
A Symmetric Version Space Algorithm for

Learning

Disjunctive String Concepts

Jacky Baltes

April 16, 1997

Abstract

The symmetric version space algorithm (SVS) learns disjunctions of

string patterns by example. The learnable string concepts are a subset of

regular expressions. The running time of the algorithm is reduced, because

the system learns a top{down description of the string concepts. Di�erent

parts of the algorithm learn descriptions at di�erent levels of the concept

independently. This technique is similar to factoring the version space, in

order to restrict the search space. The problem of fragmentation of the

G{set is overcome by using a symmetric version space approach.

1

Contents

1 Introduction 3

1.1 The Learning Paradigm . 4

1.2 Design of the String Learning Algorithm 6

1.3 Outline of the Paper . 7

2 Background and Terminology 7

3 Representation Language 7

3.1 Restrictions of the DFA . 8

3.2 Generalization Hierarchy . 11

3.3 Sequences of Patterns . 12

4 Updating the Cover Sets 14

4.1 Adjusting the Units of a String 14

4.2 The Generalize Pattern Algorithm 15

4.3 The Similarity Metric . 16

5 Symmetric Version Space 16

5.1 Disjunctive Concepts . 16

5.2 Limited Disjunctions . 18

5.3 Description of the Symmetric Version Space Algorithm 20

5.4 Candidate Elimination and SVS 22

6 Examples 25

7 Discussion and Related Work 25

8 Conclusion 26

2

1 Introduction

In order to develop intelligent agents used in future applications, it is important

to be able to learn repetitive tasks involving strings. The motivation for the

string learning algorithm was as part of an ongoing research e�ort to design a

system that allows a novice user to teach repetitive operating{system tasks by

example. However, the results can be transferred to other domains with strings

as primary data such as editors, text formatters, databases, and compilers.

Maintaining a �le system, organizing mail messages or news articles are

examples of simple, but highly repetitive tasks. These tasks are tedious, frus-

trating, and error{prone, so they should be automated. Unfortunately, the

organization of a �le system is very dependent on the personal preferences of

the user. For example, some users prefer seperate subdirectories for di�erent

projects, whereas others prefer to use �lenames to distinguish between projects.

So some users prefer a large number of �les in a directory, as opposed to only

a few �les in each directory. The shape of the directory tree also di�ers from

very shallow and broad trees to deep and narrow ones.

Therefore, it is very di�cult to write a general purpose program suitable

for all or even the majority of users. Speci�c programs can be written in a

general purpose programming language or script language, but programming is

a very time consuming task in itself and not all users are skilled programmers.

Furthermore, a user's preferences are likely to change over time which means

that new programs must be written.

My research is directed towards designing a fast, easy to use system that

allows the user to teach the computer these repetitive tasks by simply giving

examples of the required procedure. Teaching by example is a very e�ective

way to communicate the necessary task knowledge and seems to be particularly

suited for this application.

In the absence of speci�c domain knowledge which would prevent the devel-

oped algorithms being useful in a wider range of domains, the system has to

learn to decide whether a command has to be applied to given strings (repre-

senting �le names, mail addresses, subjects of messages etc.) or not, based on

the syntax of these strings.

Conjunctive concepts are too restrictive. Although many concepts can be

expressed as a conjunction of attribute values, some common concepts can only

be expressed as disjunctions. Simple examples in the UNIX domain are: all

Gnu Emacs backup �les (*~ OR #*#), or all C{language source �les (*.c OR

*.h).

Therefore, the system must have a learning module that interactively learns

disjunctive string concepts by example. Section 1.1 gives a complete description

of the learning model.

3

1.1 The Learning Paradigm

The learning paradigm is based on the assumption that the user shows the

system an example of a concept, and after this �rst example, the algorithm

tries to classify all other strings automatically. If the learning algorithm fails to

classify a string, it can ask the user for the correct classi�cation. The learning

algorithm's model of the concept is then updated.

The main objectives of an algorithm designed for this learning model are:

� To try and automate the task as soon as possible. In fact, the algorithm

attempts to automate the task after the �rst example.

� Minimize the number of questions to the user.

� Simplify the cognitive load on the user, by asking only simple questions.

Questions such as \What is the correct regular expression for the concept"

are not allowed.

Figure 1 is an abstraction of for example a system, in which the system

learns to manipulate �les in a directory. The conceptual learning model con-

sists of �ve distinct entities, the initiator, the task performer, the oracle, the

learner/classi�er, and an example source. The initiator recognizes the need to

learn a concept, in order to perform a given task. It provides the learner/classi�er

with the �rst example of a concept, which will always be positive. As will be dis-

cussed in section 4.1, the �rst example plays a special role, because the algorithm

described in this paper assumes that the �rst example is a good representative

of the concept to be learned.

The learner/classi�er constructs an internal model of the concept to be

learned and fetches more examples from the example source. It tries to classify

the examples. If the classi�er successfully recognizes these examples as mem-

bers or non{members of the concept, this classi�cation is passed on to the task

performer.

Only if the classi�er fails to classify an example, it is passed on to the learner.

The learner consults an oracle about the correct classi�cation of this example

and updates the model of the concept. The previously unknown example is then

known and passed on to the task performer.

The task performer is made explicit in this model in order to stress the

importance of having a reason to learn. A learning system can not be seen

independent of its task. In an ideal system, the task performer would realize

the necessity of learning a concept and invoke the initiator.

