
-

Balancing Robotic Teleoperation and

Autonomy in a Complex and Dynamic

Environment

A thesis presented
by

Ryan Wegner

to
The Department of Computer Science

in partial fulfillment of the requirements
for the degree of
Master of Science
in the subject of

Computer Science

University of Manitoba
Winnipeg, Manitoba

July 2003

Copyright c©2003 by Ryan Wegner

Abstract

While Artificial Intelligence has been working to produce truly autonomous problem

solving agents for many years, the current abilities of such agents are extremely lim-

ited. In highly complex, dynamic situations such as disaster rescue, today’s agents

simply do not have the ability to perform successfully on their own: the environment

is difficult to traverse and even to sense accurately, time is a significant factor, and the

dynamic and unpredictable nature of the environment tends to preclude the ability

to produce extensive plans for future activity. Because of these and other limitations,

robotic agents for environments such as disaster rescue rely strongly on human tele-

operation. This too has its limitations: humans become fatigued rapidly, suffer from

cognitive overload when they obtain too much sensory information in a short time,

and have difficulties in constructing a mental image of the space around a robot given

information from its senses (situational awareness).

This thesis focuses on combining the limited abilities of an autonomous agent

together with human control, in order to produce a teleautonomous system that

supports blending the desires of a robot with the wishes of its human controller. The

approach I present is intended to allow a human to control a number of robots, being

interrupted only when the robots are truly in need, and with the ability to alter the

autonomous abilities of the robots for particular contexts.

In order to examine the effectiveness of this approach, I develop a simulated

domain for disaster rescue using a widely-employed robot simulation tool, and imple-

ment this control mode for a set of simulated Pioneer mobile robots. An evaluation

of this control mode in comparison to autonomous and teleoperated agents is then

presented.

ii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Terminology . 2

1.3 Urban Search and Rescue Domain . 5

1.4 Balancing Autonomy and Teleoperation 8

1.5 Research Questions . 13

1.6 Addressing Thesis Research Questions 15

1.7 Summary . 16

2 Literature Review 17

2.1 Overview . 17

2.2 Agents . 18

2.2.1 Planning Agents . 18

2.2.2 Reactive Agents . 21

2.2.3 Hybrid Approaches . 29

2.3 Teleautonomy . 31

iii

2.4 User Interfaces . 39

2.5 Summary . 39

3 A Blending Approach to Mobile Robot Control 40

3.1 Overview . 40

3.2 Autonomous Control . 41

3.3 Teleoperation . 45

3.4 Blending Teleoperation and Autonomy 47

3.4.1 Intervention Recognition . 48

3.4.2 Mediator . 51

3.5 User Interface . 54

3.6 Summary . 55

4 Implementation 56

4.1 Overview . 56

4.2 Player/Stage . 57

4.3 Simulated Agent . 60

4.4 Implementation Language . 62

4.5 Schemas . 63

4.5.1 Perceptual Schemas . 64

4.5.2 Motor Schemas . 66

4.6 Autonomous Control System Implementation 69

4.7 Implementation of Teleautonomy . 71

iv

4.7.1 Joystick . 72

4.7.2 Waypoint Manager . 73

4.7.3 Autonomous Control Panel 75

4.7.4 Intervention Recognition Implementation 77

4.7.5 Mediator Implementation . 79

4.8 User Interface . 81

4.8.1 Vision . 81

4.8.2 Map . 83

4.9 Summary . 87

5 Experimentation 88

5.1 Overview . 88

5.2 Purpose . 89

5.3 Experimental Environment . 89

5.3.1 Types of Objects . 89

5.3.2 Generating and Evaluating Experimental Environments 91

5.3.3 Environment Evaluation . 94

5.4 Methodology . 96

5.5 Performance Evaluation . 102

5.6 Results . 104

5.6.1 Teleoperated Results . 104

5.6.2 Autonomous Results . 108

v

5.6.3 Blending . 111

5.7 Analysis . 116

5.8 Summary . 123

6 Findings and Recommendations 124

6.1 Overview . 124

6.2 Findings and Analysis . 125

6.3 Contributions . 131

6.4 Future Work . 132

6.5 Conclusion . 135

vi

List of Figures

1.1 Two example mobile robotic platforms. Left: The Trilobot mobile

platform. Right: The Pioneer DX mobile platform. 3

1.2 Examples of the USAR Domain [Jacoff et al., 2001b] 6

1.3 The NIST standard test bed, Robocup 2003, Padua, Italy. 9

2.1 An example of potential fields being combined [Balch, 1998b]. Left: the

potential field of a goal. Middle: the potential field of two obstacles.

Right: the global potential field. 23

2.2 An example of Brooks’ layered subsumption architecture [Brooks, 1986].

Higher level layers subsume lower level layers to control the system. . 24

3.1 Examples of victims in the NIST USAR standard test bed, Robocup

2003, Padua, Italy, July 2003 . 42

4.1 Example of communication in Player/Stage [Gerkey et al., 2003]. . . . 59

4.2 The joystick. 72

4.3 Example of an agent with several waypoints selected. 74

vii

4.4 The autonomous control panel. 75

4.5 The motor schema panel for the noise motor schema. 77

4.6 Complete user interface. 82

4.7 The vision panel, currently a victim (larger) and a non-victim (smaller)

are in the agent’s field of view. 83

4.8 The map of the environment so far. 84

4.9 Screenshot of the user interface displaying an agent motor schema vec-

tors as colored arrows. 86

5.1 Example of an environment generated by the environment generator. 92

5.2 Breakdown of trials . 99

5.3 Average (n=5) environment coverage achieved by teleoperated agents

in 5%, 10%, 15% and 20% obstacle coverage environments. 105

5.4 Average (n=5) number of victims identified by teleoperated agents in

5%, 10%, 15% and 20% obstacle coverage environments. 106

5.5 Average (n=5) number of interactions operators had with teleoperated

agents in 5%, 10%, 15% and 20% obstacle coverage environments. . . 107

5.6 Average (n=5) environment coverage achieved by autonomous agents

in 5%, 10%, 15% and 20% obstacle coverage environments. 109

5.7 Average (n=5) number of victims identified by autonomous agents in

5%, 10%, 15% and 20% obstacle coverage environments. 110

viii

5.8 Average (n=5) time autonomous agents spent immobile in 5%, 10%,

15% and 20% obstacle coverage environments. 111

5.9 Average (n=5) environment coverage achieved by blending agents in

5%, 10%, 15% and 20% obstacle coverage environments. 112

5.10 Average (n=5) number of victims identified by blending agents in 5%,

10%, 15% and 20% obstacle coverage environments. 113

5.11 Average (n=5) time blending agents spent immobile in 5%, 10%, 15%

and 20% obstacle coverage environments. 114

5.12 Number of interactions operators had with blending agents in 5%, 10%,

15% and 20% obstacle coverage environments. 114

5.13 Comparison of environment coverage in teleoperated, autonomous, and

blending experiments. All results are averages over 5 trials. 118

5.14 Comparison of number of victims identified in teleoperated, autonomous,

and blending experiments. All results are averages over 5 trials. . . . 119

5.15 Comparison of agent-operator interactions in teleoperated and blend-

ing experiments. All results are average over 5 trials. 121

5.16 Average time in milliseconds spent immobile by environment difficulty,

for blending and autonomous agents. 122

ix

Chapter 1

Introduction

1.1 Overview

The goal of this research is to provide an infrastructure to allow for a balance between

autonomy and teleoperation for multiple mobile robotic agents operating in complex

dynamic environments. Agents in these environments are limited in their ability

to perform intelligently and in real time, causing them to occasionally fail to solve

problems (e.g. getting hung up, not recognizing a goal) or becoming stuck in a local

minimum. In any of these situations, a human operator or another agent may usefully

intervene to assist the robot to overcome its current situational problem. On the other

hand human operators become rapidly overloaded if they have to provide significant

control for many robots or even a single agent for any length of time [Arkin and

Ali, 1994]. Supporting a balance between the work of a remote operator and the

autonomous abilities of a robotic agent can allow robots to be used in domains where

1

autonomous agents are currently not able to perform successfully, and also allows

a single human operator to control a larger number of robotic agents. Specifically,

this work explores recognizing situations within a domain that are problematic for

an agent, the use of several different modes of control to support blends of operator

control and autonomous decision making for different situations, and the adjustment

of this blend in a context-dependent manner.

In this chapter I will begin by introducing some terminology that will be used

throughout this work. Secondly, I will describe the urban search and rescue domain,

an example of an extremely complex dynamic domain that will serve as the experi-

mental setting for this research. Once the terminology is introduced and the domain

has been described, I will discuss reasons for blending autonomy and teleoperation.

1.2 Terminology

This thesis deals with the topic of balancing autonomy in robotic control with re-

mote control by a human operator in mobile robots situated in dynamic complex

environments. Before the topic can be properly discussed, some terminology will be

presented here that will be used throughout this work.

First, what is an agent? In this work the term “agent” refers to a mobile robot.

The mobile robots referred to in this work are mechanical platforms containing actu-

ators that enable the robot to move around and interact with a physical environment,

and sensors that enable the robot to perceive information from the environment (see

2

Figure 1.1: Two example mobile robotic platforms. Left: The Trilobot mobile plat-

form. Right: The Pioneer DX mobile platform.

Figure 1.1). Actuators include equipment such as grippers used to pick up and put

down objects in a physical environment and motors that are designed to move the

robot throughout a physical environment. Sensors include equipment such as sonar,

odometry and vision. While others employ a broader definition of the term “agent”

that includes an existence purely in software [Russel and Norvig, 1995; Symeonidis

et al., 2002; Bradshaw, 1997; Khoo et al., 2002], I am chiefly concerned with interest-

ing problems requiring physical embodiment, and thus restrict the definition. While

some of the ideas presented here may be useful for controlling software agents as well,

that is not the focus of my investigation.

Teleoperation refers to a method of mobile robot control where an operator sends

commands to an agent and the agent is responsible for executing those commands.

In a purely teleoperated control system, commands are low-level instructions that the

agent is expected to execute without the ability to question or interpret.

3

Autonomy refers to the extent to which agents are capable of making decisions

and allowed to act on those decisions. The autonomy of an agent can be measured

on a sliding scale [Anderson and Wurr, 2002]. Fully autonomous agents have no

external operator and must accomplish tasks entirely on their own. Agents that have

no autonomy, on the other hand, do not make decisions: they simply receive low-level

commands from an external operator and execute them: they are purely teleoperated.

Between these two points lies a blend of individual ability and following the commands

of others. An agent may be able to execute some actions on its own (such as simple

obstacle avoidance) but require commands from an outside agent to perform other

tasks (e.g. be directed toward an exit). The level of abstraction in commands also

grant an agent limited autonomy. The degree of teleoperation is related to the level

of abstraction in commands recognized by the robot [Goldberg, 2000; Anderson and

Wurr, 2002]. Commands containing a higher degree of abstraction, such as “find

a pen” permit the robot some freedom as to how the command can be executed,

since there are many series of actions that can result in finding a pen. Low levels of

abstraction restrict the freedom of the robot (e.g. specifying a sequence of individual

actions to find a pen, leaving no room for interpretation). The degree of teleoperation

varies with the abilities of the agent. The more an agent can be trusted to perform

adequately on its own, the less intervention on the part of an operator is required.

Autonomy is also related to the number of participating agents and operators for

a particular task. Participation in a group often requires agents to forfeit a degree

of autonomy. In a multi-agent system, if agents do not have the necessary skills to

4

perform an entire task themselves, they must rely on other agents or operators to

complete some of that task. When another agent completes a portion of a task, the

other agents are forfeiting their autonomy in order to avoid having to embody an

unreasonably large set of skills. Humans do this in the real world in any complex

society. For example, I hire a mechanic if my car fails, I hire an electrician if the

wiring in my house is faulty, and similarly employ other experts in our society who

have the skills that I do not, since it is not reasonable for me to embody every single

skill that is required to exist in a complex world. In such situations, agents can no

longer decide to do whatever they would like: they must tailor some of their actions

to suit the other agents, since they presumably embody skills those other agents do

not have. Even when agents have the same skills, cooperation demands sacrifices for

others, presumably in return for similar sacrifices on the part of others. There are

many examples of autonomous agents in literature (e.g. [Baltes and Anderson, 2002;

Michaud and Caron, 2002; Brumitt et al., 2002; Montemerlo et al., 2002]).

1.3 Urban Search and Rescue Domain

I have chosen to focus this work in a domain that is representative of many chal-

lenging issues in AI: Urban Search and Rescue (USAR). USAR is typically executed

following a disaster that has occurred in a populated area, such as an earthquake,

flood, fire, hurricane or terrorist attack [Casper, 2002; Casper and Murphy, 2002].

When disasters occur in populated areas, people often become trapped in collapsed

5

Figure 1.2: Examples of the USAR Domain [Jacoff et al., 2001b]

structures. Teams of rescue workers are dispatched to the collapsed structures tasked

to locate and retrieve people who are trapped, referred to as victims.

Collapsed structures often contain a variety of voids. Voids are openings in the

environment large enough for a rescue worker to move around in, either the remains of

a room before the structure was compromised or an open area formed by the collapse

of the structure. Since voids may contain human victims, all voids in a collapsed

structure should be located and searched.

The USAR domain is complex and dynamic. The features of the USAR environ-

ment include debris scattered on the floor, broken mirrors and glass on the walls,

poor lighting, and dark areas and surfaces (see Figure 1.2) [Murphy et al., 2000b].

The environment often contains elements dangerous to rescue workers such as toxic

spills, extreme heat and unstable structures.

Robot assisted USAR involves deploying mobile robots in collapsed structures

to locate victims. The danger posed by the USAR domain makes it ideal for the

6

application of mobile robot technology. The same factors that make the environment

dangerous for rescue workers, however, also make it very difficult for the successful

application of robotic technology. Most of the sensors that mobile robots and their

operators rely on are much less effective in these domains.

Image processing is often hindered due to poor visibility. Reasons for poor vis-

ibility include a lack of lighting, due to electrical failure or the destruction of light

sources. The presence of flames can cause intense flickering, distorting colors from

darker to lighter shades and back. In addition, a coating of dust over objects leaves

everything in the environment a similar color, making objects difficult to distinguish

purely by color patterns [Casper, 2002; Murphy and Hershberger, 1996; Murphy et al.,

2000b].

Sonar and laser range finders are affected by the materials that are typically found

in collapsed structures. Highly reflective materials such as mirrors can distort lasers,

causing noisy readings. Materials such as draperies can absorb sonar readings, making

it difficult to tell how far objects are [Casper, 2002; Murphy and Hershberger, 1996;

Murphy et al., 2000b]. In general, if mobile robots are not equipped with highly

robust methods to deal with noisy data, they are likely to fail [Casper et al., 2000].

Robot mobility is also likely to be compromised by the unstable and often jagged

debris that can cause a robot to become hung up and unable to move. The jagged de-

bris may also return extremely noisy sonar and laser readings [Casper, 2002; Murphy

and Hershberger, 1996; Murphy et al., 2000b].

While these factors make such a domain very difficult to the successful application

7

of robotic technology, the hazards associated with it make this environment typical

of those to which we most want to apply mobile robotic technology. While the focus

of much USAR work is on indoor domains, other such environments include open

mines, landslides and other outdoor disasters, deep underwater environments, and

outer space.

To promote research in robotic assisted USAR, the domain has been proposed as

a challenge in recent mobile robot competitions [Casper et al., 2001]. These competi-

tions have inspired the creation and assessment of deployable test beds for USAR [Ja-

coff et al., 2001a]. Figure 1.3 illustrates an example of such a test best developed by

the National Institute of Standards and Technology (NIST) for USAR and used in the

2003 Robocup competition in Italy. This test bed mimics some of the important fea-

tures of the USAR domain, including darkened chambers, curved walls, soft materials,

hidden victims, ramps, various flooring material and debris. The test bed provides

an extremely difficult domain for both autonomously and teleoperated robots. The

NIST test bed was assessed by Murphy et al. [2000a], who found that although it was

difficult, it still did not represent the degree of difficulty found in real world search

and rescue scenarios.

1.4 Balancing Autonomy and Teleoperation

In a complex dynamic environment such as USAR, strong demands are placed on the

abilities of an agent in comparison with the simple environments that characterize

8

Figure 1.3: The NIST standard test bed, Robocup 2003, Padua, Italy.

most laboratory research. When operating in such a domain, agents can fail at their

tasks for a wide variety of reasons: misjudgment, sensor failures, sensor inaccura-

cies, unpredictable environmental issues, actuator failure or becoming immobile, etc.

Artificial intelligence is currently far away from solving all the problems necessary

for agents to participate fully autonomously in complex environments like those de-

scribed above. The introduction of a human operator can help agents perform their

tasks more effectively.

Given that a human operator is of use, why not leave the operator in control?

First and foremost, the operators are limited as well: operators become fatigued, often

after only a short time. In an emergency situation, agents must be able to operate

continuously for long periods of time. Casper and Murphy [Casper, 2002; Casper

and Murphy, 2002] describe the fatigue and stress that operators had to endure

during their experiences working with robotic rescue at the World Trade Center.

Most slept only three hours during the first three days, leading to many fatigue-

9

related errors in judgment. Such errors include missing important visual clues while

navigating the robot (e.g. signs of potential victims, such as a watch on the ground)

and poor navigation. Fatigue is of special importance when certain tasks are simple

but repeated continually. Automating those tasks would offer a great reduction in

the cognitive load on the operator.

How much information an operator can handle at any given moment is another

issue. When an operator must process too much information at one time, he or she

may suffer from cognitive overload [Arkin and Ali, 1994]. Cognitive overload refers to

the limit of information processing an individual can handle efficiently. Automating

some of the task can alleviate the amount of information the operator must handle:

if an agent can perform 80% of the required task autonomously, the operator will

only have to perform 20%, reducing the cognitive load of the operator significantly.

Automating the task also allows an operator to teleoperate multiple agents. If there

were no autonomy in the agents, then the operational ratio of each operator would

likely be 1:1. If agents can perform the majority of their task autonomously, then the

operator can focus his or her attention on the agents that require assistance.

Finally, we must consider how well an operator can accomplish certain tasks. Some

tasks are performed more efficiently autonomously, even with today’s AI technology.

Arkin and Ali [1994] demonstrate the efficiency of autonomy given certain tasks in a

study of the efficacy of teleoperation vs. autonomy in foraging, grazing (covering an

area completely, as would occur when grazing or mowing grass) and herding (activities

in teams of robots). They found that although teleoperation was advantageous, it

10

was only advantageous under specific conditions. For a significant proportion of the

experiments, agents were more efficient performing autonomously. They account

for the improved autonomous performance by the operator’s frequent inability to

reconstruct a representation of the physical world from the direct perception of the

robot as accurately or efficiently as an autonomous agent. This human difficulty of

situational awareness arises whenever a human controls a remote object, especially in

three dimensional space. At the World Trade Center rescue operation, the operators

would often not use all the available information channels, concentrating only on

the CCD camera. Concentrating on the CCD camera led to the agents becoming

stuck and the operators not being able to understand how they got stuck. In a

specific example one agent got hung up on a metal rod not visible to the operator.

Frustrated, the operator had to end the mission and retrieve the robot only to find out

at that time how the agent was stuck [Casper, 2002]. Relying too heavily on certain

perceptions at the expense of others is analogous to trying to park a car while wearing

blinders. The lack of certain perceptions or the over-dependence on particular sensory

information can hinder one’s ability to perform the task as efficiently as required.

Since agents are unable to perform adequately in such unpredictable and dynamic

environments, and human operators have similar difficulties, mobile robots must be

designed to balance the degree of autonomous performance with the instructions and

advice provided by a human controller. In the state of the art today, operator-supplied

instructions are normally very low-level instructions (direct machine instructions for

the robot or a level only slightly removed from this), and providing these instructions

11

to a robot that is otherwise autonomous is termed a teleautonomous relationship.

