Case—based Meta Learning:
Using a Dynamically Biased Version Space
in Sustained Learning

Jacky Baltes and Bruce MacDonald
The University of Calgary
2500 University Drive NW
Calgary, Alberta T2N 1N4, Canada
{Dbaltes,bruce}@cpsc.ucalgary.ca

Abstract

It is well-recognized that in practical inductive
learning systems the search for a concept must
be heavily biased. In addition the bias must
be dynamic, adapting to the current learn-
ing problem. Another important requiremen-
t is sustained learning, allowing transfer from
known tasks to new ones. Previous work on dy-
namic bias has not explicitly addressed learn-
ing transfer, while previous case-based learn-
ing research suffers from a variety of problems.
This paper presents a method of Case-Based
Meta Learning (CBML), in which the cases are
concepts, rather than instances, and retrieved
similar concepts are used as a skeletal version
space to speed up learning. CBML is indepen-
dent of the concept representation language.
The CBML—Clerk system, which learns repet-
itive operating system tasks, is presented as a
demonstration.

1 Introduction

Autonomous agents must be able to learn the classifi-
cations of objects by induction. For example, an au-
tonomous robot must learn concepts such as “sidewalk”
and “cliff,” so it can behave safely. An intelligent agent
in the operating system domain must be able to learn
concepts such as a user—specific class of backup files.
This could include file names such as file.BAK, file.CKP,
file™, file."n~, and #file#, as well as more specific formats
(e.g. file.save_21_June_1991 and archived files). Some
researchers even argue that learning by induction is the
main attribute of an intelligent process [Goldfarb, 1991].

In general, the learning problem is to search the space
of all possible concept descriptions for a concept consis-
tent with known examples. As well as the traditional
resources measures of time and space complexity, de-
signers of induction algorithms must deal with “sample
complexity.” The number of examples required to learn
a concept, which is related to the user effort in teaching,

must be minimized so that the user is not over-burdened
[MacDonald, 1991].

In practical systems it is important to make learn-
ing manageable by dynamically biasing the concep-
t search in response to the particular examples avail-
able, and the learner’s current environment [Heise, 1989;
Heise and MacDonald, 1991].

This paper argues that case-based meta learning
(CBML) provides a powerful and intuitive framework
for the implementation of a dynamic bias, and presents
the CBML~Clerk, which learns repetitive operating sys-
tems tasks from examples. As well as using examples
to bias the formation of a concept description, previous-
ly learned concepts strongly bias the search. It is this
latter bias that effectively reduces the sample complexi-
ty in terms of the questions a user must answer during
learning. As the system learns knowledge about con-
cepts and their descriptions (meta knowledge), it avoids
some of the problems associated with case-based learn-
ing systems.

After a review of learning in version spaces, inductive
bias, and the importance of dynamic bias, the paper in-
troduces CBML, and presents a case study with exper-
imental results that show a decrease in the number of
questions required.

1.1 Learning in Version Spaces

A wversion space is the set of all concepts consistent with
the given examples and counterexamples [Genesereth
and Nilsson, 1987]. If there is a partial ordering on the
set of concepts by generality (forming a version graph)
then the space can be represented efficiently by its upper
or general (G) and lower or specific (S) boundary. The
Candidate Elimination Algorithm [Mitchell, 1977] is a
bi—directional search through a version graph. A posi-
tive example forces the S set to be generalized to include
it, and removes members of the G set that do not cover
it. A negative example forces the G set to be specialized
to exclude it, and removes members of the S set that
do cover it. The two sets may converge to one “correc-
t” concept. If the boundaries overlap, the version space
collapses. This is the result of incorrect example classifi-

cation or a representation language that is not powerful
enough to describe the appropriate concept.

