
Case{based Meta Learning:
Sustained Learning supported by

a Dynamically Biased Version Space

Jacky Baltes and Bruce MacDonald

Computer Science Department

The University of Calgary

2500 University Drive NW

Calgary, Alberta T2N 1N4, Canada

fbaltes,bruceg@cpsc.ucalgary.ca

Abstract

It is well{recognized that in practical in-

ductive learning systems the search for a

concept must be heavily biased. In addi-

tion the bias must be dynamic, adapting

to the current learning problem. Another

important requirement is sustained learn-

ing, allowing transfer from known tasks to

new ones. Previous work on dynamic bias

has not explicitly addressed learning trans-

fer, while previous case{based learning re-

search su�ers from a variety of problems.

This paper presents a method of Case{Based

Meta Learning (CBML), in which the cases

are concepts, rather than instances, and re-

trieved similar concepts are used as a skeletal

version space to speed up learning. CBML

is independent of the concept representation

language. The CBML{Clerk system, which

learns repetitive operating system tasks, is

presented as a demonstration.

Keywords: Dynamic Bias, Case{based Meta Learn-

ing

1 Introduction

Autonomous agents must be able to learn the clas-

si�cations of objects by induction. For example, an

autonomous robot must learn concepts such as \side-

walk" and \cli�," so it can behave safely. An intel-

ligent agent in the operating system domain must be

able to learn concepts such as a user{speci�c class of

backup �les. This could include �le names such as

�le.BAK, �le.CKP, �le~, �le.~n~, and #�le#, as well

as more speci�c formats (e.g. �le.save_21_June_1991

and archived �les). Some researchers even argue that

learning by induction is the main attribute of an intel-

ligent process [Gol91].

In general, the learning problem is to search the space

of all possible concept descriptions for a concept con-

sistent with known examples. As well as the tradi-

tional resources measures of time and space complex-

ity, designers of induction algorithms must deal with

\sample complexity." The number of examples re-

quired to learn a concept, which is related to the user

e�ort in teaching, must be minimized so that the user

is not over{burdened [Mac91].

In practical systems it is important to make learning

manageable by dynamically biasing the concept search

in response to the particular examples available, and

the learner's current environment [Hei89, HM91].

This paper argues that case{based meta learning

(CBML) provides a powerful and intuitive framework

for the implementation of a dynamic bias, and presents

the CBML{Clerk, which learns repetitive operating

systems tasks from examples. As well as using ex-

amples to bias the formation of a concept description,

previously learned concepts strongly bias the search. It

is this latter bias that can e�ectively reduce the sample

complexity in terms of the questions a user must an-

swer during learning. As the system learns knowledge

about concepts and their descriptions (meta knowl-

edge), it avoids some of the problems associated with

case{based learning systems.

After a review of learning in version spaces, inductive



bias, and the importance of dynamic bias, the paper

introduces CBML, and presents a case study with ex-

perimental results that show a decrease in the number

of questions required.

1.1 Learning in Version Spaces

A version space is the set of all concepts consistent

with the given examples and counterexamples [GN87].

If there is a partial ordering on the set of concepts

by generality (forming a version graph) then the space

can be represented e�ciently by its upper or general

(G) and lower or speci�c (S) boundary. The Candi-

date Elimination Algorithm [Mit77] is a bi{directional

search through a version graph. A positive example

forces the S set to be generalized to include it, and

removes members of the G set that do not cover it.

A negative example forces the G set to be specialized

to exclude it, and removes members of the S set that

do cover it. The two sets may converge to one \cor-

rect" concept. If the boundaries overlap, the version

space collapses. This is the result of incorrect example

classi�cation or a representation language that is not

powerful enough to describe the appropriate concept.

2 Inductive Bias

Both empirical observation and the complexity of in-

ductive learning show that the success of a learn-

ing algorithm depends on the method used to re-

strict the hypothesis space (i.e. the inductive bias)

[Mit80, Mic83, Hau86, HM91]. Version spaces are

an appropriate framework in which to examine bias,

particularly dynamic biases, since the candidate elim-

ination algorithm maintains all consistent hypotheses,

and the result is independent of the order in which

examples are presented. Once the version graph is

de�ned, there is no further bias imposed (although

the two boundaries move closer as more examples are

seen).

