29 22 703 9.60 18 468 6.85 9

p15 430 5.65 16 263 4.23 13 632 10.59 18

p16 358 4.57 17 596 8.32 18 625 10.56 15

p17 15001 150.57 0 287 4.39 12 400 6.1 14

p18 471 6.48 13 449 6.36 19 349 5.69 12

p19 493 6.02 16 258 3.95 16 549 8.74 18

p20 526 6.54 12 15270 215.48 0 298 4.36 11

p21 15001 191.89 0 704 11.49 20 438 6.81 13

p22 593 7.79 16 637 8.99 15 566 8.43 11

p23 343 4.72 20 531 7.65 10 284 4.53 8

p24 592 7.99 9 442 6.99 13 504 7.38 11

p25 575 7.28 14 414 5.96 12 15249 237.17 0

p26 374 4.29 15 423 6.12 12 446 6.86 13

p27 543 6.19 10 663 10.91 13 746 11.03 13

p28 356 4.62 11 732 11.15 13 567 8.96 14

p29 369 4.53 12 15101 227.85 0 15105 247.22 0

p30 357 4.36 9 560 7.89 12 735 11.2 14

p31 15001 198.01 0 657 10.78 15 577 8.85 16

p32 541 6.27 10 361 5.06 14 660 9.87 13

p33 432 5.51 13 585 9.11 12 454 6.42 13

p34 414 5.56 11 520 7.25 11 252 3.74 19

p35 279 3.35 12 730 10.32 12 452 7.47 9

p36 374 4.54 20 471 7.73 12 15291 243.31 0

p37 512 7.05 12 15138 248.11 0 578 8.64 13

p38 439 5.01 10 413 6.20 12 15225 254.43 0

p39 235 2.87 11 15145 202.41 0 422 6.41 9

p40 464 5.70 14 350 5.24 20 674 9.93 13

p41 596 7.52 11 360 5.96 8 714 12.2 13

p42 590 6.74 12 353 5.51 13 15185 237.03 0

p43 316 3.85 15 15023 213.29 0 573 8.31 13

p44 530 6.05 21 497 7.77 10 554 8.32 18

p45 480 5.74 14 687 10.28 13 396 5.61 15

p46 15001 194.12 0 299 4.82 15 405 6.49 16

p47 426 5.56 15 15214 214.13 0 333 5.69 15

p48 459 6.19 11 671 9.28 14 501 7.48 12

p49 344 3.93 11 399 5.43 14 369 5.43 14

p50 1109 14.16 25 921 13.98 29 426 6.42 22

APPENDIX D. THE KITCHEN DOMAIN 318

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p51 1172 15.66 33 15146 248.47 0 15096 243.59 0