Although conceptually di�erent, there is no requirement for the initiator, the

oracle and the example source to be physically distinct. In one implementation

of the learning algorithm, the task performer (the UNIX shell) functions as the

example source. This reduces the cognitive load on the oracle (the user in the

implementation), because only examples that actually occur in the task must

4

Example
Source

Examples

Task
Performer Classified

Examples

Learner

Oracle

Unknown
Examples

Classification

Initiator

First
Example

Classifier

Concept

Figure 1: Interactive Learning Model

be learned and classi�ed. It is also conceivable, that a system asks the oracle

hypothetical questions such as \Would �le xyz belong to the concept?" Also, in

the example implementation, the user combines the functionality of the initiator

and the oracle. Using special instructions, the user can force the generation of

a concept and provide the �rst example (initiator), as well as classify unknown

examples (oracle).

The interactive learning model restricts the concepts that can be learned.

Every learning algorithm must generalize from past experiences to new exam-

ples. The interactive learning model, however, does not allow the system to

recover from over{generalization. If the algorithm wrongly classi�es a string

as either positive or negative, it will be passed on to the task performer, thus

making it impossible to detect over{generalization.

Therefore, generalizations must be reasonably controlled. Only generaliza-

tions that are justi�able in the given domain are allowed. This paper argues that

there are rules that can be applied in a variety of di�erent domains, that lead

to useful generalizations. The rules are based on the intuitive use of di�erent

characters in a string. The character set is broken up into seven di�erent char-

acter classes: lower case, upper case, digits, punctuation characters, operators,

whitespace, and special symbols.

5

1.2 Design of the String Learning Algorithm

The following four problems must be solved:

� Inducing complete regular expressions is too expensive. The algorithm

described in this paper restricts the representation language to a subset

of regular languages, and thus allows the algorithm to be used in an in-

teractive environment. The representation language is given in table 1. It

imposes a hierarchical structure on the regular expression. Each concept

is a sequence of units (See 4.1). The number of units in a concept is deter-

mined by the �rst example. In turn, each unit is a disjunction of at most

three patterns. The patterns are character classes that must be separated

by speci�c characters.

� Disjunctions must be limited, because otherwise the most speci�c concept

that matches all positive examples is simply the disjunction of all positive

examples. The described algorithm imposes a static or dynamic limit on

the number of terms in a disjunction. In our example implementation, a

static limit of three terms seemed to be adequate. A dynamic limit can

be implemented using a similarity metric.

� Using Mitchell's Candidate Elimination Algorithm directly is inappropri-

ate, because the G{set is in�nite for limited disjunctions. Even without

limited disjunctions, the G{set will grow very large, because of fragmen-

tation. Fragmentation occurs because there are a large number of ways

in which a pattern can be specialized to not match a given set of strings.

The symmetric version space algorithm computes two cover sets for the

set of positive and negative examples. A cover set is similar to the S{set

of the candidate elimination algorithm. It is the most speci�c expression

in the representation language that matches all examples in a given set.

However, in contrast to the candidate elimination algorithm, if a exam-

ple matches for example the positive cover set , it does not automatically

follow that this example should be classi�ed as positive.

� Even using limited disjunctions, any least commitment algorithm will pos-

sibly ask about all strings (in�nitely many). Some method must be de-

veloped, that forces the algorithm to generalize in these situations. There

are a number of possible solutions for this problem. The algorithm de-

scribed in this paper maintains two extra cover sets to avoid asking about

all strings.

The problems and the solution chosen in this paper will be described in

more detail in the following sections. Subsection 1.3 section gives an outline of

remainder of the paper.

6

1.3 Outline of the Paper

Section 2 gives a brief introduction to grammars and version spaces. It also

describes Mitchell's candidate elimination algorithm. Section 3 describes the

representation language and therefore the learnable concepts. Section 5 de-

scribes the symmetric version space algorithm used in this paper. It compares

this algorithm to the candidate elimination algorithm using a small example.

The symmetric version space algorithm is a higher level algorithm and requires

a subroutine to update the cover sets and a similarity metric. Section 4 de-

scribes the algorithm to compute the cover sets . A cover set is the most speci�c

pattern that match a given set of examples. Subsection 4.3 introduces the sim-

ilarity metric used in the example implementation. Section 6 gives an extended

example of the symmetric version space algorithm. Section 7 compares the algo-

rithm to other work. The IBFA algorithm by Smith and Rosenbloom. Section 8

draws conclusions and describes directions for future research.

2 Background and Terminology

Language generators are most commonly described by grammars. Grammars

are �nite sets of rewrite rules. Terminals are symbols that actually occur in

the language. Non{terminals are intermediate symbols that are only used in

the generation of the string and do not occur in the language itself. Regular

languages are languages where each rewrite rules is of the form N) �V , where

� is a terminal and N; V are non{terminals. Regular languages are the weakest

class of languages in the Chomsky hierarchy.

Regular languages are equivalent to deterministic �nite automatons.

A version space is the space of all possible concepts expressible in the rep-

resentation language. The predicate generalizes implies a partial order on this

concept space.

Developed by Mitchell [Mit77]. Uses compact representation of the Version

Space. Version Space is partial ordering of all possible concepts by generality.

Representation Language determines the learnable concepts.

A presentation is any �nite sequence of examples that are classi�ed as either

positive or negative.

Candidate elimination is an algorithm designed by Mitchell that uses an

e�cient way of representing the version space by its boundaries.