Informally, an inductive bias can be de�ned as any

method that prefers one hypothesis over others. Three

di�erent categories can be distinguished, based on the

implementation mechanism.

� An absolute bias is a restriction in the representa-

tion language. Certain concepts are not express-

ible, as they are not in the hypothesis space. A

popular absolute bias is the restriction to conjunc-

tive concepts; conjunctions of feature{value pairs.

� A relative bias selects one hypothesis over another

if both of them are consistent with the example

set.

� A random bias would select a consistent hypoth-

esis at random.

This paper concentrates on relative biases since they

do not prevent the system from learning any concept.

Commonly used relative biases are based on the com-

plexity of the concept description or the number of

relevant features. For example, given 1, 3, and 8 as

positive examples, a learner may prefer the concept

\any digit" over \any odd digit or 8." Later if 4 is

given as a negative example, the learner must recon-

sider. However, it is important to note that a �xed rel-

ative bias improves the learning only for the initially

preferred hypotheses.

Two other dimensions for the comparison of biases are

strength and correctness. A weak absolute bias does

not rule out many hypotheses, whereas a strong bias

signi�cantly reduces the hypothesis space. A weak

relative bias has a minimal e�ect on the search or-

der, while a strong one reduces the e�ective search

space markedly. A correct bias does not rule out the

correct concept to be learned, while an incorrect one

does. Strength is independent of any particular con-

cept, whereas correctness must be de�ned relative to

a concept. A learning system should have a strong

bias that meets a certain measure of correctness for

the concepts it must learn.

However, a static bias is not generally useful. Heise

[Hei89, HM91] has proposed that the dynamic nature

of bias is the primary consideration in the design of

real world inductive learners, and shown its usefulness

in the ETAR robot system. For example, if a system is

trying to learn concepts of �le names, it is reasonable

to prefer pre�xes test* and su�xes *.c over concepts

based on occurrences of single characters such as *e*.

Many users organize their �les by a pre�x related to

the content of the �le (project1, test, . . . ) and a

su�x indicating its type (.c, .tex, .txt, . . . ). How-

ever, if the same system is to learn concepts in other

operating system domains, such as string manipula-

tion in a text editor, it may need to learn concepts

such as \punctuation symbol," or \any word with the

letter Z in it" (*Z*). Here the pre�x/su�x preferences

are inappropriate, although the learner should not dis-

card them; it may need to read in �les using the �le

name concepts it knows. Furthermore, it is conceiv-

able that some users organize their �les in a di�erent

way, for example placing di�erent �le types in di�erent

directories, so that preferred concepts might include

project/*/test or project/*/a.out. Therefore, the

bias must be dynamic so that the learner can adapt to

both the user preferences and the current context.



3 Systems that use Dynamic Bias

STABB Utgo� argues that there are three steps in

bias adaption [Utg86].

� Recommend new concept descriptions that should

be added to the hypothesis space.

� Translate the recommendations into expressions

of the concept description language.

� Assimilate newly formed concepts into the origi-

nal hypothesis space.

STABB represents the concept space as a version

graph. An overly strong bias will remove the required

concept, and this is detected when the version space

collapses (i.e. there are no more hypotheses that are

consistent with all examples). STABB then adds ex-

tra nodes to the version graph. One heuristic for new

node selection is to add the least disjunction required,

as depicted in �gure 1 where the concept sin _ cos is

added. Assimilating the new concept is not straight-

forward for STABB because adding nodes to a version

graph may change the boundaries.

Predictor Gordon's system uses a feature value rep-

resentation for instances [Gor90]. An example object

in the domain can be represented as

object = (mat=wood,size=large,shape=sphere).

The Predictor system uses three assumptions to adapt

the bias.

� Irrelevance is used to mask features from the con-

cept description (e.g. ignore the material of an

object).

� Cohesion determines when to climb a generaliza-

tion hierarchy of a feature. For example, in the

version space of �gure 1, if sin is the only ex-

ample, cohesion will try to generate the concept

description trig.

� Independence is used to mask feature{value pairs

from the representation language. Two fea-

tures are independent if and only if you can

independently change one of the feature values

and the resulting object is also a member of

the concept. If obj1=(red, block, wood) and

obj2=(green, sphere, wood) are positive ex-

amples, then color and shape are independent

if and only if obj3=(green, block, wood) and

obj4=(red, sphere, wood) are positive exam-

ples as well.

