A Symmetric Version Space Algorithm for
Learning
Digjunctive String Concepts

Jacky Baltes
Knowledge Science Institute
The University of Calgary
2500 University Drive NW
Calgary, Alberta T2N 1N4, Canada
phone: (403) 220 5112
email: baltes@cpsc.ucalgary.ca

November 14, 1997

Abstract

The paper describes an algorithm to learn dijunctive string patterns from examples. An implementation of the
algorithm learns concepts such asall C sourcefiles(*. ¢ or *. h)inthe UNIX domain. The algorithm isdesigned for
an interactive learning model in which the number of questions to the user are minimized. Furthermore, only simple
questions to the user are admissible. The representation language is restricted to a subset of regular expressionsin
order to reducethe complexity. The patternsin the concept grammar are extensions of Nix's gap patterns (see [Nix83])
and Mo's annotated gap patterns [M090]. To learn sequences of patterns, the strings are broken up into units. The
algorithm assumes that the first example is a good representative of the concept, that isit contains all optional units.
Even for limited digunctions, the G—set of Mitchell’s Candidate Elimination algorithm is infinite for domains that
contain an infinite number of elements. A symmetric version space (SVS) algorithm using cover sets of the positive
and negative examples computes only the most specific description that matches a set of examples and can therefore
be used to learn in version spaces that make it impossible or infeasible to compute the most general descriptions. Two
extra cover sets are maintained to avoid asking the user about all possible examples, a problem that arises when the
number of terms in the concept is less than the maximum number of terms in a disunction. The correctness of the
SVS agorithm in version spaces with minimal generalization hierarchies, so called k-digjunctive version spaces, is
shown. Furthermore, it is argued that an extended version of the SVS algorithm solves the swapping and splitting
problem. The last result of the paper establishes that though the size of the version space grows exponentialy, the
sample size complexity increases only linearly with the maximum length of units.

Contents

10

Introduction
The Interactive L earning Paradigm

Representation L anguage

3.1 RedtrictionsonthePatterns
3.2 Generdization Hierarchy e e
33 Sequencesof Palterns e e

Updating the Cover Sets

41 AdjustingtheUnitsof aString e
42 TheSimilarity Metric
4.3 TheGeneralize Algorithm e

Symmetric Version Space

51 DigunctiveConcepts o o i i e e e
52 Limited DiSUNCLIONS o e
5.3 Description of theSVSAlgorithm
54 EXtraCover SEIS
55 Candidate Eliminationand SVS

Correctness of the SVS Algorithm

6.1 ErrorsintheSVSAIlgorithm e
6.2 Discussonof the CorrectneSS. o o i e
6.3 Correctnessin Digunctive Version Spaces o o o i i i e e e e e e

Analysis

7.1 SizeoftheVersionSpace e e
7.2 ExampleComplexity e
Empirical Evaluation

Conclusion

Acknowledgements

Complete Example Trace

N

[e20Ne>INé) NN

0oo~NO®

©

21

23

23

25

1 Introduction

To develop intelligent agents for future applications, it isimportant to be able to learn repetitive tasks involving strings.
Maintaining a file system and organizing mail messages or news articles are examples of such simple, but highly
repetitive tasks. These tasks are tedious, frustrating, and error—prone, so they should be automated. It is possible to
develop programsfor thesetasksin ageneral purpose programming or script language. Unfortunately, the organization
of afile system is very dependent on a user’s preferences. For example, some users prefer separate subdirectories for
different projects, whereas others prefer to use filenames to distinguish between projects. So some users prefer alarge
number of filesin adirectory, as opposed to only afew filesin each directory. Furthermore, the personal preferences
of usersare likely to change over time. This means that new programs must be devel oped.

The learning algorithm described in this paper is part of aresearch effort to design and implement a fast and easy
to use system (Shell-Clerk) that allowsthe user to teach a computer repetitive operating system tasks by simply giving
examples of the required procedures. Teaching by example is avery effective way to communicate the necessary task
knowledge and seems to be particularly suited for this application. The results of the string learning algorithm can be
transferred to other domains with strings as primary data, such as editors, text formatters, databases, and compilers.
Learning atask from examples requiresthat the system learnsto decide whether acommand should be applied to given
strings (representing file names, mail addresses, subjects of messages etc.) or not, based on the syntax of these strings.
Although this decision can be improved using semantics, it would also require that the system knows the semantics of
all intended domains.

Conjunctive concepts are too restrictive. Although many concepts can be expressed as a conjunction of attribute
values, some common concepts can only be expressed as digunctions. Therefore, the system must have a learning
module that learns disjunctive string concepts by example.

| assume an interactive learning model which is described in section 2. Learning disjunctive string conceptsin this
learning model requires that the following four problems are solved:

e Inducing complete regular expressions istoo expensive [Gol 78]. The symmetric version space (SVS) agorithm
described in this paper restricts the representation language to a subset of regular languages, and thus allows it
to be used in an interactive environment.

e Trivial disunctions must be disallowed. In my implementation, a static limit of three terms seemsto be adequate
to learn common concepts in the UNIX domain.

¢ Mitchell’s Candidate Elimination (CE) agorithm is inappropriate, because the G—set isinfinite for limited dis-
junctions. The SVS algorithm computes the most specific description for all positive examples (called the
positive cover set) and the most specific description for all negative examples (negative cover set).

¢ Even using limited diunctions, any least commitment algorithm will possibly ask about all strings and there
areinfinitely many. Some method must be devel oped, that forces the algorithm to generalize in these situations.
The SVS algorithm allows separate control over this problem. In the implementation of the Shell-Clerk, the
SV S adgorithm maintains two extra cover sets. These extra cover sets are used to learn concepts of positive or
negative files that must be classified by the algorithm.

The complete learning algorithm consists of two separate modules and a similarity metric. The SVS algorithm
which described in section 5 is the top level control module. It requires a method to update the cover sets (UCS
algorithm, see section 4) and a similarity metric as subroutines.

Section 3 describes the representation language and therefore the set of learnable concepts. Section 4 describes
the algorithm to compute the cover sets. Subsection 4.2 introduces a similarity metric used in the implementation.
Section 5 describes the SV'S algorithm used in this paper. Section 6 analyses under what assumptions the SVS algo-
rithm learns the correct concept. The example complexity and the size of the version space are examined in section 7.
Section 8 summarizes and eval uates the results obtained from training the SV S algorithm on some filename concepts.
Section 9 draws conclusions and describes directions for future research.

2 Thelnteractive Learning Paradigm

If auser wants to teach the computer to copy all source files into a different directory and archive them, the computer
must absorb two types of knowledge. First, it hasto learn how to copy agiven fileinto adifferent directory and archive
it. Thisincludes induction of loops and variables and is called task knowledge. Secondly, the computer has to learn
what files must be transferred into a different directory. That is, the computer has to acquire the necessary concept
knowledge to distinguish filenames belonging to the concept “source files” from other filenames. This paper focuses
on the concept learning.

The learning paradigm is based on the assumption that the user shows the system an example of a concept, and
after this first example, the algorithm tries to classify all other strings automatically. If the learning algorithm fails to
classify astring, it can ask the user for the correct classification. The learning algorithm’smodel of the concept isthen
updated. The main objectives of an algorithm designed for this learning model are:

e To automate the task as soon as possible. In fact, the algorithm attempts to automate the task after the first
example.

e Minimize the number of questionsto the user.

o Simplify the cognitiveload on the user, by asking only simple questions. Questions such as “What is the correct
regular expression for the concept” are not allowed.

The conceptual learning model (see figure 1) consists of five entities, the initiator, the task performer, the oracle,
the learner/classifier, and an example source. The initiator recognizes the need to learn a concept that is necessary
to execute a given task. It provides the learner/classifier with the first example of a concept, which will always be
positive.

The task performer isthe part of the system that is interacting with the environment. For example, it is the part of
the system that issues commands to the UNIX shell to execute atask. In order to be able to execute the task, the task
performer must be told the classification of elements that occur in the domain (for example filenames).

Thelearner/classifier constructs an internal model of the concept to be learned and fetches more examples from the
example source. It tries to classify these new examples. If the classifier successfully recognizes these new examples
as members or non—members of the concept, this classification is passed on to the task performer. Only if the classifier
failsto classify an example, isit passed on to the learner. The learner consults an oracle about the correct classification
of this example and updates the model of the concept. The previously unknown example is now known and passed on
to the task performer.

Theinteractive learning model restricts the set of conceptsthat can belearned. Every learning algorithm must gen-
eralize from past experiencesto new examples. Otherwise, the learning algorithm will degrade into a simple database
recording the classification of previously seen examples. The interactive learning model, however, does not allow the
system to recover from over—generalization. If the algorithm wrongly classifies a string as either positive or negative,
it will be passed on to the task performer, thus making it impossible to detect over—generaization. Therefore, gen-
eralizations must be reasonably controlled. Only generalizations that are justifiable in the given domain are allowed.
This paper argues that there are rules that can be applied in a variety of different domains and that lead to useful
generalizations.

In the implementation, some of the conceptually different functions are combined. First, the user acts as initiator
and as oracle. Secondly, the task performer aso functions as example source. Other combinations are also possible.
One interesting direction for further research is the combination of task performer and initiator. The task performer
automatically recognizes the need to learn a concept and provides the first example.

3 Representation Language

The grammar for the representation language is given in table 1. The patternsin the concept grammar are extensions of
Nix’s gap patterns (see [Nix83]) and Mo's annotated gap patterns [Mo090]. The representation language in this paper
improves on the previous work by allowing sequences of patterns and by distinguishing between exactly one and zero
or more characters of a given character class.