2 Inductive Bias

Both empirical observation and the complexity of induc-
tive learning show that the success of a learning algo-
rithm depends on the method used to restrict the hy-
pothesis space (i.e. the inductive bias) [Mitchell, 1980;
Michalski, 1983; Haussler, 1986; Heise and MacDonald,
1991]. Version spaces are an appropriate framework in
which to examine bias, particularly dynamic biases, s-
ince the candidate elimination algorithm maintains all
consistent hypotheses, and the result is independent of
the order in which examples are presented. Once the
version graph is defined, there is no further bias imposed
(although the two boundaries move closer as more exam-
ples are seen).

Informally, an inductive bias can be defined as any
method that prefers one hypothesis over others. Three
different categories can be distinguished, based on the
implementation mechanism.

e An absolute bias is a restriction in the representa-
tion language. Certain concepts are not expressible,
as they are not in the hypothesis space. A popular
absolute bias is the restriction to conjunctive con-
cepts; conjunctions of feature—value pairs.

e A relative bias selects one hypothesis over another
if both of them are consistent with the example set.

e A random bias would select a consistent hypothesis
at random.

This paper concentrates on relative biases since they
do not prevent the system from learning any concept.
Commonly used relative biases are based on the com-
plexity of the concept description or the number of rele-
vant features. For example, given 1, 3, and 8 as positive
examples, a learner may prefer the concept “any digit”
over “any odd digit or 8.” Later if 4 is given as a neg-
ative example, the learner must reconsider. However, it
is important to note that a fixed relative bias improves
the learning only for the initially preferred hypotheses.

Two other dimensions for the comparison of biases are
strength and correctness. A weak absolute bias does not
rule out many hypotheses, whereas a strong bias signif-
icantly reduces the hypothesis space. A weak relative
bias has a minimal effect on the search order, while a
strong one reduces the effective search space markedly.
A correct bias does not rule out the correct concept to be
learned, while an incorrect one does. Strength is inde-
pendent of any particular concept, whereas correctness
must be defined relative to a concept. A learning system
should have a strong bias that meets a certain measure
of correctness for the concepts it must learn.

However, a static bias is not generally useful. Heise
[Heise, 1989; Heise and MacDonald, 1991] has proposed

that the dynamic nature of bias is the primary consider-
ation in the design of real world inductive learners, and
shown its usefulness in the ETAR robot system. For
example, if a system is trying to learn concepts of file
names, it is reasonable to prefer prefixes test* and suf-
fixes *.c over concepts based on occurrences of single
characters such as *ex. Many users organize their files
by a prefix related to the content of the file (projecti,
test, ...) and a suffix indicating its type (.c, .tex,
.txt, ...). However, if the same system is to learn con-
cepts in other operating system domains, such as string
manipulation in a text editor, it may need to learn con-
cepts such as “punctuation symbol,” or “any word with
the letter Z in it” (*Z#*). Here the prefix/suffix pref-
erences are inappropriate, although the learner should
not discard them; it may need to read in files using the
file name concepts it knows. Furthermore, it is conceiv-
able that some users organize their files in a different
way, for example placing different file types in differen-
t directories, so that preferred concepts might include
project/*/test or project/*/a.out. Therefore, the
bias must be dynamic so that the learner can adapt to
both the user preferences and the current context.

3 Systems that use Dynamic Bias

STABB Utgoff argues that there are three steps in
bias adaption [Utgoff, 1986).

e Recommend new concept descriptions that should
be added to the hypothesis space.

e Translate the recommendations into expressions of
the concept description language.

o Assimilate newly formed concepts into the original
hypothesis space.

STABB represents the concept space as a version
graph. An overly strong bias may remove the required
concept, and this is detected when the version space col-
lapses (i.e. there are no more hypotheses that are consis-
tent with all examples). STABB then adds extra nodes
to the version graph. One heuristic for new node selec-
tion is to add the least disjunction required, as depicted
in figure 1 where the concept sin V cos is added.

Assimilating the new concept is not straightforward
for STABB because adding nodes to a version graph may
change the boundaries.