Predictor tests whether any of the biasing assumptions

can be applied and then actively tries to verify this as-

sumption. Although it is an incremental learning sys-

tem, it can take advantage of the set of examples sup-

plied. For example, if some objects satisfy the irrele-

vance criteria for a given feature, the Predictor system

searches the set of examples for instances that verify

or invalidate this assumption. If the assumption is ver-

i�ed for the current example set, the bias is adjusted

and the hypothesis space reduced by masking the ir-

relevant feature. If in the future other examples show

that the feature is not irrelevant, it will be unmasked.

ETAR Heise's system uses dynamic bias to learn

robot procedures from examples [Hei89, HM89]. In

contrast to STABB, ETAR strengthens the bias by fo-

cusing on aspects of a task trace that meet a relevance

criterion. The criterion is spatial locality relative to

the robot hand. This enables a raw numeric sequence

of teacher guided robot positions to be partitioned into

a chain of symbolic action nodes. The bias also en-

ables action nodes to be merged when there are simi-

lar nodes within and between example task sequences,

thus enabling the determination of branches and loops

in the task. Throughout, the bias is driven by the ex-

ample, or task trace, and dominates the search for an

appropriate procedure. Example tasks include block-

ing stacking, and sorting objects from a conveyor.

4 Issues in Dynamic Biasing

The common approach in the STABB and the Pre-

dictor systems is to use heuristics to adapt the rep-

resentation language and thus the hypothesis space.

ETAR on the other hand uses its bias to modify the in-

put example information, and the search process. All

three address the problem of learning a single con-

cept, not taking advantage of previous learning in a

new learning episode.1 This has two limitations. In

an autonomous agent, rather than de�ning di�erent

representation languages and di�erent biases for each

concept, we would like to implement a general purpose

learning algorithm that supports transfer of concepts.

Second, the choice of initial bias has been ignored. The

STABB system starts out with a strong bias and weak-

ens this bias if forced to. Predictor uses a weak bias

and tries to strengthen it. This means that both sys-

tems require extra work to achieve a successful bias. A

system should use previous experience to approximate

the initial bias.

The systems' biases operate directly on particular rep-

1Although Heise's current work addresses this (personal
communication).
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Figure 1: Dynamic Bias in the STABB System. A least disjunction is added when the space collapses.

resentation languages. If the language is changed, for

example from DNF to CNF, then the dynamic biasing

algorithm must be updated. In addition, since trans-

formations of the representation language are made

explicitly in STABB and Predictor, these approaches

require explicit adaptation rules. Such rules may be

hard to �nd and to compute for non{trivial represen-

tation languages. For example, the Predictor's inde-

pendence biasing assumption is hard to represent in

DNF; the concept for independent color and shape

in the description above would be: (red and block)

or (red and sphere) or (green and block) or

(green and sphere). The representation is simpler

in CNF: (red or green) and (block or sphere).

CBML enables task transfer, and is not speci�c to par-

ticular representation languages.

5 Case{based Learning

In case{based learning (CBL) classi�ed examples

(cases) are stored and used to help in classifying new,

unknown examples [Aha91]. The focus is on di�er-

ent issues than other case{based reasoning methods.

The case representation is restricted to feature{value

pairs and cases are not adapted to �t a new situa-

tion. A simple indexing scheme uses a similarity as-

sessment of the new and previous cases. Approaches

range from encoding a large amount of domain knowl-

edge (e.g. Protos [Bar89]) to computing similarities dy-

namically (e.g. MBRtalk [SW88]).

Breiman et al. [BFOS84] argue that simple CBL al-

gorithms are computationally expensive (because simi-

larities between all cases and the current concept must

be computed), intolerant to noise and irrelevant fea-

tures, sensitive to the similarity function, give no sim-

ple way to de�ne similarity functions for symbolic{

valued features, and provide little information about

the structure of the data. Aha [Aha91] proposes meth-

ods to overcome the �rst two, and notes that CBL

must be sensitive to the current context. GCM{ISW

[AG90] uses context as well as goal features in the sim-

ilarity assessment of new cases.