p52 550 6.59 26 15090 217.88 0 711 10.89 27

p53 922 12.32 46 1383 21.36 21 593 8.37 21

p54 1439 19.09 39 1035 14.29 31 1163 16.55 20

p55 912 12.31 26 1144 18.32 26 15134 219.61 0

p56 1391 17.44 21 1285 18.48 33 1227 19.65 28

p57 15001 151.03 0 1255 17.08 22 845 12.68 22

p58 930 11.63 29 15067 207.59 0 15017 236.99 0

p59 15001 168.29 0 1460 22.41 33 840 13.57 22

p60 956 11.70 33 723 9.85 32 625 9.45 22

p61 814 9.85 20 1093 15.67 26 509 8.07 28

p62 1020 12.54 16 1279 20.31 29 15052 254.92 0

p63 1423 17.56 22 15010 200.60 0 506 7.91 33

p64 1117 14.99 23 944 14.75 38 15299 222.95 0

p65 846 10.65 35 862 12.87 18 835 12.42 18

p66 884 11.72 26 1443 22.99 24 15193 225.02 0

p67 824 10.48 27 15250 226.21 0 1403 22.22 24

p68 609 7.44 22 722 11.12 29 767 12.5 35

p69 1382 16.39 33 538 8.56 26 1460 21.54 31

p70 502 6.81 36 516 8.33 17 1191 17.38 26

p71 1398 16.53 47 15127 204.98 0 905 15.19 37

p72 1192 15.33 37 1216 17.98 31 1134 17.86 31

p73 1023 12.40 23 15201 221.84 0 502 8.4 26

p74 15001 163.73 0 685 10.48 18 1393 20.46 28

p75 1349 17.13 33 1165 18.57 19 15135 241.15 0

p76 805 9.72 37 502 8.16 26 963 14.19 32

p77 15001 165.77 0 573 8.31 29 15190 231.18 0

p78 1073 14.50 20 949 14.73 26 803 12.11 17

p79 15001 186.50 0 1239 18.62 22 949 13.63 26

p80 607 7.47 22 902 13.74 25 812 13.19 23

p81 1338 15.32 18 15272 227.52 0 895 13.72 31

p82 701 9.09 25 933 13.90 25 726 10.56 31

p83 1496 19.20 25 15193 211.45 0 1057 15.74 29

p84 1060 12.82 22 1489 22.22 27 1251 18.7 24

p85 980 11.59 36 1364 20.31 22 1440 23.49 33

p86 15001 150.72 0 1136 18.11 24 15197 221.47 0

p87 842 10.02 26 877 12.46 26 1089 16.52 17

p88 15001 162.79 0 15228 229.90 0 570 9.24 30

p89 1428 17.31 28 921 12.57 19 15003 234.43 0

p90 15001 175.29 0 1161 17.22 29 1255 17.6 25

p91 937 11.90 19 15242 245.40 0 1044 14.74 30

p92 1256 16.19 23 1469 22.37 26 1234 19.87 40

p93 614 7.32 27 799 11.93 20 661 9.79 31

p94 732 9.89 27 15276 207.24 0 15143 212.18 0

p95 1348 17.12 30 15256 237.55 0 1342 20.1 20

p96 1295 17.69 23 691 10.07 22 15026 223.99 0

p97 900 10.80 35 775 11.97 21 1465 24.29 33

p98 15001 189.71 0 803 11.59 33 561 9.26 25

p99 562 6.89 21 1413 22.36 24 15199 232.57 0

p100 1901 21.85 53 15246 229.29 0 727 11.25 48

APPENDIX D. THE KITCHEN DOMAIN 319

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p101 15001 153.31 0 15030 235.23 0 539 7.99 61