While allowing an agent some autonomous abilities can greatly reduce the prob-

lems introduced by human operators, keeping a human in the loop also simplifies

building the agents themselves. Fully autonomous agents can often find themselves

in situations that may not occur frequently enough to warrant the programming effort

involved to equip the agent to handle these situations. While being difficult to auto-

mate, many of these problems are not difficult for humans to solve in theory, although

in practice these problems can be difficult for humans to handle as well. Consider a

robot assigned the task of searching through debris in a collapsed building. Suppose

while working, the robot becomes stuck in a pile of debris. The robot may not be

equipped with the cognitive abilities to recognize how it is stuck other than that spe-

cific wheels are not moving, and it may lack the ability to create a plan sophisticated

enough to free itself in such an unstructured domain. Despite the difficulty of solving

this problem from the robot’s perspective, a human operator may be able to recog-

nize the problem and come up with some strategy to free the agent. Another agent

observing the stuck robot may also be able to provide a better sensory perspective

and assist in solving the problem. The above example, though simple, conveys the

need for methods to aid agents when they are limited in their abilities and cannot

solve a problem because it was either unpredictable or beyond the capabilities of an

autonomous agent.

Combining the best elements of both autonomous control and teleautonomy shows

promise. Ali [1999] points out an important additional advantage not yet mentioned

12

here: teleautonomous agents can be more versatile than autonomous agents, since

by receiving human assistance to deal with novelties they have not seen, robots can

attempt to deal with environments that were not considered in their original pro-

gramming.

The goal of this research is to design and build a control architecture that allows

a flexible balance between teleoperation and autonomous performance in a complex,

dynamic domain: that of USAR. Robotic agents operating under the proposed control

architecture will attempt to recognize when they are in a situation they cannot handle,

and signal the operator and/or other agents of this condition. At that point the

operator can take control of such an agent and help it to solve its dilemma, and other

agents may be able to offer their perceptions. The major design goal for this approach

is to reduce the amount of work necessary for an operator to control multiple robots.

1.5 Research Questions

Now that the terminology has been introduced and the domain has been described,

the basic research questions that this thesis will address can be presented.

Research Question 1

Will the addition of teleoperation to autonomous agents increase their overall perfor-

mance?

If autonomous agents are designed to perform some task, we can observe those

agents performing that task and attempt to improve their performance by introducing

13

external instruction in the form of teleoperation. By observing the performance of

the agents working autonomously and then observing the agents working with a blend

of autonomy and teleoperation, we can evaluate and compare their performance and

conclude whether performance is increased by the introduction of teleoperation.

Research Question 2

Can the introduction of autonomy reduce the number of interactions required between

the agent and the operator while maintaining a comparable overall performance?

We can use the number of interactions that an operator has with an agent to

estimate the amount of cognitive load that the operator is enduring. High levels of

interaction are correlated with high levels of cognitive load. If we introduce auton-

omy into previously teleoperated agents then a reduction in interactions between the

operator and the agent indicates a reduction in cognitive load. If the same overall

performance can be achieved by agents performing the task while maintaining a lower

number of operator-agent interactions, then blending autonomy and teleoperation is

beneficial to the operator.

Subsidiary Question

Can an infrastructure be designed to support a practical balance between autonomy

and teleoperation in complex dynamic environments?

In answering the first two research questions the subsidiary question is also ad-

dressed. In this thesis, such infrastructure is designed and demonstrated. This in-

frastructure is discussed in Chapters 3 and 4.

14

1.6 Addressing Thesis Research Questions

A domain-independent solution to the problem of balancing autonomy and teleop-

eration is not only beyond the scope of a thesis, but well beyond the current state

of the art of artificial intelligence. The breadth of knowledge required to handle

every possible situation in every possible problem environment would be equivalent

to human-level intelligence. Within USAR, there are clearly many problems to be

solved. I have focused the efforts of this work on teleautonomous agents on a specific

problem identified by the research community as extremely important to the USAR

domain. Casper et al. [2000] indicate two problems whose solution would be of par-

ticular practical interest: teleautonomous performance of topological searches and

teleautonomous stairwell searches. In USAR, robots are required to search various

sized voids and create a map so that rescue workers can find victims trapped within

them. Searching various sized openings and creating maps is commonly termed topo-

logical search. Stairwell searches are similar, with the added difficulty (in terms of

mobility of a robot) of having to search up stairwells. These tasks are emphasized

by Casper [2002] because they are frequently executed by USAR workers but are too

difficult to perform autonomously and so still require an operator.

Of the two, this thesis focuses on topological search in USAR. The domain is also

an important choice: these are dynamic and hazardous environments where sensors

are not only prone to error, but where errors must be expected. As such, results

in this domain should be transferable to simpler domains without this degree of

15

error expectation. Moreover, this domain can be handled using equipment currently

available to me, rather than the expensive equipment necessary to traverse a stairwell.

1.7 Summary

In this chapter I introduced terminology that will be used throughout the rest of this

work. The USAR domain was described in detail and I discussed the importance of

striking a balance between autonomy and teleoperation.

The next chapter will discuss work related to balancing autonomy and teleoper-

ation. Chapter 3 describes the control system that was designed for this work while

Chapter 4 describes how it was implemented. Chapter 5 describes experiments per-

formed to evaluate the control system described in Chapter 3 and discusses their

results. Finally, Chapter 6 provides an analysis of the results and the conclusions

that can be drawn from this research, along with some indication of useful future

work in this area.

16

Chapter 2

Literature Review

2.1 Overview

This research contains elements from the fields of autonomous agent development,

control theory, mobile robotics, and distributed artificial intelligence. Each of the

fields named previously has been the topic of research for many years and all have

been well studied. The goal of this chapter is to introduce important research in areas

related to this thesis and to differentiate this research from similar work. Included in

this literature review will be a brief history on mobile robot control and autonomous

agents, followed by a look at work related to my research area.

17

2.2 Agents

All agents respond in some fashion to the world in which they are situated. The

goal of agent design is to have the agent respond to its environment in a meaningful

way. The agent must have some way of perceiving elements of the environment and

interacting with those elements in a purposeful manner. How agents should respond to

their environment is a widely studied problem. From researching this problem, many

approaches to agent design have been developed. Most agent design approaches can

be grouped into on of three categories: planning agents, reactive agents and hybrid

agents.

2.2.1 Planning Agents

The discipline of artificial intelligence has focused for many years attempting to

build intelligence using logic to reason over a symbolic representation of the environ-

ment [Brooks, 1991b], an internal world model. Central to many classical planning

systems is the symbol system hypothesis [Newell and Simon, 1976], which states that

intelligence operates on a system of symbols, where the symbols represent entities in

the environment. Agents typically execute a sequence of three phases; sense, plan

and act. In the first phase, sense, the agent uses its sensors to gather data about

the world around it. The data is used to update the agent’s internal world model, so

that changes in the environment are reflected in the symbolic representation main-

tained by the agent. Following the sensing phase, the agent plans a course of action.

18

The agent analyzes the new internal world model and using some planning algorithm

decides what sequence of actions will result in the agent achieving its current goal.

Once a sequence of actions has been chosen, the execution phase commences. The

execution phase takes as input the sequence of actions that the agent would like to

execute and attempts to perform them [Arkin, 1998].

Symbolic reasoning has the advantage of enabling the agent to reason about its

past and form elaborate plans for its future. Assuming the sense, plan and act cycle

repeats frequently enough, the agent can adjust the plan as things in the environment

change. An example of a planning agent is described in [Nilsson, 1984].

Several disadvantages for planning agents have been identified. One major dis-

advantage of planning agents lies in the difficulty of maintaining accurate internal

world models [Brooks, 1991a]. The accuracy of a world model is affected by both

the frequency that the world model is updated and the amount of noise in the sen-

sor readings. Because the environments for which agents are designed are often very

complex, very elaborate world models are required, and maintaining consistency be-

tween such complex world models and the real world is a daunting task [Agre and

Chapman, 1991; Brooks, 1990; Chapman, 1989]. If the world model is not updated

frequently enough, the world model will fall out of date or out of sync with the real

world [Brooks, 1990]. If the planning algorithm is applied to a world model that

is out of date, the plan produced by the planning algorithm may not be applicable

to the real world, since the real world may have changed since the last time the

wold model was updated [Brooks, 1990; Mataric, 1997]. Noisy sensory readings also

19

contribute to inaccurate world models that do not represent the environment close

enough to be useful as a basis for planning. Since sensor reading are taken every

cycle, and the world model is incrementally built from those readings, errors in the

world model are cumulative, leading to a world model that becomes more inaccurate

over time [Mataric, 1997; Agre and Chapman, 1991].

Another disadvantage is related to the reliance of many planning agents on the

symbol system hypothesis. If the symbols representing entities in the world model

are not sufficiently grounded to physical objects in the real world, they become mean-

ingless [Coradeschi and Saffiotti, 2000; Harnad, 1990]. Additionally, the symbols are

task dependent: different tasks require specific representations, making a planning

agent only capable of solving the problem it was designed for [Brooks, 1990].

Planning is also very time consuming. Since the world being modelled is complex,

the planning system has to be able to predict an exponential number of outcomes.

This requires searching through a potentially exponential search space. Heuristics are

useful for trimming the search space, but heuristics often sacrifice accuracy [Chapman,

1989]. In any case, planning takes a significant amount of time. Agents in most real

world environments do not have significant time to ponder their actions, since rapid

changes in the environment quickly make plans obsolete. Taking too much time to

plan also highlights another disadvantage: obsolete plans require a rerunning of the

planning algorithm to produce another plan, which may also be obsolete by the time

it is ready to execute. Once a plan is prepared to execute the agent will attempt to

complete plan execution until either the plan will obviously fail or a better course

20

of action arises. This requires a level of planning above the planning algorithm to

determine when a plan is no longer sensible [Agre and Chapman, 1991]. The plan-

replan cycle can lead to agents spending all their time planning, and never executing

any actions in the environment. The sense, plan and act cycle in very complex systems

inevitably ends up taking too long to allow the agent to interact with a sophisticated

world in real-time.

2.2.2 Reactive Agents

Reactive agents address some of the downfalls of planning agents. Reactive agents

react to the environment without searching or requiring world models [Mataric, 1997].

In general, reactive systems are based on stimulus-response relationships. Stimuli in

the environment trigger an immediate response from the agent’s actuators. Noisy

sensor readings have little effect on reactive systems, since there is no world model

and therefore errors in readings are not cumulative. Planning is also eliminated,

since responses occur immediately in response to the stimuli requiring very little

time [Mataric, 1997; Brooks, 1990]. Eliminating planning makes interactions between

reactive agents and their environment much faster than planning agents. Reactive

agents are therefore more effective at interacting with the environment in real time.

Reactive systems are based on the assumption that the world is its own best model,

since it is always up to date and always contains every detail there is to know [Brooks,

1990]. Reactive agents also address the difficulties with the symbol system hypothesis

21

using the physical grounding hypothesis. The physical grounding hypothesis is based

on having a system composed of modules, where each module produces behavior and

the combination of those modules produce more complex emergent behavior [Brooks,

1990; Mataric, 1997; Arkin, 1998]. Purely reactive agents are robust. Since every

module of the reactive system produces responses based on stimuli, if stimuli does

not occur in the environment, the associated responses are simply not elicited, having

little effect on the emergent behavior of the agent.

The concept of potential fields underlines many reactive approaches. Potential

fields use a mathematical function to transform sensor data from the robot into actions

to be performed [Arkin, 1998]. A continuous mathematical function provides output

for all stimuli across the environment, so that no matter where the robot is located

it gets some instruction from the potential field. Many potential field controllers

use a function based on the law of universal gravitation: as the robot gets further

from an object, the force exercised by the object on the robot is reduced. The

reduction in force approximates the square of the distance between the robot and the

object [Krogh, 1984; Khatib, 1985]. Obstacles exercise a repulsive force, while goals

exercise an attractive force. Every object produces its own potential field. Fields

are combined into a global field using superposition [Arkin, 1998], which allows a

number of individual potential fields to be combined into a global potential field

(2.1. Following the gradient of the global field produces a smooth trajectory that a

robot can follow to navigate the environment. Many reactive systems are based on

the idea of potential fields.

22

Figure 2.1: An example of potential fields being combined [Balch, 1998b]. Left: the

potential field of a goal. Middle: the potential field of two obstacles. Right: the

global potential field.

2.2.2.1 Subsumption Architecture

Central to many reactive approaches is the notion of a behavior. Arkin [1998] de-

fines a behavior as a stimulus/response pair for a given environmental setting that is

modulated by attention and determined by intention. Reactive approaches that are

behavior-based take the concept of a behavior and add structuring to it. Behaviors

are organized into larger packages that interact with each other in some way, and

often some form of layering is added to mediate between competing behaviors and

packages of behaviors

One of the earliest behavior-based approaches was the subsumption architecture,

proposed by Brooks [1986] in response to the limitations of planning agents. Like

many reactive systems, subsumption discourages the use of internal world models,

allowing only very small pieces of state information to be stored in the behavior

23

Figure 2.2: An example of Brooks’ layered subsumption architecture [Brooks, 1986].

Higher level layers subsume lower level layers to control the system.

modules. The subsumption architecture splits the task to be preformed into layers

(see Figure 2.2) [Brooks, 1986; Mataric, 1997; Arkin, 1998]. Each layer represents

a level of competence for the agent. Layers are built on top of each other: higher

layers can observe and inject data into lower layers, but lower layers operate without

knowing anything about the layers above them [Brooks, 1986]. Scalability is achieved

by adding layers onto an already working system. Since lower layers do not need to

know anything about higher layers, the higher layers can be added without modifying

the lower layers. The higher layers can be viewed as subsuming the lower, hence the

name.

Each layer is composed of modules (see Figure 2.2). Each module is a finite

state machine (with some additional variables) that takes in one or more inputs

and produces one or more outputs. The modules are the components that couple

perceptions to actuators [Brooks, 1991a]. Perceptions are fed into modules, which

24

immediately produce some output. The output of modules are fed into other modules

and finally directly to the robot’s actuators. As with many reactive systems, there

is no planning: behavior emerges from the interactions of many modules acting in

parallel [Brooks, 1986]. Noisy data entering one module, or even the failure of one

module, should in theory have little effect on the emergent behavior, and since there is

no internal world model, errors are not cumulative [Brooks, 1991b]. Many robots have

been implemented using the subsumption architecture (e.g. [Horswill, 1993; Mataric,

1992; Brooks, 1986, 1989, 1990; Brooks et al., 1999]).

A disadvantage to the purely reactive agents proposed by Brooks is the difficulty

of representing complex behaviors without any internal representation and very little

memory. Schematically, even simple behaviors such as foraging require complex sub-

sumption diagrams. Since the complexity of the subsumption diagram grows rapidly

as the emergent behaviors require more complexity, the scalability of the subsumption

architecture is questionable. Another disadvantage of a subsumption architecture is

the likelihood of the system becoming trapped in a local minima. A local minima is

a position where every action that the agent executes will lead it back to the same

position. Since the responses to a sequence of events can potentially repeat endlessly,

the agent can become trapped by continuing to repeat the same actions over and over

again and making no progress. Getting trapped in local minima highlights the need

for agents that are able to use past experience to modify future behavior.

25

2.2.2.2 Schema-based Agents

Schema-based agents emerged as an approach to robot control that realizes the ad-

vantages of purely reactive agents while loosening some of the constraints proposed

by Brooks [Arkin, 1998]. Schema-based agents retain the reaction speed achieved by

purely reactive agents by discouraging complex world models and instead containing

multiple simple world models that are efficient to maintain. This addresses many of

the disadvantage of purely reactive agents. Like many approaches to robot control,

schema-based agents support the notion that there is a lot more to be gained by

increasing the functionality of reactive approaches before adding planning facilities.

Schema-based agents are based on schema theory. Briefly, schemas are a mapping

of perceptions to actions associated with the perceptions. They contain the infor-

mation necessary to encode agent behavior by means of the sensory data required to

illicit an action, where the computational process for how the action is performed is

embedded in the schema [Arkin, 1998].

Schema-based systems are another implementation of the behavior-based model.

The schema-based approach bears some similarity to subsumption based systems,

in that schema-based systems are composed of several modular behaviors organized

into a finite state machine. Each behavior takes sensory information as an input and

produces the desired action to be performed. The output of several behaviors can

be combined to produce overall actions, and active behaviors can be turned on or off

according to the state of the finite state machine governing the control system. The

26

major difference between schema-based systems and subsumption based systems is

how the behavior modules are used. Each behavior modules produces the same format

of output, a vector describing a suggested trajectory. Unlike the layered approach of

subsumption, outputs of the behavior modules are combined to produce the output

of the system, allowing each behavior to contribute in varying degrees to a robot’s

overall response. No predefined hierarchy exists for coordination: instead modules

cooperate using vector addition.

In a schema-based approach, behaviors are implemented through a combination of

two types of schemas: Perceptual schemas and Motor schemas. Perceptual schemas

serve to filter perceptions and allow the robot to discern elements of interest. Per-

ceptual schemas connect to motor schemas, which embody desires for the robot’s

actuators to perform some action based strictly on the perceptions obtained by the

robot’s sensors. Perceptual schemas may be connected so that some motor schemas

stimulate others in turn, allowing complex emergent behavior to occur [Arkin, 1998].

The schema-based approach is similar in spirit to the potential fields method de-

scribed earlier. The benefit of motor schemas over potential fields lies in only requiring

the control system to calculate a small portion of the global field. Only those objects

eliciting responses from the schemas are used in the global field calculation, centering

around the robot and only extending to the immediate course of action [Arkin, 1998].

Potential fields require the whole global field to be calculated, which is computation-

ally expensive.

A system implementing motor schemas combines the motor schemas producing an

27

action vector, which is a vector containing a magnitude and orientation representing

an action that the robot can execute. The robot interprets the action vector and ex-

ecutes the resulting motor commands on the actuators. Motor schemas are combined

in the following fashion [Arkin, 1998]:

1. Perceptual Schemas are updated on every perceptual cycle.

2. Motor Schemas produce a vector representing the action desired by the motor

schema depending on its associated perceptual schemas.

3. The output of all motor schemas is weighted by gain values. The gain values

distinguish the importance of different motor schemas.

4. All resulting vectors are added together using vector addition.

5. The vector resulting from the sum of all motor schema vectors is interpreted by

the robot.

6. The robot sends motor commands to the actuators, which execute the action.

The magnitude of a vector indicates the urgency with which the motor schema wishes

the action to be executed.

Many schema-based robots have been implemented (e.g. [Arkin, 1989, 1992; Cameron

et al., 1993; Balch and Arkin, 1995]. While schema-based agents are meant to ad-

dress the disadvantages of purely reactive systems, some disadvantages still remain.

Schema-based agents are not proactive. They lack the ability to reason about the fu-

ture or the past having little to no representation of the world. In addition, schemas

28

are mapped onto the hardware for which they are designed, making it difficult to

move systems from one platform to another [Arkin, 1998].

2.2.3 Hybrid Approaches

There are a number of control architectures that attempt to combine the advantages

of both symbolic reasoning and reactive control [Graves and Volz, 1995; Arkin and

Balch, 1997; Gat, 1992; Lyons and Hendriks, 1995; Lee et al., 1994]. The majority

of these systems use a reactive control system as their base. The agent reacts to the

environment as the environment changes and in general is designed to handle the

agent’s short term, underlying behavior. Often the reactive component is responsible

for keeping the agent safe when entities in the environment could pose a risk to the

agent, and when reaction time is important, such as the potential for colliding with

a moving object. Above the reactive subsystem, there is generally a higher level

planner. The planner is responsible for planning ahead and directing the high level

goals of the robot. Ideally the planner can take as much time as it needs to maintain

a world model and plan using that world model, since while planning, the agent is

continuing to function using the reactive subsystem. The agent does not have to wait

until the planner is ready to send actions before the agent can perform productive

work.

Knowledge used to represent internal world models for the planning component of

the hybrid system can make the behavioral configurations of the underlying reactive

29

system more versatile by adding knowledge about the task and the environment.

Additionally the dynamic nature of the internal world model may provide insight

into ways of achieving goals that the reactive system is not able to, since it has no

representation to work with Mataric [1997].