A major criticism of CBL is the large amount of stor-

age required. Recent research has alleviated this prob-

lem by storing only instances that can discriminate

among di�erent classi�cations [Aha91]. In this paper

cases do not represent single instances, but concepts

learned in previous tasks. The case memory grows

only linearly with the number of tasks that the system

learns. The justi�cation of this approach is analogous

to Hammond's justi�cation for case{based planning

[Ham89]. Learning is an expensive operation so the

results of the learning procedure should be stored and

reused in the future.

6 Case{based Meta Learning

A robot should be able to use previously learned con-

cepts when learning a similar concept in the future.

In CBML previous cases are used as a skeleton of the

hypothesis space, to guide the search. The skeletal

hypothesis space consists of concepts that have been



successfully used in the past on a similar task. Once

the most appropriate known concept is found, domain

learning algorithms are used to �nd the correct node.

CBML operates independently of the learning domain

and algorithm, except for the speci�cation of the learn-

ing context. Previous cases are retrieved using the

learning context, which may be based on the following

features:

� Example set: Retrieve concepts that were used

previously to classify a similar example set.

� Task description: If the learner is given a de-

scription of the task, retrieve concepts that were

used in similar tasks.

� User advice: The learning context can be estab-

lished by the user through special instrutions. For

example, the user might tell the system that the

new concept is similar to known concepts c1 and

c5.

� Domain knowledge: Extra knowledge may al-

low the system to establish a similarity between

learning contexts. For example, a system might

know that copying and moving �les are similar

operations.

CBML implements a bias relating a new concept with

previous learning experiences and tries to maintain the

partitioning of the current instance set that would be

imposed by previously know concepts. The bias is to

maintain sets of instances that were learned by pre-

vious similar cases. For example, if each previous

case generates one consistent classi�cation (positive

or negative) for all elements of the current instance

set matching *.txt, then the preferred hypotheses are

those that assign one particular classi�cation to all

strings ending in .txt.

One distinction between previous dynamic biasing sys-

tems and CBML systems is that CBML bias is ad-

justed only when learning a concept in a similar task.

It cannot yield better performance if the system is used

only to learn one speci�c concept. However, CBML

and other dynamic biasing algorithms can complement

each other since CBML is independent of the speci�c

learner/classi�er algorithm. Furthermore,

1. CBML supports context dependent biases. Previ-

ous concepts that were useful in executing similar

tasks are retrieved. Di�erent tasks can use a com-

mon representation language.

2. CBML can provide an initial bias. If all similar

previous concepts assign the same classi�cation

to all strings matching *.txt, then the important

feature of this task may be su�xes.

3. CBML does not change the representation lan-

guage explicitly, is independent of the language

and the concept learner/classi�er, and needs no

knowledge of how to change the bias to focus on,

say, su�xes.

4. Since transformations are made only implicitly,

transformation rules are not necessary.

CBML also does not su�er from the problems usually

associated with CBL. The computational complexity

is reduced since only concepts and not instances of con-

cepts are stored. Noise in a CBML system is equiva-

lent to retrieving a case that uses a di�erent bias than

the concept to be learned. This a�ects the e�ciency

but not the correctness of the learning procedure. In-

stead of retrieving one similar case, CBML systems

retrieve all similar cases. Therefore, a CBML system

is more robust with respect to irrelevant features and

the choice of the similarity function. A CBML system

uses a learner/classi�er routine for learning and thus

does not need to represent symbolic-valued features or

structured data at an instance level.

7 CBML Algorithm

This section describes the CBML algorithm. As

an illustration, an example similar to Diana Gor-

don's [Gor90] object domain is used. The represen-

tation language is shown in �gure 2. Objects are de-

scribed as feature/value pairs. The three features of

an object are its material, size, and shape. For ex-

ample (element,any,brick) describes the concept of

aluminum or copper bricks of any size.

The input to a CBML system is a learning con-

text, a retrieval function, a set of instances that must

be classi�ed, a memory of previous concepts, and a

learner/classi�er algorithm. The learner/classi�er rou-

tine classi�es instances as positive, negative, or un-

known. If provided with the correct classi�cation (pos-

itive or negative) of an unknown instance, it returns an

updated concept that is able to classify the previously

unknown instance in the future. The set of instances is

assumed unclassi�ed and CBML attempts to ask the

minimum number of questions to learn the unknown

target concept over the instances.