Predictor Gordon’s system uses a feature value rep-
resentation for instances [Gordon, 1990]. An example
object in the domain can be represented as

object = (mat=wood,size=large,shape=sphere).
The Predictor system uses three assumptions to adapt
the bias.

o Irrelevance is used to mask features from the concep-
t description (e.g. ignore the material of an object).

figure=stabbl.idraw

Figure 1: Dynamic Bias in the STABB System. A least disjunction is added when the space collapses.

o (Cohesion determines when to climb a generalization
hierarchy of a feature. For example, in the version
space of figure 1, if sin is the only example, cohesion
will try to generate the concept description trig.

e Independence is used to mask feature—value pairs
from the representation language. Two features are
independent if and only if you can independently
change one of the feature values and the resulting
object is also a member of the concept. If

objl=(red, block, wood) and
obj2=(green, sphere, wood)

are positive examples, then color and shape are
independent if and only if

obj3=(green, block, wood) and
obj4=(red, sphere, wood)

are positive examples as well.

Predictor tests whether any of the biasing assump-
tions can be applied and then actively tries to verify
this assumption. Although it is an incremental learn-
ing system, it can take advantage of the set of examples
supplied. For example, if some objects satisfy the irrel-
evance criteria for a given feature, the Predictor system
searches the set of examples for instances that verify or
invalidate this assumption. If the assumption is veri-
fied for the current example set, the bias is adjusted and
the hypothesis space reduced by masking the irrelevant
feature. If in the future other examples show that the
feature is not irrelevant, it will be unmasked.

ETAR Heise’s system uses dynamic bias to learn robot
procedures from examples [Heise, 1989; Heise and Mac-
Donald, 1989]. In contrast to STABB, ETAR strength-
ens the bias by focusing on aspects of a task trace that
meet a relevance criterion. The criterion is spatial lo-
cality relative to the robot hand. This enables a raw
numeric sequence of teacher guided robot positions to
be partitioned into a chain of symbolic action nodes.
The bias also enables action nodes to be merged when
there are similar nodes within and between example task
sequences, thus enabling the determination of branches
and loops in the task. Throughout, the bias is driven by
the example, or task trace, and dominates the search for
an appropriate procedure. Example tasks include block-
ing stacking, and sorting objects from a conveyor.

4 Issues in Dynamic Biasing

The common approach in the STABB and the Predic-
tor systems is to use heuristics to adapt the represen-
tation language and thus the hypothesis space. ETAR

on the other hand uses its bias to modify the input ex-
ample information, and the search process. All three
address the problem of learning a single concept, not
taking advantage of previous learning in a new learning
episode.! This has two limitations. In an autonomous
agent, rather than defining different representation lan-
guages and different biases for each concept, we would
like to implement a general purpose learning algorithm
that supports transfer of concepts. Second, the choice of
initial bias has been ignored. The STABB system starts
out with a strong bias and weakens this bias if forced
to. Predictor uses a weak bias and tries to strengthen
it. This means that both systems require extra work to
achieve a successful bias. A system should use previous
experience to approximate the initial bias.

The systems’ biases operate directly on particular
representation languages. If the language is changed,
for example from DNF to CNF, then the dynam-
ic biasing algorithm must be updated. In addi-
tion, since transformations of the representation lan-
guage are made explicitly in STABB and Predictor,
these approaches require explicit adaption rules. Such
rules may be hard to find and to compute for non—
trivial representation languages. For example, the
Predictor’s independence biasing assumption is hard
to represent in DNF; the concept for independent
color and shape in the description above would be:

(red and block) or (red and sphere) or
(green and block) or (green and sphere).
The representation is simpler in CNF: (red or green)

and (block or sphere).

CBML enables task transfer, and is not specific to
particular representation languages.

5 Case-based Meta Learning

In case-based learning (CBL) classified examples (cases)
are stored and used to help in classifying new, unknown
examples [Aha, 1991]. The focus is on different issues
than other case—based reasoning methods. The case rep-
resentation is restricted to feature—value pairs and cases
are not adapted to fit a new situation. A simple in-
dexing scheme uses a similarity assessment of the new
and previous cases. Approaches range from encoding a
large amount of domain knowledge (e.g. Protos [Bareis-
s, 1989]) to computing similarities dynamically (e.g. M-
BRtalk [Stanfill and Waltz, 1988)).