The planning component of a hybrid system still shares the disadvantages of plan-

ning agents described in Section 2.2.1. If the environment is not stable or consistent

from one time step to the next, the planner may still develop useless plans [Arkin,

1998]. Continually replanning will result in a slowdown of the overall system, espe-

cially if the plans are not relevant. The issue of physical symbol grounding is still

present, even with a reactive subsystem: if the symbols used by the planner are not

well grounded they will be of little use [Brooks, 1990]. Finally, the world model may

still be inaccurate, adding to poor plans [Mataric, 1997].

There are, however, some important concepts captured by one particular hybrid

architecture important to my research. Arkin and Balch [1997] developed the Au-

tonomous Robot Architecture (AuRA). AuRA blends traditional symbolic reasoning

with behavior-based reactive processing. The behavior-based reactive processing is

achieved using motor schema-based control. The ability to do such blending is impor-

tant in many problem areas, since agents have to react to new situations, yet be able

to reason about the situation they are in and the consequences of actions in that situ-

ation. AuRA is designed for controlling autonomous agents. The control architecture

designed in this work (described in Chapter 3) is similar in spirit to AuRA in that

a symbolic reasoning component will work along with an underlying behavior-based

30

system. The main difference between my work and the work of Arkin and Balch is

that I concentrate on blending autonomy and teleoperation in my architecture, which

is beyond the focus and abilities of the AuRA architecture. While AuRA takes a high

level approach, where the symbolic component specifies goals to the behavior-based

component, my work focuses on the more complex relationship between the human

operator and the agent that is required in many domains. The operator requires vary-

ing levels of detailed control over agents in my architecture, which is currently not a

supported feature of AuRA. As such, some of the structural ideas from AuRA will be

replicated in my architecture, but modifications and additions will be required. The

additions and modifications contribute to furthering the complexity of tasks that an

agent is able to accomplish by making the human operator and the agent cooperate

seamlessly and effectively.

The development of autonomous agents is a widely studied field, and while au-

tonomous agents for very complex environments are a long way away, autonomous

agents for simple structured tasks exist today (e.g. [Arkin, 1998; Arkin et al., 1999;

Huang and Krotkov, 1997; Kortenkamp and Weymouth, 1994]).

2.3 Teleautonomy

Direct remote control is well understood and common in today’s world: it is observable

in everything from remote controlled television sets to toy cars. Compared to this

and the state of autonomous approaches (as described in Chapter 1), the state of

31

teleautonomous approaches is far behind, and the application of teleautonomy to

complex environments is extremely limited. This section reviews the major work in

teleautonomous control to date.

Arkin and Ali [1994] describe one of the primary motivations requiring a balance

between autonomy and teleoperation in robotics: cognitive overload, which has al-

ready been mentioned in Section 1.4. Arkin and Ali [1994] propose two approaches

for teleautonomy with respect to multiple agents. Both of these are schema-based

approaches, where behaviors (wander, avoid, etc.) are encoded in the form of mo-

tor schemas, which interact at run time to produce output to robot effectors. The

first approach has the operator’s control as a behavior that influences the robots’

effectors just as any internal behavior does. All active behaviors contribute a vector

representing some desire that the robot has to perform each behavior. The operator

introduces his or her intentions through an additional schema contributing to the

emergent behavior in the exact same way as all other behaviors [Arkin and Ali, 1994].

Experiments tested the operator-as-a-schema approach by having the operator input

a magnitude and orientation representing the intentions of the operator. A group of

robots accepted the low level instruction from the operator and summed it with the

rest of their active schemas. The whole group of robots was therefore influenced by

the single command of the operator. The second approach for teleautonomy involved

having the operator act as a supervisor. The operator had access to the behavioral

parameters of the society, where the behavioral parameters included abstract com-

ponents, such as aggressiveness and wanderlust, down to the low level gains of each

32

motor schema. The operator could effect the emergent behavior of the society of

agents as a whole by adjusting their behavioral parameters. Arkin and Ali [1994]

tested both of their approaches in three tasks: foraging, grazing and herding. They

found that in the foraging task the total number of steps required to complete the

task by the robot could be reduced significantly if the operator guided the robots

to areas where more attractors existed. However, once an attractor was in sight,

they found that human intervention would hinder more than help the robots. In the

grazing task, robots performed best when very little amounts of teleautonomy were

introduced. The operator was only helpful when agents could no longer find ungrazed

areas. Once ungrazed areas were located, the agents performed better autonomously.

For herding, operator intervention was found to be very helpful. The operator could

herd a group of agents into a confined area without much difficulty, and robots rarely

left the confined area [Arkin and Ali, 1994]. Arkin and Ali [1994] found that only

small amounts of teleoperation were required to increase the performance of a society

of agents performing simple tasks: too much teleoperation would often hinder perfor-

mance. Influencing a group of agents reduces the amount of attention paid to each

individual agent, thus reducing the cognitive load of the operator. Their approach

was tested only in very structured and simple problem domains. My thesis will deal

with teleautonomy in domains with much less structure than these. It will also avoid

the main problem with Arkin and Ali’s approach to dealing with cognitive overload -

only limited results can be obtained by giving mass direction to every agent in a team

environment. Their approach is equivalent to telling every single agent on a field to

33

“turn left” to get one agent to its target. By doing this, Arkin and Ali doom a large

number of agents to receiving commands that will not likely be helpful, in exchange

for the expectation that this cost is overridden by the small direction obtained by

those that needed it. Their own results showed that the expectation that the cost is

overridden by the small direction obtained by those that needed it was not a rational

expectation for many domains (though their approach did work in domains where the

misdirection was not a significant problem).

Crandall and Goodrich [2001] present the notion of neglect in remotely controlled

agents. They describe neglect as the amount of time during which the agent is

not receiving some sort of instruction. They show that this down time can hinder

the performance of the robot, and can be due to the operator turning his or her

attention away from the agent, or from delays between issuing commands and the

agent receiving those commands. The important thing to note from the standpoint

of this thesis is that while the agent is being neglected it could make use of this

time by performing tasks autonomously to increase the effectiveness of the robot.

Crandall and Goodrich [2001] describe a robot control system consisting of a set

of robot behaviors and a user interface for controlling the agents. Their systems

uses five levels of autonomy: fully autonomous, goal-biased autonomy, waypoints

and heuristics, intelligent teleoperation and dormant. The fully autonomous mode

is based on a utilitarian-voting scheme that allows the agent to initiate interactions

with the environment. Goal-biased autonomy allows the operator to mark goals on a

2D map and have the agent attracted to that location, where the attraction is treated

34

as another behavior. Waypoints and heuristics involves having the operator add icons

to the 2D map that heuristically influence the robot’s actions using a potential field

based approach. Intelligent teleoperation uses a joystick to operate the robot, where

the robot could assess the risk of the human input and decide whether to perform

the instruction or not. The goal of the above control system is to reduce the amount

of time the agents spends without some sort of operator direction, and having the

agent be able to initiate interactions with the environment in the absence of operator

direction. Crandall and Goodrich [2001] emphasize the directly controlled portion

of the agents in this work, while realizing the autonomous portion of the agent to

only a very limited degree. Although Crandall and Goodrich [2001] discuss degrees

of autonomy they do not describe an implementation in their work to show that

any balancing has been implemented even to the degree of some of the prior work

described above.

Casper and Murphy [Casper, 2002; Casper and Murphy, 2002] offer a tremendous

amount of insight into robot-human interaction in USAR. Many of the issues they

discuss are important to consider for this thesis. First, the need for robot involve-

ment in USAR can be justified by the number of human and canine rescuers who are

injured in rescue activity: for example, 135 rescuers where killed in the 1985 Mex-

ico City Earthquake alone. Their work also provides insight into operator fatigue,

illustrating the need for more autonomy. While at the World Trade Center, Casper

and Murphy observed that lack of sleep on the part of operators introduced cognitive

fatigue that significantly reduced operator performance, leading to obvious mistakes.

35

For examples of these see [Casper, 2002]. Murphy and Casper also observed the need

for better human-to-robot ratios, explaining that a 2:1 human-robot ratio was not

an efficient use of personnel. Finally, the need to automate certain tasks was appar-

ent. Repetitive simple tasks such as stairwell searching and room searching can be

tremendously tiring for the operator when the operator must also scrutinize a visual

image for victims and recognize when structure stability is an issue [Casper, 2002;

Casper et al., 2000]. Casper and Murphy describe valid reasons for why increasing

the amount of automation in USAR robots would be beneficial.

Cao et al. [1995] describe work on a remote robotics laboratory where ten small

UCLA/ISR R3+ robots are controlled through the Internet via Unix workstations.

The laboratory is considered a resource shared among experimenters across the coun-

try. Experimenters submit experiments (programs) or real time (low-level) instruc-

tions across the Internet, and then observe their experiments being carried out. The

execution of experiments in the remote robotics laboratory requires teleautonomous

control of the robots to various degrees, either by complete moment-by-moment con-

trol (instruction by instruction) or by writing a program to be executed by the ma-

chines. Cao et al. [1995] plan also to introduce some additional autonomy in the

robots in the form of simple obstacle avoidance algorithms that will limit the amount

of potential damage an operator can cause to robots through execution of their teleau-

tonomous experiments. While Cao et al. [1995] demonstrate why the balance between

teleoperation and autonomy is important, my proposed research involves demonstrat-

ing these issues both in a more demanding and practical domain, and in a more flexible

36

manner.

Trivedi et al. [2000] designed a system that would allow robotic units to recognize

traffic collisions and other accidents. This system is strictly a laboratory design and

years away from being deployable, but makes use of teleautonomous robotic agents

that can form a perimeter around a collision. These agents specialize in forming a

perimeter, and the remote operation provides very basic instructions to guide the

robots to form perimeters around specific areas. This application of teleautonomy

demonstrates the potential to have equipment constantly monitoring an area without

the full attention of an operator, but is once again extremely simplistic: the agents

have one purpose, and can achieve that fairly simply through a polygon forming al-

gorithm where each agent takes the role of a point on the polygon. The operator

supplies only location guidelines for the polygon forming activity, and the balance

between autonomous ability and remote control has been fixed as well - human op-

erators guide the placement of the perimeter, and the agents form the group using

the operators guidance. Finally, the environment is also much more structured (flat

pavement) than can be assumed in USAR.

Arkin and Balch [1998] and Bentivegna et al. [1997] demonstrate a teleautonomous

hummer designed to perform scouting missions for military operations. The hummer

is equipped with an onboard computer that controls the steering, throttle and brake.

An operator can control the hummer using an onscreen joystick, which is part of the

Mission Lab application [Bentivegna et al., 1997]. The Mission Lab application also

allows the hummers to act autonomously by sending the hummers mission goals and

37

having the hummers execute them autonomously [Arkin and Balch, 1998]. Although

the domain is less structured and more complex than the domains explored previously

by Arkin and Ali [1994], the teleautonomy is still realized through a relatively simple

additional motor schema in the behavior-based system. The missions themselves are

also simple waypoint missions in large open areas, and lack the potential errors and

unpredictability that the USAR domain provides.

Murphy and Sprouse [1996] describe a strategy for mixing robot and human con-

trol in the USAR domain by assigning a different search task to the operator than

to an autonomous robot. The robot would perform a systematic search of an area,

covering the entire area by splitting the area into sections and applying its senses

to each section. The operator then performed the semantic search; in this case the

operator directed the robot to semantically similar areas of interest. Casper et al.

[2000] describe a paradigm for automating victim detection by robotic agents, while

the operators controlled the navigational system. Casper et al. [2000] implement their

strategy on a three-agent society architecture, where the robot, human and an Intelli-

gent Assistant Agent together composed the society. The Intelligent Assistant Agent

handled victim identification by taking the sensory readings from the robot, checking

them for victims and presenting the results to the operator. In both of these cases,

the boundary between autonomous processing and operator control is cleanly divided

by task and is fixed - there is no concept of an agent having a degree of responsibility

for the entire task, which my research will include.

38

2.4 User Interfaces

While user interfaces are not the focus of this work, an interface is obviously an

important part of any computer system expected to interact with humans. There

has been little work pertinent to user interfaces and robot control specifically, but

volumes of work have been published on user interfaces in general.

I am attempting to design and evaluate an ergonomic user interface, and there is

one important point in the user interface literature that is imperative to follow. The

user must always be in control [Krogseter et al., 1994; Krogseter and Thomas, 1994;

Strachan et al., 2000]. I will be designing the user interface to place the ultimate

control in the hands of the operator. The operator is able to make decisions on how

the system works and can reduce the agent’s autonomy at any time to a point where

the agent is entirely controlled by the operator.

2.5 Summary

In this chapter I described three primary types of mobile agent control approaches:

planning agents, reactive agents and hybrid agents. I also introduced a variety of

work in teleautonomy that is related to this research. Finally, I discussed some of the

important issues concerning user interfaces. The next chapter is concerned with the

design of control system that blends autonomy and teleoperation.

39

Chapter 3

A Blending Approach to Mobile

Robot Control

3.1 Overview

The design of the control system implemented as part of this thesis is described in

four sections. First, I discuss how I designed the autonomous control system, which

is the underlying method of robotic control. Secondly, I describe how teleoperation is

achieved in the system. Thirdly, I discuss how the output of the autonomous control

system is blended with the commands of the human operator. Finally I describe the

design of a user interface that allows the blending to take place. Throughout the rest

of this work I will refer to the system that was designed and implemented as part of

this research as the blending control system.

40

3.2 Autonomous Control

The autonomous control system was designed to be the base control system of the

agents in this research; as such it functions independently of the other portions of the

system. Its functionality is sufficient to enable the robot to explore its surroundings

in a basic fashion, seeking out objects of interest and avoiding obstacles, which are

the primary autonomous abilities necessary to the USAR domain. The goal of the

autonomous control system was to be as parsimonious as possible in providing these

abilities.

I chose a behavior-based approach to develop a simple control system that does

not use symbolic reasoning and requires no world model. The autonomous control

system uses a schema-based approach [Arkin, 1998] that operates as described in

Section 2.2.2.2. A schema-based approach was chosen because it is a behavioral

approach that couples perception and action very closely and requires no single global

representation of the domain, making it an ideal choice for developing a simple but

sufficient autonomous control system that is able to react to the environment in real

time.

The particular schemas written as a basis for this research are those that provide a

bare-bones autonomous agent. The schemas enable the robot to operate successfully

in the USAR domain by enabling the robot to wander, avoid obstacles, move to a

desired unmapped point, and perform the very basics of looking for victims. First,

the agent is able to explore the area by moving toward unexplored portions of the

41

Figure 3.1: Examples of victims in the NIST USAR standard test bed, Robocup 2003,

Padua, Italy, July 2003

map in a manner similar to grazing. The agent is never idle, always moving about

the environment. Secondly, the agent is able to recognize obstacles from a safe dis-

tance and begins avoiding the obstacles before they hinder its movement. Obstacle

avoidance is a vital ability for any agent to operate in a domain with as much de-

bris as USAR (refer to Section 1.3 for a complete description of the USAR domain).

Finally, the agent can distinguish objects resembling victims and move toward those

objects. Figure 3.1 shows two examples of victims in the NIST standard test-bed for

USAR. Victim identification can be done through various means. Casper et al. [2000]

demonstrate that the task can be automated using a combination of different search

strategies on a video source. Each search strategy identifies certain distinguishing

shapes and colors: skin tone, motion, shapes, etc. If there is enough evidence present

to support victim identification, the operator is notified. Victim identification itself

is a huge problem within this area, and in no way am I attempting to provide a

42

thorough model of human victims. Instead, I will be using very simple color infor-

mation in order to provide a rudimentary implementation of victim identification for

the purpose of studying agent control. For more about how victims are identified

see Section 4.5.1. The functionality of the schemas described above is intended to

approximate the abilities of agents which have competed in the past in robotic rescue

competitions (e.g. [Baltes and Anderson, 2002]. Having said that, the autonomous

system described in this section is not intended to be a perfect agent for robotic res-

cue, but rather a vehicle for exploring the issues in teleautonomy described later in

this work.

In this behavioral design, the control system is composed of several behaviors,

where only one active behavior produces output for the agent’s actuators at one time.

A finite state machine governs the behaviors, and ultimately the state of the agent

dictates which behavior is active at any given moment. Each behavior is composed of a

set of motor schemas which serve to activate them. Each motor schema is associated

with one or more perceptual schemas. On every cycle of the autonomous control

system perceptual schemas gather the relevant sensor data. Each perceptual schema

is designed to identify a particular feature of the environment (e.g. the location of a

victim). The perceptual schemas produce output that is read by the motor schemas

for the active behavior. The behavior reads the output of all of its motor schemas and

produces an action recommendation, which is the output of the autonomous control

system.

To control an agent in a behavior-based approach, we are concerned with 3 partic-

43

ular parameters. We need to refer to the desired rotation, the forward motion of the

agent, and we need to consider the urgency associated with a motivation. Desirable

forward motion is generally either assumed to be a constant value or directly associ-

ated with the urgency. We thus formally have 2 components which can be represented

using an action vector a.

a =

M

Θ

 (3.1)

Here Θ represents the direction to turn, and M is the magnitude. The magnitude

represents the urgency associated with a particular action. A high magnitude indi-

cates that the action is more urgent, giving it more influence in the calculation of the

resulting action. Each motor schema has an action vector m(a) associated with it.

Each behavior b also has an action vector b(a) associated with it. Since each behavior

b is associated with a collection of motor schemas, to get the resulting action vector

b(a), each motor schema must first generate its own action vector and multiply the

magnitude of the vector, M , by its gain value, φ.

m(a) =

φ 0

0 1

M

Θ

 (3.2)

The gain value increases the magnitude of the vector, increasing its priority. The

motor schema vectors are changed into their component forms to make their addition

simple:

44

mc(a) =

x

y

 =

cos(Θ) 0

sin(Θ) 0

φM

Θ

 (3.3)

To find the resulting action vector for the behavior in component form the sum

of all the vectors and their gains is found.

bc(a) =
|schemas|∑

i=1

mc(a)i (3.4)

In order for the actuators to understand the action vector, it is transformed back

into its magnitude/orientation format:

b(a) =

M

Θ

 =

√
x2 + y2

arctan (x
y
)

 (3.5)

Once transformed into its magnitude/orientation format b(a), it is ready to be

executed by the agent. This completes one cycle for the autonomous control system.

See Chapter 4 for the details of how the autonomous control system was implemented.

3.3 Teleoperation

Since the purpose of the system is to blend autonomy and teleoperation, methods for

teleoperating the agent were designed. Three methods of control were chosen for the

blending control system. These will be described in order of the least abstract to the

most abstract in terms of their level of control.

45

The most basic method of operating an agent is to send the agent low level instruc-

tions, such as move forward 50cm, or turn 90 degrees. These commands are considered

the least abstract because in a purely teleoperated system, the agent obeys them di-

rectly. The agent has no freedom to decide how the command is to be executed. This

requires an interface that allows the operator fine grained control of the agent, such

as a joystick. Joysticks are a popular method of controlling both robots, software

agents and various vehicles [Arkin, 1998; Arkin et al., 1999]. Joysticks can provide

the operator with all the degrees of freedom that a basic wheeled robot is capable of,

and are a natural choice for agent control.

An agent can be influenced at a higher level of abstraction through the definition of

waypoints, which allow the operator to avoid producing and communicating a series of

low level commands. In this type of control, the operator chooses a location or a list of

locations that he or she would like the agent to visit. In a purely teleoperated system,

when assigned a waypoint, the agent is expected to turn directly to it and approach

the waypoint in the shortest path possible, blindly obeying the directional instructions

represented and paying no attention to obstacles or other elements of the environment.

In a purely teleoperated system the operator is expected to deal with guiding the agent

around obstacles and considering any other details of the environment. Such abstract

commands can be very dangerous in a purely teleoperated system, since the agent

must obey the instruction, even if it is not safe (see Section 1.4).

Enabling the operator to manually switch behaviors and adjust weights associated

with the motor schemas contained in those behaviors provides the most abstract

46

level of control available to the operator in the blending control system. This is

considered the most abstract because the operator is not giving direct commands

for the agent to execute, or even a series of commands. The operator is giving the

agent high level guidance, modifying the agent’s personality traits such as aggression

and wanderlust [Ali and Arkin, 2000]. Aggression, for example, can be increased

by lowering the priority of obstacle avoidance. Wanderlust, on the other hand, can

be lowered by making the agent more attracted to its goals. Adjusting weights or

switching behaviors effects the output of the autonomous control system in real time.