Table 1 describes the CBML algorithm. After retriev-

ing all similar cases from the concept memory (Step 1),

the classi�cation of all instances by all similar cases is

computed (for-each beginning Step 2). If none of
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Figure 2: Version Spaces for Object Example

Table 1: The CBML Algorithm

CBML(learning-context,find-similar,instance-set,memory,learner/classifier)

(returns an updated case memory)

1. similar-cases := find-similar((learning-context), memory)

new-concept := nil-concept

unknown-instances := nil

while (similar-cases not empty)

2. for-each case in similar-cases

3. if inconsistent(instance-set, case) then

remove(case, similar-cases)

case' := make-case(learning-context,concept(case))

(_, class) := learner/classifier(case', instance-set)

4. if all-instances-classified(class) then return(update-memory(case'))

5. replace(similar-cases,case,update(concept(case),class))

6. remove-equivalent(similar-cases)

7. bmm := best-min-max(similar-cases)

8. if ask-user(instances(bmm)) = TRUE or FALSE

9. then new-concept := update(new-concept,instances(bmm))

10. else unknown-instances :=

append(unknown-instances,

remove(instances(best-min-max), instance-set))

11. (new-concept,_) := learner/classifier(

new-concept,

append(unclassifiable-instances(instance-set),

unknown-instances))

return(update-memory(new-concept))

learner/classifier returns a new concept and the classi�cation partition made by it. concept(case) returns

the string concept of the case. A case includes a command, a prototype string and a string concept.



the instances in the set are unknown, then there is

no need to learn. The algorithm simply returns after

adding the concept to the case memory (Step 4). Sim-

ilar cases are removed if inconsistent with the current

instance set (Step 3).

In the machine shop example given in table 2, the sys-

tem has previously learned the use of three di�erent

tools for polishing objects and for what objects those

tools are applicable. The new concept, which is still

unknown to the system, describes objects that can be

polished using a fourth tool C=(alloy,small,prism).

In the example, the learning context is determined by

the task description (polishing objects). Therefore,

previously learned concepts for polishing objects are

retrieved.

In the next stage, similar cases are updated with the

information from the current instance. For example, if

case c is unable to classify instance i, but the current

concept classi�es i as either positive or negative, case

c is updated to include the classi�cation of i. Note

that this update is temporary and is not re
ected in

the case memory (Step 5). In the example, this step is

omitted, because all retrieved concepts are complete,

that is they classify all new instances as either positive

or negative.

The algorithm next removes decision equivalent con-

cepts (Step 6). Two concepts are decision equiv-

alent if they yield the same classi�cation relative

to all instances in an instance set. For exam-

ple, if the algorithm had retrieved another con-

cept C4=(copper,any,prism), C3 and C4 are decision

equivalent for the instance set in the example. One of

the concepts would be removed.

In the next step, the system is trying to �nd a sub-

set of the instance set that allows it to discriminate

best among all similar cases. Then it can ask the

user the most useful question (i.e. the classi�cation

of that set). For this purpose, a two{dimensional ar-

ray is constructed, called the Min{Max{Table (Step

7). The rows of the Min{Max{Table consist of sets of

instances that have the same classi�cation under all

similar cases and are classi�ed as unknown for the new

concept. The columns consist of the similar concepts.

The entry at row i and column j is the classi�cation

of instances in set i under the concept j. Table 2 gives

an example of a Min{Max{Table.

If there is only one element in the instance set for

a given row, the row is deleted from the Min{Max{

Table because it will only require one question to the

user (at a later stage) to �nd the classi�cation of this

instance (In the example, (copper,small,brick) and

(bronze,big,brick) are removed).

Selecting an optimal ordering of sets of instances (giv-

ing a minimum number of questions) is equivalent to

inducing an optimal decision tree. This problem is ex-

ponential. The CBML algorithm uses a local decision

procedure to �nd the best set of instances based on

their Min{Max{Value.

All instances belonging to the set with the best Min{

Max{Value are then presented to the user with the

request to classify all of the instances as positive, neg-

ative, or neither. If the answer is positive or negative,

the concept to be learned is updated with the new

classi�cation for all elements of the set. If the user an-

swered neither, these instances are removed from the

instance set (Step 8). The user will be asked about the

correct classi�cation for all these instances later (Step

11).

