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Abstract 

Reinforcement learning is a broadly employed 
methodology for training adaptive agents in single- and 
multi-agent settings.  Existing approaches, while being 
able to vary the type and nature of reinforcement, rely 
heavily on a centralized omniscient source for reinforce-
ment.  This is a significant limitation in terms of modelling 
human learning: while we do learn directly from skilled 
teachers, we also learn much from those around us 
participating in the group activities.  Ignoring the latter 
source of reinforcement severely limits the amount of 
information an agent can obtain from the world around it.  
In this paper we explore the use of peer reinforcement – 
reinforcement obtained from others participating in the 
same activity, and the effects of employing peer 
reinforcement for learning in multi-agent systems.  We 
examine two scenarios in a robotic soccer domain to 
illustrate the use of peer reinforcement in both 
heterogeneous and homogeneous multi-agent settings.  

Keywords: Reinforcement Learning, Multi-Agent 
Systems, Robotic Soccer, Homogeneity, Heterogeneity. 

1. Reinforcement Learning in Multi-Agent Systems  

One of the most successful approaches to learning in the 
control of intelligent agents is reinforcement learning [1].  
From the standpoint of intelligent agent control, 
reinforcement learning restricts the feedback an agent 
receives as a result of its actions to a positive or negative 
value reflecting events in the environment (as opposed to 
receiving sample positive and negative instances of 
behaviour directly, for example).  This creates more work 
on the part of an agent than example-based learning:  an 
agent must interpret feedback in light of its actions, rather 
than having them more directly connected by a teacher. 
This inference can be complicated by the nature of the 
domain and the nature of the reinforcement.  Like learning 
in general, there is wide breadth of reinforcement learning 
situations.  For example, agents can be reinforced directly 
action by action, through some synchronous progress 
indicator, or based on asynchronous environmental events 
(e.g. a goal scored against one in a soccer game). 

While reinforcement learning agents in single-agent 
settings have significant problems to overcome, each of 
these problems is exacerbated in a setting where multiple 
agents interact with one anther [2].  In single-agent 
reinforcement learning, for example, we must deal with 
problems of credit-assignment in reinforcement.  Agents 
may obtain reinforcement at a particular time and have to 
infer the prior actions that could have led to the cause of 
that reinforcement (the reinforcement is temporally local 
but must be applied to global series of actions). In 
individual agents, this is normally handled by propagating 
local enforcement back to past actions and states [1] in 
order to reinforce connections between actions.   In a multi-
agent setting, however, credit-assignment problems are 
significantly more difficult: not only can reinforcement be 
delayed, but it may involve the actions of other players as 
well (an inter-agent credit-assignment problem [2]).  Thus, 
a goal scored in a robotic soccer game (leading to 
reinforcement) may be due to the actions of a particular 
agent, in which case those actions should be reinforced.  
However, it may equally have nothing to do with that agent, 
in which case any bias based on that reinforcement would 
be incorrect. 

Both Balch [3] and Mataric [4,5] have examined issues of 
dealing with credit assignment in and between agents in 
reinforcement learning.  Experimenting with temporal 
locality, Mataric [5] shows that more specialized shaped 
reinforcement, where reinforcement is divided into 
components and issued as components of a task are 
completed, improves learning performance. Balch [3] 
shows similar results, and also illustrates that socially, 
reinforcement given locally (to an individual agent) 
provides a similar improvement as a temporally shaped 
reinforcement over a socially global reinforcement 
(reinforcement to an entire team without identifying 
particular individuals). These results confirm intuition: 
agents improve as we give them more specific information 
from which to learn, in both individual and multi-agent 
settings, and form a solid foundation for future work. 

One similarity between these works is the source of 
reinforcement: some (usually omniscient) entity issues 



 

 

reinforcement at a socially local or global level as events in 
the environment unfold.  In some domains, this is largely 
objective (e.g. a legal goal in soccer).  In others however, 
judgements as to general progress are more subjective (one 
of the criticisms of shaped reinforcements, because of the 
attendant dangers of inadvertent experimental manipulation 
by judges). In either case, we have a single, usually perfect, 
source of reinforcement. 