All three of these modes of control were implemented in order to allow an operator

to teleoperate a set of agents. See Chapter 4 more details on this implementation.

3.4 Blending Teleoperation and Autonomy

The autonomous control system described in Section 3.2 and the teleoperated control

interfaces described in Section 3.3 provide two distinct sources of control for an agent.

Blending those sources of instruction provides significant advantages to using only one

of the sources (see Section 1.4 for a discussion of those advantages). There are two

tasks that are associated with the blending of instructions. The first is identifying

when blending would be the most beneficial and notifying the operator. The second

is evaluating the sources of instruction and combining those sources into a single

instruction that will be executed by the agent’s actuators. The task of notifying

when multiple sources of instruction are desirable is referred to here as Intervention

47

Recognition. The task of blending two or more sources of instruction is referred to

here as mediation.

3.4.1 Intervention Recognition

Recognizing when agents require operator intervention requires examining specific sit-

uations in the form of an intervention recognition system. The intervention recognition

system is ultimately responsible for indicating when the balance between autonomy

and teleoperation of agents must be changed, by requesting a change of control to the

operator or requesting assistance from other agents. It does this through a knowl-

edge base estimating the degree of likelihood that an agent can or should carry on.

The intervention recognition system runs on each agent, analyzing its perceptions

and identifying specific scenarios indicative of specific problems and separating these

from the situations where autonomy is likely still possible. The design of the in-

tervention recognition itself is one of the contributions of this thesis - it is designed

in an extendable manner so that specific scenarios of interest can be encoded in a

knowledge-based fashion, resulting in a system that can be used in a wide range of

environments.

For the purposes of encoding knowledge useful to the USAR topographical map-

ping problem, I identified three specific scenarios within the intervention recognition

system that make this system useful and successful:

Stuck Agent: The simplest problem to address, but the most common, is a robot

48

becoming stuck or otherwise immobile. The intervention recognition system

identifies when the agent is stuck and signals the operator. A stuck agent

is defined as any agent that is sending instructions to its actuators, but the

actuators are not completing those instructions. If the agent’s actuators are

receiving commands, the agent will compare its current sensor readings to past

sensor readings attempting to distinguish if there is any evidence supporting

movement on the agent’s part. If there is little or no evidence supporting

movement within the last few perceive-act cycles, the agent is declared stuck.

Confused Agent: In dynamic domains such as USAR, agents can become lost or

unable to complete their goals. Identifying when agents are lost or unable to

complete their goals is therefore important. The agent designed here contains

no elaborate world model, but small pieces of information regarding things that

have occurred in the agent’s past are stored and used to identify when agents

are lost or confused. The agent is able to distinguish certain objects in the

environment uniquely using its sensors. Those distinct objects, referred to as

landmarks, can be tracked. The agent remembers how many times it has sensed

a landmark and how much time has elapsed since the last time it has sensed

the same landmark. The intervention recognition system uses this information

to determine when an agent has returned to the same location too often (e.g.

the agent has been to a landmark 100 times) or when an agents has returned to

the same location too many times in a short period of time (e.g. the agent has

49

sensed a landmark 20 times in 5 minutes). In either case, the operator should

be notified so that the agent can be encouraged to explore different locations

in the environment instead of spending too much time in the same area. For

details as to how landmarks were chosen and tracked see Section 4.7.4.

Victim Identified: An important event that occurs in the USAR domain is the

location of victims. Victim identification is a very difficult task to perform

autonomously [Murphy et al., 2000a; Casper et al., 2000]. Therefore, the inter-

vention recognition system is responsible for identifying when an object in the

environment resembles a victim and notifying the operator. Since victim iden-

tification is a critical event, the agent should not be operating autonomously

once an object resembling a victim is identified. The operator may be required

to make a judgment whether a victim is at the location, since the agent is likely

to make errors in victim identification. An accurate model of victim identi-

fication is not the focus of this work: as such vision alone is used to identify

objects resembling victims by their color. Victim identification is handled by the

victim perceptual schema whose implementation is discussed in Section 4.5.1.

Briefly, agents are able to distinguish between actual victims and objects that

only resemble victims by their color when they are within 3m, while outside

of 3m victims and objects resembling victims are identified as objects of inter-

est. Whenever an object of interest is identified the operator is encouraged to

supervise the agent so that victims are identified properly.

50

When the intervention recognition system identifies a situation that requires the

operator to intervene, the operator is notified through the user interface. The user

interface is described in more detail in Section 3.5. Briefly, the user interface con-

tains a list of the current available robots and their states. When the intervention

recognition system identifies a situation where intervention is desirable, it changes the

state of the current robot, updating the user interface. An operator working with the

user interface can see that the agent requires assistance, along with a brief message

describing the agent’s current state, and is able to operate the agent by clicking on

the agent’s tab on the user interface. See Section 4.8 for more details on how the

operator can interact with the blending control system through the user interface.

3.4.2 Mediator

While the intervention recognition system is solely responsible for indicating to the

operator that transfer of control is recommended, the mediator is responsible for in-

tegrating the operator’s commands with those of the autonomous control system (see

Section 3.2). While previous approaches (see Section 2.3) have focused on blending

operator instructions directly with the autonomous control instructions, this approach

is more flexible, allowing the agent to intelligently evaluate instructions before they

are blended to ensure that instructions are safe and appropriate to execute. To blend

autonomy and teleoperation appropriately, the agent is capable of reasoning about

commands that have been sent to it via the human operator. Some commands may

51

be followed to the letter, while other commands may be integrated with the agent’s

own desires or completely refused. The agent’s ability to reason about commands is

of special importance when the operator instructs the robot to perform actions that

would put the robot in danger, such as getting too close to an edge and risking a fall.

The agent is able to reason about the risks of performing actions requested by the

operator (while determining the risk of a particular action would be very difficult in

general, evaluating such risks is well within the scope of this research in the task I

have chosen). As discussed in Section 2.4, there is a need that the operator ultimately

be in control of the system through the user interface. The mediator is equipped with

an override facility to allow the operator’s commands to be unquestioned. Unlike

Arkin and Balch [1998] who implemented teleautonomy as another behavior in a be-

havior based system, I have implemented a symbolic reasoning system to intelligently

blend the human operator’s commands and the autonomous behaviors. The presence

of symbolic reasoning also allows for a much finer grain of control over the blend-

ing, and allows different blending techniques to be active in appropriate situations.

The symbolic reasoning system effectively separates the autonomous control system

from the human operator’s controller interface, something not done in Arkin’s earlier

approaches.

The mediator acts as the reasoning portion of the architecture, and is responsible

for balancing autonomy and teleoperation in the agent. The mediator’s operations

fall into one of five modes:

Weighted teleautonomy is the expected ‘normal’ operation of this controller. In

52

this mode, the mediator is required to observe the current situation and attach ap-

propriate weights to the incoming action requests of the autonomous control system

and the controller interface. These weights determine to what extent actions from

either source are performed. For example, the operator may indicate a desire to

have the agent move to the left, while one of the robot’s perceptual schemas (refer

to Section 2.2.2.2) may trigger a motor schema provoking the robot’s actuators to

move to the right. The mediator may reason that the active perceptual schema takes

precedence, since it is avoiding a potentially dangerous situation such as moving too

close to an edge. The mediator reasons about how much control the operator and

autonomous control system should have and assigns weights to those behaviors pro-

portional to their current control priority. Deciding how much control the operator

and autonomous control system should have requires a knowledge based system that

can apply rules to the current situation and derive appropriate weights. I have per-

formed knowledge acquisition regarding some sub-tasks of USAR. Those sub-tasks

and the rules are described further in Chapter 4. Briefly, the mediator uses infor-

mation from the trouble recognition system as well as the current perceptions of the

agents and applies rules to derive weights that are applied to the operator’s and au-

tonomous control’s instructions. Again, while doing the reasoning described above

across all domains would be exceedingly difficult, encoding the knowledge necessary

to work within this specific problem is well within the scope of a thesis.

From weighted teleautonomy, we can derive Fully Autonomous and Fully Teleop-

erated modes simply by setting the weight from one of the two sources (robot control

53

or operator) to a zero value, forcing the other source to be the sole contributor. In

addition to these, I have also implemented two further modes to allow the human

operator to have more detailed control. Manual Behavior Switching mode allows the

operator to switch through behaviors the agent is capable of, and the agent operates

autonomously using only the chosen behavior (see Section 4.7.3). Finally, Manual Be-

havior Weight Modification mode allows the operator to specifically set the internal

weights the robot controller places on various behaviors (see Section 4.7.3), allowing

the operator to alter how the agent runs autonomously. If the operator believes that

the agent is coming too close to a potentially dangerous object, for example, he or she

can increase the weight of the obstacle avoidance behavior. The agent still performs

the behaviors autonomously in both of these latter modes, but the operator influences

the behaviors without explicitly controlling the agent.

Together, these modes allow the subsumption of previous approaches to teleau-

tonomy within a single architecture.

3.5 User Interface

In order to have a means by which the operator can control the robot, a user interface

was designed. This user interface allows the operator to see what tasks the agents

are currently performing and control the agent should the operator feel that it is

required, or if the intervention recognition system (see Section 3.4.1) decides that

control should be transferred. The goal of the user interface is to show sufficient

54

information for the operator to form an accurate understanding of the agent’s current

situation. The controller interface includes displays for all the relevant sensor data

collected by the agent. The sensor data is displayed in a fashion that is meaningful

to the operator, easy to understand and that does not clutter the user interface.

The user interface displays a map of all areas explored in the environment to aid

the operator in teleoperating and supervising agents. The user interface contains the

joystick described in Section 3.3 as well as an interface to add and remove waypoints

described in Section 3.3 and an interface to manually modify behaviors described in

Section 3.3. Details of the implementation of the user interface will be found in the

next chapter.

3.6 Summary

This chapter described the design of the four components that together form the

blending control system. The next chapter will discuss how each of the four com-

ponents was implemented, as well as describing how the environment was simulated

and implementation issues encountered during the implementation of the blending

control system.

55

Chapter 4

Implementation

4.1 Overview

For this work I implemented a blending control system for multiple robots, and stud-

ied this implementation using a widely-accepted multirobot software simulator. The

blending control system is able to recognize when a robot’s current situation is out-

side of its abilities to handle, or when some important event requiring the operator’s

attention occurs, within the confines of the domains I have chosen. At this time the

operator is signaled and a suggestion for control transfer can be made to the oper-

ator via the operator’s user interface. This software is also able to blend operator

commands and autonomous processing to the degree the robot believes itself capa-

ble of performing adequately, which results in a significant improvement over both

autonomous and teleoperated approaches.

This chapter describes the simulator used in the development of the blending

56

control system. The chapter also discusses the implementation of all four components

of the blending control system whose design was described in Chapter 3. Finally, this

chapter discusses implementation issues encountered during the implementation of

the blending control system.

4.2 Player/Stage

I employed a software simulator already validated by the robotic research commu-

nity as the main vehicle for simulating the USAR environment. There are several

reasons for choosing a simulated environment for this work as opposed to a physical

environment.

The first deals with the cost of running agents. Robotic agents able to perform the

type of tasks required for this thesis are generally expensive. The Pioneer robot that

my work is based on costs between $1,500 to $3,000 USD. Budgetary constraints limit

the number of robots available (I verify my techniques on upwards of 3 robots, which

was not realistic at the time this research was undertaken). Simulation allows me to

run multiple agents without the cost of maintaining and purchasing this equipment.

It is my intent in future work to deploy physical agents in the USAR domain that are

both cheap and effective.

The second reason is the physical danger to the robots of repeated experimen-

tation. The core of this thesis deals with the idea that robots are expendable in

situations that are too hazardous for people to work in. Robots are expendable in

57

hazardous environments, but the experiments done for this work repeatedly put the

agents in dangerous situations. Some situations that I handle are too dangerous to

risk the expensive physical robots given our laboratory budget (e.g. agents recogniz-

ing not to go down a flight of stairs is fine to test in simulation, but risky in terms of

lab equipment in real life).

Finally, it is much more practical and efficient to run simulated experiments then

physical experiments in this work since it deals with control issues that are represented

well in simulation. I required controlled, repeatable environments for experimenta-

tion: a setting nicely provided for in simulation.

I used the University of Southern California’s Player/Stage Software package [Gerkey

et al., 2001] as the simulation vehicle for testing this work. What makes Player/Stage

appealing is not only the fact that it has been validated by the research community

and is widely used, but also that it is designed to run simulations using a Pioneer

robot and code generated in the simulations can be run on a physical Pioneer robot

in the real world. Player/Stage is organized as a client/server platform that allows a

client control program to subscribe to the sensors and effectors of a robot in a simu-

lated environment, which precisely models the abilities of those same components of

real Pioneer robots.

Player/Stage has two components. The Player component is responsible for pro-

viding a network server for robot control. The Player server accepts commands from

a client over TCP and sends those commands over an IP network to the robotic

platform to be executed by the robot’s actuators. Figure 4.1 shows an example of

58

Figure 4.1: Example of communication in Player/Stage [Gerkey et al., 2003].

communication between the Player server and a client. Player provides interfaces to

many devices that may be present on a mobile robot.

The Stage component of Player/Stage simulates mobile robots and environments.

A client running a control algorithm will connect to Player, and Player connects to

Stage. Stage will simulate a physical robot by accepting the commands from Player

in the exact same way as a physical robot does. From the perspective of the Player

network server, a physical robot and a stage-simulated robot are exactly the same.

World files describe environments for stage and are modified to represent the desired

environments. The Player/Stage package does not limit the number of robots that

are allowed in a simulation. This makes it ideal for multi-agent research.

The simulated USAR environment shares many of the same characteristics of

the physical USAR environment. The most important of these is irregularity. The

59

environments are designed to be difficult for the robot to operate in. Obstacles often

block an agent’s access to portions of the environment and their placement makes it

difficult to use simple wall-following techniques.

Player/Stage allows the freedom of making objects in the environment appear

differently to different sensors. For example, Player/Stage allows the user to change

the amount of light that is reflected from objects, which affects the accuracy of laser

range finders. In addition, Player/Stage allows certain obstacles to be made invisible

to vision, sonar and laser. This enables the user to simulate debris that is too low for

a robot to detect, or debris that cannot be identified by the CCD camera.

All these features of Player/Stage allow the simulated environment to contain

many features of the physical environment, making result obtained in simulated en-

vironments more likely to be transferable to the physical world.

4.3 Simulated Agent

The agent used in this work is based on the Pioneer mobile robot. The Pioneer mobile

robot is an extendable platform that is capable of supporting a variety of sensors. In

this work, agents are assumed to have the following sensors: a laser range finder, a

CCD Camera and odometry.

The laser range finder is designed to scan an area and take range and angle samples

from objects that reflect light in the environment. The laser range finder can also

identify landmarks in the environment to keep track of where an agent has been. This

60

is useful to identify when an agent is going around in circles.

The CCD Camera is used primarily to identify victims in the environment. The

video feed from the camera is processed by a color matching subsystem, the output

of which is a list of patches of matched colors, termed blobs, identified in the camera’s

field of view. Pixels in the image representing the camera’s field of view are grouped

together so that similar colors are identified as being part of the same blob. Each

blob identified by the color matching subsystem is listed along with its size, color and

estimated location.

Localization is achieved through odometry. The agent “knows” what its position

is at all times. Since this work focuses on control issues in teleautonomy and not

localization, perfect localization is assumed. Perfect localization means that the agent

always knows exactly where it is at any point in time. Perfect localization is not a

realistic assumption since real-world odometry is susceptible to cumulative errors.

If the robot’s wheel slips several times, causing noisy odometry data, the robot’s

position will be offset by some amount, which will gradually increase as the robot’s

wheels continue to slip slightly. The errors make little difference at first, but after

some time the errors accumulate and the robot’s position becomes largely inaccurate.

Since localization is a widely studied field and a solution to the localization problem

is not required to study the relationship between autonomy and teleoperation, perfect

localization will suffice for the purposes of this work.

The architecture (described in Chapter 3) is designed such that sensors can be

replaced or removed all together. If sensors are substituted or removed, only small

61

portions of the architecture have to be modified: the respective perceptual schema

code. As long as the perceptual schemas are able to identify their target perceptions,

the system will still perform its task. This makes the architecture robust to sensor

failure.

4.4 Implementation Language

I chose to implement the architecture in Java 1.4.1 on Mandrake Linux 9.0 using the

Eclipse development environment.

The decision to use Java as an implementation language was influenced by its

ease of use and standard libraries. As a language Java contains many object oriented

features that make development using it attractive. Agent development naturally fits

with the object oriented paradigm and Java is a powerful object oriented language.

The disadvantage of using Java as opposed to C or C++ is speed. Java applica-

tions tend to run slower than their C or C++ counterparts (often significantly so).

To improve the speed of the application, instead of using the standard Swing com-

ponents that come bundled with the SDK, I chose to use the Eclipse development

environment [Obj, 2003] that substitutes Swing with SWT components. The SWT

components interface directly with the underlying operating system’s windowing tool

kit, making applications run faster than Swing components.

Using Java requires a Java client to connect to the player server. Maxim Batalin’s

developed a Java Player/Stage client that is used in this work [Batalin, 2003]. This

62

code opens a connection to the Player server and parses the information from sensor

messages into very simple Java objects. The client is used primarily as a method to

request, parse and organize raw sensor information into Java classes, so that the raw

data can be accessed by other Java classes.

I am confident that this architecture could be implemented using a variety of

languages. It was my intention to choose the one that suited the task best.

All code for this research was designed and implemented with object oriented

techniques. Since the code is object oriented, it is very extendable, as well as easy

to read and understand. Wherever possible, objects related to one another were

organized into object hierarchies.

Now that the tools used in this work have been described, the rest of this chapter is

devoted to describing how I implemented the four components of the blending control

system, whose design was described in Chapter 3.

4.5 Schemas

The implementations of two types of schemas are described here: perceptual schemas

and motor schemas.

Any command sent to the robot is stored as an action vector, and all blending of

commands is done through the manipulation of action vectors. For more information

on the design of action vectors see Section 3.2. An action vector is used primarily in

two operations: first, an action vector may be summed with another action vector,

63

which requires the vector in component form; secondly, the agent will interpret an

action vector as an instruction to its motors, which requires the vector in magni-

tude/orientation form. An action vector object is implemented as a simple Java class

that represents a vector in both its component and magnitude/orientation forms. It

contains four data members used to interpret the vector, magnitude, orientation and,

x and y components, as well as several methods for manipulating and keeping this

data up to date.

4.5.1 Perceptual Schemas

Perceptual schemas are contained in the perception package, which I coded. The

perception package is composed of several helper classes that gather sensor data from

the Java Player Client and make it accessible to the various components of the blend-

ing control system, including the perceptual schemas, the intervention recognition

system, and the GUI package.

The perception class is responsible for signalling the perceptual schemas that there

is new sensor data to process and updates some internal state regarding the position

of the robot in the environment and the readings from the laser range finder. The only

perceptions that are stored for longer than one perceptual cycle are the laser range

values that are integrated into the map of the environment, described in Section 4.8.2.

The perceptions are updated by an independent thread that executes every 100ms.

In order to perform search and rescue in the USAR domain two perceptual schemas

64

have been implemented: obstacles and victims.

Obstacles The obstacles perceptual schema consists of a list of all obstacles that

are visible in a single perception cycle. The distance and direction of each

obstacle in the list of obstacles is stored. An obstacle is identified using a laser

range finder. Each point returned by the laser range finder has a direction and

distance, and is considered an obstacle.

Victims Victims are identified using a video camera feed. The victim perceptual

schema receives a list of blobs from the color matching subsystem and searches

for red, green and blue blobs, while all other colors are ignored. Red blobs are

identified as other agents, green blobs are identified as victims and blue blobs

are identified as objects that appear to be victims from a certain distance. To

simulate the uncertainty inherent to the autonomous identification of victims

described in [Casper et al., 2000], if a green or blue blob is more than a preset

distance from the agent, it is classified as an unknown object of interest that the

agent must approach to identify. Once within the predefined identifying area

of the robot, green blobs are identified as victims and blue blobs are identified

as non-victims and ignored. The direction and distance to unknown objects

of interest and victims are estimated and stored in a list of current victims.