The heuristic used to select the best Min{Max{Value

is based on the assumption that the response of the

user will often be positive or negative, so that a large

number of similar cases will be removed. Let us as-

sume that a set of instances is classi�ed as positive by

two similar cases, as negative by three cases, and as

unknown by one case. Let us further assume that the

size of the set of instances associated with this row in

the Min{Max{Table is three. If the user's classi�cation

is positive, three cases can be removed from the Min{

Max-Table, because they are inconsistent with this in-

formation. On the other hand, if the classi�cation is

negative only two cases can be removed. If the user an-

swers neither, no concept can be removed and the user

must be asked for the classi�cation of these instances

separately.

Min{Values and Max-Values are calculated for each

row. The CBML algorithm selects the next instance

set according to these rules:

� Choose the maximum of the Min{Values of all

rows. The Min{Value of a row is the minimum of

the number of positive classi�cations and negative

classi�cations in a row.

� If there is a Min{Value tie among rows, select the

instance set (row) with the highest Max{Value.

The Max{Value is the maximum of positive and

negative classi�cations.

� If there is still a tie among rows, select the larger

instance set.

In the example, the system will select the sec-

ond row of the Min{Max{Table. The system

will ask the user whether (brass,small,brick),



Table 2: Example 1: Machine shop domain. Shown below are concepts, instances, Min{Max{Table, and a sample

dialog for learning a new polishing task

Retrieved concepts C1=(alloy,any,curved)

C2=(element,any,prism)

C3=(any,small,brick)

New Concept C=(alloy,small,prism)

New Instances (brass,big,sphere) (steel,small,cylinder)

(brass,small,brick) (steel,small,brick)

(bronze,small,cube) (copper,small,brick)

(bronze,big,brick)

Min{Max{Table

Instance C C1 C2 C3 Min{Max

(brass,big,sphere) ? t f f 1,2

(steel,small,cylinder) ? t f f

(brass,small,brick) ? f f t 1,2

(steel,small,brick) ? f f t

(bronze,small,cube) ? f f t

(copper,small,brick) ? f t t removed

(bronze,big,brick) ? f f f removed

Sample Dialog

Are all of the following instances positive, negative or neither?

(brass,small,brick) (steel,small,brick) (bronze,small,cube)

USER> positive



(steel,small,brick), and (bronze,small,cube)

are all positive or negative examples. The instances

in the set can be classi�ed simultaneously.

In the example, the instances in the selected instance

set are all classi�ed as positive. If the standard

candidate elimination algorithm is used, after these

three examples, the S{set will have been general-

ized to (alloy,small,prism). Therefore, it follows

that C1 and C2 are incompatible with the new con-

cept. Hence, the system tries to apply adaptation

rules to concepts C1 and C2, trying to adapt them

to the new concept. In this example, assume that

no adaptation rules are given to the system. There-

fore, the system will remove C1 and C2 from consider-

ation. Since not all instances are classi�ed, the system

returns to step 2. The resulting Min{Max{Table is

shown in table 3. Since (copper,small,brick) and

(bronze,big,brick) again yield a single instance set,

their classi�cation is delayed until later. Only a single

instance set is remaining. The classi�cation of the sec-

ond instance set as negative examples, yields a G{set

of (any,any,prism).

The user then classi�es the only remaining instances

(copper,small,brick) and (bronze,big,brick)

as negative. This specializes the G{set to

(alloy,small,prism)which is identical to the S{set.

This means that the correct concept is learned.

8 Implementation of the CBML{Clerk

To show the operation of CBML in a more realistic

learning setting, Baltes implemented a CBML sys-

tem on top of the Shell{Clerk [Bal91], which is an

instructable system (see [Mac91]) that learns repet-

itive operating system tasks by example, such as

copying �les, arranging mail messages, or reading

news articles. File names are represented as strings

and the representation language is a subset of reg-

ular expressions, limited to at most three terms in

a disjunction. Nevertheless, it can learn concepts

such as all backup �les (*~ or #*# or *.CKP), all C

source �les (*.c or *.h), and all test �les (*test* or

*Test* or *TEST*). The system uses a \symmetric

version space" (SVS) approach to learning string con-

cepts, but requires a few too many questions (19 for

96 �les) to learn common concepts such as *.* or *~.

Based on the argument given in the previous section,

CBML{Clerk was designed as an extension.