Breiman et al. [1984] argue that simple CBL algo-
rithms are computationally expensive (because similari-
ties between all cases and the current concept must be

! Although Heise’s current work addresses this (personal
communication).

computed), intolerant to noise and irrelevant features,
sensitive to the similarity function, give no simple way
to define similarity functions for symbolic—valued fea-
tures, and provide little information about the structure
of the data. Aha [1991] proposes methods to overcome
the first two, and notes that CBL must be sensitive to
the current context. GCM-ISW [Aha and Goldstone,
1990] uses context as well as goal features in the similar-
ity assessment of new cases.

A major criticism of CBL is the large amount of stor-
age required. Recent research has alleviated this prob-
lem by storing only instances that can discriminate a-
mong different classifications [Aha, 1991]. In this pa-
per cases do not represent single instances, but concepts
learned in previous tasks. The case memory grows only
linearly with the number of tasks that the system learns.
The justification of this approach is analogous to Ham-
mond’s justification for case-based planning [Hammond,
1989]. Learning is an expensive operation so the results
of the learning procedure should be stored and reused in
the future.

In CBML previous cases are used as a skeleton of
the hypothesis space, to guide the search. The skele-
tal hypothesis space consists of concepts that have been
successfully used in the past on a similar task. Once
the most appropriate known concept is found, ordinary
learning algorithms are used to find the correct node.

CBML implements a bias relating a new concept with
previous learning experiences and tries to maintain the
partitioning of the current instance set that would be
imposed by previously know concepts. The bias is to
maintain sets of instances that were learned by previ-
ous similar cases. For example, if each previous case
generates one consistent classification (positive or nega-
tive) for all elements of the current instance set matching
*.txt, then the preferred hypotheses are those that as-
sign one particular classification to all strings ending in
.txt.

One distinction between previous dynamic biasing sys-
tems and CBML systems is that CBML bias is adjust-
ed only when learning a concept in a similar task. It
cannot yield better performance if the system is used
only to learn one specific task. However, CBML and
other dynamic biasing algorithms can complement each
other since CBML is independent of the specific learn-
er/classifier algorithm. Furthermore,

1. CBML supports context dependent biases. Previous
concepts that were useful in executing similar tasks
are retrieved. Different tasks can use a common
representation language.

2. CBML can provide an initial bias. If all similar pre-
vious concepts assign the same classification to all
strings matching *.txt, then the important feature
of this task may be suffixes.

3. CBML does not change the representation language
explicitly, is independent of the language and the
concept learner/classifier, and needs no knowledge
of how to change the bias to focus on, say, suffixes.

4. Since transformations are made only implicitly,
transformation rules are not necessary.

CBML also does not suffer from the problems usually
associated with CBL. The computational complexity is
reduced since only concepts and not instances of con-
cepts are stored. Noise in a CBML system is equivalent
to retrieving a case that uses a different bias than the
concept to be learned. This affects the efficiency but
not the correctness of the learning procedure. Instead of
retrieving one similar case, CBML systems retrieve all
similar cases. Therefore, a CBML system is more ro-
bust with respect to irrelevant features and the choice of
the similarity function. A CBML system uses a learn-
er/classifier routine for learning and thus does not need
to represent symbolic-valued features or structured data
at an instance level.

6 Implementation of the CBML—Clerk

To show the operation of CBML in a realistic learning
setting, Baltes implemented a CBML system on top of
the Shell-Clerk [Baltes, 1991], which is an instructable
system (see [MacDonald, 1991]) that learns repetitive
operating system tasks by example, such as copying files,
arranging mail messages, or reading news articles. File
names are represented as strings and the representa-
tion language is a subset of regular expressions, lim-
ited to at most three terms in a disjunction. Never-
theless, it can learn concepts such as all backup files
(*~ or #*# or *.CKP), all C source files (x.c or *.h),
and all test files (xtest* or *Test* or *TEST*). The
Shell-CLERK uses a “symmetric version space” (SVS)
approach to learning string concepts, but requires a few
too many questions (19 for 96 files) to learn common
concepts such as *.* or *~. Based on the argument giv-
en in the previous section, CBML—Clerk was designed as
an extension.