First
Example

Y
Learner

-

Classification

Task
Performer

Classified Concept

Examples | cjassifier

A

Unknown
Examples

Examples

Example

Source

Figure 1: Interactive Learning Model

< concept > = < Uunity >< unit; >< unit3 > ... < unit, > where
n = number of unitsin the first example

< unit; > = <disjunct > and not < disjunct > fori € {1...n}

<disjunct > = < pattern> or < pattern> or < pattern >

< pattern > = < charclass> {c" < charclass>}*

<charcdlass> = ¢g<U>|<L>|<D>||<A>|<C>|
<R>|<O>|<P>|<S>|<W>

<o> = olja* Metarulefor <U >, <L >,...

c = Anytermina (eg. a,b,A,B,0,1,...)

Table 1. Grammar of the Concept Description Language

The choice of concept grammar is important, because a concept can be learned only if it is expressible in this
language. On the other hand, concept learning can be viewed as search through the space of all possible concepts,
which means that the more powerful the representation, the greater the search space [Mit77].

The agorithm is designed to work in domains, such as operating system shells, that allow the user to specify only
regular expressions in commands. However, learning regular languages is computationally expensive. Gold showed
that the problem of inferring a finite state machine from its input and output is NP-hard in genera [Gol78]. Since
finite state machines are equivalent to regular expressions, it follows that learning regular expressions from examples
is NP-hard.

3.1 Restrictionson the Patterns

The reason for the complexity is that there are many regular expressions that match a given set of strings. The
representation language must be restricted. It will be described as restrictions on the deterministic finite automata
(DFAS) accepting the regular expression.

First, transitions between nodes are allowed only on specific characters. This allowsthe construction only of DFASs
that match specific strings such as abc. Therefore, the representation language aso allows optional shadow nodesin
the DFA, that are used to match exactly one character in a character class (see second DFA of figure 2). Loops are
allowed only to accept zero or more characters of a specified character class (such as lower case or alpha—numeric
characters). Therefore, all DFAs are sequences of the basic building blocks described in figure 2. The DFAS are

a
. Transition on
W specific Characters

- Optional node to
match exactly one
character of a given
a class

\
e

— Shadow Node

—L*
[) a

- Optional arc to
match zero or more
characters of a given

class

Figure 2: Building Blocks for restricted DFAS

equivalent to the patterns described in table 1.

3.2 Generalization Hierarchy

The agorithm uses a generalization hierarchy when merging different DFAs. The character set isbroken up into seven
different character classes. lower case, upper case, digits, punctuation characters, operators, whitespace, and special
symbols. This subdivision is based on the intuitive use of charactersin a string. The generalization hierarchy must
not only be able to generalize single characters, but also strings of characters. Every character class can be specified
to match exactly one character (i.e. L1,0%,...) , or zero or more characters of a given class (i.e. U*,D*,...). This
extension yields the complete generalization hierarchy which is shown in figure 3. The generalization of two strings
is the lowest common ancestor of the two strings. For example, "a" and " b" will be generalized to exactly one lower
case character D1. Thestrings"test" and" 1" are generalized to A*.

3.3 Seguences of Patterns

Sequences of character classes cannot be learned without further enhancements because transitions between nodes are
allowed on specific characters only. For example, the system cannot learn the concept at |east one lower case character
followed by at least one whitespace character. The SV S algorithm solves the problem by assuming that every concept
is a sequence of a limited disunctions of independent restricted DFAS (equivalent to patterns) as described in the
previous subsections. Since this extension of the representation language is used to learn sequences of character
classes, all strings are broken up into different character classes. These substrings are called units of the string. This
imposes a high level structure on the concept. In order to reduce the complexity, the UCS algorithm assumes that the
units are independent. This method is similar to factoring the version space as described in [GN87]. For example, the
string " Test 123. ¢™" isbroken up into unitsas" 7" "est" "123" "." "c¢" "7". Thedescribed algorithm assumes
that the first positive example is a good prototype of the concept, that is it contains all units of the concept. In other
words, the first example must contain all optional elements. Subsection 4.1 describes how subsequent examples are
adjusted to match the first example.

4 Updating the Cover Sets

Figure 4 is a pseudo code description of the UCS algorithm. It computes a most specific description in the represen-
tation language (see table 1) for a set of strings. For example, the UCS algorithm updates a limited digjunction of
patterns such as “filel” U “file2” U “BackupD*” with a new example (e.g. “work”), to compute the new cover set, in

*1 Any
C | Character

c
Non-Alpha—
* * |Numeric
Al 2 JAipha- LR
numeric
B*
B Letter
* * * S*
K L U u D D | & P ol © wh w Sl
aa.. | | AA.. |] 00.. b o ++ .. \b\b ... #i# ...
aaa... AAA ... 000 ... +++ ... \b\b\b HH ..
a.z | |a.z| [o0..9] e Tww] #s]
Lower Upper Digit Punct. Operator White— Special
Case Case Strings Strings Strings space Strings
Strings Strings Strings

Figure 3: Generalization Hierarchy for Strings

this case “fileD1” U “work” U “BackupD*” This example shows that it is not necessarily the case that generalizing
the new example with an element of the digunction yields the most specific description. In the example, it is much
more reasonable to generalize “filel” and “file2.”

Three different tasks are required to update a cover set

o All strings are broken up into units. When handling a new example, it is necessary to adjust the units of the new
example so that they produce the best match.

e Oncethe units are adjusted, a similarity metric is used to determine the two terms that are most similar and will
thus yield the most specific generalization.

¢ After determining the most similar terms, these two terms must be generalized.

4.1 Adjusting the Unitsof a String

Since the SVS algorithm assumes that the number of units in the first example is the same as in the target concept,
new units are never added or deleted. This means that the number of unitsin the other examples must be adjusted to
be equal to the number of unitsin thefirst example.

For example, if thefirst positive exampleisthestring "t est. ss™", it will be broken up into theunits"test" "."
"ss" """, If"concept42. ¢" isanew example, theunits (i.e. "concept" "42" "." "c¢") are adjusted to match the
units of the first example asfollows: "concept 42" "." "c¢" "".

The algorithm to adjust the units of a string to the length of the original example is arecursive method. First, the
algorithm finds a unit that occurs in both strings. The strings are broken up at the matching unit and the algorithm is
called recursively for the left and right substrings. If there is no matching unit in the strings, the units of the new string
are concatenated or empty units are appended to the new string, so that the new string has the same number of units
asthe origina string. Adjusting units requires that when trying to find matching units, the first and the last unit of the
original string must be ignored because otherwise, it is possible that the algorithm has to concatenate units in the new
string to match the empty unit which isimpossible.

Name: UCS(item,cover—set)

Input:
item: new string to add to the cover set
cover—set: most specific description of a set of strings

Output:
The most specific description that matches the item and the
old cover set

IF size—of-disjunct(cover-set) < MAX-DISJUNCT-ALLOWED (=3) THEN
return(cover-set + item)

ELSE
mini,min2 := find—the—two-most-similar-items(cover—set + item)
new-item := Generalize(min1,min2)
del-cover-set := delete min1 and min2 from (cover-set + item)
return(del-cover—set + new—item)

Figure 4: The UCS algorithm

Given the new example" A" "test" "." "c" and the prototype "test"” "." "ss", the adjust algorithm finds
theunit". " and breaksthe unitsup into aleft (adjust(" A" "test","test")) and right (adjust(" c"," ss")) subproblem.
In the left subproblem, the matching unit "t est " must be ignored because otherwise, the algorithm will try to justify
"A" and"". Therefore, the new exampleis adjusted to the following units: " Atest" "." "c".

4.2 TheSmilarity Metric

The similarity metric determines which two patterns should be generalized so as to not exceed the limit on the number
of termsin the disunction. When a new pattern is added to the digunction, the most similar patterns must be general-
ized, which means that all combinations of generalizing two patterns must be tested. It is not necessarily the case that
the new example and one previous term of the disjunction are combined.

The similarity metric used in the paper is based on the maximum common subsequence (MCS) of two strings.
Since there is a simple string representation of patterns, the algorithm can also be used to compute the similarity
between two patterns (e.g. L*123 and L*xyzA*).

The similarity isthe ratio of charactersin the MCS against the total number of charactersin the patterns. Instead
of using the similarity metric directly, the implementation uses a difference measure for efficiency reasons. Thisratio
is expressed as a percentage and can be calculated using the following formula:

length(p1) + length(pz) — 2 length(mes(py, p2))
length(p1) + length(pz)

If two patterns are identical, the MCS of the two patterns is the pattern itself. Therefore, the difference value of
two identical patterns will be 0. If the two patterns do not have a single character in common, the difference value
will be 100. This difference measure can be easily converted into a similarity measure, since similarity(p1, p2) =
100 — difference(p1, p2). Section 6 discusses problems associated with the ambiguity of the similarity metric.

difference(py, p2) = x 100

4.3 The Generalize Algorithm

To compute the most specific description that matches all strings in a given set, it is necessary to compute the most
specific generalization of a string and a pattern or of two patterns. For example, the most specific generalization of
the strings “test1.ss” and “test2.c” in the representation language is “testD!.L*” Figure 5 contains the pseudo code for
generalizing two strings. Since the implementation of the UCS a gorithm represents single character classes as a hash
symbol followed by the lower case character for the character class (i.e. $1 = L1) and an upper case character for zero
or more characters (i.e. $C = C*), the same method can be used to generalize two patterns.