p102 2672 32.82 55 15154 218.20 0 587 8.27 75

p103 1898 22.15 49 15274 240.61 0 15186 209.47 0

p104 1696 20.08 50 1896 27.31 41 15256 217.69 0

p105 15001 193.39 0 2091 34.09 69 1333 20.31 52

p106 1032 12.57 79 2541 41.74 51 1189 16.65 53

p107 2157 25.41 71 15119 246.49 0 15011 212.73 0

p108 15001 183.09 0 15106 207.63 0 15251 219.57 0

p109 2498 33.06 43 15148 220.84 0 15223 220.01 0

p110 1592 18.24 44 15249 207.70 0 15075 216.16 0

p111 1507 18.87 60 2012 32.85 64 1221 17.66 57

p112 1961 22.62 44 15045 202.02 0 991 15.93 38

p113 1237 15.75 55 15265 218.08 0 15124 251.56 0

p114 1420 17.07 69 15245 211.37 0 15098 233.3 0

p115 15001 165.43 0 2781 40.20 61 1272 21.33 62

p116 15001 187.80 0 15111 201.93 0 15279 211.27 0

p117 15001 159.02 0 15199 232.25 0 15016 226.34 0

p118 15001 170.43 0 15194 210.35 0 15049 221.45 0

p119 1072 14.00 75 2326 38.05 69 15033 213.49 0

p120 15001 190.53 0 2901 40.37 66 15115 244.43 0

p121 2131 26.49 45 15002 230.52 0 774 12.63 62

p122 2579 33.03 70 15282 237.53 0 868 14.6 69

p123 15001 150.05 0 2098 30.02 38 1212 17.1 42

p124 1118 13.47 72 15172 245.85 0 1198 17.4 67

p125 15001 168.90 0 15140 248.64 0 15130 245.73 0

p126 2643 32.58 82 15235 238.68 0 1275 21.19 47

p127 15001 155.46 0 15101 231.83 0 1318 20.09 46

p128 2467 32.93 71 2385 38.78 58 1179 19.95 48

p129 1253 17.13 66 2952 43.80 55 1416 22.48 51

p130 2393 29.60 73 2344 37.42 42 580 9.05 69

p131 2983 35.37 85 15075 222.19 0 1208 18.9 47

p132 15001 172.62 0 15260 225.07 0 2000 30.66 38

p133 1424 19.31 62 2920 42.64 35 15129 240.41 0

p134 2249 30.41 96 15203 203.10 0 15080 217.56 0

p135 2377 31.09 42 15199 219.06 0 2200 33.09 38

p136 1629 18.66 57 1236 17.88 40 15020 209.18 0

p137 2129 25.18 64 15261 249.94 0 15150 241.9 0

p138 2573 31.37 68 15004 242.20 0 1894 28.2 42

p139 1622 18.89 54 15248 214.95 0 15278 237.98 0

p140 15001 156.04 0 15094 225.37 0 15009 230.58 0

p141 1737 20.40 72 15122 239.13 0 15161 225.46 0

p142 2769 33.75 42 2064 32.59 48 1587 23.38 38

p143 2106 24.49 46 2789 42.22 52 15283 205.1 0

p144 2340 28.30 82 15074 205.27 0 15052 241.7 0

p145 1045 12.52 65 15121 223.75 0 15284 237.72 0

p146 1011 12.02 57 15252 242.06 0 15215 213.83 0

p147 15001 176.51 0 15057 249.96 0 15064 206.58 0

p148 1716 19.91 83 2618 43.00 44 2552 36.05 50

p149 15001 174.72 0 1530 22.83 52 15075 229.66 0

p150 15001 161.52 0 15118 217.53 0 15099 216.24 0

APPENDIX D. THE KITCHEN DOMAIN 320

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p151 5821 80.04 167 3830 52.52 105 15127 227.16 0