Instead of using a dynamic bias to select concept de-
scriptions and use these concepts, constraints imposed
by the domain require that the learning algorithm must
not over—generalize (mistaken file erasure is unaccept-
able). The CBML-Clerk uses the instance set partitions
generated by previous tasks as a way to reduce the num-
ber of questions to the user. It will ask for the classifi-
cation of one of these sets, rather than that of a single
example. Although there is no decrease in the number of
instance classifications required from the user, less work
is required to provide these classifications.

The Shell-Clerk requires the user to begin learning by
listing a set of files that contains the target ones, then
inputing a command and a prototype file name on which
this command is to be executed. The original version

then proceeded to question the user about individual
file names. The CBML—Clerk begins the same way, then
proceeds to ask questions about possibly relevant sets of
file names.

6.1 Case Representation

A case records the prototype file name, the command,
and the concept description produced by the SVS algo-
rithm. The candidate elimination algorithm can not be
used directly because the G set is possibly infinite for a
representation language with limited disjunctions in an
infinite domain.2 Concepts are described by a positive
cover set — the most specific description of all positive
instances — and a negative cover set — the most specific
description of all negative instances — plus other infor-
mation. For example, a concept matching strings a, b,
and c but not any digits or other lower case characters,
is represented by the following structure?

Pos-Cover: (a or b or c)
Neg-Cover: (<digit> or <lowercase>)

6.2 Case Indexing

The CBML system retrieves all similar cases when try-
ing to learn a new concept. These concepts define the
abstract hypothesis space. A case is considered similar
to the current situation if at least one of the following
conditions holds:

1. The concept uses the same prototype string. The
SVS algorithm uses the first example string as a
prototype to determine the number of independent
disjunctions in a concept.

2. The user executed the same command on the strings
matching the concepts. For example, let us assume
that the user taught the system a task where all
strings matching the concept had to be copied to a
different directory. In a new task, the user tells the
CLERK to copy all files matching a new concept, so
the original concept will be retrieved.

6.3 Case Adaption

CBML provides the opportunity to adapt old cases to
new situations, because cases are concept descriptions
that may be used to partition the instance set. For ex-
ample, if the concept to be learned (say *.txt, although
the learner does not know this yet) and a retrieved con-
cept (say *.tex) are determined to be inconsistent, an
adaption rule can be fired to change the recalled con-
cept description. In CBML-Clerk, if a similar case is
inconsistent then the learner examines the complement
of the concept, and if this is also inconsistent, then that
retrieved concept is removed from consideration.

2See [Baltes, 1991] for details of the SVS algorithm.
3The SVS algorithm requires two extra cover sets. These
can be safely ignored for the discussion.

6.4 Case Storage

One major criticism of case-based learning systems is the
large amount of storage required to store all instances.
Recent research has alleviated this problem by only s-
toring instances that can discriminate among different
classifications. Only instances that were wrongly classi-
fied are added to the case memory [Aha, 1991].

Since CBML stores only concepts and not instances
in its case memory, this problem does not arise. It s-
tores only one new concept for each new task that it
learned. Therefore, the size of the case memory grows
only linearly with the number of tasks that the system
can perform.

6.5 Learning using CBML

The input to CBML—Clerk is the current command-
prototype pair, a set of instances that must be classi-
fied to perform the given task, a memory of previous
concepts, and a learner/classifier algorithm. The learn-
er/classifier routine classifies instances as positive, neg-
ative, or unknown. If provided with the correct classifi-
cation (positive or negative) of an unknown instance, it
returns an updated concept that is able to classify the
previously unknown instance in the future.