Name: Generalize(item1,item?2)

Input:
item1: first string or pattern to generalize
item2: second string or pattern

Output:
The most specific description that matches item1 and item2

mcs = max—common-subsequence(item1,item2)
gen:=""
prev := START
FOR each char c in mcs DO
s1 := substring(item1,prev,c)
s2 := substring(item2,prev,c)
temp := Ica—generalization—hierarchy(s1,s2)
gen :=gen+temp +c
prev :=c¢
return(gen)

Figure 5: The Generalize algorithm

The generalization of the stringsis based on the MCS of the two strings. The MCS is computed using Hirschberg's
algorithm [Hir75]. A subsequence of astring sis a sequence of substringsc = ¢;C; ... ¢ that maintains the sequential
ordering of c1,Co,...,Cins. That is, ¢; occursin ¢ beforec; if and only if ¢ occursbeforecj ins(i < j). A stringc’is
a common subsequence of strings s, sy, ...,Sy if and only if ¢’ is a subsequence of all strings si,Sp,...,Sn. A MCSis
acommon subsequence with maximal length. Hirschberg's algorithm computes the MCS of two strings in time O(n?)
and space O(n), where n is the length of the longest string.

Hirschberg's algorithm scans both strings from left to right and records the maximal possible length of the MCS
if the current character is an element of the MCS. The length of the MCS must be bounded by the minimum length
of the remainder of the two strings. For example, given the strings s; ="abcdef " and s, ="bbbaaa", it iseasy to see
that the length of the MCS cannot be greater than min(|abcdef|,|aaal), if aisthefirst element of the MCS. This can
be concluded without checking the remainder of string s,. On the other hand, the MCSis bounded by 5, if bisthefirst
element of the MCS.

5 Symmetric Version Space

The CE algorithm is not directly applicable to learning limited disunctions of string patterns. As will be shown in
subsection 5.2, the CE algorithm fails because the most general description that does not match the set of negative
examples cannot be computed. The motivation for the SV S algorithm is that it is only necessary to compute the most
specific description of a given set.

5.1 Digunctive Concepts

Unlimited disjunctions pose an immediate problem, because they allow any learning algorithm to avoid generalization
completely. The most specific concept description that matches all positive examplesis the disunction of al positive
examples, the “trivial” disunction. Therefore, the number of terms must be limited.

My experimental evidence suggests that a static limit of size three is adequate to learn commonly used concepts
in the UNIX domain. Although alimit of three terms seems very restrictive, the reader must remember that the user
will not see the internal representation of the concept. For the user, the usefulness of the system is not dependent on
theoretical restrictions, but on the practical performance on average concepts. Furthermore, unlimited disjunctions
do not seem plausible from a psychological point of view, which suggests that users do not organize their data using
digiunctions with large numbers of terms. Although the implementation of the SVS algorithm limits the number of
termsin adisjunction to three, for smplicity the examples in the paper assume alimit of size two.

Digjunction Level

/\ / \yvzx
LNy

Figure 6: Version Space for Two-Disjunct Lowercase Characters

Example | Classification | ask User | S-set | G—set
a + yes a ?
b + yes aub | ?
c + yes ? ?
d + no ? ?
z + no ? ?

Table 2; Trace of Candidate Elimination for Concept ?

5.2 Limited Digunctions

The CE agorithm can be used to learn limited disjunctions in finite domains such as lower case characters or digits.
In infinite domains such as strings, however, the CE approach cannot be used, because the G—set is possibly infinite.

Figure 6 shows the version space for limited disjunctions of size two for lower case characters. In the string
domain, the most general version space boundary is infinite, since at the disunction level all combinations of an
infinite number of strings must be represented.

The second problem isinherent to all least commitment al gorithms when trying to learn limited disjunctions and
will be described using CE as an example. The problem is that when learning limited disjunctions, the algorithm will
ask about all possible examples.

Using the version space described in figure 6, table 2 is a trace of the CE algorithm learning the concept of any
lower case character. Thisisthe best case for the CE agorithm. Only three examples are necessary to learn the correct
concept.

Table 3 describes the performance of the CE algorithm in order to learn a disunction of two terms. The example
used in the table is the concept au b. Although in this example, the system only needs three examples again, thisis
the best case for the CE algorithm. The worst case for this presentation occurs when the correct concept isauz. In
that case, the CE agorithm asks about all lower case characters before learning the correct concept. In general, the CE
algorithm requires the two positive examples to generate the correct digunction, plus one extra example to rule out
any lower case character as a possible concept.

A problem arises when CE learns a disjunction with less terms in the disjunction than the maximum number of
terms allowed. Table 4 is an example of this problem. The concept is the single lower case character “a’ (one term
digunction). In this case, the correct concept is learned only after asking about all possible other examples. Thereis
no distinction between best and worst case performance; the number of questionsis independent of the ordering of the
examples.

10

Example | Classification | ask User | S-set | G—set
a + yes a ?
b + yes aub | ?
c — yes aub | aub
d — no aub | aub
z — no aub | aub

Table 3; Trace of Candidate Elimination for Concept aub

Example | Classification | ask User | S—set | G-set

a + yes a ?

b - yes a auc,aud,...,auz
c - yes a aud,...,auz

d — yes a aue,...,auz

z — yes a a

Table 4: Trace of Candidate Elimination for Concept a

Every least commitment algorithm for the interactive learning paradigm is faced with this problem. Therefore,
we must have a mechanism to reduce the questions to the oracle. A number of different mechanisms are possible
and should be seen independently of the learning algorithm. The implementation of the SV S algorithm maintains two
extra cover setsaswill be described in subsection 5.4.

5.3 Description of the SVS Algorithm

Figure 7 isa dlightly simplified pseudo code implementation of the SVS algorithm. Figure 7 ignores the extra cover
sets (See subsection 5.4) that are used to limit the questions to the oracle. However, the implementation of extracover
setsis straightforward.

When adding a new exampleto a cover set, the UCS algorithm computes the most specific concept for the previous
cover set and the new example. Therefore, it is possible that the positive and negative cover sets overlap. In fact, if
the concept is a direct concept (i.e. it is exactly those items that match a specific description), the negative cover set
will be generalized to the most general concept after sufficient negative examples. On the other hand, if the concept
isanindirect concept (i.e. everything with the exception of those items that match a specific description), the positive
cover setismost general, if sufficient positive examples are provided.

The behavior of the SVS algorithm in the case where only one cover set matches a new string (See case 3 and
4 in figure 7 reguires some explanation. For example, if there is only a match with the positive cover set, one could
be inclined to classify the example as positive. This classification, however, may be inappropriate, if the negative
cover set does not match the example because insufficient negative examples were presented so far. Therefore, the
SVS agorithm must ask the oracle for the correct classification. If the oracle classifies the example as negative, the
negative cover set must be updated to include the new example. In that case, the new negative as well as the positive
cover set will match the example. On the other hand, in case one of the SVS-Classify algorithm in figure 7, the
algorithm chooses the best match, if both cover sets match the example. Therefore, if the positive cover set yields
a better match than the new negative one, the example will be classified as positive, which is in contradiction to the
classification given by the oracle. Therefore, the SVS agorithm computes the cover set that would result from a
negative classification. Only if there is a better match with the negative cover set, the example will be passed to the
oracle. Otherwise, it will automatically be classified as positive. The rational is that generalizations cannot avoid
possibly false classifications, however, the SVS algorithm tries to classify all examples consistently. An in depth
discussion of the correctness of the SV'S algorithm is presented in section 6. Examples of the SVS algorithm when
learning the concepts “any character” and “aor b” in the 2 — disjunctive lower case character domain are given in
table 5 and in table 6 respectively.

11

Name: SVS-Algorithm(raw—item,pos—cover,neg-cover,first—example)

Input:
raw—item: new string to learn/classify
pos—cover: most specific description of all positive examples
neg-cover: most specific description of all negative examples
first—example: prototype of this concept

Output:
The classification(positive or negative) and the updated
positive and negative cover sets

item := adjust-units(raw-item first—-example)
IF SVS—Classify(item,pos—cover,neg—cover) = POSITIVE THEN
return(POSITIVE,pos—cover,neg—cover)
ELSE IF SVS-Classify(item,pos—cover,neg—cover) = NEGATIVE THEN
return(NEGATIVE,pos—cover,neg—cover)
ELSE
class := Ask-User(item)
IF class := POSITIVE THEN
new-pos—cover = UCS(item,pos—cover)
return(POSITIVE,new—pos—cover,neg—-cover)
ELSE
new-neg-cover := UCS(item,neg-cover)
return(NEGATIVE,pos—cover,new—neg-cover)

Name: SVS-Classify(item,pos—cover,neg—cover)

Input:
item: string to classify
pos—cover: most specific description of all positive examples
neg-cover: most sepcific description of all negative examples

Output:
The classification for the item (POSITIVE,NEGATIVE, UNKNOWN)

IF (NOT match(item,pos—cover)) AND (NOT match(item,neg-cover))
return(UNKNOWN)
ELSE IF match(item,pos—cover) AND match(item,neg—cover) THEN
IF difference(item,pos—cover) <= difference(item,neg-cover) THEN
return(POSITIVE)
ELSE
return(NEGATIVE)
ELSE IF match(item,pos—cover) AND (NOT match(item,neg—cover)) THEN
new—neg—cover = UCS(item,neg—cover)
IF difference(item,pos—cover) <= difference(item,new-neg-cover) THEN
return(POSITIVE)
ELSE
return(UNKNOWN)
ELSE IF (NOT match(item,pos-cover)) AND match(item,neg—cover) THEN
new-—pos-cover = UCS(item,pos—cover)
IF difference(item,new—pos—cover) <= difference(item,neg-cover) THEN
return(UNKNOWN)
ELSE
return(NEGATIVE)

/* Case 1*/
/* Case 2 */

/* Case 3 */

/* Case 4 */

Figure 7: The SVS Algorithm

12

Example | Class. | ask User | pos. C | neg. C | pos. EC | neg. EC
a + yes a nil nil nil
b + yes aub nil nil nil
c + yes ? nil nil nil
d + yes ? nil d nil
e + yes ? nil due nil
f + yes ? nil ? nil
g + no ? nil nil ?
z + no ? nil ? nil

C = Cover set,EC = Extra cover set

Table 5: Trace of SV S algorithm for Concept ?