Fragmentation of the G{set means that the G{set grows exponentially, be-

cause there are many ways in which a pattern can be made more speci�c.

3 Representation Language

A useful representation language for concepts has to be chosen. The choice

of representation language is very important, because a concept can only be

7

learned if it is expressible in the representation language. For example, if the

representation language only distinguishes between numbered cards and face

cards, concepts such as \Queen of hearts" can never be learned. On the other

hand, concept learning can be viewed as search through the space of all possible

concepts, which means that the more powerful the representation language, the

greater the search space [?].

As a �rst approximation, the representation language is limited to regular

expressions. The algorithm is designed to work in domains, such as operating

system shells, that allow the user to specify only subsets of regular expressions

in commands. It seems reasonable to assume that users would organize their

data such that concepts can be expressed using regular languages.

Even learning regular languages is computationally very expensive. Gold

showed that the problem of infering a �nite state machine from its input and

output is NP{hard in general [Gol78]. Since �nite state machines are equivalent

to regular expressions, it follows that learning regular expressions from example

is NP{hard.

3.1 Restrictions of the DFA

Intuitively, the reason for the exponential complexity is that there are many

regular expressions that match a given set of strings. In fact, unless some kind

of reducedness criteria is applied, there is an in�nite number of regular expres-

sions that are consistent with any �nite presentation. This section will describe

why the representation language used in this paper reduces the complexity of

the learning algorithm. Section 4 explains the algorithms to compute the ex-

pressions in the representation language.

Assume that P = fp1; p2; : : : ; png is the set of positive examples, N is the

set of negative examples. The regular expression R = p1 [p2 : : : pn matches all

positive examples and none of the negative examples. Since there is an in�nite

number of strings, a new string s, that is neither in P nor in N can be found.

Then the new regular expression R0 = R [s will also be consistent with the

presentation. This process can be applied recursively to generate in�nitely many

regular expressions consistent with any given �nite presentation.

However, the grammars that are generated using this method are redundent,

because they make unnecessary assumptions about unknown strings. In fact, a

subset of the rules for these grammars are consistent with the presentation. In

order to overcome the problem of in�nite consistent grammars, it is necessary to

restrict the class of languages to reduced regular grammars. A regular grammar

is reduced, if no proper subset of its rules is consistent with the representation.

The following two stage process constructs all reduced regular expressions

that match a given set of strings and is similar to Van Lehn and Ball's algo-

rithm 1 to compute reduced consistent context free grammars.

1See [VB87] for an in depth description

8

 a b
S ==> aA
A ==> b

ab

a
b

S ==> aA
A ==> bA
A ==> nil

ab*

a
b S ==> aS

S ==> b
a*b

a

b

(ab)*S ==> aA
A ==> bS
S ==> nil

a

b

S ==> aS
S ==> bS
S ==> nil

(a v b)*

A1

A2

A3

A4

A5

Number Graph Grammar Reg. Expr.

Figure 2: Reduced regular expressions for \ab"

The �rst stage computes all reduced regular expressions for any string. Since

regular expressions are equivalent to DFA, it is possible to generate the trace

that a string must have taken through a DFA in order to be accepted. A string

s of length n must have traversed n arcs. All regular expressions that can be

generated by assigning any of the n arcs to end nodes will accept the string.

Figures 2 and 3 are examples of this construction for the example strings \ab"

and \c."

In the second stage, the DFA's generated by the �rst stage for all strings are

combined to generate DFAs that accept all strings in the given set. Firstly, the

cartesian product of all DFAs of the �rst stage is computed. Then, the nodes

of the DFAs have to be assigned to nodes in the resulting DFA in all possible

ways. Figure 4 gives an example of this construction for part of the set fab; cg.
However, some DFAs generated by this method yield new regular expressions.

This can be seen in �gure 4, where C1 and C2 represent equivalent regular

expressions.

The complexity of this process is exponential in the number of strings and

the length of the strings. Clearly, a faster way to compute the necessary strings

9

B1

B2

c

c

S ==> c c

c*S ==>cS
S ==> nil

Number Graph Grammar Reg. Expr.

Figure 3: Reduced regular expressions for \c"

 a b

c

S ==> aA
S ==> c
A ==> b

ab v c

 a b

c

S ==> aA
S ==> cA
A ==> nil
A ==> b

(a v c) v (a v c)b

A1

 x

B1

 a b

c

S ==> aA
S ==> cS
S ==> nil
A ==> b

ab v c*A1

 x

B2

Number Graph Grammar Reg. Expr.

C1

C2

D1

Figure 4: Construction of A1�B1 and A1�B2

10

Transition on
specific Characters

Optional node to
match exactly one
character of a given
class

L
1

 a

 a
L*

 a

Optional arc to
match zero or more
characters of a given
class

Shadow Node

Figure 5: Building Blocks for restricted DFAs

must be found in an interactive environment.

In fact, for the symmetric version space algorithm not all reduced regular

expression consistent with a presentation are needed, but rather the most spe-

ci�c regular expression that matches all strings in a set. Therefore, instead of

computing an exponential number of regular expressions, the symmetric version

space algorithm computes only one regular expression.

Firstly, transitions between nodes are only allowed on speci�c characters.

This allows only the construction of DFAs that match speci�c strings such as

abc. Therefore, the representation language allows optional nodes in the DFA,

that are used to match exactly one character in a character class (see second

DFA of �gure 5). The character classes are: lower case characters, upper case

characters, digits, whitespace, punctuation, operators, special characters, letters

(i.e. lower or upper case), alphanumeric, non{alphanumeric, or any character.