Table 1 describes the CBML algorithm for the Clerk.
After retrieving all similar cases from the concept memo-
ry (Step 1), the classification of all instances as well as all
similar cases is computed (for-each beginning Step 2).
If none of the instances in the instance set are unknown,
then there is no need to learn. The algorithm simply
returns after adding the concept to the case memory
(Step 4). Similar cases are removed if inconsistent with
the current instance set (Step 3).

In the next stage, similar cases are updated with the
information from the current instance. For example, if
case ¢ is unable to classify instance ¢, but the current
concept classifies ¢ as either positive or negative, case ¢
is updated to include the classification of i. Note that
this update is temporary and is not reflected in the case
memory (Step 5).

The algorithm next removes decision equivalent con-
cepts (Step 6). In the example of table 2 the concepts
*.cand *.c or *.cc will be combined because they are
decision equivalent for the given set of new instances.

In the next step, the system is trying to find a subset of
the instance set that allows it to discriminate best among
all similar cases. For this purpose, a two—dimensional
array is constructed, called the Min—-Max—Table (Step
7). The rows of the Min—-Max—Table consist of sets of
instances that have the same classification under all sim-
ilar cases and are now classified as unknown. If there is
only one element in the instance set for a given row, the
row is deleted from the Min—-Max—Table because it will
only require one question to the user (at a later stage)
to find the classification of this instance. The columns
consist of the similar concepts. The entry at row ¢ and

CBML (command ,prototype-string, instance-set ,memory,learner/classifier)

(returns an updated case memory)

1. similar-cases
new-concept := nil-concept
unknown-instances := nil

while (similar-cases not empty)
2. for-each case in similar-cases

:= find-similar((command,prototype-string), memory)

3. if inconsistent(instance-set, case) then

remove(case, similar—-cases)

case’ := make-case(command,prototype-string,concept(case))

(_, class)

remove-equivalent (similar-cases)
bmm := best-min-max(similar-cases)

© 00 N O O

10. else unknown-instances :=
append (unknown-instances,

:= learner/classifier(case’, instance-set)
if all-instances-classified(class) then return(update-memory(case’))
replace(similar-cases,case,update(concept(case),class))

if ask-user (instances(bmm)) = TRUE or FALSE
then new-concept := update(new-concept,instances (bmm))

remove (instances(best-min-max), instance-set))

11. (new-concept,_) := learner/classifier(
new-concept,

append(unclassifiable-instances(instance-set),
unknown-instances))

return(update-memory (new-concept))

learner/classifier returns a new concept and the classification partition made by it. concept (case) returns the
string concept of the case. A case includes a command, a prototype string and a string concept.

Table 1: The CBML Algorithm

column j is the classification of instances in set ¢ under
the concept j. An example of a Min—-Max—Table is given
in table 2.

All instances belonging to the set with the best Min—
Max—Value are then presented to the user with the re-
quest to classify all of the instances as positive, negative,
or neither. If the answer is positive or negative, the con-
cept to be learned is updated with the new classification
for all elements of the set. If the user answered neither,
these instances are removed from the instance set (Step
8). The user will be asked about the correct classification
for all these instances later (Step 11).

The heuristic used to select the best Min—-Max—Value
is based on the assumption that the response of the user
will often be positive or negative, so that a large number
of similar cases will be removed. Let us assume that a
set of instances is classified as positive by two similar
cases, as megative by three cases, and as unknown by
one case. Let us further assume that the size of the
set of instances associated with this row in the Min-
Max—Table is three. If the user’s classification is positive,
three cases can be removed from the Min—Max-Table,

because they are inconsistent with this information. On
the other hand, if the classification is negative only two
cases can be removed. If the user answers neither, no
concept can be removed and the user must be asked for
the classification of these instances separately.