Example | Class. | ask User | pos. C | neg. C | pos. EC | neg. EC
a + yes a nil nil nil

b + yes aub nil nil nil

c - yes aub | ¢ nil nil

d — yes aub | cud nil nil

e — yes aub | ? nil nil

f — yes aub | ? nil f

g - yes aub | ? nil fug
h - yes aub | ? nil ?
i — no aub | ? nil ?

z - no aub ? nil ?

C = Cover set,EC = Extra cover set

Table 6: Trace of SV S agorithm for Concept au b

5.4 Extra Cover Sets

One problem with the algorithm as described in figure 7 is that in some cases no cover set isupdated. Intable 7 e, f,
and g are examples of this problem. The SVS agorithm asks the oracle in these cases, to rule out indirect concepts
such as“everything but aue.” Since eis, however, a negative example, and since the negative cover set already covers
€, no cover set isupdated. So if eis presented again as an example, the SV S algorithm will ask the oracle again.

One solution for this problem is to maintain a list of examples that were already handled in this way. Instead, |
chose to maintain two extra cover sets, since in this way also the problem of asking about all possible examples can
be solved. The generalization method for the extra cover sets may not be the same as the one for the cover sets. The
SV S agorithm allows control of these two aspects of the learning algorithm separately.

When classifying anew example, the extracover sets aretested in cases, where an example matches only one of the
cover sets, but thereis possibly abetter match with the non—matching one. The corresponding extra cover set istested,
and the example is classified as an example of the matching cover set if the new example matches the corresponding
cover set. Otherwise, the new example is passed on to the user. For example, in table 5 the positive extra cover set is
updated, ruling out the indirect concepts such as “all lower case characters except d.” In table 6 and 7, the negative
extra cover set rules out “a or some other character” as possible concepts.

5.5 Candidate Elimination and SVS

An example is given in table 7. It shows the performance of the SV'S algorithm when learning the concept a. The
SV S dgorithm requires more examples than the best case performance of the CE algorithm. The reason for the extra
guestionsisthat the SV S algorithm can represent more concepts than the CE algorithm, since the SV Salgorithm learns

13

Example | Class. | ask User | pos. C | neg. C | pos. EC | neg. EC
a + yes a nil nil nil

b - yes a b nil nil

c — yes a buc nil nil

d — yes a ? nil nil

e — yes a ? nil e

f - yes a ? nil eUf

g - yes a ? nil ?

h — no a ? nil ?

z - no a ? nil ?

C = Cover set, EC = Extra cover set

Table 7: Trace of SVS agorithm for Concept a

direct aswell asindirect concepts. The SV S algorithm requires the remaining examples to rule out indirect concepts.

Table 7 aso shows how the SV S algorithm handles the problem of asking about every example. Instead of asking
about all lower case characters, the SV S algorithm learns the correct concept after only seven examples. The number
of examples is dependent on the generalization algorithm used for the extra cover sets. The separation of these two
algorithms allows easy control of the worst case performance of the SVS algorithm. In my experiments, the update
algorithm described in section 4 is used to compute the extra cover sets.

6 Correctnessof the SVS Algorithm

This section discusses the correctness of the SV S algorithm. It givesan informal argument that under the assumptions
that special cases occur “early” in the presentation and that the most specific description of aset of instancesis unique,
an extended version of the SV S algorithm learns the correct concept.

6.1 Errorsinthe SVSAlgorithm

There are four errors that lead to incorrect classifications of the SVS algorithm:

1. If anew example matches only one cover set, it is passed on to the oracle only if the non—-matching cover set
when augmented with the new example yields possibly a better match. Otherwise, it is classified asa member of
the matching cover set. What happens if future examples generalize the matching cover set to be more general
than the non—-matching one? In that case, the new example could have been a member of the non—matching
cover set. This problem is called the swapping problem.

2. It is aso possible that by adding a new example a cover set is generalized so that the new concept is more
specific than the opposite cover set, but also covers some examples of the opposite cover set. This problem is
called the splitting problem.

3. The extracover setswill possibly over—generalize.

4. The most specific description for a given set of strings is not unique. This causes a problem for the SVS
algorithm because it selects one description at random.

The first and second problems are the most serious, because the SV'S agorithm will classify examples not only
incorrectly, but also inconsistently. Figure 8 shows one possible version space for a domain with eight instances
{ig,i2,...,i8}.

Two examples of the swapping problem are given in table 8. The table ignores the extra cover sets for simplicity.
Item i3 is classified inconsistently in row 3, 5, and 7. First, the positive cover set is more general, but the addition of
i4 to the negative cover set makes the positive cover set more specific than the negative one. Adding i8 to the positive
cover set reverses this situation again.

14

Version Space

Instances (= Examples)

Figure 8: A Sample Version Space

Number | Example | Class. | ask User | pos. C | neg. C
1 il + yes cl nil

2 i2 + yes c9 nil

3 i3 — yes c9 c3

4 i4 — yes c9 cl2

5 i3 + no c9 cl2

6 i8 + yes cla cl2

7 i3 - no cl4 cl2

C = Cover st

Table 8: The Swapping Problem

15

Number | Example | Class. | ask User | pos. C | neg. C
1 il + yes cl nil

2 i2 + yes c9 nil

3 i4 — yes c9 c4

4 i3 + no c9 c4

5 i8 + yes cla c4

6 i3 — yes cl4 cl2

C =Cover set

Table 9: The Splitting Problem

Table 9 shows a trace of the SV'S algorithm in which the classification of examplesis inconsistent because of the
splitting problem. Example i3 is classified as positive (Number 4) and as negative (Number 6). The addition of i3 to
the negative cover set (Number 5) splits the positive one. Therefore, the classification of i1 and i2 also changes when
i8 is presented as a positive example and the positive cover set is updated to the most general description (c14, see
number 5).

However, the swapping problem and the splitting problem are similar in that the SV'S algorithm misinterprets an
instance, because it allows the user to classify too many examples. The representation language for the SV S agorithm
allows only direct concepts (i.e. nodes in the version space) or indirect concepts (i.e. all instances with the exception
of those matching one node in the version space). So the SV'S algorithm asks too many questions because the user
can specify a concept such as “il and i2, but not i3 and i4” (Table 8) or “everything but i3 and i4 (but including i1
and i2)” (Table 9) which are not expressible as direct or indirect concepts. After classifying il and i8 as positive
examples and i4 as anegative example, the only consistent concepts in the representation language are “ everything but
i4” and “everything but c10 (i.e. noti4 and not i5).” The SV S algorithm correctly learns conceptsin the representation
language, but by passing too many examples on to the oracle, it allows the oracle to specify concepts inexpressiblein
the representation language. It would not be considered an “error” of the CE agorithm to classify i3 as positive after
the presentation of i1 and i2 as positive examplesin the version space givenin figure 8. However, it would be annoying
if the CE algorithm allows the user to inconsistently classify i3 as a negative example. The swapping and splitting
problems occur only when one cover set is atotally covered by its opposite. If only afew instances match both cover
sets, these problems will not arise. On the other hand, one of the cover sets will be generalized to the most general
description after sufficient examples. Therefore, after a certain number of examples, the two cover sets completely
overlap.

Two simple extensions to the described SVS algorithm allow us to avoid unnecessary questions and therefore
the swapping and splitting problem. First, insure that once a cover set is a superset of the opposite cover set, it is
generalized to the most general description. This eliminates the swapping problem. For example, once it is known
that i1 and i4 are positive examples, and that i2 is a negative example, the only consistent concept in the representation
language is “everything but i2.” The second extension isto maintain a list of examples, called ground-list, that were
used to construct the cover set. Note that the length of thislist is bounded by the length of the maximum chain in the
version space. Add an element to a cover set only if the resulting cover set is either not a subset of the opposite cover
set or it does not cover anything in the ground-list of the opposite cover set. This guarantees that generalizing a cover
set does not split the opposite cover set.

These two extensions to the SV S agorithm are ignored in the implementation, because the problem only occurs
in narrow version spaces where concepts overlap. In the string domain, there are many possible specializations for
each concept. This means that the version space is very broad and concepts seldom overlap until one cover set is
generalized to match all strings. Thisintuition is supported through an empirical evaluation (Section 8) in which the
problems never occurred.