Victims are re-identified every perceptual cycle. Due to sensor noise, each time

a new victim is identified, it is compared to all victims that are currently listed.

If the location of the new victim is within a small distance threshold of a victim

65

that is already known, the victim is not considered distinct. If two victims

are close to one another, the perceptual schema will identify them as a single

victim. So long as the threshold for deciding whether a victim is distinct or not

is small, this will have little effect on the performance of the agents. Identifying

that one or many victims are located with close proximity is sufficient for the

USAR task, since by definition the purpose of the robots involved in search

and rescue is to locate victims so that rescue workers can find them later - the

precise number of distinct victims found is not as important.

Each perceptual schema is implemented as a Java class and instances of those

classes are stored in the perception class as public data members, so that they can

be accessed by components outside of the perception package.

4.5.2 Motor Schemas

Motor Schemas have several things in common. Each motor schema requires an action

vector containing the motor schema’s recommended action, a gain representing the

priority of this motor schema over other motor schemas in the same behavior, a link

to the perceptual schema associated with the motor schema and a link to the motor

schema’s display panel (described in Section 4.7.3). They also require code that the

motor schema uses to decide what direction (orientation) and with what urgency

(magnitude) the motor schema would like to move. The common elements shared

between motor schemas are extracted into an abstract class called MotorSchema.java,

66

and each motor schema extends the abstract class. The abstract class contains private

data members for the gain, the action vector, the associated perceptual schema, and

the motor schema’s display panel. The abstract class also has an abstract method,

updateVector, that is implemented by each motor schema describing how that motor

schema derives its magnitude and orientation.

In order to perform search and rescue in the USAR domain four motor schemas

have been implemented: move-ahead, avoid-static-obstacles, noise and move-to-goal.

Each motor schema is described below:

Move-Ahead The move-ahead schema is the simplest schema of the four used in

this work. Its purpose is to encourage the agent to move straight ahead instead

of turning. The gain is a constant value and is manually adjusted to achieve

the desired performance. The magnitude of the action vector is 1 multiplied by

the constant gain. The orientation for the action vector of this motor schema

is always straight ahead.

MS MoveAhead(a) =

φ 0

0 1

1

0

 (4.1)

Noise The noise motor schema helps prevent the robot from falling victim to a local

minimum, a point where the robot cannot make any progress to its goal. Noise

is implemented as a pseudo random orientation from 0 to π
2

and a magnitude of

1. The robot will attempt to face the direction for a constant number of time

steps. The time steps and gain can be adjusted to achieve the desired results.

67

MS Noise(a) =

φ 0

0 1

1

0toπ
2

 (4.2)

Move-To-Goal The move-to-goal motor schema takes as a parameter a point of

interest. The orientation of the action vector, Θ, is the error of the current

facing direction and the direction of the object of interest, Θ = Θ̇ − Θ̂. Here,

Θ̇ is the direction of the object of interest, while Θ̂ is the direction the robot is

currently facing. The magnitude of the action vector is a related to the distance

of the object of interest. If the object of interest is further away, the magnitude

is smaller. The formula for the magnitude is 1
d
, where d is the distance to

the object of interest. The relationship between the distance to the object of

interest and the robot helps the robot avoid local minima by increasing the

chance that the robot will not get stuck trying to get to an object of interest.

MS MoveToGoal(a) =

φ 0

0 1

1
d

Θ̇− Θ̂

 (4.3)

Avoid-Static-Obstacles The avoid-static-obstacles motor schema is responsible for

ensuring that the robot does not collide with obstacles. A vector is calculated

extending from every obstacle towards the robot. Each obstacle vector has

an orientation equal to π + Θ̇, where Θ̇ is the direction of the obstacle. The

magnitude of each obstacle vector is 1 − 1
d2 , where d is the distance of the

68

obstacle.

Obstacle(a) =

1− 1
d2

π + Θ̇

 (4.4)

Avoid-static-obstacles converts each obstacle vector, Obstacle(a) to its respec-

tive component form before and uses them to find MS AvoidStaticObstacles(a):

Obstaclec(a) =

x

y

 =

cos(Θ) 0

sin(Θ) 0

M

Θ

 (4.5)

The next step in deriving MS AvoidStaticObstacles(a) is to find the sum of

all the obstacle vectors:

AvoidStaticObstaclesc(a) =
|obstacles|∑

i=1

Obstaclec(a)i (4.6)

Finally, avoid-static-obstacles changes AvoidStaticObstaclesc(a) from compo-

nent form to magnitude/orientation form deriving AvoidStaticObstacle(a):

AvoidStaticObstacles(a) =

M

Θ

 =

√
x2 + y2

arctan (x
y
)

 (4.7)

4.6 Autonomous Control System Implementation

The autonomous control system is implemented with two components: the behavior

object and the Autonomous Control System object.

69

A behavior is composed of several motor schemas. On each cycle a behavior

produces an action vector that is the sum of all the outputs of its motor schemas. A

behavior object is responsible for requesting that each motor schema update its action

vector and the behavior calculates the sum of the updated action vectors. Summation

of motor schemas was explained in Section 3.2. A behavior object (Behavior.java)

contains data members for an array of motor schema objects, an action vector and

a name identifying it. The method generateVector contains code that processes the

array of motor schemas, calling updateVector on each one, and adding the resulting

updated vector to a running sum. Once each motor schema is processed, the resulting

action vector is a behavior’s output, and describes the direction and speed that the

action should execute.

The autonomous control system object (AutonomousControlSystem.java) consists

of a list of behaviors, a behavioral index and an action vector. The list of behaviors

contains all the behaviors that the agent currently knows how to execute. Only one

behavior is active at any given time. The active behavior is identified by a behavioral

index. Each cycle the autonomous control system will request the action vector from

the active behavior and assign the value of the behavior action vector to its own

action vector. Any object that requires the output of the autonomous control system

has access to the resulting action vector via an accessor method, getActionVector.

The autonomous control system is able to control an agent autonomously. Blend-

ing occurs when the output of the autonomous control systems action vector is used

in conjunction with the output of the teleoperated control system, whose implemen-

70

tation is described in the next section.

4.7 Implementation of Teleautonomy

Section 3.3 describes the requirement of three components for the blending control

system to facilitate interactions between the operator and the agent. These compo-

nents represent levels of abstraction in commands that the agent is able to interpret

from the operator. The three objects, whose implementations are described here are:

the joystick, the waypoint manager and the autonomous control panel.

The joystick and the waypoint manager have many things in common including:

the requirement for a gain value representing their overall priority; an action vector

storing the magnitude and orientation that the operator wishes the robot to move;

and code that determines the magnitude and orientation of the action vector at

every cycle. The common features of the joystick and the waypoint manager have

been extracted into an abstract class called exterior-control. The joystick and the

waypoint manager extend an exterior-control object, which contains data members

for a gain and an action vector. The exterior-control object also contains an abstract

method responsible for updating the action vector every cycle. The abstract method

is implemented by each object extending exterior-control and describes the actions

that must be taken to update the exterior-control object’s action vector.

71

Figure 4.2: The joystick.

4.7.1 Joystick

For controlling the robot’s movement, a graphic joystick is displayed on the user

interface, shown in Figure 4.2. This simulated joystick, inspired by the work of

Bentivegna et al. [1997], is a square area with a crosshair. Moving the robot is

achieved by clicking the mouse pointer on an area in the crosshair. The magnitude

of the action vector is determined by the distance from the centre that the operator

clicks. Points further from the centre of the joystick represent higher magnitudes. For

a discussion on how magnitude effects robot movement, see Section 3.2. Points above

the horizontal line of the cross-hair produce forward movement, while points below

the horizontal cross-hair line produce backward movement. The vertical cross-hair

line represents straight ahead or 0 degrees. Clicking on a point off to the side makes

the robot turn in the direction of that point.

72

The joystick is ideal for low level commands. The code for the graphics and the

joystick logic are contained in the joystick class. The joystick implements the eclipse

SWT mouse listener class, allowing the joystick to listen for clicks in the joystick area

and find the speed using the Manhattan distance formula:

speed =
√

(Clickx)2 + (Clicky)2 (4.8)

where Clickx is the x coordinate the operator clicked in the joystick area and Clicky

is the y coordinate the operator clicked in the joystick area. Finding the direction

is done by finding the angle formed by the hypotenuse and the adjacent side of the

triangle formed from the origin to the point clicked:

direction = arctan(
Clickx

Clicky

) (4.9)

4.7.2 Waypoint Manager

The waypoint manager allows the operator to direct the agent to a desired location

by using the mouse to click on that location in the map window (see Section 4.8.2).

A right mouse click on a point in the map window generates a waypoint for the

robot that is being controlled when the click is made. This creates a desire for the

robot to move toward that point. A series of waypoints can be generated to create a

path for the robot. Figure 4.3 shows an example of a series of waypoints generated

for an agent. These path points are stored in a queue, and each one is visited in

73

Figure 4.3: Example of an agent with several waypoints selected.

74

Figure 4.4: The autonomous control panel.

turn. When an agent gets within a certain distance threshold of a point (12cm was

chosen for this implementation), it switches to the next waypoint. This method of

teleoperated control is less fine-grained than the joystick described in Section 4.7.1,

but allows the operator to directly control the movement of the robot with a degree

of abstraction. Simple trigonometry is used to determine what direction the robot

should move in to get to a waypoint:

direction = arctan(
Clickx

Clicky

) (4.10)

The gain of the waypoint manager can be set manually via a control window in the

user interface.

4.7.3 Autonomous Control Panel

Manual control over behaviors and motor schemas is provided by the autonomous

control system panel (see Figure 4.4) available via the user interface. Each robot has

an autonomous control panel associated with it, and at any point in time only one

75

autonomous control panel is visible and active. A list of tabs on the active control

panel allows the operator to switch from operating one robot, to operating another

by clicking on the tab containing the name of the robot the operator would like to

control. Clicking on a tab focuses the map (see Section 4.8.2) on the chosen robot.

Each panel has a drop down box that allows the operator to change the currently

executing behavior. By default, all robots begin executing the first behavior in the

list of behaviors loaded from the configuration file. At any point during operation,

the operator may choose to switch the current executing behavior by selecting a new

behavior from the behavior drop down box. This is an abstract form of teleautonomy

that allows the operator to have high level control over the agent’s actions. Switching

behaviors allows the operator to influence what actions the agent performs without

performing them one at a time, reducing the amount of attention the operator must

pay to an agent in order to influence its actions. New behaviors can be created using

the add behavior button. Once the add behavior button is pressed, the operator is

prompted for a name, this name will identify the behavior in the list of behaviors

displayed by the behavior drop down box. Behaviors can also be saved to a file or

loaded from a file.

The autonomous control panel also lists all the motor schemas that contribute to

the current behavior, and all the parameters to those motor schemas can be modified

using sliders. Motor schemas can be added or removed from a behavior, making the

behaviors flexible and customizable. Each motor schema has a gain slider so that

the gain of the motor schema can be adjusted while the agent is running in order to

76

Figure 4.5: The motor schema panel for the noise motor schema.

fine-tune the emergent behavior. This fine tuning allows the operator to help agents

achieve their goals at a lower level than simply changing their current behavior, but

at a higher level than directly instructing the agent where to go. For example, if the

agent is unable to get through a corridor because the corridor is too narrow, the gain

on the avoid-static-obstacles motor schema can be lowered to effectively make the

agent more willing to move closer to obstacles. Figure 4.5 shows the motor schema

panel for the noise motor schema.

4.7.4 Intervention Recognition Implementation

The Intervention Recognition System is implemented as a package containing the in-

tervention event objects, the intervention recognition object and a perception mem-

ory object. The perception memory stores snapshots of the agents perceptions for

the past five perceptual cycles as an array of perception instances. The perceptions

stored in the perceptual memory do not attempt to create a representation of the

world: they are stored as raw perceptions that the perceptual schemas can use to

identify interesting things in the environment.

77

There are three intervention event objects to address each of the three important

events that have been identified as occurring in USAR (see Section 3.4.1), confused

identifier, stuck identifier and victim identifier. Each of the intervention event objects

contains a link to the current perceptions of the robot via the perception class. The

stuck identifier object looks at the agent’s current location, x and y coordinates, and

compares them to the agent’s location four cycles previous. If the location right now

and the location four cycles ago are the same, and there is a movement instruction

being sent to the robot with a speed higher than 0, the agent is considered stuck. The

victim identifer relies solely on the victim perceptual schema whose implementation

is described in Section 4.5.1. If the victim perceptual schema has found an object

that resembles a victim (e.g. a blue or green object) then the agent is considered to

be in a victim identifying state. The confused identifier relies on the agent’s ability to

uniquely identify beacons in the environment. Each victim is labelled with a bar-code

like inscription that can be read using a laser range finder, termed a beacon1. The

confused identifier object keeps track of how many times the agent has been within

bar code reading range of a beacon. If the agent surpasses the threshold, then it is

identified as confused. The system is extendible since new intervention events can be

coded as additional intervention event objects.

The intervention recognition object contains instances of all intervention events

that are important to the agent. It is set up to run as an independent thread, but

1Interestingly enough, analogous identification tags were added to victims in the 2003 NIST test

bed, which was not known at the time of the implementation of this thesis.

78

in my implementation, it is executed by the mediator each cycle (see Section 4.7.5).

The intervention recognition object sends a message to each of the intervention events,

inquiring whether the state of the agent should be changed. Once the intervention

recognition object is finished interacting with the intervention event objects, it up-

dates the perceptual memory by removing the oldest memory snapshot, shifting the

other memory snapshots down and adding the new memory snapshot to the percep-

tual memory array.

4.7.5 Mediator Implementation

The mediator acts as the central control of the agent. Each cycle, the mediator polls

any sources of instruction, blends those instructions, and interprets them so that they

can be sent to be executed by the mobile robot. It contains links to the autonomous

control system, the intervention recognition system, and a list of exterior control

signals.

A cycle of perceiving and acting starts and ends with the mediator. The mediator

continues to execute one cycle after another until control is terminated. One cycle of

the mediator contains several steps. First, the mediator signals the perception object

to refresh all its perceptions. Secondly, the mediator requests an action vector from

the autonomous control system, representing the autonomous desires of the robot.

Three things can occur next depending on whether the control mode selected by the

operator is autonomous, blending, or teleoperated (see Section 4.7.3). In any of the

79

three cases, control signals are gathered from any exterior controls that apply to the

agent’s current control mode, and each control signal (including the control signal

received from the autonomous control system describe earlier) is evaluated by the

command evaluator object. The command evaluator is responsible for identifying

commands whose execution is dangerous or counter-productive to the goals of the

agent. Two such commands have been identified: those that lead the robot into an

obstacle, and those that lead the agent away from an unidentified victim. Identifying

potential danger or counter-productivity is done by predicting the location the robot

would be in if it executed that command, and if that command would leave the

robot in a location that is too close to an obstacle or further from an unidentified

victim. The magnitude of action vectors for dangerous and unproductive commands

are lowered, but not completely discarded, since situations may arise when executing

dangerous or unproductive commands are necessary to eventually reach a desired

goal. Once commands have been individually adjusted, they are further blended

depending on the degree of autonomy the operator has set using the autonomy slider

(see Section 4.7.3). If the agent is operating in autonomous mode, the autonomous

instruction is executed directly. If the agent is operating in teleoperated mode, the

exterior control signal representing the operator’s instructions is executed directly.

If the agent is operating in blending mode, the autonomous control signal and the

exterior control signal are weighted by the degree of autonomy set by the operator and

added to each other using vector addition. The magnitude of each vector determines

to what degree each of the instructions are followed. The resulting vector is then

80

interpreted and sent to be executed by the agent’s actuators.

4.8 User Interface

For the USAR domain I have identified some important data that will be shown on

the user interface: the vision data returned by the CCD camera, a map consisting of

laser range points collected by the agent throughout its exploration, the current laser

range reading of the robot, the locations of all identified and unidentified victims,

and the location of all robots as well as the interfaces for the teleoperated control (see

Section 4.7). Figure 4.6 illustrates the complete user interface used in this work.

4.8.1 Vision

The upper right corner of the user interface contains a window displaying the output

of the CCD camera. The four types of objects displayed in the window are agents,

unidentified victims, victims and negative victims. Agents are displayed as red boxes,

unidentified victims are displayed as black boxes, victims are displayed as green boxes

and negative victims are identified as blue boxes. The vision is updated on every per-

ceptual cycle, drawing its information from the perception object (see Section 4.5.1).

Figure 4.7 shows the vision panel.

81

Figure 4.6: Complete user interface.

82

Figure 4.7: The vision panel, currently a victim (larger) and a non-victim (smaller)

are in the agent’s field of view.

4.8.2 Map

The purpose the map is to organize the perceptions of the robot into a map of the en-

vironment to simplify the task of the operator. The map is continuously updated and

displayed to the operator on a grid. In USAR, the map is used to show where victims

are located for rescue workers. The map also serves as a vessel for communicating

information from the operator to the robots, and from the robots to the operator.

The map displays the location of all agents as empty blue boxes. The agent that is

currently being controlled is displayed as a shaded blue box. As laser range points are

collected, they are added to the map to display obstacles. Victims are displayed on

the map as small solid colored boxes: small green boxes represent identified victims,

small blue boxes represent identified negative victims, and small black boxes represent

83

Figure 4.8: The map of the environment so far.

objects that are either victims or negative victims (i.e both the operator and the robot

cannot distinguish them).

The operator can interact with an agent through the map in several ways. By

left-clicking with the mouse on the map, the view of the map is centred on the clicked

location, allowing the operator to explore different sections of the map. By right-

clicking with the mouse on the map, a waypoint for the current controlled agent

is generated and displayed as a green line. Clicking on the small unidentified victim

boxes identifies the victim as either a true victim (left click) or a negative victim (right

click). Once the operator identifies a victim, all agents know about the identified

victim, ensuring that no victim is identified twice.

The information the map displays can be customized through a menu interface.

Clicking on the display menu gives the operator the option of displaying the laser

readings of the robot, the path the robot has travelled so far, any waypoints cur-

84

rently queued, the action vector for all the motor schemas of the active behavior and

the exterior signals, a grid across the map, and the map itself can also be toggled.

Figure 4.8 shows a sample map of the environment with the agent’s laser readings

displayed, while Figure 4.9 shows an agent with the motor schema vectors displayed

as arrows on the map.

The approach chosen for implementing the map was an occupancy grid approach.

Occupancy grids partition an area into a regular matrix with a specific cell size,

and the contents of each cell are maintained [Murphy and Sprouse, 1996]. Other

available mapping choices exist [Duckett and Saffiotti, 2000], but the simplicity of

this approach makes it the most attractive: the robot is required simply to scan the

area perceptually, and derive distances to objects in the environment. These maps are

not entirely accurate due to sensor error, but they are sufficient for this research. To

deal with the inaccuracy, objects in the environment that are sensed infrequently fade

from the map’s memory, since if they are not sensed often, they are likely inaccurate

readings. The map is implemented as a two-dimensional array of short integers, each

one containing a number from -1 to 21. Each time the agent discovers an object in the

environment, the object’s location is converted into an index to the map’s array, and

the value contained at that array index is incremented by a fixed value (2 was used

in this implementation). If the value contained in the map array is less than 20 but

larger than 0, the object is displayed as a grey point on the map display. If the value

contained in the map array is larger than 20, the object is displayed as a black point

on the map display. Values in the array that are smaller than 0 are not displayed.

85

Figure 4.9: Screenshot of the user interface displaying an agent motor schema vectors

as colored arrows.

86

On each cycle, all values in the array that are less than 20 are decremented. By

manipulating the array values in the above mentioned fashion, objects that the robot

has seen infrequently appear grey and disappear completely if they are not sensed

again. If an object is sensed quite often, eventually it will persist in the maps memory

and be displayed as a group of black points on the map display.

4.9 Summary

This chapter described many aspects dealing with the implementation of the blending

control system. Player/Stage was presented as the simulator chosen for development

of the blending control system, and the implementation of each of the three compo-

nents described in Chapter 3 (the autonomous, teleoperational, and blending control

systems) were each described in detail. The next chapter describes a series of ex-

periments (and the analysis of the results of those experiments) designed to evaluate

these control approaches and answer the research questions posed in Chapter 1.