Loops in the DFA are not allowed, except loops to accept zero or more characters

of a speci�ed character class such as lower case or alpha{numeric characters.

Therefore, all DFAs consist of the basic building blocks described in �gure 5.

3.2 Generalization Hierarchy

The advantage of allowing transitions between nodes only on speci�c characters

is that in the second stage, di�erent DFAs can be merged by assuming that the

transitions on the same character correspond to the same nodes in the resulting

DFA. In this way, the complexity of matching nodes in all possible ways is

avoided.

11

1
B

. . .a z

1
L

. . .

1
U

A Z . . .0 9

1
D

1
A

. . .. !

1
P

. . .

1

$

S

. . .

1

\t\b

W

. . .

1

+ /

1
R

1
C

O

Lowercase Uppercase Operators Whitespace Special Digits

Letter

Alpha−
numeric

Non−Alpha−
Numeric

Any
Character

Punctuation

Figure 6: Generalization Hierarchy for Single Character

This requires a method to merge restricted DFAs. Figure 6 describes the

generalization hierarchy for single characters. The character classes are based

on the intuitive use of characters in a string. The generalization hierarchy must

not only be able to generalize single characters, but also strings of characters.

Every character class can be speci�ed to match exactly one character, or zero

or more characters of a given class. The complete generalization hierarchy is

described in �gure 7.

3.3 Sequences of Patterns

Because of the problems introduced by disjunctions, they are only allowed be-

tween di�erent restricted DFAs, not between di�erent nodes in the restricted

DFA. Therefore, there is only one arc between nodes within the restricted DFA.

One problem with this restriction is that sequences of character classes can

not be learned. For example, the system can not learn the concept zero or

more lower case characters followed by zero or more whitespace characters.

The algorithm described in this paper solves the problem by assuming that

every concept is a sequence of independent restricted DFAs as described in the

previous subsections. Since this extension of the representation language is used

to learn sequences of character classes, the strings are broken up into di�erent

character classes. These substrings are called units of the string. For example,

the string \Test123.c~" is broken up into units as \T" \est" \123" \." \c"

\~." The described algorithm assumes that the �rst positive example is a good

prototype of the concept, that is that it contains all units in the concept. The

12

AA ...
AAA ...
...

aa ...
aaa ...
...

00 ...
000 ...
...

;; ...
;;; ...
...

++ ...
+++ ...
...

\b\b ...
\b\b\b ...
...

...
...
...

1
L

1
B

. . .a z . . .

1
U

A Z . . .0 9

1
D

1
A

. . .

1
P

. . .# $

1
S

. . . \t\b

1W

. . .+ /

1
R

1
C

1
O

Letter

Alpha−
numeric

Non−Alpha−
Numeric

Any
Character

L U
*

D
*

P
*

O
*

W
*

S
*

A
*

R
*

C
*

B
*

.;

*

Lower
Case
Strings

Upper
Case
Strings

Digit
Strings

Operator
Strings

Special
Strings

White−
space
Strings

Punct.
Strings

Figure 7: Generalization Hierarchy for Strings

13

< concept >) < unit1 >< unit2 >< unit3 > : : : < unitn > where

n = number of units in the �rst example

< uniti >) < disjunct > and not < disjunct > for i 2 f1 : : : ng
< disjunct >) < pattern > or < pattern > or < pattern >

< pattern >) < charclass > f�+ < charclass >g�

< charclass >) �j < U > j < L > j < D > j < B > j < A > j < C > j
< R > j < O > j < P > j < S > j < W >

< � >) �1j�� Metarule for < U >;< L >; : : :

Table 1: Grammar of the Concept Description Language

�rst example must contain all optional elements. Subsection 4.1 describes how

subsequent examples are adjusted to match the �rst example.

Table 1 gives the complete grammar of the representation language. The pat-

terns in the concept grammar are extensions of Nix's gap patterns (see [Nix83])

and Moh's annotated gap patterns [?]. The character classes in Nix's gap pat-

terns matched any number of characters, independent of their character class.

Moh's annotated gap patterns allowed character classes of one or more charac-

ters of the same character class. The generalization hierarchy used by Moh is

equivalent to the generalization hierarchy given in �gure 6. The representation

language in this paper improves on the previous work by allowing sequences of

patterns and by distinguishing between exactly one and zero or more charac-

ters of a given character class. Section 4 describes in detail, how the regular

expression that matches a given set of strings (i.e. the cover sets) are computed.

4 Updating the Cover Sets

This section describes the algorithm (called UCS algorithm) to compute the

most speci�c description in the representation language (see table 1) for a set

of strings. The most speci�c description that matches all positive examples is

called the positive cover set . All negative examples are most speci�caly covered

by the negative cover set . The positive cover set is similar to the S{set of

the Candidate Elimination algorithm. However, in contrast to the Candidate

Elimination algorithm, it does not necessarily follow that an item that matches

the positive (or negative) cover set should be classi�ed as positive (or negative)

immediately. The cover sets only de�ne the boundary of the concept and must

be seen together in order to classify a pattern. See section 5 for a complete

description of the symmetric version space.

4.1 Adjusting the Units of a String

In order to learn sequences of patterns, the UCS algorithm breaks the string

up into di�erent units . This imposes a high level structure on the concept. In

14

Function Adjust(Item1,Item2)

Find a unit that is equal in Item1 and Item2

Test from the end of the unit to the front.