Clearly, the over—generalization of extracover sets (problem three) preventsthe SV Salgorithm from learning some
concepts expressible in the concept description language by some presentations. For example, using the presentation
intable7, itiseasy to seethat conceptssuchasauh,...,auzcannot belearned. On the other hand, the SV S agorithm
will possibly ask about an infinite number of strings without generalization of the extra cover sets. The bias using the
extra cover setsisthat special cases appear “early” in the presentation. In other words, the assumption is that there
are enough examplesin the presentation that will generalize the more specific cover set to the correct node, before the
opposite extracover set isgeneralized to ignore these examples. In the given scenario, it means that special cases occur

16

within the first seven examples. Furthermore, the SV S separates this problem from the general learning algorithm and
it is easy to change the meaning of “early” by using different generalization techniques. Even when the assumption
of “early” special cases does not hold, and thus there is no generalization in the extra cover sets, the SVS agorithm
performs better than the CE algorithm because it can learn more concepts in the same version space.

The fourth problem is due to the simple similarity metric which is based on the MCS of two strings. Furthermore,
the generalization of two strings is also based on their MCS. However, the MCS of two strings is not unique. For
example, ab aswell ascd are both MCSs of the strings cdab and abcd. Without additional knowledge, itisimpossible
to decide whether L*abL* or L*cdL* isthe correct generalization. One simple heuristic that can improve the similarity
metric and the generalization algorithm is to give more weight to prefixes and suffixes because they seem to be more
commonly used in concepts than letters in the middle of a string.

6.2 Discussion of the Correctness

In thefollowing section, problemsthree and four are ignored. One assumption is that there are enough examplesin the
presentation to generalize the more specific cover set to the correct node in the version space before the extra cover set
will force the SV S agorithm to ignore those examples (i.e. special casesare “early”). In this case, the extra cover sets
can be interpreted aslists of examples. The second assumption is that the SV S algorithm always computes the correct
most specific description of a set of strings.

If it is known that the concept to be learned is a direct concept, the negative cover set can be initialized to the
most general description. In this case, the SVS agorithm behaves very similar to the INBF algorithm by Smith and
Rosenbloom [SR90] which is a learning algorithm for tree-structured version spaces. It can be proven for the INBF
algorithm that the upper bound for the size of the boundary setsis polynomial in the number of examples.

Given a new example, the SV'S agorithm tests whether the example matches the positive cover set or not. If it
does match the positive cover set, the SVS agorithm will classify it as positive because it must yield a better match
than the negative cover set. If the new example does not match the positive cover set, it will be passed on to the oracle,
because adding the new example to the positive cover set will always yield a match as good as the match with the
most general concept (i.e. the negative cover set). If the oracle classifies the new example as positive, it is added to
the positive cover set, otherwise it is added to the negative extra cover set.

Therefore, the positive cover set isidentical to the S—set of the CE and INBF algorithm and negative examples will
be added to the negative extracover set. The INBF algorithm usesthe list of negative examplesto delay the processing
of these examples. Using the INBF algorithm, the G—set is updated only after an element isrecognized as a near miss.
This prevents the so called fragmentation of the G—set that occurs when a negative example is afar miss. Since there
areanumber of waysinwhich afar miss can be made more specific, every far misswill generate anumber of elements
of the new G—set. This means that the size of the G—set and therefore also the time complexity of the CE algorithm is
exponential in the number of examples.

A similar argument shows that the reverse is true for indirect concepts, if the positive cover set isinitialized to the
most general description. Therefore, if one of the cover setsis generalized to the most general description, the SVS
algorithm learns the concept correctly. The only restriction when generalizing cover setsis that the concept must be
one node in the version space or the inverse of one node in the version space. The only ways in which this rule can
be violated are by swapping or splitting an existing cover set. Since there are two extensions to the SV'S algorithm
that solve the swapping problem and the splitting problem, the SV'S algorithm learns all concepts expressible in the
representation language under the assumptions given at the beginning of this section.

6.3 Correctnessin Digunctive Version Spaces

An interesting subclass of version spaces, called k—disjunctive version spaces, are version spaces of limited disjunction
(at most k terms) and a minimal generalization hierarchy. All elements in the domain are either specific elements or
can be generalized to match any element. The version space shown in figure 6 is an example of a 2—disjunctive version
space. Apart from being of theoretical interest for the analysis, there are domains that have no syntactic generalization
hierarchy associated with them. For example, there is no obvious further division into different classes of lower
case characters without further semantic knowledge. In these domains, k—disjunctive version spaces naturally arise.
Furthermore, every binary version space with n attributes can be interpreted as a 2"~1—disjunctive version space, since
there are exactly 2" different elementsin the domain. One advantage of k—disjunctive version spacesis that the second

17

assumption in the previous subsection is always satisfied. The most specific description of a set of instancesis unique.
The following proof is based on the assumption that special cases occur “early.”

The correctness of the SV'S algorithm can be proved in digunctive version spaces. Given a k—digunctive version
space, each cover set is either a disjunction of at most k specific terms or matches everything in the domain. A
presentation p is a sequence of examples, where each example is classified as positive or negative. To prove the
correctness of the SV S agorithm, it has to be shown that given any concept ¢ and any presentation p for ¢, the concept
¢ resulting from running the SVS algorithm on pisequal to c.

Every concept description consists of an expression for the positive and the negative cover set. One cover set is
generalized to the most general description. The proof assumes that the concept ¢ is adirect concept. The proof for
indirect concepts is symmetric.

Under the assumption of a direct concept, it follows that the positive cover set P, of concept ¢ contains at most k
elements, and the negative cover set N. matches at least k+ 1 elements. It remains to show that all positive and all
negative examples are correctly learned and classified.

This part shows that positive examples are learned correctly, or in other words that P. = Py. Consider a new
example xp that is a positive example of c. If x, has not appeared previously in p, it cannot match Py because cisa
direct concept. If Ny is generalized to the most general description, adding xp to Py will yield abetter match than Ny.
If N is not most general, it can also not cover xp, unlessthe oracle classified x, incorrectly. Under the assumption that
Xp is not covered by the negative extra cover set, X, is passed on to the oracle in both cases. After the oracle classifies
Xp @s positive, it is added to Py. Therefore, it followsthat P, = Py after all positive examples.

The next paragraph shows that the classification of positive examplesis correct. If xp has already been shown as an
example, Py will already match xp. If Ny ismost general, xp will yield abetter match with Py, and thus xp, is classified
as positive. If Ny contains less than k+ 1 terms, x, cannot be an element of Ny because otherwise x, was classified
inconsistently by the oracle. Furthermore, adding x, to Ny can never yield a better match than the perfect match with
Py. Therefore, X, is classified as positive. Therefore, the SV'S algorithm classifies positive examples correctly.

It isleft to show that N = Ny =?. Let x, be a negative example of ¢. x, does not match Py. If x, has not been
shown previously in p, then it will either match Ny or not. If it does not match Ny it is passed on to the oracle and will
be added to Ny after the classification. Therefore, it follows that Ny will be most general after sufficient examples.
If Ny is aready most general, then either there is possibly a better match with Py or not. If Py contains less than k
terms, it will possibly yield a better match. x, will be passed to the oracle and will be added to the negative extra cover
set. If Py isadigiunction of k terms, adding x, to Py will not yield a better match. Therefore, x, will be classified as
negative. The proof of correct classification of x, is similar to the proof for correct positive classification.

This result and the observation, that binary version spaces can be represented as k—disjunctive version spaces,
proofs that the SV S agorithm is powerful enough to learn any concept in binary version spaces.

7 Analysis

The following section analyses the version space size and example complexity of the SVS agorithm. The analysis
yields exact results for k—digunctive version spaces. For the version space generated by the representation language
for string patterns, only the upper bounds are computed.

7.1 Sizeof the Version Space

In general, if there are n different elementsin the domain, there are

5(7)-2

different concepts. As mentioned previously, by restricting the representation language for concepts, a learning algo-
rithm can reduce the complexity. This technique is equivalent to implementing an absolute bias. The version space
is the set of all expressible concepts in the representation language. The following section computes the number of
concepts that the SV'S algorithm can learn in a given version space.

Since the CE agorithm is a bi—directional search for a node in the version space, it follows immediately that the
CE agorithm can only learn as many different concepts as there are nodes in the version space.

18

The SVS agorithm learns additional concepts by allowing indirect concepts. An upper limit on the number of
concepts learnable using the SV S algorithm is 2Nys — 1, where Ny s is the size of the version space, because a concept
is either a node in the version space or everything with the exception of a node. Note that the concept “everything
with the exception of everything” (or in other words “nothing”) cannot be learned because the first example is always
apositive example. Figure 9 isan example of aversion space in which the number of concepts of the SV Salgorithmis
equal to the upper bound. This estimate, however, is only an upper bound because the inverse of anode in the version
space can again be a member of the version space. An example of this would be the version space resulting from
deleting c and d from the version space given in figure 9. For example, everything but a is equivalent to b.

In ak—digjunctive version space, the size of the version space can be computed using the following formula:

E(1)+E () =2 E (7))

Thisformulais based on the observation that each concept is either adirect or an indirect concept, or it is the most
general concept matching al n elements in the domain. The inverse of the most general concept cannot be learned
because it is equivalent to the concept matching elements at all, which is in contradiction to the assumption that the
first example is always positive.