87

Chapter 5

Experimentation

5.1 Overview

In order to examine the effectiveness of the control system developed for this thesis, an

experiment was conducted in a simulated rescue environment. The performance of the

control system that blends autonomous and teleoperated commands was compared to

the performance of an autonomous control system and a teleoperated control system.

This chapter discusses the experiment trials and the results obtained. First, the

purpose of the experiments is discussed. Secondly, the experimental environment is

described, including the types of objects in the environment, how environments are

generated, and a method for evaluating the difficulty of the generated environments

for the purposes of experimental control. The methodology used in the experiment is

then presented, followed by the results of the experiment and analysis of those results.

88

5.2 Purpose

The purpose of the experiment is to answer the research questions presented in Chap-

ter 1. First, will the addition of teleoperation to autonomous agents increase their

overall performance? Secondly, can the introduction of autonomy reduce the number

of interactions required between the agent and the operator while maintaining a com-

parable overall performance? Finally, can an infrastructure be designed to support a

practical balance between autonomy and teleoperation in complex dynamic domains?

Evaluating agent performance in standard repeatable experimental environments un-

der specific conditions using all three control systems (autonomous, teleoperated, and

blending) will allow us to answer these research questions.

5.3 Experimental Environment

All trials were run using the Player/Stage simulation environment package. For details

on the Player/Stage package, refer to Section 4.2.

5.3.1 Types of Objects

Several types of objects exist in the USAR environment and must be simulated if an

accurate representation of the USAR environment described in Section 1.3 is to be

obtained. The Stage simulator allows programmers to create objects, referred to as

entities, by building them from various components native to Stage. To simulate the

USAR environment I built three entity types: robots, obstacles and victims.

89

Robot entities simulate physical robots. The simulated robot was based on the

Pioneer line of mobile robots. An environment file defines a list of sensors and actu-

ators that are available to a control system connected to any particular robot. Each

robot is associated with a port number for the Player component of Player/Stage to

connect to, and acts as an interface between the intelligent control system and the

simulated world. For the trials described here, the dimension of robots were 40cm2

and each was equipped with a differential drive, a SICK laser range scanner and a

video (CCD) camera with a wide angle lens.

Simulation of the USAR environment requires entities to represent the debris

that is found throughout the environment (as described in Section 1.3). This is the

purpose of the obstacle entity. Obstacles make robot navigation difficult by blocking

the robot’s access to portions of the environment, and also make the environment more

irregular. Obstacles also provide a method for partitioning areas of the environments

into voids (see Section 1.3 for a description of voids). Obstacles in my environment

had a dimension of 50cm2, and were unmoveable. Obstacles could not be identified

by the CCD camera mounted on the robot, simulating both debris below the camera’s

field of view and the lack of visibility inherent to the USAR domain. Obstacles do,

however, reflect the laser emitted from the SICK laser range finder.

Since autonomous identification of victims is not entirely accurate (refer to Sec-

tion 4.5.1 for a discussion on victim identification), I devised a method for simulating

differences between agent and operator victim identification. Environments contained

two distinct types of victim entities: real victims and negative victims. From three

90

meters away, both victims and negative victims looked the same, representing an ob-

ject that may or may not be a real victim. Once a robot was within three meters, an

operator could make a distinction between negative victims and real victims. Once

a robot was within 1 meter, the robot could distinguish between negative victims

and real victims. The difference in the distances required for operators and robots to

distinguish whether an object of interest is a victim or not is an attempt to reflect

the capabilities that the current state of victim identification for mobile robots in

dynamic environments compared to the ability of an operator trained in urban search

and rescue. The actual distances are a generous approximation and do not represent

the exact abilities of real robots and real human operators. Real victims were rep-

resented by green boxes in the environment, while negative victims were represented

by blue boxes in the environment. Victims did not reflect the laser emitted from a

laser range finder, but they were visible to the CCD camera.

5.3.2 Generating and Evaluating Experimental Environments

An environment generation program, written in Java as part of this thesis, generates

the simulated rescue environments used in each trial. A call to the environment

application passes the desired characteristics of the environment to the Environment

Generator and the number of environments to generate. The characteristics supplied

are discussed below, and allow the generation of simulated rescue environments having

varying degrees of difficulty.

91

Figure 5.1: Example of an environment generated by the environment generator.

The environment generator creates environments using a three step process. First,

the environment generator creates and places all obstacles. Second, the environment

generator creates and places all victims. Finally, the environment generator creates

and places all robots. Figure 5.1 shows a sample environment.

Each environment is assigned a target obstacle coverage by the experimenter, dic-

tating how much of the total area of the environment is allowed to be composed of

obstacle entities. To satisfy the target obstacle coverage, the environment generator

splits the generation of obstacles into two tasks: generating voids and adding single

obstacles. Voids are sets of obstacles arranged in such a way that they form open

areas. Since voids are formed from obstacles that in turn form walls, obstacles are

placed to form voids to the degree allowed by the target obstacle coverage. The size of

92

the voids are pseudo-randomly generated using a random number generator (supplied

with Java SDK 1.4.1). The size of a void is randomly chosen between the maximum

size of voids, 300cm2, and the minimum size of voids, 100cm2. The height and width

of the voids are generated independently. Candidate voids are placed in the environ-

ment by randomly generating an x and y coordinate for the upper left corner of the

void. The environment generator checks to see if the candidate void overlaps with

any voids that are already in the environment, encouraging void dispersement. If

the candidate void overlaps another pre-existing void, the candidate void is discarded

and a new one is generated. After every void is generated, the total environment

coverage is updated. While voids are made up of obstacles, the process of generating

voids is unlikely to generate the precise degree of desired total obstacle coverage. It is

also possible for the purposes of consistency between environments to set a maximum

limit on the number of voids. In either case, obstacles must be generated outside of

voids in order to meet target obstacle coverage.

The second task for obstacle generation is adding additional single obstacles to

meet the target obstacle coverage. To add single obstacles to the environment, the

environment generator randomly chooses valid coordinates in the environment. Valid

coordinates are those that will place obstacle at least 120cm from any void, and at

least 50cm from the nearest obstacle (the distance between two entities is measured

from center to center). The environment generator continues to add obstacles to the

environment until the actual environment coverage is within one half of a percentage

point of the target obstacle coverage.

93

The environment generator adds victims and negative victims to the environment

using the same pseudo-random number generator described above to generate a valid

x and y coordinate. The environment generator calculates the distance between the

candidate victim position and all obstacles that have already been added to the

environment, in order to ensure that the distance is larger than 60cm, which is the

minimum distance allowable between victims and obstacles.

The environment generator adds robots to the environment with the same method

used for victims, ensuring there is 140cm between the center of robots and walls.

5.3.3 Environment Evaluation

All environments were evaluated to determine how difficult they were relative to one

another. Environment evaluation enables the results of the experiment described

here to be repeatable and comparable, by using environments that are consistent

with respect to their difficulty. Environment evaluation also allows the construction

of experiments that examine the scalability of the system, since as the environment

gets more difficult, the agent’s effectiveness should not deteriorate too quickly.

Environments were evaluated in two ways, based on different levels of what is

means for an environment to be difficult.

One way of measuring the difficulty of an environment is to count the number

of local minima the environment contains. When in a local minimum, the agent is

unable to make any progress towards its goal and stays stuck in the local minimum

94

position until there is outside intervention. This is because the agent is unable to

perceive a more rewarding place to be, and so the agent believes that it’s current

position is the best possible, since none of the actions that the agent can perform at

that time will take it to a position that is more rewarding.

The number of local minima contained in any environment generated for this thesis

was calculated and stored when the environment was generated. Environments having

a local minimum count above a specified threshold were discarded. Environments

having a local minimum count below a specified threshold were also discarded.

Local minima are a consistent method of examining the difficulty of the domain at

a low level. Above this level, however, the number of particular domain features (e.g.

hallway width, objects in the environment, and so on) also directly affect the difficulty

of traversing the environment. These higher level features may interact to cause local

minima, but may also have difficulties independent of local minima. Because of this,

a set of higher level heuristics was developed to supplement a local minima count in

order to objectively describe the difficulty of an environment. These heuristics are:

1. Environments containing unaccessible voids because of their placement or the

placement of obstacles are considered more difficult.

2. Environments where the placement of voids created too many narrow hallways

where agents were likely to get stuck are considered more difficult.

3. Environments where objects are clustered are considered more difficult.

The difficulty rating reflects how difficult the environment appears to be accord-

95

ing to the above heuristics, and is assigned by an individual who manually checks

the environment. The precise criteria for selecting environments is explained in the

experimental methodology section below.

I used a combination of the two methods described above to evaluate environ-

ments.

5.4 Methodology

All trials were run on a Mobile Pentium 4 1.7Ghz with 512MB of RAM running

Mandrake Linux 9.0. In all trials requiring a human operator, I acted as the human

operator. It is my opinion that the operator requires an understanding of the system

developed as part of this thesis and USAR in general to perform effectively, making

myself the obvious choice. A person selected randomly from the general public would

likely not have the skills required to perform the human operator task successfully.

I believe, however, that if another person experienced in operating mobile robots

were to be given a brief introduction to the system described in Chapter 4 and then

attempt the trials described here, the result of those trials would not be significantly

different.

All environments generated for the trials described in this chapter shared several

characteristics. Every environment represented a 20m2 area in the real world. As a

result of the environment size every pixel in the map displayed on the user interface

(see Section 4.8.2 for details on the map) represented 2cm2, and therefore the map

96

was 1000pixels2. Every environment contained 3 robots, 10 real victims, 5 negative

victims and a maximum of 20 voids. Additional criteria were added to the environ-

ments to ensure their duplicability and similarity. First, between every obstacle and

every void there was a minimum distance of 120cm, so that multiple obstacles could

not cluster too closely to voids making too many voids inaccessible. The distance

between the center of any two obstacles in the environment could not be less than

50cm, making it impossible for obstacles to overlap more than a few centimeters. The

distance between the center of any real or negative victim from the next closest real

or negative victim was at least 60cm, so that there was some clearance between vic-

tims and obstacles. All robots started in a position that was at least 140cm from the

center of any obstacle, so that agents would not begin a trial already stuck or over-

lapping an obstacle. Voids were all between 100cm2 and 300cm2, containing at most

3 openings (passages between voids). Too many openings in the voids fragmented

them too much to resemble or be useful as voids.

The principle varying factor in the environments employed in the trials described

below was their target obstacle coverage. Four variations of coverage were chosen:

5%, 10%, 15%, 20%. I began by generating twenty environments for each of the

chosen target obstacle coverage. In these eighty environments, the local minima

count ranged from 0 to 49. From each group of twenty environments, I applied

difficulty controls to select five environments for each obstacle coverage category by

defining a range of acceptable local minima counts and applying heuristics to choose

from the remaining environments. The range for each category was chosen by taking

97

the median local minima count for the twenty environments in that category and

rejecting environments whose local minima differed from the median by more than a

specific range, in order to eliminate any outliers. For most categories, that range was

2 local minima. In the 5% category, all twenty environments generated had between

0 and 3 local minima. As a result, 5 environments were chosen based purely on the

heuristics discussed in Section 5.3.3. In the 10% category, the local minima count

ranged from 4 to 9, but the majority of the environments had counts between 5 and

8, so of those environments 5 were chosen using the heuristics. In both the 15% and

20% categories the variation in local minima counts was much larger, ranging from 9

to 29 in the 15% category and 26 to 49 in the 20% category. For the 15% category, I

rejected environments with less than 18 local minima or more than 20 local minima,

since the majority of the environments had local minima counts in that range. For

the 20% category, I rejected environments with less than 34 local minima or more

than 38 local minima (a range of 4 rather than the 2 used in the other categories).

The range for the 20% local minima was increased because as the obstacle coverage

in the environment gets larger, there is less chance that environments will have the

exact same number of local minima, since there is only so much room available for

obstacles in the environment. After rejecting a portion of the environments by their

local minima count, I applied the heuristics from Section 5.3.3 to reject environments

that had undesirable features. Of the remaining environments, I chose 5 from each

category to provide an equal number of environments for each desired level of obstacle

coverage. As a result of this, a total of twenty environments of consistent difficulty

98

Figure 5.2: Breakdown of trials

were available upon which to perform trials.

The trials can be broken down into three categories (as shown in Figure 5.2):

autonomous trials, teleoperated trials, and blending trials. The category of the trial

defines which control system was used on each of the three agents in the trial. The

autonomous trials used only the autonomous control system described in Section 3.2

as the mobile control system for each agent. The teleoperated trials used only the

teleoperated elements of the blending control system described in Section 3.3. Finally,

the blending trials combined elements of autonomy and teleoperation by using the

complete blending control system described in Chapter 3. Each of the three trial types

were run using all 20 of the environments chosen above, resulting in the deployment

of each of the three control system in 20 individual trials, adding up to 60 trials in

all. Table 5.2 lists a breakdown of all trials.

Each trial had a duration of thirty minutes. Trials halted if a target environment

coverage was met by the robots. For the 5% obstacle coverage environment, the

99

trial would end if the total environment coverage reached 85%. For the other three

experiment coverage values, the trial halted when 80% of the total environment was

covered. The divergent halting condition for trials where only 5% of the environment

was covered in obstacles was due to the speed with which the agents could explore

such a low obstacle environment. I found that using a higher target environment

coverage value for the trials with 5% obstacle coverage had more interesting results,

while 85% would have taken a significant amount of time more for environments with

higher than 5% obstacle coverage, since there were delays in getting agents to cover

the last few percent of the area.

How the data gathered from these trials was used to evaluate the agent control

mechanisms is described in Section 5.5. In addition to describing the particular

criteria used for generating experimental domains, replicatability also requires some

description of the particular agent behaviors employed in these trials.

At any point in time during the search and rescue task, the autonomous control

system was performing one of two behaviors: exploring the environment searching

for victims, or approaching an object that resembles a victim in order to identify

it. This is similar to Balch’s foraging behavior [Balch, 1998a], which is composed of

exploring, acquiring and returning home. The primary difference between the agents

deployed in these experiments and the ones described by Balch is that my agents do

not return to home once they locate a victim. Once a victim is located, the agent

continues to explore, looking for another victim. I defined an explore behavior that

consists of four motor schemas (see Section 2.2.2.2 for a complete description of motor

100

schemas) move-ahead, noise, move-to-goal and avoid-static-obstacles. The parameters

for all motor schemas were initialized with a set of default values. The default values

were determined through various preliminary trials, manually adjusted so that the

emergent behavior of the exploring behavior appeared effective. The noise motor

schema started with a gain of 10 and a persistence of 100. The move-ahead motor

schema started with a gain of 30. The avoid-static-obstacles motor schema started

with a gain of 2 and an influence of 1280. Finally, the move-to-goal motor schema

started with a gain of 80. For the autonomous trials, the behavior and its schemas

remained unchanged throughout all trials. In the blending trials, however, as the

trial progressed the operator was allowed to change the behavior configuration. For

example, if an agent would not get close enough to a wall, the operator could decrease

the influence of the avoid-static-obstacles motor schema. If the agent tended to run

into walls, the operator could increase the gain of the avoid-static-obstacles motor

schema. In most cases the avoid-static-obstacles gain and influence were decreased

by the operator during the trial for more complex environments, encouraging agents

to be more risky (i.e. approach walls closely), since the operator could help the agent

if they became stuck. Also, the gain for the noise behavior was often decreased by

the operator during the trial, so that the agent was more likely to directly obey a

waypoint command without wandering too far off track. No behavior setup was used

for teleoperated trials, since the agent obeyed every command directly.

101

5.5 Performance Evaluation

The experiment performed was designed to evaluate the performance of the blended

control mechanism described in Chapter 3 and Chapter 4 in comparison to fully au-

tonomous and fully teleoperated approaches. In order to assess the performance of the

control mechanisms, data were gathered to allow comparison across four categories:

• Percentage of environment covered;

• Number of real (positive) and negative victims identified;

• Time spent immobile;

• Number of interactions between the operator and the control system.

Data was gathered in each trial to allow evaluation according to these criteria.

Environment coverage contributes to the overall performance of the system. The

more area covered, the more likely all victims will be found. The goal of urban

search and rescue is to search as much of the area as possible, starting with those

areas that are most likely to contain victims. If coverage is low, then there can be

no guarantee that areas unsearched did not contain victims. Any search and rescue

control system should thus boast a high area coverage. Both the rate that area is

covered and the total coverage are important factors in estimating the performance

of a control system.

In the trials I performed, both the agent and the operator had the capability to

identify real and negative victims once they were in range. The experimental results

102

in the next section will illustrate how many victims were properly identified. By

properly identified, I mean positive victims labelled as positive, and negative victims

labelled as negative. Ideally, all positive and negative victims will be discovered, and

none misclassified. The total number of victims properly identified and the rate that

they were found is significant to the overall performance of the system. Faster victim

identification and higher numbers of victims identified contributes to better overall

performance.

The amount of time spent immobile is the number of milliseconds that the agent

was sending movement commands to its actuators, but the agent’s position remained

unchanged. When an agent becomes immobile, it is no longer effective at finding

victims. Higher amounts of immobile time indicate lower effectiveness of the control

system. The time spent immobile was only recorded for trials using the autonomous

control system and the blending control system. Autonomous agents are very sus-

ceptible to getting stuck in environments such as those used for the trials described

here. As such, I am interested in seeing if adding teleoperation to autonomous agents

can help agents avoid getting stuck and also help them free themselves once stuck.

Since the teleoperated agents have no autonomous control system, they are equally

or less likely to get stuck then blending agents, making any comparisons between the

time spent immobile by teleoperated agents vs. blending agents unimportant for this

research.

Data was also collected indicating how many interactions the operator had with

the waypoint manager. Three types of interactions were recorded: the number of

103

waypoints generated, the changes in waypoint gain, and the number of waypoint

resets. The operator generated waypoints by right clicking on the map, the waypoint

gain was modified via the waypoint manager using a slider, and finally, the operator

could clear the waypoints before the agent arrived at them using the reset button

located on the waypoint manager (see Section 4.7.2). The number of interactions the

operator had with the user interface provides insight into how much attention the

operator was focusing on the robots. Quantifiably measuring the cognitive load of an

operator is difficult, and operator interactions was chosen as a satisfactory measure

for the purposes of this research.

The next section summarizes and analyzes the experimental results collected for

the three different experiment categories described earlier.

5.6 Results

5.6.1 Teleoperated Results

Figure 5.3 shows the average percentage environment coverage achieved by the tele-

operated agents across all twenty teleoperated trials. Notice that as the amount of

obstacle coverage grows, the total amount of environment covered by the agents de-

creases. Performance degraded slightly when obstacle coverage increased from 5% to

10%, and again from 10% to 15%. In the 5%, 10%, and 15% obstacle coverage envi-

ronments, the agents reached between 80 and 85% total environment coverage. For all

104

Figure 5.3: Average (n=5) environment coverage achieved by teleoperated agents in

5%, 10%, 15% and 20% obstacle coverage environments.

categories but the 20% coverage, the teleoperated agents consistently achieved target

environment coverage before the trial’s time limit of thirty minutes was reached.

Figure 5.4 illustrates the average total number of victims teleoperated agents

properly identified across all trials. The graph shows the sum of all positive victims

correctly identified and all negative victims correctly identified. Since there are 10

positive victims and 5 negative victims, the most victims found in any trial should

be a value between 0 and 15. However, agents identify the number of unique victims

according to their location in the environment. The location of each victim is esti-

mated by the height, width and location of the blob representing the victim in the

agent’s field of view. Since sensor readings are subject to noise, victim locations often

jump around slightly. Agents attempt to account for sensor errors by assuming that

victims whose locations are within a certain threshold are not distinct. Sometimes,

105

Figure 5.4: Average (n=5) number of victims identified by teleoperated agents in 5%,

10%, 15% and 20% obstacle coverage environments.

however, the distance between two victims is very close to that threshold, causing an

agent to believe that there is one victim when there is in fact two, and the agent may

flip back and forth for a short time, unsure of whether there is one or two victims.