If such a unit exists

Split Item1 and Item2 into a left and right part

at this unit.

Recursively call Adjust(Left Part of Item1,Left Item2)

Recursively call Adjust(Right Item1,Right Item2)

return (Left Adjusted,Equal Unit,Right Adjusted)

Else

While(length(Item1) not equal length(Item2))

If length of Item1>Item2

Concatenate units in Item1 from the beginning

Else If Item

Append " " to Item1

Return(Item1)

Table 2: Algorithm to adjust the number of units

order to reduce the complexity, the UCS algorithm assumes that the units are

independent. This method is similar to factoring the version space as described

in [GN87].

Since the SVS algorithm assumes that the number of units in the �rst exam-

ple is the same as in the target concept, new units are never added or deleted

from the concept. This means that the number of units in the other examples

must be adjusted to be equal to the number of units in the �rst examples. This

task is accomplished by the algorithm given in table 2.

For example, if the �rst positive example is the string \test.ss~ ," it will be

broken up into the units \test" \." \ss" \~." If \concept42.c" is a new example,

the units (i.e. \concept" \42" \." \c") are adjusted to match the units of the

�rst example as follows:\concept42" \." \c" \".

4.2 The Generalize Pattern Algorithm

In order to compute the most speci�c description that matches all strings in a

given set, it is necessary to compute the most speci�c generalization of a string

and a pattern or two patterns. For example, the most speci�c generalization

of the strings test1:ss and test2:c in the representation language is testD1:L�,

which matches all strings test, followed by exactly one digit, followed by a period

and any number of lower case characters.

The generalization of the strings is based on the maximum common sub-

sequence (MCS) of the two strings. The MCS is computed using Hirschberg's

15

algorithm [Hir75]. One problem of the algorithm is that the MCS of two strings

is not unique [?]. The MCS of the strings abc and acab is either ab or ac. Since

the MCS is only computed for units of a string, the UCS algorithm picks one

MCS randomly.

4.3 The Similarity Metric

1. Similarity metric is the percentage of characters that are not in the max.

common subsequence to total number of characters. For example:

2. This very simple metric is powerful enough to learn common concepts.

3. Domain knowledge can improve the similarity metric by trading in variety

of possible domains.

4. One possibility is to give more weight to the characters at the beginning

and end of a string.

5 Symmetric Version Space

The motivation for the symmetric version space (SVS) algorithm is that the

most speci�c description of a set of strings in a representation language can be

readily found and easily represented, whereas the most general patterns that

do not match the negative examples are too hard to compute or too hard to

represent. Therefore, the basic assumption for the SVS algorithm is that either

the concept itself or the complementary concept can easily be learned. The

Candidate Elimination algorithm assumes that the most speci�c description as

well as the most general description of a set of strings can be computed. As the

next subsection will show, the most general description can not be computed,

since it is in�nite for the version space of limited disjunctions.

5.1 Disjunctive Concepts

Some common concepts are only expressible as disjunctions. Examples in the

UNIX domain are all C source �les (i.e. *.h or *.c) or all Gnu Emacs backup

�les. Therefore, the string learning algorithm must be able to learn disjunctive

concepts.

Unlimited disjunctions pose an immediate problem, because they allow any

learning algorithm to avoid generalization. The most speci�c concept descrip-

tion that matches all positive examples is simply the disjunction of all positive

examples, the so called trivial disjunction. The problem is that given:

� any �nite presentation R,

� a new example s, such that s 62 R

16

� a concept description C that is the most speci�c description that is con-

sistent with R,

a new concept description C 0 can be found that matches the old examples

and only the new example C 0 = C [s.

The Candidate Elimination algorithm generalizes, because for some new

examples, the most speci�c concept description matches all previous examples

and the new example, plus some examples that are neither in the previous

representation nor the new example. For example:

� the representation language only contains four possible concepts descrip-

tions: a,b,c, or anything.

� the presentation only contains a as a positive example

� b is added to the presentation as another positive example.

� then the most speci�c concept that matches a as well as b is anything.

� c does appear neither in the presentation, nor in the new example, but

will be classi�ed as positive, because the representation language is not

powerful enough to describe the concept a and b but not c.

In order to avoid trivial disjunctions, the number of disjunctions must be

limited. There are two limits that can be imposed on disjunctions, either a

static limit (i.e. maximum of three terms in a disjunction) or a dynamic limit.

A dynamic limit will generalize two terms of the disjunction into one, if the

two terms are relatively similar. If the terms are not similar enough, the new

example is added as a new term to the disjunction. Therefore, a dynamic limit

requires a similarity metric. See subsection 4.3 for a description of the similarity

metric that was used in the example implementation of the SVS algorithm.

A static limit is a conservative approach to generalization. The algorithm

will combine two terms only when the number of terms exceeds a �xed limit.

Therefore, the algorithm will generalize only, when it is forced to. This seems

to be a reasonable approach in an interactive learning environment because, as

mentioned earlier, the algorithm is unable to detect over{generalization.

My experimental evidence suggests that a static limit of size three is ade-

quate to learn commonly used concepts. Although a limit of three terms in a

disjunction seems very restricitive, the reader must remember that the user will

not see the internal representation of the concept. For the user, the usefulness

of the system is not dependent on theoretical restrictions, but on the practical

performance on average concepts. Furthermore, unlimited disjunctions do not

seem reasonable from a psychological point of view.

17

 a b c z

y v z

?

. . .

. . .

.
.