An upper limit for the version space generated by string patterns can also be computed based on the observations
above. Strings are broken up into units, so let ny be the number of units in the first example and ng the maximum
length of any unit in the domain. The units are independent and each unit contains two limited disunctions. Let k
denote the maximum number of termsin a disjunction. Each element of the string can be either a specific character or
one of the character classes. The total number of characters or patterns will be denoted n. It follows that the size of
the version space must be bounded by

Q(ny % n2<"s)

7.2 Example Complexity

One important consideration in the design of the interactive learning model is to minimize the number of questions
to the oracle required to learn a concept. This subsection will give an upper bound on the number of questions to
the oracle. It is easy to see that after any classification of the oracle, exactly one of the cover sets or extra cover
sets is updated. In the case that any pair of cover sets (e.g. positive and extra positive) are generalized to the most
general description, all examples will be classified and no more examples will be given to the oracle. Furthermore, as
mentioned previously, it is not necessary that the version spacesfor the cover sets and the extra cover setsareidentical.
Therefore, an upper bound on the number of questions to the oracle is given by:

2% height (cover _set) + 2 x height (extra_cover _set)

where height(x) is the length of the maximum chain from the most specific to the most general concept in version
space X.

Dueto the simple structure of the k—digjunctive version spaces, this upper bound can be made more specific. Since
instances are added to an extra cover set only if the instance does match one cover set, but there is possibly a better
match with the opposite cover set, it followsthat if element x is added to the positive extracover set, the positive cover
set is more general than the negative cover set. Therefore, it follows that the positive cover set matches every element
and that the negative cover set contains less than k terms. The situation is reversed for negative extra cover sets. One
pair of cover setswill be generalized to the most general description and the opposite cover set is more specific than
the most general description. The opposite extra cover set does not match any elements. It requires at most k+ 1
examples to update a cover set to the most general concept. Therefore, only one extra cover set is generalized. The
maximum number of questions for k—disjunctive version spaces is therefore given by:

k+k—1+k=3k-1

Using asimilar technique, an upper limit can be computed on the number of questions needed to learn disjunctive
string patterns. Let n, be the number of unitsin thefirst example and ns the maximum length of any unit in the domain.

19

Candidate Elimination

Concept S set G set
a {a} {a}
o b {b} {b}
Specific . i) ©
d {d} {d}
General ? {?} {?}
=avbvcvd
Symmetic Version Space
Concept pos. Cover Set neg. Cover Set
a {a} {?}
Specific b {0} {?}
(Direct) c {c} {?}
d {d} {?}
General ? {?} {nil}
=avbvcvd
?\{a} {?} {a}
=bvcvd
2\ {b} {?} {0}
. —avcvd
Indirect
2\ {c} {?} {c}
=zavbvd
2\ {d} {?} {d}
—avbvc

Figure 9: Size of the version space for the CE and SVS agorithm

20

The units are independent and each unit contains four cover sets. Let k denote the maximum number of termsin a
cover set.

If anew example is classified by the oracle, at least one cover set in a unit is made more general. Therefore, the
upper bound on the number of questions grows linearly with the number of unitsin the concept.

Complexity = n,* max{qg|q= C(uj),1 < i < n} where C(u) is the complexity of learning unit u.

If two patterns are generalized, at least one element of the pattern is made more general. In contrast to k—disjunctive
version spaces, it is possible that extra cover sets overlap. So if | isthe length of the maximum chain in the general-
ization hierarchy, then an upper bound on the example complexity is given by 4kinyns.

Since every pattern that matches exactly one character can be converted to a pattern matching any number of
characters, the length of the maximum chain in the generalization hierarchy shown in figure 3 is equal to six. So the
maximum number of questionsis equal to 72nyns. The empirical evaluation showed that on average far less examples
are required than the upper bound.

The example complexity of the SVS algorithm grows only linearly with the length of the units. This means that
the SVS algorithm iswell suited to an interactive domain.

8 Empirical Evaluation

Since the SV S agorithm was implemented as part of system to learn repetitive operating system tasks, it was tested
on some common concepts in the UNIX domain. The presentation for the learning algorithm consisted of an apha
betically sorted fixed sequence of 96 file names that were taken from existing project directories. The complete test
set is given in table 10. The file names represented Gnu Emacs backup files, C language source files, Chez Scheme
source files, and script files. A complete example of the interaction with the Shell-Clerk is given in appendix A.
The diversity and number of files ensured that the general cover sets were generalized to the most general concept
description. The file names were presented in alphabetical order because the UNIX shell returns file names in this
order and because the Shell-Clerk system does not allow the user to change the order of the examples. Ten example
concepts were chosen and the learning algorithm was trained using this presentation. Tests one to seven are examples
of direct concepts with a varying number of disjunctive terms. Test eight learns a sequence of character classes. The
target concept is “everything with at least one character, followed by at least one digit, a period, and at least one more
character.” Although character classes can distinguish only between exactly one and zero or more characters, the
prototype FTEST2. ss restricts the concept to at least one character in a class. Otherwise, the units" FTEST" "2" "."
"ss" of the new example are adjusted differently. Tests nine and ten are examples of indirect concepts. The prototype
of the concept, the number of questions to the user, and the number of errors were recorded. Table 11 summarizes the
results.

Theerrorsin test nine were due to over—generalization of the extracover sets. The SV Salgorithm classified enough
negative examples to generalize the negative extra cover set to match any string, before classifying the examples
NOT(*| ear n*). Instead, the SVS agorithm learned the concept *. Therefore, it is not surprising that the number of
guestions is identical to the first test. It isimportant to note that the number of questions asked does not mean that
thefirst examplesin the list are only classified by the user. Whether or not the user was asked to classify the example
depends on how many similar examples are given previously.

In particular for the UNIX domain, although the SV S-algorithm limits the number of questions, the user still has
to provide the correct classification for one third to one half of the examples. The question arises, if the representation
language should be further restricted to rule out concepts that are not commonly used. One example is to rule out
concepts based on single charactersin a string, such as*s*. The answer to this question requires a more systematic
study of alarge number of users.

Theanalysis of k—digjunctive version spaces predicts that the SV S algorithm learns all possible conceptsin domain
with less than 2k+ 1 elements. By applying this result to filenames in a directory, it follows that the SV S agorithm
learns to classify any concept in directories with less than seven files (k = 3). Furthermore, it requires the correct
classification of every element in the directory from the user. This prediction was verified using a directory containing
filesa, b, ..., f.

21

#make- f ocus. ss#

#script.txt#

#script2. txt#

#script3. txt#

#test.ss# CTEST. ss DebMal | oc. ¢ DebMal | oc. c”

FTEST2. ss adj ust. ss adj ust . ss. CKP adj ust . ss”

backup. zoo bak. ss built-in.amga.ss built-in.sun.ss

built-in_sun.ss™ built-in_sun.ver2 clerk-state.ss clerk.ss

clerk.ss” command. ss conpile.ss conpi | e_sun. ss

concepts. ss concepts. ss” convertgif.ss COpyss. SS

csrc. ss csub csub-old csub. ¢

csub. ¢” csub. h csub. h” csub. o

debmal | oc. ¢~ debmal | oc. 0 del gi f.ss di al ogue-stuff.ss

dummy. ss dumy?2. ss el se.ss fileio_amga.ss

fileio_sun.ss focus. ss ftest.ss generic

generic.c get A3000. ss getlatt.ss get news. ss

grep.ss junk.ss junk2.ss learn-rule.ss

| ear ni ng. ss | oad_ami ga. ss | oad_sun. ss | oad_sun. ss”

| oadc_sun. ss | sdir_amga.c | sdir_sun ltest.ss

meke-f ocus. ss meke- f ocus. ss” make-t ask. ss mycd

mycd. ¢ paraneters. ss print.ss readfile.c

recdir.ss rmss rngrep. ss script.txt

script.txt” script2.txt script2.txt” script3.txt

script3.txt” stderr test-sessionl.txt test-spl.ss

test-spl.ss” test.sh test.ss test2.ss

test2.ss” test3.ss test3.ss” test4.ss

undo. ss uudecode. ss 2002. SS zoosrc. ss

Table 10: Set of Filenamesin the Evaluation

Test | Concept Prototype Num. of Quest. | Reduction | Num. of Errors
1 ? generic 19 80.21% 0
2 test* or #test* test.ss 32 66.66% 0
3 *(built-in or file-io)

(-sun or _amiga)* buil't-in_am ga.ss 38 60.41% 0
4 *(anmiga or sun)* | sdir_am ga. ss 42 56.25% 0
5 *e*.ss clerk.ss 41 57.29% 0
6 *(.c or .hor .ss) adj ust. ss 43 55.20% 0
7 #4# or *7 or *.CKP adj ust . ss” 46 52.08% 0
8 ctDt.Cct FTEST2. ss 32 66.66% 0
9 NOT(*| ear n*) adj ust. ss 19 80.21% 3
10 NOT(C* or c*) adj ust. ss 26 72.91% 0

Table 11: Results of the Experiments (Max. 3 Terms for extra Cover Sets)

22

9 Conclusion

The paper introduces an interactive learning paradigm, which triesto minimize the number of questionsand to simplify
thetypes of questionsto the oracle. The SV Salgorithm learns conceptsfrom asubset of regular expressionsand allows
limiting the number of questions to the user. The representation language is non-trivial and allows the expression of
common concepts in the UNIX and other domains.

Although the version space approach is a very powerful technique, the CE algorithm and focusing algorithms
[SR90] are not directly applicable to limited disjunctions because the most general boundary is infinite for domains
with an infinite number of elements. The SV S algorithm overcomes this problem by not representing the most general
boundary explicitly. Instead, the most specific boundaries (cover sets) for al positive aswell as al negative examples
are computed.