p152 3358 42.05 88 4817 68.85 122 15047 240.39 0

p153 2171 24.78 128 4880 73.74 90 15154 245.78 0

p154 3927 49.15 146 3624 52.82 86 2286 34.24 105

p155 15001 196.83 0 15145 231.64 0 3880 58.14 78

p156 15001 190.00 0 15071 211.47 0 15261 229.3 0

p157 15001 190.00 0 15222 221.85 0 15114 222.17 0

p158 15001 190.00 0 15037 216.65 0 15197 243.49 0

p159 15001 167.25 0 15217 249.64 0 15155 212.28 0

p160 15001 190.00 0 3167 51.51 102 15265 244.75 0

p161 3457 40.61 100 5057 71.69 109 2866 41.05 110

p162 4432 57.49 82 2126 30.81 87 5448 87.8 103

p163 3756 45.77 115 15094 229.42 0 15075 248.5 0

p164 15001 196.38 0 15155 213.12 0 15175 239.07 0

p165 2992 36.51 84 15138 206.42 0 15060 206.47 0

p166 15001 167.72 0 2584 36.85 120 15280 206.5 0

p167 15001 152.31 0 15243 228.54 0 15205 244.92 0

p168 15001 193.18 0 3430 55.54 90 15012 219.38 0

p169 4618 55.02 87 15132 240.19 0 15159 236.6 0

p170 5091 62.85 108 15230 231.57 0 15227 242.15 0

p171 15001 151.57 0 15218 243.47 0 15214 231.04 0

p172 15001 164.70 0 5689 89.26 128 15146 251.81 0

p173 2716 35.00 118 15247 243.46 0 4114 59.69 92

p174 15001 168.23 0 15123 236.61 0 15168 226.77 0

p175 15001 167.94 0 15203 217.13 0 15224 239.37 0

p176 4380 60.67 104 15060 241.17 0 15144 254.69 0

p177 15001 164.01 0 15092 236.15 0 15162 235.39 0

p178 15001 158.52 0 15284 234.27 0 2051 30.65 150

p179 15001 156.33 0 15025 229.53 0 15213 246.2 0

p180 15001 188.16 0 15264 210.57 0 15058 243.23 0

p181 15001 174.05 0 15162 243.55 0 15234 250.15 0

p182 2127 27.14 156 15187 248.10 0 3044 44.79 115

p183 15001 167.89 0 15165 218.95 0 15189 247.12 0

p184 4590 61.33 104 15075 249.71 0 15227 228.05 0

p185 4240 48.85 154 15199 212.66 0 15231 231.73 0

p186 4143 49.16 119 15166 201.43 0 2302 38.26 109

p187 15001 167.26 0 15151 249.99 0 15220 234.6 0

p188 15001 157.04 0 15212 240.51 0 15147 225.71 0

p189 2087 28.59 150 15109 237.85 0 15192 224.53 0

p190 15001 154.99 0 15184 216.84 0 15059 213.5 0

p191 4017 51.09 103 15245 207.00 0 15149 226.05 0

p192 4555 55.67 77 5106 72.55 93 15100 247.18 0

p193 4816 60.76 91 15139 243.84 0 15218 250.8 0

p194 15001 179.37 0 15097 238.50 0 15267 222.94 0

p195 15001 190.22 0 3902 58.89 93 15167 225.76 0

p196 15001 159.35 0 15220 207.34 0 3769 54.05 126

p197 15001 186.82 0 15092 231.01 0 4349 64.1 138

p198 15001 179.47 0 15140 216.70 0 15194 238.15 0

p199 15001 191.02 0 15159 246.95 0 15076 226.64 0

p200 15001 193.83 0 15280 245.23 0 15241 211 0

APPENDIX D. THE KITCHEN DOMAIN 321

Prob Case-L Macro-L Abstract-L

Num. Nodes Time Len Nodes Time Len Nodes Time Len

p201 15001 160.60 0 15236 227.76 0 8956 148.82 118

p202 9425 122.20 187 15100 237.04 0 15270 217.22 0

p203 15001 156.72 0 15025 234.23 0 15067 253.45 0

p204 15001 157.03 0 15048 245.99 0 15255 248.99 0

p205 15001 181.15 0 15176 232.04 0 15053 252.31 0

p206 15001 194.32 0 15273 213.44 0 15049 240.79 0

p207 15001 179.37 0 15233 214.82 0 15116 209.77 0

p208 15001 168.33 0 15059 213.90 0 15205 234.15 0

p209 9752 116.86 121 15068 241.52 0 15173 217 0

p210 15001 169.65 0 15017 223.74 0 15124 214.61 0

p211 10279 139.43 153 6384 90.16 190 9572 141.23 127

p212 9463 122.16 84 15152 215.08 0 15234 247.55 0

p213 15001 199.53 0 4992 76.16 166 15200 249.6 0

p214 15001 194.43 0 15186 210.44 0 15264 225.14 0

p215 15001 199.35 0 15132 213.42 0 15007 233.43 0

p216 15001 182.99 0 15081 215.85 0 15201 231.05 0

p217 15001 197.91 0 15299 231.19 0 15140 241.93 0

p218 10337 141.19 206 6261 88.56 177 15242 228.95 0

p219 15001 188.16 0 15109 223.12 0 7191 113.95 129

p220 15001 167.58 0 15134 236.47 0 15281 206.61 0

p221 15001 179.05 0 15220 211.06 0 15261 240.16 0

p222 15001 172.56 0 15056 206.33 0 15095 237.19 0

p223 8850 121.92 243 15131 219.49 0 15145 249.21 0

p224 6484 79.54 120 15040 245.46 0 15262 222.53 0

p225 15001 170.56 0 15207 246.74 0 9480 134.51 138

p226 15001 183.72 0 15187 233.65 0 15220 226.64 0

p227 15001 177.28 0 4945 73.69 172 15014 226.17 0

p228 15001 199.76 0 4870 74.64 162 15052 228.47 0

p229 7624 95.34 217 15129 224.12 0 15223 243.68 0

p230 15001 195.38 0 15002 224.21 0 15177 216.4 0

p231 15001 160.57 0 15107 209.47 0 9297 148.78 111

p232 15001 180.87 0 15296 200.18 0 15149 212.87 0

p233 6736 92.20 105 15270 214.87 0 15008 245.29 0

p234 15001 167.53 0 15028 200.64 0 15075 221.81 0

p235 15001 172.20 0 15007 238.57 0 15163 225.26 0

p236 15001 164.63 0 15169 235.35 0 15097 208.09 0

p237 15001 151.43 0 15031 221.03 0 5137 80.94 130

p238 7872 101.30 156 15128 236.11 0 15171 251.4 0

p239 15001 150.58 0 15229 202.36 0 15242 237.56 0

p240 15001 156.81 0 15029 212.12 0 15105 221.04 0

p241 15001 167.71 0 15138 228.72 0 15124 209.04 0

p242 10543 120.46 90 15160 205.35 0 15159 225.79 0

p243 15001 199.20 0 15148 224.72 0 15198 218.64 0

p244 15001 183.83 0 15088 229.37 0 15069 210.6 0

p245 8819 117.96 224 15125 226.01 0 15083 249.75 0

p246 15001 168.32 0 15069 236.96 0 15157 210.11 0

p247 15001 153.56 0 15039 216.24 0 15077 244.11 0

p248 15001 193.65 0 15172 244.67 0 15156 214.91 0

p249 15001 182.33 0 15290 211.89 0 15073 218.48 0

p250 15001 169.31 0 15258 201.44 0 5946 85.27 195