. ..
.

.
.

y

Disjunction Level

a v b

a v c

a v z

b v c

b v d

b v z

Figure 8: Version Space for Two{Disjunct Lowercase Characters

5.2 Limited Disjunctions

The Candidate Elimination algorithm can be used to learn limited disjunctions

in �nite domains such as lower case characters or digits. In in�nite domains

such as strings, however, the candidate elimination algorithm can not be used,

because the G{set is possibly in�nite.

Figure 8 shows the version space for limited disjunctions of size two for lower

case characters. In the string domain, the version space boundaries are in�nite,

since at the disjunction level all combinations of an in�nite number of strings

must be represented.

The second problem is inherent to all least commitment algorithms when

trying to learn limited disjunctions. The problem will be described using the

Candidate Elimination algorithm as an example. When learning limited dis-

junctions, the algorithm will ask about all possible examples. This problem

will always arise when the concept contains less terms in the disjunction than

the maximum number of terms allowed. Using the version space described in

�gure 8, table 3 is a trace of the Candidate Elimination algorithm learning the

concept of any lower case character. This is the best case for the Candidate

Elimination algorithm. Only three examples are necessary to learn the correct

concept.

Table 4 describes the performance of the Candidate Elimination algorithm

in order to learn a disjunction of two terms. The example used in the table is the

concept a [b. Although in this example, the system only needs three examples

again, this is the best case for the Candidate Elimination Algorithm. The worst

18

Example Classi�cation ask User S{set G{set

a + yes a ?

b + yes a [b ?

c + yes ? ?

d + no ? ?
...

...
...

...
...

z + no ? ?

Table 3: Trace of Candidate Elimination for Concept ?

Example Classi�cation ask User S{set G{set

a + yes a ?

b + yes a [b ?

c � yes a [b a [b
d � no a [b a [b
...

...
...

...
...

z � no a [b a [b

Table 4: Trace of Candidate Elimination for Concept a [b

case for this presentation occurrs, when the correct concept is a[z. In that case,
the Candidate Elimination algorithm asks about all lower case characters before

learning the correct concept. In general, the Candidate Elimination algorithm

requires the two positive examples to generate the correct disjunction, plus one

extra example to rule out any lower case character as a possible concept.

The problem arises when the Candidate Elimination algorithm learns a dis-

junction with less terms in the disjunction than the maximum number of terms

allowed. Table 5 is an example of this problem. The concept is the single

lower case character \a" (one term disjunction). In this case, the correct con-

cept is learned only after asking about all possible other examples. In contrast

to the previous example, there is no distinction between best and worst case

performance. The number of questions is independent of the ordering of the

examples.

Although the Candidate Elimination algorithm generalizes correctly for con-

cepts that are at the top of the generalization hierarchy, the worst case for the

other two classes of concepts is to ask about all possible examples. In the string

domain, this is equivalent to asking about an in�nite number of strings. This be-

havior is more e�ciently implemented as a database of all examples. Therefore,

we must have a mechanism to reduce the questions to the oracle. A number

of di�erent mechanism are possible and should be seen independently of the

learning algorithm.

One approach is to augment the interactive learning paradigm by allowing

19

Example Classi�cation ask User S{set G{set

a + yes a ?

b � yes a a [c; a [d; : : : ; a [z
c � yes a a [d; : : : ; a [z
d � yes a a [e; : : : ; a [z
...

...
...

...
...

z � yes a a

Table 5: Trace of Candidate Elimination for Concept a

the oracle to refuse to classify a pattern for the classi�er/learner. This would

force the classi�er/learner to make an \educated" guess of the correct classi�-

cation. It is conceivable that after being certain that the system has enough

information to classify all patterns, the user can switch the system into non{

interactive mode. Before the system can enter this mode, the system must have

seen enough positive examples to generalize to the correct node in the gener-

alization hierarchy. If the system is in non{interactive mode, it can use the

closed world assumption and classify everything that does not match the S{set

as negative.

Although this approach is very simple, the example implementation of the

SVS algorithm uses two extra cover sets to avoid requiring that the user realizes

when su�cient positive examples are presented to generalize to the correct node

in the version space.

5.3 Description of the Symmetric Version Space Algo-

rithm

As section 4 explains, the most speci�c pattern in the representation language

that matches a given set of strings can be readily computed. However, the most

general patterns that do not match a set of strings are harder to compute. The

following paragraphs describe how the most general patterns (i.e. G{set) can

be computed. However, even without disjunctions, the G{set grows rapidly.

The SVS algorithm maintains two cover sets , one for the positive and the

second one for all negative examples. The cover sets are the most speci�c

concepts that match the positive and negative examples respectively. In this

respect, the cover sets are similar to the S{set of the Candidate Elimination

algorithm. However, if an example matches either the positive or negative cover

set , it does not follow that it is classi�ed as a positive or negative example

respectively. In contrast, the Candidate Elimination algorithm classi�es an

example that matches the S{set always as positive.

The SVS algorithm uses a single method to update the concept model, in-

dependently of whether the example is a positive or negative. The Candidate

Elimination algorithm uses di�erent update algorithms for positive and negative

20

examples.

The update algorithm computes the most speci�c concept for the previous

cover set and the new example. Therefore, it is quite possible that the positive

and negative cover sets overlap. In fact, if the concept is a normal concept

(i.e. it is exactly those items that match a speci�c description), the negative

cover set will be generalized to the most general concept, if su�cient negative

examples are provided. On the other hand, if the concept is a complementary

concept (i.e. everything with the exception of those items that match a speci�c

description), the positive cover set is most general after su�cient examples.