The SV'S algorithm improves on previous work by Mo ([M090]) in a number of important aspects. The SVS
algorithm learns direct as well as indirect concepts. Character classes can match one and zero or more characters.
Sequences of patterns are learned by breaking the example up into units. In order to decide whether two patterns
should be generalized or the sequence of patterns should be maintained, the algorithm uses the first example as a
prototype for the concept. Mo's algorithm only computed the S-set and maintained the negative examples as a list of
exceptions. Therefore, Mo’s algorithm only generalizes positive examples. The SVS agorithm generalizes positive
and negative examples.

The SV'S algorithm allows separate control over the problem of asking about all possible examples. The problem
arisesif the number of termsin the concept is less than the maximum number of terms allowed. In the implementation
two extra cover sets are maintained. This restricts the maximum number of questions to be linear in the maximum
length of a chain between a specific string and the most general pattern description. In the generalization hierarchy
described in this paper, thisis equivalent to being linear in the length of the longest unit in a string.

Extensionsto the SV S—algorithm are described that overcome the swapping and splitting problem. The extensions
overcome these problems by detecting and avoiding the situations that can lead to those problems. Another approach
is to detect problematic situations and change the representation language. For example, given the presentation in
table 9, the SVS agorithm will detect that the classification of i3 in row 6 as negative splits the positive cover set.
The positive cover set is then changed into a high level disunction for (i2,i3) Ui8. This technique will alow the
SV S—agorithm to learn unlimited disunctions. It is unclear, however, if this method will result in the generation of
trivial digunctions.

One direction of further research is to improve the communication with the teacher. Currently, the teacher only
selects the prototype of a concept and classifies unknown examples. The system has to determine which parts of
the string are relevant and which one are not. Since it has been shown in previous work that a more systematic
communi cation with the teacher can greatly reduce the example complexity [RS88, Van87], | believethat the algorithm
can be improved if the oracle is able to focus the |earning algorithms attention on relevant parts of the string.

10 Acknowledgements

I wish to thank my supervisor, Bruce MacDonald, for providing encouragement, motivation, and guidance during my
research. In addition, he greatly improved the quality of this paper through invalueable comments on earlier drafts. |
also would like to thank him for the financia support that, among others, allowed me to attend the AAAI conference
this year. This research was made possible through financial support of the university of Calgary.

23

References

[GNS7]

[Gol 78]

[Hir75]

[Mit77]

[Mo90]
[Nix83]
[RSSE]

[SRO0]

Michael R. Genesereth and Nils J. Nilson. Logical Foundations of Artificial Intelligence, chapter 7.3, pages
170-174. Morgan Kaufmann, 1987. Induction, how to factor aVS.

E. M. Gold. Complexity of automaton identification from given data. Information and Control, 37:302-320,
1978.

D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Communications
of the ACM, 18(6):341-343, 1975.

Thomas M. Mitchell. Version Spaces: An Approach to Concept Learning. Phd thesis, Stanford University,
Stanford, CA, 1977.

Dan HuaMo. Learning text editing procedures from examples. Masters, University of Calgary, 1990.
R. Nix. Editing from Examples. PhD thesis, Yale University, 1983. Introduces gap patterns.

Ronald Rivest and Robert Sloan. Learning complicated concepts reliably and usefully. In AAAI-88, Pro-
ceedings of the Seventh National Conference on Artificial Intelligence, volume 2, pages 635-640, St. Paul
Minnesota, 1988. AAAI, Morgan Kaufman.

Benjamin D. Smith and Paul S. Rosenbloom. Incremental non—backtracking focusing: A polynomially
bounded generalization algorithm for version spaces. In Proceedings of the 8th National Conference on Al,
pages 848-853. AAAI, MIT Press, 1990.

[Van87] Kurt VanLehn. Learning one subprocedure per lesson. Artificial Intelligence, 31(1):1-40, 1987.

24

Appendix
A Complete Example Trace

Chez Schenme Version 3.9n
Copyright (c) 1989 Cadence Research Systens

> (load "l oad_sun.ss")

> (start)

Shel | opened 1D 27530

What should | do ? Do an OLD task or Learn a NEWtask
((old) (new))

> new

I's there anything | should know before we go through the task ?
YES, focus on this ...

NO lets begin

((yes) (no))

> no

Lead ne through the steps

Are we DONE ?

Should I do an OLD task ?

Shoul d I FOCUS on sonething ?

Should | stop focusing on the last item?

Tell me what to do with items that do not match a focus ?
Do you want to give this task a name ?

((done) (old) (focus) (unfocus) (others) (name))

>1s

. | will renenmber this step

#make- - f ocus. ss# #script.txt# #script2. txt#

#test.ss# CTEST. ss DebMal | oc. ¢
FTEST2. ss adj ust. ss adj ust. ss. CKP
backup. zoo bak. ss built--in_am ga.ss
built--in_sun.ss” built--in_sun.ver2 clerk--state.ss
clerk.ss” comand. ss conpile.ss
concepts. ss concepts. ss” convertgif.ss
csrc.ss csub csub--old

csub. c” csub. h csub. h”

debmal | oc. ¢~ debmal | oc. 0 del gi f.ss

dumy. ss dumy2. ss el se. ss
fileio_sun.ss focus. ss ftest.ss
generic.c get A3000. ss getlatt.ss
grep.ss junk.ss junk2.ss

| ear ni ng. ss | oad_ami ga. ss | oad_sun. ss

| oadc_sun. ss | sdir_amiga.c | sdir_sun

meke- - f ocus. ss meke- - f ocus. ss” meke- -t ask. ss
mycd. ¢ paraneters. ss print.ss
recdir.ss rmss rngrep. ss
script.txt” script2.txt script2.txt”
script3.txt” stderr test--sessionl.txt
test--spl.ss” test.sh test.ss
test2.ss” test3.ss test3.ss”

undo. ss uudecode. ss 2002. SS

Lead ne through the steps
Are we DONE ?
Should | do an OLD task ?

25

#script3.txt#
DebMal | oc. ¢”
adj ust . ss”
built--in_sun.ss
clerk.ss
conpi | e_sun. ss
COpySS. SS
csub. c

csub. o

di al ogue--stuff.ss
fileio_amga.ss
generic

get news. ss
learn--rule.ss
| oad_sun. ss”
Itest.ss

mycd

readfile.c
script.txt
script3.txt
test--spl.ss
test2.ss
test4.ss
zoosrc. ss

Shoul d I FOCUS on sonething ?

Should | stop focusing on the last item?

Tell me what to do with items that do not match a focus ?
Do you want to give this task a name ?

((done) (old) (focus) (unfocus) (others) (name))

> focus

k. Wat itenis name should | focus on?

Pl ease type in the itemyou want nme to focus on ...

> adj ust . ss

I's this the correct item that | should focus on ?
(adjust . ss) YES/NO yes

Lead ne through the steps !

Are we DONE ?

Should | do an OLD task ?

Shoul d I FOCUS on sonething ?

Should | stop focusing on the last item?

Tell me what to do with items that do not match a focus ?
Do you want to give this task a name ?

((done) (old) (focus) (unfocus) (others) (name))

> done

Vhat is the name of the task ?

> ex6

Vhat should | do ? Do an OLD task or Learn a NEWtask

((old) (new))

> old

What is the name of the task ?

> ex6

. | amdoing I's now
#make- - f ocus. ss# #script.txt# #script2. txt#
#t est. ss# CTEST. ss DebMal | oc. ¢

New Example: #make—focus.ss#, Pos. Match = -1, Neg. Match = -1
Pos. Cover = (adjust) (.) (s9)

Neg. Cover = ()

Pos. Extra= ()

Neg. Extra= ()

| don’t know what to do with this item #make--focus.ss#
Should | handle it like adjust.ss ? YES/NO no

New Concept

Pos. Cover = (adjust) (.) (ss)

Neg. Cover = (#make—focus) (.) (ss#)

Pos. Extra= ()

Neg. Extra= ()

New Example: #script.txt#, Pos. Match = -1, Neg. Match = -1

| don’t know what to do with this item#script.txt#
Should | handle it like adjust.ss ? YES/NO no

New Concept

Pos. Cover = (adjust) (.) (ss)

Neg. Cover = (#make—focus #script) (.) (ss# txt#)

Pos. Extra= ()

Neg. Extra= ()

New Example: #script2.txt#, Pos. Match = -1, Neg. Match = -1

| don’t know what to do with this item#script2. txt#
Should | handle it like adjust.ss ? YES/NO no

26

#script3.txt#
DebMal | oc. ¢™

New Concept

Pos. Cover = (adjust) (.) (s9)

Neg. Cover = (#make—focus #script #script2) (.) (ss# txt#)
Pos. Extra= ()

Neg. Extra= ()

New Example: #script3.txt#, Pos. Match = —1, Neg. Match= -1

| don’t know what to do with this item#script3.txt#
Should | handle it like adjust.ss ? YES/NO no

New Concept

Pos. Cover = (adjust) (.) (s9)

Neg. Cover = (#make—focus #script$D) (.) (ss# txt#)

Pos. Extra= ()

Neg. Extra= ()

New Example: #test.txt#, Pos. Match = —1, Neg. Match = -1
| don’t know what to do with this item#test.ss#
Should | handle it like adjust.ss ? YES/NO no
New Concept

Pos. Cover = (adjust) (.) (s9)

Neg. Cover = (#make—focus #script$D #test) (.) (Ss# txt#)
Pos. Extra= ()

Neg. Extra= ()

New Example: CTEST.ss, Pos. Match = —1, Neg. Match = -1
| don’t know what to do with this item CTEST.ss
Should | handle it like adjust.ss ? YES/ NO yes
New Concept

Pos. Cover = (adjust CTEST) (.) (s9)