Human learning goes far beyond this – when we learn in 
social settings we do indeed get reinforcement from those 
in authority.  In addition to this, however, in social settings 
we get reinforcement from our peers: when watching a 
soccer match, or following on-field audio in other sports, 
one sees and hears a stream of positive and negative 
reinforcements from individual players to others, and this is 
clearly something that is often put to a player’s advantage.    

We are working with agents that learn in multi-agent 
settings through such peer reinforcement. Integrating 
reinforcement from numerous sources presents difficulties, 
in that in more complex settings there is the possibility of 
conflict, and the possibility of having to model the 
reinforcers.  However, peer reinforcement also presents 
significant opportunities.  Consider a soccer match, for 
example: while it is possible to use natural environmental 
reinforcements (e.g. scoring a goal), we normally expect 
human players to learn technique from a coach.  While that 
coach can reinforce players after a game, during time-outs, 
and (within a limited proximity) directly on the field, the 
number of these reinforcements is limited (barring the 
impossible event of having an omniscient coach in direct 
permanent communication with each agent).   Peers, 
however, can reinforce specific instances of behaviours as 
they observe them in ongoing behaviour, based on 
variations of general information supplied before a game 
by a coach, or based on their own skills.  While a peer may 
not perceive every action on the part of another agent, and 
not every agent is close enough to every teammate to hear 
all reinforcements, there are still many more opportunities 
than a single coach can offer.  Through peer reinforcement, 
we have the ability of reinforcing specific behaviour rather 
than the result (e.g. the bad behaviour of a goaltender who 
still luckily managed to stop a ball despite doing the wrong 
action), without expecting an ongoing omniscient external 
reinforcer.  In a robotic domain, peer reinforcement can 
also assist in correcting misconstrued perceptions, in that 
others may see and reinforce good situations where a 
subject agent does not (and by propagating reinforcement 
back through a history of actions, prior actions can be 
properly reinforced). 

To some degree, peer reinforcement can also be considered 
a form of shaped reinforcement, such as that seen in [5].  It 
is often possible to describe the general characteristics of 
desirable activity beforehand (e.g. a coach telling players to 
prefer some play, or to stay close to some particularly good 
player on the opposing team).  If players are allowed to 

reinforce one another based on this general information, the 
general principles can be translated into specific positive 
and negative reinforcements as specific situations where the 
behaviours are applicable arise.  We thus arrive at a more 
specific, context-dependent reinforcement similar in spirit 
to the  temporally shaped reinforcements of Mataric [5].  

The remainder of this paper describes an implemented 
approach to multi-agent reinforcement learning where 
reinforcement comes from peers as opposed to the 
traditional omniscient overseer.  We examine this approach 
in both homogeneous and heterogeneous settings in the 
domain of robotic soccer. 

2. Peer Reinforcement in Robotic Soccer Agents 

In order to demonstrate peer reinforcement, we have 
implemented teams of reactive learning agents.  These 
agents use a form of Q-learning to create a mapping 
between the perception of environmental events and the 
evocation strength of behaviours.  Q-learning [6] involves 
the use of a function Q, mapping environmental situations 
an actions to values, to approximate Q*, a mapping to the 
true value of in the domain of interest.   A learning rule is 
then used to adjust components of Q to better approximate 
Q* over time.  An ε-greedy action selection method is 
employed to select the best action most of the time, and a 
random action some small percentage of the time in order 
to balance exploration and exploitation [6].  A learning rule 
is used to apportion reinforcement recursively over a 
number of immediately prior actions. 