Min-Values and Max-Values are calculated for each
row. The CBML algorithm selects the next instance set
according to these rules:

e Choose the maximum of the Min—Values of all rows.
The Min—Value of a row is the minimum of the num-
ber of positive classifications and negative classifica-
tions in a row.

e If there is a Min—Value tie among rows, select the
instance set (row) with the highest Max—Value. The
Max—Value is the maximum of positive and negative
classifications.

For example, in table 2, instance set test .o, test.dat,
a.out will be selected. The set test.h has a Min—-Max—
Value of (1,1)* while each other set has a Min—Max-

4 As above, this row will be deleted since the instance set

Learned concepts
New Concept
New Instances

*.% x.c (x~
*¥.c or *.h
test.c test.c
test.h test.o

or *.bak) (*.c or *.cc)

test.bak testl.c
test.dat a.out

=]
)
<

or *.bak

a

test.c
testl.c

test.c
test.bak

test.h

test.o
test.dat
a.out

NN N NN N N N

*,
t
t
t
t
t
t
t
t

-
f
f
t
t
?
£
f
f

Hh o Hh Hh | Hh | Hh o || %

Table 2: Example of the CBML—Clerk Min—-Max—Table.

Value of (1,2). So the largest set is selected.
If there is more than one similar case left, the algo-
rithm loops back to Step 2.

7 Results

The CBML—Clerk was tested on a sequence of different
tasks in the operating system domain. Common con-
cepts such as *.*, *.c, x.tex, *~ were learned after
only a few example tasks. The example concept in ta-
ble 2 is learned after only three questions. Table 3 shows
the results for the first five concepts in the original SVS
paper [Baltes, 1991]. Here the concepts are not learned
in any particular order and are not that well related to
a particular task, so that CBML is not particularly ef-
fective. Table 4 shows a more significant improvement
when concepts are related, and are taught in a reason-
able order. In both tests the command was the same for
all concepts.

8 Conclusion

This paper argues that skeletal, case-based hypothesis
spaces can be used to reduce the sample complexity of
learning algorithms. CBML is an simple, efficient, and
intuitive way to construct hypothesis spaces from pre-
vious experience. By using a case—based approach, the
constructed spaces are context dependent and can there-
fore be used as a dynamic bias.

CBML overcomes difficulties associated with dynamic
biasing and case-based learning. An advantage is it-
s robustness, which is gained by retrieving all similar
cases. Furthermore, CBML does not require an explic-
it set of transformation rules for adapting bias. CBML
is independent of the concept representation language.
Although we have yet to devise sophisticated case adap-
tion rules, CBML enables learning without case adap-

includes only one concept.

tion. Improvements could also be made to the simple
indexing scheme. Furthermore, at the moment only a
single skeletal version space is generated. It seems rea-
sonable that a hierarchy of spaces could further reduce
the search through the hypothesis space, just as abstrac-
tion hierarchies do in planning. The algorithm could also
be extended to combine similar cases in the case memory,
if many are found. This would reduce the computational
complexity as well as the storage requirements.

CBML promises to be an appropriate trade-off be-
tween the detail of case-based learning, and the gen-
erality of inductive inference.

References

[Aha and Goldstone, 1990] D. W. Aha and R. L. Gold-
stone. Learning attribute relevance in context in
instance-based learning algorithms. In Proceedings of
the Twelfth Annual Conference of the Cognitive Sci-
ence Society, pages 141-148, Cambridge MA, 1990.
Lawrence Birnbaum.

[Aha, 1991] David W. Aha. Case-based learning algo-
rithms. In Proceedings: Case—Based Reasoning Work-
shop, pages 147-158, 1991.

[Baltes, 1991] Jacky Baltes. A symmetric version space
algorithm for learning disjunctive string concepts. In
Proc. Fourth UNB Artificial Intelligence Symposium,
pages 5565, Fredericton, New Brunswick, September
20-1 1991.

[Bareiss, 1989] Ray Bareiss. FEzemplar-Based Knowl-
edge Acquisition. Academic Press, Inc., 1989.