Neg. Cover = (#make-focus #script$D #test) (.) (ss# txt#)
Pos. Extra= ()

Neg. Extra= ()

New Example: DebMalloc.c, Pos. Match = —1, Neg. Match = -1
| don’t know what to do with this item DebMalloc.c
Should | handle it like adjust.ss ? YES/ NO yes
New Concept

Pos. Cover = (adjust CTEST DebMalloc) (.) (ssc)

Neg. Cover = (#make-focus #script$D #test) (.) (ss# txt#)

Pos. Extra= ()

Neg. Extra= ()

New Example: DebMalloc.c™, Pos. Match = —1, Neg. Match = -1

| don’t know what to do with this item DebMalloc.c”
Should | handle it like adjust.ss ? YES/ NO no

New Concept

Pos. Cover = (adjust CTEST DebMalloc) (.) (ssc)

Neg. Cover = (#make—focus DebMalloc #$LsHtID) () (ssH txt# ¢)
Pos. Extra= ()

Neg. Extra= ()

New Example: FTEST2.ss, Pos. Match = -1, Neg. Match = -1

| don’t know what to do with this item FTEST2. ss
Should | handle it like adjust.ss ? YES/ NO yes

New Concept

Pos. Cover = (SUTEST$D adjust DebMalloc) (.) (ssc)

Neg. Cover = (#make-focus DebMalloc #$LsHtID) () (ssH txt# ™)
Pos. Extra= ()

27

Neg. Extra= ()

New Example: adjust.ss, Pos. Match = 0, Neg. Match = -1
Wrking on adjust.ss
New Example: adjust.ss.CKP, Pos. Match = —1, Neg. Match = -1

I don’t know what to do with this item adjust.ss.CKP
Should | handle it like adjust.ss ? YES/NO no

New Concept

Pos. Cover = (JUTEST$D adjust DebMalloc) (.) (ssc)

Neg. Cover = (CaCusfL DebMalloc #HLsHtID) (.) (sSHC txt# C)
Pos. Extra= ()

Neg. Extra= ()

New Example: adjust.ss™, Pos. Match = -1, Neg. Match = 28

The positive cover set can possibly yield a better match, therefore ask the user
| don’t know what to do with this item adjust.ss”

Should | handle it like adjust.ss ? YES/NO no

New Concept

Pos. Cover = (SUTEST$D adjust DebMalloc) (.) (ssc)

Neg. Cover = (CaCushL DebMalloc #HsHtID) (.) (sSHC txt# C)

Pos. Extra= ()

Neg. Extra = (adjust) (.) (ss7)

| don’t know what to do with this item backup.zoo

Should | handle it like adjust.ss ? YES/NO no

| don’t know what to do with this item bak.ss

Should | handle it like adjust.ss ? YES/ NO yes

| don’t know what to do with this itembuilt--in_am ga.ss
Should | handle it like adjust.ss ? YES/ NO yes

| don’t know what to do with this itembuilt--in_sun.ss
Should | handle it like adjust.ss ? YES/NO yes

New Concept

Pos. Cover = ($A built-in_amiga built-in_sun) (.) (ssc)
Neg. Cover = (CsA DebMalloc backup) (.) ($C)

Pos. Extra= ()

Neg. Extra = (adjust) (.) (ss7)

New Example: built-in_sun.ss™, Pos. Match = -1, Neg. Match = 49

The positive cover set cannot possibly yield a better match, therefore skip this example
Ski pping built--in_sun.ss”

| don’t know what to do with this itembuilt--in_sun.ver2

Should | handle it like adjust.ss ? YES/NO no

| don't know what to do with this itemclerk--state.ss

Should | handle it like adjust.ss ? YES/ NO yes

New Concept

Pos. Cover = ($A built-in_$L clerk—state) (.) (ssc)
Neg. Cover = (CsA DebMalloc backup) (.) ($C)
Pos. Extra= ()

Neg. Extra= (adjust) (.) (ss7)

New Example: clerk.ss, Pos. Match = 25, Neg. Match = -1
The negative cover set can possibly yield a better match, and the new
example is not covered by the positive extra cover set, therefore ask the user.

| don’t know what to do with this itemclerk.ss

28

Should | handle it like adjust.ss ? YES/ NO yes

New Concept

Pos. Cover = ($A built-in_$L clerk—state) (.) (ssc)

Neg. Cover = (CsA DebMalloc backup) (.) ($C)

Pos. Extra = (clerk) (.) (ss)

Neg. Extra = (adjust built—in_sun clerk—state) (.) (ss™ ver2)

| don’t know what to do with this itemclerk.ss”
Should | handle it like adjust.ss ? YES/ NO no

| don’t know what to do with this item command. ss
Should | handle it like adjust.ss ? YES/NO yes
Wrking on conpile.ss

| don’t know what to do with this itemconpile_sun.ss
Should | handle it like adjust.ss ? YES/NO yes
Wr ki ng on concepts.ss

| don’t know what to do with this itemconcepts.ss”
Should | handle it like adjust.ss ? YES/NO no
Wrking on convertgif.ss

Wrking on copyss.ss

Wrking on csrc.ss

I don't know what to do with this itemcsub
Should | handle it like adjust.ss ? YES/NO no

| don’t know what to do with this itemcsub--old
Should | handle it like adjust.ss ? YES/NO no
Wrking on csub.c

I don’t know what to do with this itemcsub.c”
Should | handle it like adjust.ss ? YES/NO no

I don’t know what to do with this itemcsub.h
Should | handle it like adjust.ss ? YES/ NO yes
Ski ppi ng csub. h”

Ski pping csub. o

| don’t know what to do with this item debmalloc.c”
Should | handle it like adjust.ss ? YES/NO no

Ski ppi ng debnal | oc. o

| don’t know what to do with this itemdelgif.ss
Should | handle it like adjust.ss ? YES/ NO yes
Ski ppi ng di al ogue--stuff.ss

| don’t know what to do with this itemdummy.ss
Should | handle it like adjust.ss ? YES/ NO yes

| don’t know what to do with this item dummy2.ss
Should | handle it like adjust.ss ? YES/ NO yes
Wrking on el se.ss

| don’t know what to do with this itemfileio.am ga.ss
Should | handle it like adjust.ss ? YES/ NO yes
Working on fileio_sun.ss

Wrking on focus.ss

Wrking on ftest.ss

| don’t know what to do with this itemgeneric
Should | handle it like adjust.ss ? YES/NO no
\Wrking on generic.c

| don’t know what to do with this item getA3000.ss
Should | handle it like adjust.ss ? YES/NO yes
Working on getlatt.ss

Wrking on getnews. ss

Wrking on grep.ss

| don’t know what to do with this itemjunk.ss
Should | handle it like adjust.ss ? YES/ NO yes

29

Wrking on junk2.ss

| don’t know what to do with this itemlearn--rule.ss
Should | handle it like adjust.ss ? YES/NO yes
Wrking on | earning.ss

| don’t know what to do with this itemlearning.ss”
Should | handle it like adjust.ss ? YES/NO no

| don’t know what to do with this itemload_anm ga.ss
Should | handle it like adjust.ss ? YES/NO yes
Wrking on | oad_sun. ss

Ski ppi ng | oad_sun. ss”

Wrking on | oadc_sun. ss

| don’t know what to do with this itemlsdir_amga.c
Should | handle it like adjust.ss ? YES/ NO yes

| don’t know what to do with this itemlsdir_sun
Should | handle it like adjust.ss ? YES/NO no
Wrking on Itest.ss

Ski ppi ng meke- - f ocus. ss

Ski ppi ng meke- - focus. ss™

Ski ppi ng nmake- -t ask. ss

| don’t know what to do with this itemmycd

Should | handle it like adjust.ss ? YES/NO no
Wrking on nycd.c

Wrking on paraneters.ss

Wrking on print.ss

Wrking on readfile.c

Wrking on recdir.ss

Wrking on rmss

Wr ki ng on rngrep. ss

Ski pping script.txt

Ski pping script.txt”

| don’t know what to do with this itemscript2.txt
Should | handle it like adjust.ss ? YES/NO no

Ski pping script2.txt”

| don’t know what to do with this itemscript3.txt
Should | handle it like adjust.ss ? YES/NO no

Ski pping script3.txt”

| don’t know what to do with this itemstderr
Should | handle it like adjust.ss ? YES/NO no

New Example: test—sessionl.txt, Pos. Match = —1, Neg. Match = 69
The positive cover set can possibly yield a better match, and the new
example is not covered by the negative extra cover set, therefore ask user
| don’t know what to do with this itemtest--sessionl.txt
Should | handle it like adjust.ss ? YES/NO yes

New Concept

Pos. Cover = (LIC $A learn—ule) (.) (ssch)
Neg. Cover = ($B CsA) ($P -) ($C)

Pos. Extra = (ILdL_amiga $A junk) (.) (ssch)
Neg. Extra = (CsA $B) ($° -) ($C)

Ski pping test--spl.ss
Ski pping test--spl.ss”
Ski pping test.sh
Wrking on test.ss
Wrking on test2.ss
Ski ppi ng test2.ss”
Wrking on test3.ss

30

Ski ppi ng test3.ss”

Wrking on test4.ss

Wrking on undo. ss

\Wr ki ng on uudecode. ss

Wrking on z002.ss

Wrking on zoosrc.ss

| completed the task you told ne to do
((continue))

> continue

What should | do ? Do an OLD task or Learn a NEWtask
((old) (new))

> exit

Process lisp finished

31