The implementation domain for this is the RoboSoccer 
Server [7], a tool for the distributed simulation of robotic 
soccer games.  This is an extremely realistic software 
simulation for robotic soccer used widely for research as 
well as for team competition.  The RoboSoccer Server 
provides for visual perception incorporating limitations in 
terms of both angle and accuracy over distance.  In 
particular, agents are not given direct localization 
information, and instead must deduce their location on the 
field by sighting flags marking field landmarks (goal lines, 
centre field, etc.).  The RoboSoccer server also provides 
for verbal communication between agents (also restricted 
by distance).  We employ the latter facility to allow agents 
to give reinforcement (positive or negative) including 
directing that reinforcement to specific agents (the 
equivalent to shouting “good job player 6” – directed to an 
individual but perceived by everyone within range).   

We are working with peer reinforcement in both 
homogeneous and heterogeneous situations, with agents 
that initially know very little about soccer.  For a 
homogeneous situation, we are examining agents 
reinforcing one another in order to improve basic ball-
tracking and movement skills, while for a heterogeneous 
scenario, we examine players reinforcing a goalkeeper 
based on the goalkeeper’s actions in order to improve the 



 

 

goalkeeper’s defensive movements within the goal crease.  
In both cases, we are also attempting to employ approaches 
that are as simple as possible: agents do not have extensive 
world models, and thus have only a very limited ability to 
track objects in the world.  We have adopted this approach 
in order to be pragmatic in agent construction as well as to 
examine this approach to learning under the simplest 
conditions possible – enhancing the agent’s knowledge of 
the world around them will if anything improve the 
performance we observe in simple agents. 

2.1. Homogeneous Peer Reinforcement 

Our homogeneous implementation begins with a largely 
unskilled team reinforcing one another in specific situations 
according to general instructions received by a coach 
beforehand.  Agents are told it is a positive step for others 
to  stay close to the ball, and that it is positive for others to 
kick the ball toward the opponent’s goal.  We begin with 
these low level skills for two reasons – they are crucial to 
developing higher level skills, and beginning with 
extremely simple agents lessens the possibility that 
elements already in the agent’s behaviour bias learning.  
While on the field, agents reinforce behaviour in others that 
they observe, rather than having this reinforcement given 
objectively (which is not physically possible move by move 
in a game of soccer).  Agents receiving reinforcement may 
not have seen what is being reinforced (e.g. they may not 
know they are close to the ball), and may not hear every 
reinforcement, thus making this similar to a human sensory 
limitations.  Agents have very basic operations (turn in 8 
relative directions; kick the ball (on the same 8 directions); 
or move forward or backward a short (2 units) or long (10 
units) distance.  These actions are treated independently, 
resulting in a potential choice of 12 movement actions and 
8 kicking actions. 

Agents can perceive within a limited distance the relative 
distance and angle of the ball, as well as that of other 
players and flags marking specific points on the field.   We 
do not attempt to maintain an accurate position on any of 
these items, but do attempt to record high-level information 
about the ball and goal over time.  We measure the relative 
angle of the ball (10 intervals of interest) and the 
qualitative distance of the ball (4 ranges from near to far).  
Since the angle of the ball is more crucial than the distance, 
we attempt to update this angle based on agent rotation 
over time (distance is not tracked over time).  We do 
however maintain a degree of confidence in the agent’s 
beliefs concerning the ball’s direction and distance, since 
the ball can move rapidly and an agent’s action choice 
should be biased when it knows the rough location of the 
ball.  We start with 100% confidence when the agent 
actually perceives the ball, and degrade that confidence by 
a step of 5% each time unit following the perception.  We 
break that confidence down into four ranges (0-30%, 30-
60%, 60-90% and >90%) for perception.  Adding these 

confidence intervals to the ball information, we end up with 
a possible 160 perceptual states.  For kicking (only), we 
need to perceive the direction and distance of the goal as 
well, in order to know whether a kick deserves peer 
reinforcement.  To keep the size of the table representing 
our Q function (the Q-table) small, we factor these 
perceptions into a separate table for kicking actions alone, 
making the non-kicking Q-table 160 states x 12 actions.  
Collectively these choices were considered reasonable after 
experimentation and adjustment over several iterations of 
this work. 