Instead of using a dynamic bias to select concept de-

scriptions and use these concepts, constraints imposed

by the domain require that the learning algorithm

must not over{generalize (mistaken �le erasure is un-

acceptable). The CBML{Clerk uses the instance set

partitions generated by previous tasks as a way to re-

duce the number of questions to the user. It will ask for

the classi�cation of one of these sets, rather than that

of a single example. Although the there is no decrease

in the number of instance classi�cations required from

the user, fewer questions are asked.

The Clerk requires the user to begin learning by listing

a set of �les that contains the target ones, then input-

ing a command and a prototype �le name on which

this command is to be executed. The original version

then proceeded to question the user about individual

�le names. The CBML{Clerk begins the same way,

then proceeds to ask questions about possibly relevant

sets of �le names.

8.1 Case Representation

A case records the prototype �le name, the command,

and the concept description produced by the SVS al-

gorithm. The candidate elimination algorithm can not

be used directly because the G set is possibly in�nite

for a representation language with limited disjunctions

in an in�nite domain.2 Concepts are described by a

positive cover set | the most speci�c description of

all positive instances | and a negative cover set |

the most speci�c description of all negative instances

| plus other information. For example, a concept

matching strings a, b, and c but not any digits or other

lower case characters, is represented by the following

structure3

Pos-Cover: (a or b or c)

Neg-Cover: (<digit> or <lowercase>)

8.2 Case Indexing

Recalled concepts de�ne the skeletal hypothesis space.

A case is considered similar to the current learning

problem if either the prototype �le name or the com-

mand are the same.

8.3 Case Adaption

CBML provides the opportunity to adapt old cases

to new situations, because cases are concept descrip-

tions that may be used to partition the instance set.

For example, if the concept to be learned (say *.txt,

although the learner does not know this yet) and a

retrieved concept (say *.tex) are determined to be

inconsistent, an adaption rule can be �red to change

2See [Bal91] for details of the SVS algorithm.
3The SVS algorithm requires two extra cover sets.

These can be safely ignored for the discussion.



Table 3: Example 1: After classi�cation of the �rst instance set.

Min{Max{Table 2

Instance C C1 C2 C3 Min{Max

(brass,small,brick) t | | t |

(steel,small,brick) t | | t

(bronze,small,cube) t | | t

(brass,big,sphere) ? | | f 1,2

(steel,small,cylinder) ? | | f

(copper,small,brick) ? | | t removed

(bronze,big,brick) ? | | f removed

the recalled concept description. In CBML{Clerk, if

a similar case is inconsistent then the learner exam-

ines the complement of the concept, and if this is also

inconsistent, then that retrieved concept is removed

from consideration.

9 Results

The CBML{Clerk was tested on a sequence of di�erent

tasks in the operating system domain. Common con-

cepts such as *.*, *.c, *.tex, *~ are learned after

only a few example tasks. The concept in table 4 is

learned after only three questions. Table 5 shows the

results for the �rst �ve concepts in the original SVS

paper [Bal91].

Here the concepts are not learned in any particular

order and are not that well related, so that CBML is

not particularly e�ective. Table 6 shows a more signif-

icant improvement when concepts are related, and are

taught in a reasonable order. In both tests the com-

mand was the same for all concepts. Further, more

exhaustive tests are underway.

10 Conclusion

This paper argues that skeletal, case{based hypothesis

spaces can be used to reduce the sample complexity

of learning algorithms. CBML is an simple, e�cient,

and intuitive way to construct hypothesis spaces from

previous experience. By using a case{based approach,

the constructed spaces are context dependent and can

therefore be used as a dynamic bias.

CBML overcomes di�culties associated with dynamic

biasing and case{based learning. An advantage is its

robustness, which is gained by retrieving all similar

cases. Furthermore, CBML does not require an ex-

plicit set of transformation rules for adapting bias.

CBML is independent of the concept representation

language. Although we have yet to devise sophis-

ticated case adaption rules, CBML enables learning

without case adaption. Improvements could also be

made to the simple indexing scheme. Furthermore, at

the moment only a single skeletal version space is gen-

erated. It seems reasonable that a hierarchy of spaces

could further reduce the search through the hypothesis

space, just as abstraction hierarchies do in planning.

The algorithm could also be extended to combine sim-

ilar cases in the case memory, if many are found. This

would reduce the computational complexity as well as

the storage requirements.

CBML promises to be an appropriate trade-o� be-

tween the detail of case{based learning, and the gen-

erality of inductive inference.
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