Additionally, in rare circumstances the sensor readings are so noisy that the agent

may identify one victim as two distinct victims for a short period and then correct

itself later when it discovers there is in fact only one victim. Both of the anomalies de-

scribed above occur rarely, but an error of plus or minus one victim identified is a safe

margin of error. The anomalies appear twice in Figure 5.4, near the end of the trials

the average number of victims identified in the 5% obstacle coverage environments

drops by half a victim and in the 10% obstacle coverage environments the average

number of victims identified rises to 15.5 victims. The teleoperated agents located all

the victims in both the 15% and 20% obstacle coverage environments, while missing

106

Figure 5.5: Average (n=5) number of interactions operators had with teleoperated

agents in 5%, 10%, 15% and 20% obstacle coverage environments.

only one victim on average in the 5% and 10% obstacle coverage environments. There

is only a slight degrade in effectiveness as the environments get more complex. No-

tice that in the 5% obstacle coverage environments, victims are located more quickly

than in the 20% obstacle coverage environments. The speed with which victims are

identified in the 10% and 15% obstacle coverage environments are almost equal. The

degradation in performance as environments become more complex indicates that

environments with higher obstacle coverage are more difficult to locate victims in,

which is to be expected. However, the teleoperated agents generally maintain a high

degree of victim identification.

Figure 5.5 shows the average number of interactions required between the operator

and the agents to achieve the effectiveness described above with respect to the total

environment coverage and the number of victims identified across all trials. Notice

107

that the number of interactions increased linearly as the trials progressed. In the

5%, 10% and 15% obstacle coverage categories, the increase in operator interactions

levels off at a point late in the trial. This is because at that point in the trial, the

agents had already reached their target environment coverage. Operator interactions

increased slightly as the environment became more complex. Notice that the 5%,

10% and 15% obstacle coverage environments required roughly the same number of

operator interactions, while the 20% obstacle coverage environment required slightly

more. The rate of operator interactions for the 5% obstacle environments was roughly

10 interactions per minute. The rate of operator interactions for the 10% and 15%

obstacle environments was roughly 12 interactions per minute. Finally, the rate of

operator interactions for the 20% obstacle environments was roughly 14 interactions

per minute.

5.6.2 Autonomous Results

Figure 5.6 shows the average total environment coverage achieved by the autonomous

agents across all trials.

Of the three control mechanisms studied, the autonomous control system was af-

fected the most by the increase in obstacle coverage. Agents were consistently able

to reach their target coverage in trials where the obstacle coverage was 5%. As the

obstacle coverage increased from 5% to 10%, performance degraded significantly and

agents rarely achieved their target coverage. The performance degraded considerably

108

Figure 5.6: Average (n=5) environment coverage achieved by autonomous agents in

5%, 10%, 15% and 20% obstacle coverage environments.

when the obstacle coverage increased to 15%. In this case, agents could rarely achieve

a total environment coverage of more than 30%. This performance degradation mag-

nified as the obstacle coverage increased from 15% to 20%. In environments where

the obstacle coverage was 20%, the agents were unable to explore the environment

beyond a close vicinity to their starting location. Once the agents reached a local

minimum, they would often be stuck for the duration of the trial.

Figure 5.7 shows the average effectiveness of the autonomous agents with respect

to victim identification across all trials. In trials where the obstacle coverage was 5%

and 10%, the autonomous control system performed very well for the majority of the

simulation, identifying on average all but one victim. The agents identified victims

that were in the open particularly efficiently. As the domain increased in complexity,

however, the autonomous agents were more likely than the other agent types to fail

109

Figure 5.7: Average (n=5) number of victims identified by autonomous agents in 5%,

10%, 15% and 20% obstacle coverage environments.

to identify one or more victims. In fact, as the obstacle coverage increased, the

performance of the autonomous control system degraded significantly. The sharp

increase of victims found in the first three minutes of the simulation in both the 15%

and 20% trials indicates that the control system was able to identify and categorize the

victims that were close to where the agents began their search, but failed to explore

enough area to find more victims. That is, the poor performance with respect to

total area covered is reflected in the number of victims identified. After roughly five

minutes of the simulation in the 15% and 20% obstacle coverage trials, the rate of

victims discovered drops off to a point where the autonomous control system failed

to find more than one additional victims.

Figure 5.8 shows the average of the total amount of time the autonomous agents

spent immobile across all trials. As the complexity of the environment increased, the

110

Figure 5.8: Average (n=5) time autonomous agents spent immobile in 5%, 10%, 15%

and 20% obstacle coverage environments.

amount of time agents spent immobile also increased significantly. The difference is

most pronounced between the 5% and 10% obstacle coverage environments. In all

trials, once autonomous agents rendered themselves immobile by driving into a wall,

or getting stuck in an opening too small to fit through, they were often unable to

find the right combination of turn and reverse commands to get themselves mobile

again. Autonomous agents unable to free themselves contributed to the high amounts

of time spent immobile in the autonomous trials.

5.6.3 Blending

Figure 5.9 shows the percentage of the environment blending agents were able to

cover, averaged across all trials. The blending control system achieved its target

111

Figure 5.9: Average (n=5) environment coverage achieved by blending agents in 5%,

10%, 15% and 20% obstacle coverage environments.

coverage consistently for trials where the obstacle coverage was 5% and 10%. Often

the total environment coverage reached 80% within 15 minutes of the start of the trial.

In the 15% and 20% obstacle coverage environments, however, the total environment

coverage decreased significantly. Agents were unable to get much more than 60% of

the environment covered.

Figure 5.10 shows the average effectiveness of the blending agents with respect

to victim identification across all trials. Early in the trials, blending agents located

victims as quickly as autonomous agents and quicker than teleoperated agents. In

the 5% and 10% obstacle coverage environments, 15 victims were located on average

before 15 minutes of the trial passed. In the low obstacle coverage environments

(5% to 10% obstacle coverage), the blending agents were very effective at locating

victims. As the environment became more complex, the effectiveness of the blending

112

Figure 5.10: Average (n=5) number of victims identified by blending agents in 5%,

10%, 15% and 20% obstacle coverage environments.

agents degraded. In the 15% and 20% obstacle coverage environments victims were

not located as quickly as the lower obstacle coverage environments, but by the end

of the trial roughly 13 victims were located in all.

Figure 5.11 shows the average amount of time blending agents spent immobile

over all trials. In the 5% and 10% obstacle coverage trials, the time blending agents

spent immobile was negligible. When the obstacle coverage increased to 15%, the

time spent immobile became more significant. The most significant degradation in

performance occurred when the obstacle coverage was 20%. Agents spent upwards of

2 million milliseconds immobile. However, this is still roughly a third less than that

of autonomous agents under the same conditions. Section 5.7 will present complete

performance comparisons between approaches.

Figure 5.12 shows the average number of interactions required between the op-

113

Figure 5.11: Average (n=5) time blending agents spent immobile in 5%, 10%, 15%

and 20% obstacle coverage environments.

Figure 5.12: Number of interactions operators had with blending agents in 5%, 10%,

15% and 20% obstacle coverage environments.

114

erator and the agents to achieve the effectiveness described above with respect to

the total environment coverage and the number of victims identified across all trials.

In the 5% and 10% obstacle coverage environments, the number of operator interac-

tions was extremely low, due somewhat to the speed with which the blending agents

reached their target environment coverage. Interactions increased slowly from 0 to

less than 50 in the first 15 minutes of the trials. After 15 minutes, the agents already

reached their target environment coverage, so the interactions did not increase fur-

ther. The 15% obstacle coverage environments required more operator interactions,

since the agents did not reach their target environment coverage before 30 minutes.

The rate that the operator interactions increased was slightly faster than the 5% and

10% environments. By the end of the trial, the blending agents required just under

150 operator interactions on average for the 15% obstacle coverage environments,

indicating the number of operator interactions increasing at a rate of roughly 5 in-

teractions per minute. The 20% obstacle coverage environments required many more

interactions than the other environments, increasing at a rate of roughly 9.5 interac-

tions per minute. By the end of the trials, the 20% obstacle coverage environments

required an average of almost twice as many operator interactions as the 15% obstacle

coverage environments.

115

5.7 Analysis

The results of the trials presented here provide evidence for the superiority of a control

system that blends autonomy and teleoperation over either autonomy or teleoperation

alone according to four measures of efficiency for robots operating in USAR: environ-

ment coverage, victim identification, operator interaction and time spent immobile.

Blending agents performed significantly better than autonomous agents in terms

of area coverage, covering more area at a faster rate (see Figure 5.13). I attribute

the performance to a human operator’s ability to recognize unexplored areas of the

environment quickly and guiding agents to unexplored areas more efficiently then

the autonomous control system could. Some unexplored areas were unlikely to be

found by the autonomous agents because of the unique obstacle configurations in

those unexplored areas. That is, the obstacles may have been arranged such that

the autonomous agent would have to move through a narrow gap and the agent’s

avoid-static-obstacles motor schema may not allow the agent to get close enough to

obstacles to allow it access to that gap. The teleoperated agents performed slightly

better than the blending agents, since although the operator could guide blending

agents into unexplored areas, once an agent was neglected (i.e. the operator shifts

his/her attention to another agent) the autonomous portion of the blending control

system may guide the robot back to an explored area. The teleoperated agents only

move when the operator commands them. In complex environments, the autonomous

portion of the blending agents was more likely to hinder the agents if left unchecked

116

for too long, contributing to poorer obstacle coverage for blending agents.

With respect to victim identification, the blending of autonomy and teleoperation

in the blending agents gave them an advantage over both the teleoperated agents and

the autonomous agents (see Figure 5.14). Blending agents were able to take advantage

of the autonomous control system to find victims quickly in the first portion of the

trials. At least a few victims were easier to find, and the autonomous control portion

would find those victims early. Therefore, early in the trials the operator was required

to give the blending agents very little attention. Later on in the trials, when the

victims in the open were all located, the blending agents performed better then the

autonomous agents. This was because the operator could guide the agents through

the more difficult areas of the environment, encouraging the agents to cover more

area and discover more victims.

Even though the teleoperated agents often performed equally to the blending

agents with respect to the number of victims found, the teleoperated agents required

more attention, which is made obvious by the number of operator interactions required

by the teleoperated agents in comparison to the blending agents (see Figure 5.15). To

achieve comparable performance, teleoperated agents required many more operator

interactions than did blending agents (see Figure 5.15). The autonomous control por-

tion of the blending agents enabled the agents to perform the most simple portions

of the USAR task themselves. In the early portions of the blending trials, the au-

tonomous agents required little attention to perform well in exploring the area around

them. Later in the trials, the agents required guidance, since they were unable get

117

Figure 5.13: Comparison of environment coverage in teleoperated, autonomous, and

blending experiments. All results are averages over 5 trials.

118

Figure 5.14: Comparison of number of victims identified in teleoperated, autonomous,

and blending experiments. All results are averages over 5 trials.

119

to certain portions of the environment autonomously. These are important findings,

since they highlight the increased productivity achievable by a simple autonomous

agent given some intervention in the form external commands from an operator.

Throughout all trials performed, the teleoperated agents required many more

interactions to complete their task. In trials where the obstacle coverage was 5%, the

teleoperated control system needed an average of 5 times more interactions than the

blending control system. As the obstacle coverage increased, both control systems

required more interactions. The blending control system required fewer interactions in

the more complex environments than the teleoperated control system (see Figure 5.15,

graphs C and D). The ratio gradually decreases from 5, to 4.8, to 2.5, and finally to

roughly 1.5 times the number of interactions. The more dense environments required

more supervision from the operator, leading to more agent-operator interactions.

Even with the additional attention required by the more dense environments, the

blending control system required less attention from the operator, which contributed

to a lower cognitive load.

The time each agent spent immobile with respect to autonomous versus blending

agents is another indication of the gains associated with blending autonomy and tele-

operation. Since the autonomous agents are behavior-based, they are susceptible to

local minima (described in Section 5.3.3), often becoming stuck in difficult environ-

ments. When agents got stuck in autonomous trials, they would often remain stuck.

In the blending trials, if an agent became stuck, the operator was often able to free

the agent. Since the operator was notified by the intervention recognition system

120

Figure 5.15: Comparison of agent-operator interactions in teleoperated and blending

experiments. All results are average over 5 trials.

121

Figure 5.16: Average time in milliseconds spent immobile by environment difficulty,

for blending and autonomous agents.

whenever an agent became stuck, the operator was often able to free the agent in a

timely manner, reducing the amount of time any particular blending agent spent im-

mobile. In the lower obstacle coverage trials (5% and 10% obstacle coverage), agents

became stuck less overall. Moreover, when agents did get stuck, they tended to get

stuck less severely, and therefore it was easy for the operator to get the agent mobile

again. In trials with higher obstacle coverage, the agents would get themselves stuck

in much more complex ways, making it more difficult for operators to release them.

In trials where the obstacle coverage was 20%, the time spent stuck for the blending

control system was much higher, since agents were often difficult to get mobile, lead-

ing to agents being abandoned. Blending operator instructions with the autonomous

instructions contributes to a significant increase in effectiveness for agents, which can

be observed by comparing the results of the autonomous trials and the blending trials.

122

5.8 Summary

The experiment described in this chapter demonstrates that the blending of teleoper-

ation with existing autonomous agents can significantly improve the effectiveness of

agents. It is also evident that the blending of autonomy and teleoperation does reduce

the number of interactions between the operator and the agent, while still maintaining

a comparable level of performance. Finally, the experiment demonstrates a practi-

cal balance between autonomy and teleoperation in complex dynamic environments.

The next chapter will describe how this research as a whole addresses the research

questions and discuss future work related to this research.

123

Chapter 6

Findings and Recommendations

6.1 Overview

This research was designed to answer the research questions in Chapter 1. However,

in attempting to answer those questions I have also become aware of a wide variety of

research that relates not only directly to blending the intentions of human operators

with autonomous robots, but also related to the limitations of autonomous control,

the difficulties related to applying the techniques described here in a physical domain,

the scope of teleautonomy, and much more. In this chapter I will begin by discussing

my findings and relating those findings back to the research questions in Chapter 1.

Next, I will present the contributions that this work offers to the research community.

Finally, I will discuss future work related to this research.

124

6.2 Findings and Analysis

Chapter 1 presented several research questions around which the work in this thesis is

focused. I will reiterate those questions here and discuss the results in my experiment

in light of these questions.

Research Question 1

Will the addition of teleoperation to autonomous agents increase their overall perfor-

mance?

This research shows that agents designed to perform in a USAR domain perform

better when there is some degree of intervention on the part of an operator. This

intervention reflects the limitations of the autonomous agents. Where an autonomous

agent is unable to complete a task on its own, the operator may provide insight and

direction to the agent in order to guide it into a more advantageous position. It has

also been shown that the intervention does not have to be in the form of unquestioned

low level instructions: instead, more abstract levels of control can be blended with

the agent’s desires, resulting in a shared control environment where the desires of

both the agent and the operator are blended.

However, there are several limitations to my approach that are worth mentioning.

First, the autonomous agents designed for this research were very basic behavior-based

agents. Since my focus was on studying the relationship between the human operator

and autonomous agents, and seeing as I built the autonomous agent architecture

based solely on theory, the agents used here do not reflect the full capabilities of

125

autonomous agents in general. By devoting more time to the construction of the

autonomous architecture the autonomous agent performance may have been better.

Beyond the results obtained here, however, one must also consider the state of the art

demonstrated in USAR test beds today. In light of the fact that there are extremely

few entrants into USAR competitions to date that are autonomous, it is not an

exaggeration to say that it will be some time to come before the capabilities of purely

autonomous agents allow success in a USAR domain.

Also, it is important to note that this research was carried out in simulation on a

specific task, USAR. These results may not reflect results in entirely different domains.

Despite the fact that the simulation tool used has been physically validated, there

will undoubtedly be differences in a physical implementation of this domain from the

simulation I have used. Physics in a simulator is never perfect, and my experiment

also assume the ability to identify victims reasonably well - an orthogonal task to the

concept of teleautonomy itself, but a very important one to the successful performance

in USAR. These assumptions considered, however, I believe my results are still an

indication that autonomous agents (given today’s state of the art) in areas similar

to this one will also benefit from the introduction and blending of human operator

instructions.

The last issue I wish to note is the nature of the teleoperated instructions being

blended. The focus of this research is on the design of an approach to teleautonomy

and the performance of that design in a particular environment. I have not concen-

trated on human-computer interaction issues, in particular the ease with which one

126

individual as opposed to another can interact with such systems. Like any other tal-

ent, the ability to visualize the situation of a robot remotely (situational awareness)

will vary from person to person, as will the amount of operator fatigue and other

particular criteria related to the successful control of a group of mobile robots. In

this research, I served as the sole human operator, and the results are thus to be

interpreted in light of my abilities as an operator, which I believe are average. It

would have been interesting, however, to see if having a variety of different human

operators would have affected the results, and attempt to identify and quantify the

affects of particular human skills on the results of teleoperation. These are all issues

that are mentioned further in Section 6.4. Additionally, in general, the teleoperated

instructions should not be limited to a human source. Since other agents have their

own perspectives on the environment, it would be useful to attempt to relieve op-

erator fatigue by allowing other agents to have input on a sliding scale to the same

degree that human operators can in this approach. Again, this relates to future work

that will be discussed later in this chapter.

Research Question 2

Can the introduction of autonomy reduce the number of interactions required between

the agent and the operator while maintaining a comparable overall performance?

The experiment in Chapter 5 demonstrates that the addition of autonomy does

reduce the number of interactions required between the agent and the operator. The

reduction in the number of interactions indicates a decrease in the cognitive load of

127

the human operating the agents. A reduction in cognitive load is significant, since

if a human can operate a single agent requiring only small amounts of intermittent

attention, then presumably the operator could also control multiple agents without

becoming overloaded. This research demonstrates a single operator operating three

agents and requiring few interactions, compared to controlling three purely teleoper-

ated agents.

There are some major assumptions required to support the answer to question

2. First, the simulated environment attempts to approximate the cognitive load

that a human operator would expect in the real world USAR. Murphy et al. [2000a],

however, note that real world USAR is more difficult for a human operator to perform

than the testbeds used in USAR competitions. A simulator would presumably be

significantly easier on a human, given solid obstacles rather than piles of random

visually distracting debris, and a much more three-dimensional environment. There

are numerous other differences in the simulator I have used: obstacles cannot be

moved by the agent, and the obstacles representing debris also cannot be damaged.

In the real world, a robot can get snagged on debris and drag it away, potentially

causing further damage in the environment. As such, human operators in real USAR

would likely perform much worse than the human operators in simulated USAR. So

would autonomous agents, however, and given the state of the art in AI, this further

emphasizes the need for human support and a teleautonomous mode of operation.

Given all this, I still believe that these results strongly suggest that cognitive load

can be reduced through the introduction of autonomy in agents, and I wish to validate

128

this theory on real robots in the physical USAR domain, which is discussed more in

Section 6.4.

Beyond the issue of simulation, the measurement chosen for operator interaction

should also be mentioned. The number of interactions with the robots is used in

my experiment as a means to approximate the cognitive load on a human operator.

More operator-agent interactions is indicative of higher amount of cognitive load.

This measurement, however, does not take into account the amount of attention that

the operator must pay to agents even when he or she is not directly interacting with

an agent. An operator may be focusing all of his or her attention on observing a

particular agent without having to send any instructions at all. Thus, while quan-

tifying interactions is a useful measure of operator load, it is not the sole measure.

Experiments using a variety of human operators could supplement this measure by

videotaping the subject and attempting to note periods of attention during which

agents were not being physically given instructions.

Finally, these findings are most relevant to operating in the USAR domain. Al-

though in domains similar to USAR, operator-agent interactions will likely be im-

pacted in a similar fashion by the introduction of autonomy to agents, the less similar

the task is to USAR the less applicable these findings may be.

Subsidiary Question

Can an infrastructure be designed to support a practical balance between autonomy

and teleoperation in complex dynamic environments?