The classi�er algorithm has to consider four di�erent cases, when trying to

classify a new example:

1. The new example neither matches the positive nor the negative cover set .

In this case, there is not enough information to classify the new example.

The new example is passed on to the oracle, in order to �nd out the correct

classi�cation. If the example is positive, call the update algorithm with

the new examples and the positive cover set , else with the negative cover

set .

2. The new example matches the positive as well as the negative cover set .

The algorithm uses a similarity metric to determine the \goodness" of the

match with the di�erent cover sets . The example is classi�ed as positive

or negative, depending on which cover set yields the best match.

3. There is a match of the new example with the positive cover set and no

match with the negative cover set . The SVS algorithm calls the routine

to update the cover sets with the new example and the negative cover

set , yielding the most speci�c description that matches them both. If the

match with the provisional cover set is better than the match with the

positive cover set , the new example is passed on to the oracle for correct

classi�cation. Otherwise it is classi�ed as positive. If the oracle classi�es

the new example as negative, the negative cover set is replaced by the

provisional cover set .

4. The new example matches the negative cover set and not the positive

cover set . This case is equivalent to the previous case, with the roles of

the positive and negative cover set reversed.

The behavior of the SVS algorithm in case three (and four with the roles of

positive and negative reversed) requires some more explanation. In case three,

one could be inclined to classify the example as positive. This classi�cation,

however, is possibly inappropriate, if the negative cover set does not match

the example, because not su�cient negative examples were represented so far.

Therefore, the SVS algorithm must ask the oracle for the correct classi�cation.

If the oracle classi�es the example as negative, the negative cover set must be

21

updated to include the example. In that case, the new negative as well as the

positive cover set will match the example. On the other hand, in case one,

the algorithm chooses the best match, if both cover sets match the example.

Therefore, if the positive cover set yields a better match than the new negative

one, the example will be classi�ed as positive, which is in contradiction to the

classi�cation given by the oracle. Therefore, the SVS algorithm computes the

cover set that would result from a negative classi�cation. Only if there is a

better match with the negative cover set , the example will be passed to the

oracle. Otherwise, it will automatically be classi�ed as positive.

Another problem occurs when in case three, the example is passed on to the

oracle and classi�ed as positive. In that case, neither cover set is updated, which

means that the algorithm does not learn. If the same example is presented again,

it will be passed on to the oracle again for classi�cation. Although there are

a number of di�erent solutions to this problem, I chose to maintain two extra

cover sets . If the example is classi�ed as positive by the oracle, the positive

extra cover set is updated to include this new example.

By using a cover set , the SVS algorithm avoids possibly asking about all

possible examples. However, there is no requirement that the representation

language for the cover sets and the extra cover sets are equivalent. For ex-

ample, in order to restrict generalizations, the example implementation allowed

disjunctions of up to 16 terms.

5.4 Candidate Elimination and SVS

Since the SVS algorithm learns normal as well as complementary concepts, it is

able to learn more concepts than the Candidate Elimination algorithm in the

same version space. Figure 9 compares the performance of the SVS algorithm

and the Candidate Elimination algorithm on a simple example.

A more extensive example is described in tables 8, 7, and 6, it shows the

performance of the SVS algorithm on three examples of lower case character

concepts for limited disjunctions with at most two terms. The Candidate Elim-

ination algorithm learns these concepts as described in tables 5, 4, 3.

As can be seen in table 6, the SVS algorithm requires more examples than the

best case performance of the Candidate Elimination algorithm, which learned

the correct concept after only three examples. The reasons for the extra ques-

tions is that the SVS algorithm can represent more concepts than Candidate

Elimination. Although the positive cover set is generalized to the correct con-

cept after three example, the algorithm requires the remaining examples to rule

out the complementary concepts such as everything but the character x or ev-

erything but x [y.

The example in table 7 is a trace of the SVS algorithm learning a disjunc-

tion of two terms. As in the previous example, the best case performance of

the Candidate Elimination algorithm is superior to the SVS algorithm. How-

ever, the Candidate Elimination algorithm will possibly ask about all lower case

22

a b c d

?

Candidate Elimination

Concept S set G set

{a}
{b}
{c}
{d}

a
b
c
d

{a}
{b}
{c}
{d}

? {?} {?}

Specific

General

Symmetic Version Space

Concept

{a}
{b}
{c}
{d}

a
b
c
d

? {?}

Specific

General

pos. Cover Set neg. Cover Set

{?}
{?}
{?}
{?}

{nil}
=avbvcvd

=avbvcvd

? \ {a} {?} {a}
= b v c v d

? \ {b} {?} {b}
= a v c v d

? \ {c} {?} {c}
= a v b v d

? \ {d} {?} {d}
= a v b v c

Com −
ple −
ment−
ary

Figure 9: Comparison between SVS and Candidate Elimination

23

Example Class. ask User pos. C neg. C pos. EC neg. EC

a + yes a nil nil nil

b + yes a [b nil nil nil

c + yes ? nil nil nil

d + yes ? nil nil d

e + yes ? nil nil d [e
f + yes ? nil nil ?

g + no ? nil nil ?
...

...
...

...
...

...
...

z + no ? nil nil ?

C = Cover set,EC = Extra cover set

Table 6: Trace of SVS algorithm for Concept ?