[Breiman et al., 1984] L. Breiman, J.H Friedman, R. A.
Olshen, and C. J. Stone. Classification and regres-
sion trees. Technical report, Wadsworth International
Group, Belmont, CA, 1984.

[Concept | Prototype | CBML Q | SVS Q | Comments |
test* or #test* test.ss 32 32 identical to SVS
* generic.c 2 19 optimal case for CBML
*(file-io or built-in) | built-in_amiga.ss | 38 38 does not match previous
(_amiga or _sun)* prototype; not adapted
(amiga or sun) built-in_amiga.ss | 34 42
*ex test.ss 39 41

Table 3: Results for the first five concepts reported in [Baltes, 1991].

There are 96 files and the third and fourth

columns give the number of questions asked by CBML and the original SVS algorithm.

[Concept | Prototype | CBML Q | SVS Q | Comments |
*.c test.c 8 8 For perfect learning it must ask about all
* ok test.c 2 8 an optimal case
a.out a.out 2 8
*~ or *.bak | test.bak 6 8
*.c or *.h test.c 6 8

There were eight files:

a.out test.c test.h test.c

test.bak testl.c test.o test.dat.

Table 4: Results for some related concepts, again comparing CBML and the original SVS algorithm.

[Genesereth and Nilsson, 1987] M. R. Genesereth and
N. J. Nilsson. Logical foundations of artificial intel-
ligence. Morgan Kauffman, 1987.

[Goldfarb, 1991] Lev Goldfarb. Verifiable characteriza-
tion of an intelligent process. In Fourth UNB Artificial
Intelligence Symposium, pages 67-80, 1991.

[Gordon, 1990] Diana Faye Gordon. Active Bias Ad-
justement for Incremental, Supervised Concept Learn-
ing. PhD thesis, University of Maryland, 1990.

[Hammond, 1989] Kristian J. Hammond. Case Based
Planning. Academic Press Inc., 1989.

[Haussler, 1986] David Haussler. Quantifying inductive
bias in concept learning. Research report UCSC-CRL-
86-25, University of California, Santa Cruz, CA 95064,
November 1986.

[Heise and MacDonald, 1989] Rosanna Heise and
Bruce A. MacDonald. Robot program construction
from examples. In Proc. National Irish AI Conf.,
Dublin, Ireland, September 1989. Also in book form,
edited by A. F. Smeaton and G. McDermott (Eds.),
AT and Cognitive Sciences '89, Springer—Verlag, 1990.

[Heise and MacDonald, 1991] Rosanna ~ Heise and
Bruce A. MacDonald. Dynamic bias is necessary in
real world learners. Technical report, University of
Calgary, 1991.

[Heise, 1989] Rosanna Heise. Demonstration instead of
programming: focussing attention in robot task ac-
quisition. Master’s thesis, Department of Computer
Science, University of Calgary, 1989.

[MacDonald, 1991] Bruce A. MacDonald. Instructable
systems. Knowledge Acquisition, 3(4):381-420, De-
cember 1991.

[Michalski, 1983] R. S. Michalski. A theory and method-
ology of inductive learning. In R. S. Michalski, J. G.
Carbonnel, and T. M. Mitchell, editors, Machine
Learning, Vol. 1. Tioga, Palo Alto CA., 1983.

[Mitchell, 1977] Tom M. Mitchell. Version space: A can-
didate elimination algorithm approach to rule learn-
ing. In Proceedings of the 5th International Conference
of on Artificial Intelligence, pages 305-310, 1977.

[Mitchell, 1980] Tom Mitchell. The need for biases in
learning generalizations. Technical Report TR CBM-
TR-117, Rutgers University, 1980.

[Stanfill and Waltz, 1988] C. Stanfil and D. Waltz.
Learning to read; a memory-based model. In Pro-
ceedings of a Case—Based Reasoning Workshop, pages
402-413, 1988.

[Utgoff, 1986] Paul E. Utgoff. Machine Learning of In-
ductive Bias. Kluwer Academic Publishers, 1986.