129

The blending control system designed for this research supports a practical bal-

ance between autonomy and teleoperation. The blending control system enables the

operator to interact with the agents at various levels without necessarily exerting

direct control over the agent. One of the most important features of this research

is the support of a balance, where the operator and the agent cooperate so that to-

gether they achieve higher effectiveness than either would alone. The effectiveness is

attained by increasing the capabilities of the agent through the addition of external

instructions, and by reducing the amount of cognitive load on operators, increasing

the potential number of robots that can be operated, and reducing the onset of fatigue

common to operators working in complex dynamic domains.

Supporting a practical balance between autonomy and teleoperation in a general

sense is much more difficult than the work done here. The constraints of the sim-

ulated USAR domain allowed me to focus on certain aspects of teleautonomy and

limit the involvement of the human operator to only three types of interactions: the

joystick, the waypoint manager, and manual behavior control. There are a variety

of other forms of teleoperation not covered in this work that would be desirable to

have in a system that balances autonomy and teleoperation. The practicality of

some of the methods of control require further validation in the real world, where the

infrastructure may be much more difficult to design.

The work done here is only preliminary to the ultimate goal of my research, which

is to have an infrastructure that supports a practical balance between autonomy and

teleoperation in a variety of real world domains.

130

6.3 Contributions

This research is of interest to many research communities, including mobile robotics,

teleautonomous robotics, user interfaces and distributed artificial intelligence. The

contributions include:

1. The development and implementation of an approach to balancing autonomy

and teleoperation in a complex domain.

2. An approach that has benefits over previous approaches and which is demon-

strable in an approximation of a physical domain.

3. A methodology that allows agents with a limited degree of autonomy to be

deployed in a domain that is far beyond the approaches currently used in au-

tonomous systems.

4. A methodology that allows a human operator the ability to do more by distribut-

ing their control feasibly over a number of robots with minimal supervision for

each.

5. Encouragement of further work in multi-agent systems in this area by keeping

the costs of individual agents low, allowing the potential for larger numbers of

them to be deployed.

The blending approach that I developed has several advantages over both au-

tonomous approaches and teleoperated approaches deployed in similar environments.

131

The blending approach has more efficient victim identification over autonomous ap-

proaches due to operator intervention. Another advantage over strictly autonomous

approaches is the ability of operators to help robots who have become stuck. A third

advantage is the direction that operators can provide to reduce the amount of time

agents spend doing pointless work. Additionally, the blending approach provides a

reduction in cognitive load required in strictly teleoperated approaches through the

automation of some of the tasks, and a further reduction in operator load through

waypoint management. Finally, the approach supports the ability of the operator to

adjust the behavior of agents on the fly to help the autonomous control to cope with

specific situations.

6.4 Future Work

There are a number of directions that future work in this area can profitably take.

One of the most obvious extensions to this work is the application of the blending

control system on physical robots. Since this work was done using the Player/Stage

application suite, all code written to control the simulated stage agents is directly

compatible with physical Pioneer mobile robot platforms. However, the code used in

this thesis was not verified on a set of physical robots. Extending the blending control

system to work with other mobile robot platforms is another goal of future work in

this area. There are several issues that have to be addressed if this system is going to

be applied to physical robots. First, on real robots, perfect localization is no longer a

132

simple assumption. Odometry on real robots is likely to have at least some noise, and

that noise will be cumulative. The application of vision and other sensor technology

would have to be employed in order to have useful localization. Another assumption

that has to be dealt with is the increase in sensor noise and environment complexity.

Two sensors in particular will present the most challenging problems: vision and the

laser range finder. Recognizing objects using vision will be a very significant problem

in a real robot compared to a simulated one, and thus a more sophisticated method

for handling errors will have to be developed. The laser range finder, which is free

in simulation, would be expensive to purchase in the real world. The approach and

much of the code written for the simulated blending system will be applicable on the

physical robots, but the underlying infrastructure will require much additional work.

This research focuses on blending human operator instructions with agent desires.

However, the blending control system was designed so that it could be extended to

include instructions from peer agents instead of human operators. Research into how

agents could send instructions to one another, and how those instructions could be

blended with the intentions of the receiving agent could further reduce the cognitive

load of human operators by allowing agents to be more helpful to one another.

The blending system described in this research decreases the amount of risk to

the agent, but a persistent operator is still able to greatly effect the agent’s resulting

actions. If the agent could model the operator and develop a level of trust, the decision

of whether commands are blended and to what degree could be influenced by how

much trust the agent has with a particular operator. Consider an inexperienced

133

operator who unintentionally persists in instructing the agent to perform very risky

tasks that are entirely avoidable, such as moving too close to unstable ground. If

the agent “knew” that the operator was inexperienced, the agent might blend the

inexperienced operator’s instructions differently. Imagine now that instead of an

inexperienced operator, a malicious operator may try to take advantage of agents and

hinder their progress for their own means. In either situation, whether the operator is

inexperienced or malicious, the ability to model operators may have advantages. This

type of research could blossom into multi-agent research, where agents keep track of

operator reputations and share their reputations to benefit all agents in a particular

society.

Again, since I was the sole human operator for this research, there was little

feedback from other potential operators. I would have like to perform a complete

usability study for this control system. The usability study would involve recruiting a

pool of subjects to use as operators, classified by experience with tools such as robots

or remote-controlled vehicles (it would even be possible to employ a psychological

spatial-visualization test as a tool for categorizing subjects by their skills at visualizing

remote situations). Additional criteria for measuring cognitive load would also have

to be devised to supplement to the heuristic measurement used in this research. A

usability study could provide a large amount of insight into the relationship between

the human operator and the agent. This could lead to improvements in blending

by taking advantage of some of the natural ways that human operator interact with

agents.

134

Another direction for this research is user interface development. A well designed

user interface can encourage easier interaction between the operator and the agents.

I would like to devote more time to designing a user interface that is intuitive for a

variety of operators. The user interface employed here is sufficient for this research,

but it could be improved to be more operator friendly. I would like to explore ways of

improving the interactions between agents and human operators, such as introducing

a more immersive user interface that allows the operator to feel more “in control”.

Traditional user interfaces often seem passive, where the operator is watching the

agent perform instead of being immersed with the agent in the environment.

6.5 Conclusion

It is my hope that the success of this research encourages more research in blending

autonomy and teleoperation so that its benefits can be applied to a number of domains

where simple agents can perform the task only to a limited degree. I believe that

agents will be unable to perform complex tasks autonomously in the near future,

requiring aid from human operators to improve their effectiveness. This research

has demonstrated that blending operator instructions with the autonomous desires

of agents can benefit both human operators and agents alike, increasing effectiveness

in a complex and dynamic environment. If agents are not going to be capable of

performing complex tasks in the near future, then the interactions of human operators

and robotic agents will only become more important as a subject for future research.

135

Bibliography

Philip Agre and David Chapman. What are plans for? In P. Maes, editor, Designing

Autonomous Agents: Theory and Practice from Biology to Engineering and Back,

pages 17–34. MIT Press, March 1991.

Khaled S. Ali. Muliagent Telerobotics: Matching Systems to Tasks. PhD thesis,

Georgia Tech, 1999. Computer Science and Engineering.

Khaled S. Ali and Ronald C. Arkin. Multiagent teleautonomous behavior control.

Machine Intelligence and Robotic Control, 1(2):3–10, 2000.

John Anderson and Alfred Wurr. Dimensions of teleautonomy in mobile agents. In

H Lueng, editor, Proceedings of Artificial Intelligence and Soft Computing, num-

ber 6, pages 1–6, Banff, Canada, July 2002. The International Association of Science

and Technology for Development.

Ronald C. Arkin. Motor schema-based mobile robot navigation. International Journal

of Robotics Research, 8(4):92–112, 1989.

136

Ronald C. Arkin. Behavior-based robot navigation for extended domains. Adaptive

Behavior, 1(2):201–225, 1992.

Ronald C. Arkin. Behavior-Based Robotics. Cambridge: MIT Press, Cambridge, MA,

1998.

Ronald C. Arkin and Khaled S. Ali. Integration of reactive and telerobotic control in

multiagent robotic systems. In Proceedings of the Third International Conference

on Simulation of Adaptive Behavior, pages 473–478, Brighton, England, August

1994.

Ronald C. Arkin and Tucker Balch. AuRa: Principles and practice in review. Journal

of Experimental and Theoretical Artificial Intelligence, 9(2):175–189, 1997.

Ronald C. Arkin and Tucker Balch. Cooperative Multiagent Robotic Systems, pages

278–296. Cambridge: MIT Press, Atlanta, Georgia, 1998.

Ronald C. Arkin, Thomas R. Collins, and Yoichiro Endo. Tactical mobile robot

mission specification and execution. In Proceedings of Mobile Robots XIV, volume

3838, pages 150–163, Boston, Massachusetts, September 1999. International Society

for Optical Engineering.

Tucker Balch. Behavioral Diversity in Learning Robot Teams. PhD thesis, Georgia

Institute of Technology, December 1998a.

Tucker Balch. Integrating rl and behavior-based control for soccer. In RoboCup-97:

137

Proceedings of the First Robot World Cup Soccer Games and Conferences, Springer-

Verlag, 1998b.

Tucker Balch and Ronald C. Arkin. Motor schema-based formation control for mul-

tiagent robot teams. In Proceedings of the 1995 International Conference on Mul-

tiagent Systems, pages 10–16, San Francisco, CA, 1995.

Jacky Baltes and John Anderson. A pragmatic approach to robotic rescue: The

keystone fire brigade. In Proceedings of the AAAI Mobile Robot Competition and

Exhibition Workshop, pages 38–43, Edmonton, Alberta, July 2002. AAAI.

Maxim Batalin. Java client for player/stage. Webpage, July 2003. http://www-

robotics.usc.edu/ maxim/JavaClient/jc.htm.

Darrin C. Bentivegna, Khaled S. Ali, Ronald C. Arkin, and Tucker Balch. Design

and implementation of a teleautonomous hummer. In Proceedings of Mobile Robots

XII, pages 130–138, Pittsburgh, PA, October 1997. International Society for Optical

Engineering.

Jeffrey M. Bradshaw. Introduction to software agents. In Jeffrey M. Bradshaw, editor,

Software Agents, pages 3–46. The MIT Press, Menlo Park, CA, 1997.

Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal

of Robotics and Automation, 2(1):14–23, March 1986.

Rodney A. Brooks. A robot that walks: Emergent behaviors from a carefully evolved

138

network. In Proceedings of the International Conference on Robotics and Automa-

tion, pages 692–694. IEEE, May 1989.

Rodney A. Brooks. Elephants don’t play chess. Robotics and Autonomous Systems,

6(1&2):3 – 15, June 1990.

Rodney A. Brooks. Intelligence without representation. Artificial Intelligence, 47:

139–159, 1991a.

Rodney A. Brooks. New approaches to robotics. Science, 253:1227–1232, September

1991b.

Rodney A. Brooks, Cynthia Breazeal, Matthew Marjanovic, Brian Scassellati, and

Matthew Williamson. The Cog Project: Building a Humanoid Robot, pages 52–87.

Springer, New York, 1999.

Barry Brumitt, Anothony Stentz, Martial Hebert, and CMU UGV Group. Au-

tonomous driving with concurrent goals and multiple vehicles: Experiments and

mobility components. Autonomous Robots, 12(2):135–156, March 2002.

J. Cameron, D. MacKenzie, K. Ward, R. Arkin, and W. Book. Reactive control for

mobile manipulation. In Proceedings of the International Conference on Robotics

and Automation, pages 228–235, Atlanta, GA, 1993.

Yuni Cao, Tsu-Wei Chen, Martin D. Harris, Andrew B. Kahng, Anthony M. Lewis,

and Andre Stechert. A remote robotics laboratory on the internet. In Proceedings of

the International Networking Conference 1995, pages 64–72, Honolulu, June 1995.

139

Jennifer Casper. Human-robot interactions during the robot-assisted urban search

and rescue response at the world trade center. Master’s thesis, University of South

Florida, April 2002. Computer Science and Engineering.

Jennifer Casper, Mark Micire, Jeff Hyams, and Robin R. Murphy. A case study of

how mobile robot competitions promote future research. In Proceedings of Robocup

2001, pages 123–132, 2001.

Jennifer Casper and Robin Murphy. Workflow study on human-robot interaction in

USAR. In Proceedings of the International Conference on Robotics and Automation,

volume 2, pages 1997–2003, Washington, May 2002. IEEE.

Jennifer Casper, Robin Murphy, Mark Micire, and Jeff Hyams. Mixed-initiative con-

trol of multiple heterogeneous robots for urban search and rescue. Technical report,

University of South Florida, 2000.

David Chapman. Penguins can make cake. AI Magazine, 10(4):45–50, 1989.

S. Coradeschi and A. Saffiotti. Anchoring symbols to sensor data: preliminary report.

In Proceedings of the 17th National Conference on Artificial Intelligence (AAAI),

pages 129–135, Menlo Park, CA, 2000. AAAI Press.

Jacob W. Crandall and Michael A. Goodrich. Experiments in adjustable autonomy.

In Proceedings of the International Conference of Systems, Man, and Cybernetics,

volume 3, pages 1624–1629. IEEE, 2001.

140

Tom Duckett and Alessandro Saffiotti. Building globally consistent gridmaps from

topologies. In Proceedings of the 6th Annual Symposium on Robot Control (SY-

ROCO), pages 357–361, Vienna, Austria, September 2000. International Federation

of Automatic Control.

E. Gat. Integrating planning and reaction in a heterogeneous asynchronous architec-

ture for controlling real-world mobile robots. In Proceedings of the 10th National

Conference on Artificial Intelligence (AAAI), pages 809–815, San Jose, CA, July

1992.

Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. Player Version 1.3.2

User Manual. Robotics Research Laboratory, University of Southern California,

Los Angeles, CA, May 2003.

Brian P. Gerkey, Richard T. Vaughan, Kasper Stoy, Andrew Howard, Gaurav S.

Sukhatme, and Maja J. Mataric. Most valuable player: A robot device server

for distributed control. In Proceedings of Intelligent Robots and Systems, pages

1226–1231, Wailea, Hawaii, October 2001. IEEE.

Ken Goldberg. The Robot in the Garden. Cambridge: MIT Press, Massachusetts

Institute of Technology, 2000.

Sean Graves and Richard Volz. Action selection in teleautonomous systems. In Pro-

ceedings of the International Conference on Intelligent Robots and Systems, pages

14–19. IEEE, 1995.

141

Stevan Harnad. The symbol grounding problem. Physica D, 42:335–346, 1990.

I. Horswill. Polly, a vision-based artificial agent. In Proceedings of the 11th National

Conference on Artificial Intelligence (AAAI), pages 824–829, Washington, DC, July

1993. AAAI.

Wesley H. Huang and Eric P. Krotkov. Optimal stereo mast configuration for mobile

robots. In Proceedings of the International Conference on Robotics and Automation,

Albuquerque, NM, 1997. IEEE.

Adam Jacoff, Elena Messina, and John Evans. Experiences in deploying test arenas

for autonomous mobile robots. In Performance Metrics for Intelligent Systems

Workshop, Mexico City, Mexico, September 2001a. IEEE.

Adam Jacoff, Elena Messina, and Brian Weiss. Reference test arenas for autonomous

mobile robots. In The 14th International FLAIRS Conference, Key West, Florida,

May 2001b. AAAI.

O. Khatib. Real-time obstacle avoidance using harmonic potential functions. In

Proceedings of the Conference on Robotics and Automation, pages 500–505, St.

Louis, MO, 1985. IEEE.

Aaron Khoo, Robin Hunicke, Greg Dunham, Nick Trienens, and Muon Van. Flexbot,

groo, patton and hamlet : Research using computer games as a platform. In Pro-

ceedings of the 18th National Conference on Artificial Intelligence (AAAI), num-

ber 14, pages 1002–1003, Edmonton, Alberta, July 2002. AAAI.

142

David Kortenkamp and Terry Weymouth. Topological mapping for mobile robots

using a combination of sonar and vision sensing. In Proceedings of the Twelfth

National Conference on Artificial Intelligence, pages 979–984, Seattle, Washington,

1994. AAAI.

B. Krogh. A generalized potential field approach to obstacle avoidance control. Tech-

nical Report 484, Society of Manufacturing Engineers, Dearborn, Michigan, 1984.

M. Krogseter, R. Oppermann, and C. Thomas. A user interface integrating adaptabil-

ity and adaptivity. In R. Oppermann, editor, Adaptive User Support: Ergonomic

Design of Manually and Automatically Adaptable Software, pages 97–125. Lawrence

Erlbaum Associates, Hillsdale, NJ, 1994.

M. Krogseter and C. Thomas. Adaptivity: System-initiated individualism. In R. Op-

permann, editor, Adaptive User Support: Ergonomic Design of Manually and Au-

tomatically Adaptable Software, pages 67–96. Lawrence Erlbaum Associates, Hills-

dale, NJ, 1994.

J. Lee, M. Hubar, E. Durfee, and P. Kenny. Um-prs: An implementation of the

procedural reasoning system for multirobot applications. In Proceedings of the

Conference on Intelligent Robotics in Field, Factory, and Space, pages 842–849,

Houston, TX, March 1994.

D. Lyons and A. Hendriks. Planning as incremental adaptation of a reactive system.

Robotics and Autonomous Systems, 14(4):255–288, 1995.

143

M. Mataric. Integration of representation into goal driven behavior-based robots.

IEEE Transactions on Robotics and Automation, 8(3):304–312, June 1992.

M. Mataric. Behavior-based control: Examples from navigation: Examples from

navigation, learning, and group behavior. Journal of Experimental and Theoretical

Artificial Intelligence, (2-3):323–336, 1997.

François Michaud and Serge Caron. Roball, the rolling robot. Autonomous Robots,

12(2):211–222, March 2002.

Michael Montemerlo, Joelle Pineau, Nicholas Roy, Sebastian Thrun, and Vandi

Verma. Experiences with a mobile robotic guide for the elderly. In Proceedings of

the 18th National Conference on Artificial Intelligence (AAAI), number 14, pages

587–592, Edmonton, Alberta, July 2002. AAAI.

Robin Murphy, Jennifer Casper, Mark Micire, and Jeff Hyams. Assessment of the

NIST standard test bed for urban search and rescue. In Proceedings of AAAI Mobile

Robotics Competition Workshop, pages 11–16, Austin, TX, July 2000a.

Robin Murphy, Jennifer Casper, Mark Micire, Jeff Hyams, and Brian Minten. Mo-

bility and sensing demands in USAR. In Proceedings of the Industrial Electronics

Society Conference, Nagoya, Japan, October 2000b. session on rescue engineering.

Robin Murphy and J. Sprouse. Strategies for searching an area with semi-autonomous

mobile robots. In Proceedings of Robotics for Challenging Environments, pages 15–

21, Albuquerque, NM, June 1996. American Society of Civil Engineers.

144

Robin R. Murphy and David Hershberger. Classifying and recovering from sensing

failures in autonomous mobile robots. Proceedings of the 13th National Conference

on Artificial Intelligence (AAAI), 2:922–929, 1996.

Allen Newell and Herbert A. Simon. Computer science as empirical inquiry: Symbols

and search. Communications of the ACM, 12:113–126, 1976.

Nils J. Nilsson. Shakey the robot. Technical Report 323, Artificial Intelligence Center,

SRI International, Menlo Park, CA, 1984.

Eclipse Platform Technical Overview. Object Technology International, Inc. IBM

Corporation, February 2003.

Stuart Russel and Peter Norvig. Artificial Intelligence A Modern Approach, pages

31–50. Alan Apt, Upper Saddle River, New Jersey, 1995.

Linda Strachan, John Anderson, Murray Sneesby, and Mark Evans. Minimalist user

modelling in a complex commercial software system. User Modelling and User-

Adapted Interaction, 10:109–145, 2000.

Andreas L. Symeonidis, Pericles A. Mitkas, and Dionisis D. Kechagias. Mining pat-

terns and rules for improving agent intelligence through an integrated multi-agent

platform. In Proceedings of the IASTED International Conference on AI and Soft

Computing, pages 48–53, Banff, Canada, July 2002.

Mohan Trivedi, Brett Hall, Greg Kogut, and Steve Roche. Web-based teleautonomy

and telepresence. In Proceedings of the 45th Optical Science and Technology Con-

145

ference, volume 4120, pages 81–85, San Diego, August 2000. International Society

for Optical Engineering.

146