Example Class. ask User pos. C neg. C pos. EC neg. EC

a + yes a nil nil nil

b + yes a [b nil nil nil

c � yes a [b c nil nil

d � yes a [b c [d nil nil

e � yes a [b ? nil nil

f � yes a [b ? f nil

g � yes a [b ? f [g nil

h � yes a [b ? ? nil

i � no a [b ? ? nil
...

...
...

...
...

...
...

z � no a [b ? ? nil

C = Cover set,EC = Extra cover set

Table 7: Trace of SVS algorithm for Concept a [b

characters. The worst case performance of the SVS algorithm is to ask about

eight examples. This improvement is even more signi�cant when trying to learn

string patterns, because there is an in�nite number of strings.

One disadvantage of the SVS algorithm is that since it will only ask about

eight examples, the positive examples must be presented as one of the �rst ex-

amples. So the SVS algorithm in this example is unable to learn the concept

a [z given this presentation. However, there is no requirement that the gen-

eralization algorithm for the cover sets and the extra cover sets are equivalent.

In a domain, where the positive examples are not presented as some of the

�rst examples, a di�erent algorithm that postpones generalization longer can

be applied. The main advantage is that the SVS algorithm separates the two

problems and allows to control these two aspects separately.

24

Example Class. ask User pos. C neg. C pos. EC neg. EC

a + yes a nil nil nil

b � yes a b nil nil

c � yes a b [c nil nil

d � yes a ? nil nil

e � yes a ? e nil

f � yes a ? e [f nil

g � yes a ? ? nil

h � no a ? ? nil
...

...
...

...
...

...
...

z � no a ? ? nil

C = Cover set, EC = Extra cover set

Table 8: Trace of SVS algorithm for Concept a

Table 8 shows the major advantage of the SVS algorithm. Instead of asking

about all lower case characters, the SVS algorithm learns the correct concept

after only seven examples. The number of examples is dependent on the gen-

eralization algorithm used for the extra cover sets . The separation of these

two algorithms allows easy control of the worst case performance of the SVS

algorithm. In our experiments, the update algorithm described in section 4 is

used to compute the extra cover sets . But instead of limiting the disjunctions

to three elements, the extra cover sets allow disjunctions of up to 16 terms.

6 Examples

7 Discussion and Related Work

1. Aq .

2. INBFA.

3. Clustering Algorithms (CLASS-IT) are not interactive. Aq is not incre-

mental.

4. IBFA Algorithm by Smith and Rosenbloom [?].

5. An interactive learning algorithm can not backtrack from over general-

ization. On the other hand, a least commitment algorithm can possible

involve asking about all possible examples. This will be explained in sec-

tion 5.

6. Kurt van Lehn learns context free grammars. However, method expo-

nential in the length of strings [VB87]. Van Lehn and Ball designed an

25

algorithm that learns context free grammars from example using a version

space approach. They showed that for context free grammars, the bound-

ary sets are in�nite. Faced with a similar problem, Van Lehn and Ball

showed that by using a reducedness criteria, only a �nite number of re-

duced grammars can construct a given set of strings. From this �nite set,

the algorithm eliminates all grammars that generate any of the negative

examples.

Since regular languages are a proper subset of context free grammars, this

approach is a possible approach to learning strings by example. This paper

chooses a di�erent approach for the following two reasons:

� The number of grammars that possible constructed a given set of

strings grows exponentially with the length of the string. This made

the algorithm unfeasible in the interactive domain.

� Van Lehn and Ball were interested in all possible concepts that are

consistent with a given presentation. As mentioned in the description

of the learning model, the algorithm wants to generate one or at least

only a few concepts that are justi�able in the domain.

7. CLASS{IT.

8. Dan Moh's Thesis ??? Does not learn sequences of patterns. Stores only

exception list of negative examples. Is not interactive. Does only learn

zero or more characters of a given character class.

8 Conclusion

1. This paper describes a fast and e�cient algorithm to learn string concepts.

2. It is fast and e�cient, and useful in a variety of domains.

3. It is based on a very simple user interaction model.

4. The Version Space Approach can be used in a variety of situations. The

performance of the candidate elimination algorithm is very dependent of

the version space graph.

5. Although candidate elimination algorithm can learn limited disjunctions,

the shape of the graph means that the CE algorithm can possibly ask

about all possible examples.

6. Can not learn relations such as �ve lower case characters followed by

three upper case chars. These concepts seem not useful, because normally

commands do not allow you to specify these concepts.

7. Similarity metric can be improved.

26

References

[GN87] Michael R. Genesereth and Nils J. Nilson. Logical Foundations of Arti�-

cial Intelligence, chapter 7.3, pages 170{174. Morgan Kaufmann, 1987.

Induction, how to factor a VS.

[Gol78] E. M. Gold. Complexity of automaton identi�cation from given data.

Information and Control, 37:302{320, 1978.

[Hir75] D. S. Hirschberg. A linear space algorithm for computing maximal

common subsequences. Communications of the ACM, 18(6):341{343,

1975.

[Mit77] Tom M. Mitchell. Version space: A candidate elimination algorithm

approach to rule learning. In Proceedings of the 5th International Con-

ference of on Arti�cial Intelligence, pages 305{310, 1977.

[Nix83] R. Nix. Editing from Examples. PhD thesis, Yale University, 1983.

Introduces gap patterns.

[VB87] Kurt VanLehn and William Ball. A version space approach to learning

context{free grammars. Machine Learning, 2(1):39{74, 1987.

27