We do not examine perceptual differences over time, and 
so the agent cannot see which direction a ball is travelling.  
Instead, we employ a simple heuristic for perception of a 
goal-oriented kick: an agent informs others (shouts) when it 
makes a kick, and if others perceive the ball as being 
between the kicking agent and the goal, a kick toward the 
goal is assumed.  If the ball is on the other side of the 
agent, a kick away from the goal is assumed.  While this 
does not account for every kick on goal because of 
complexities in the angle of the perceiving agent, it 
accounts for most and makes for a simpler agent than one 
that attempts to analyze perceptual differences over time.   

The set of perceptions for kicking decisions includes 
confidence in the ball direction and goal direction (the 
same four ranges for each, resulting in 16 possible states).  
The condition upon whether to kick or move is based 
entirely on the proximity of the ball, and is not learned. 

An agent receives a unit of positive reinforcement from a 
peer when it is seen to be within 1.5 distance units from the 
ball or when it is perceived to have made a kick on the 
opponent’s goal.  Negative reinforcement is given when a 
kick away from the opponent’s goal is perceived.  
Reinforcement is carried back through the history of an 
agent's actions by reducing it 25% for each step in the past, 
in order to deal with credit assignment over time.  Each 
new reinforcement causes this history to be reset, so a past 
action can receive at most one reinforcement. 

One interesting element in this is that negative 
reinforcement was not required in order to avoid “bunching 
up” on the ball.  Once learning has progressed so that 
kicking occurs reasonably often, the ball is in frequent 
motion, and agents spread out because of this and their 
limited perception.  Even before this, because of the delay 
between perception and reinforcement, agents receive 
reinforcement for movements made close to the ball before 
they were sighted by a peer, as well as for getting to the 
ball itself, leading to greater agent motion. While negative 
reinforcement for movement will likely be required in more 
complex scenarios, the dynamics of the situation suffice to 
allow agents an adequate chance to move the ball here. 

Each Q-table entry records a running average of the 
reinforcement received by a particular state-action pair, and 
in response to a perceptual state, the agent selects a random 



 

 

entry in that row a fraction of the time (ε) and the best 
action the remainder. ε is varied over time from 90% in the 
first 8 times a particular perceptual situation is 
encountered, decreasing to 20% in 10% intervals with each 
8 occurrences of that situation. 
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Figure 1.  Difference in Q-Tables between average peer-
reinforced and perfectly reinforced agents. 

 
To examine peer reinforcement over time, we first required 
an objectively good agent for comparison purposes.  Using 
the soccer server, we ran a team receiving peer 
reinforcement against a team of agents that received perfect 
omniscient reinforcement from a coach for every action (as 
stated in Section 1, this is completely unrealistic for a real 
soccer team, but provides an optimum for purposes of 
comparison).  Averaging the Q-tables of all agents on each 
team and comparing the two teams in terms of the total 
differences between the squares of their table entries yields 
the results depicted in Figure 1.  This illustrates the peer-
reinforced team and the perfectly reinforced team 
becoming radically different initially, as the team with 
artificially perfect reinforcement learns faster.  However, 
after the first 4 hours of training (at approximately one 
action every 25 milliseconds), peer reinforcement begins to 
reverse this difference and continues to improve over time. 
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Figure 2.  Difference between average of peer-reinforced 
and trained perfectly reinforced agents over time 

After this training, the perfectly reinforced team average 
was used as an optimum for comparison to examine the 
performance of peer-reinforced learning over time.  Two 
teams of peer-reinforced agents were set in play against one 
another, and again the average of all agents was taken and 
the difference (calculated as above) was examined between 

the peer-reinforced average and the objective, perfectly 
reinforced team trained earlier.  These results are depicted 
in Figure 2. 

Figure 2 illustrates that over time, a peer-reinforced team 
will approach the performance of a perfectly reinforced 
team.  The difference when the training exercise was 
terminated was approximately 15 and was still in flux at 
that point.  We believe continued presence of difference 
can be accounted for by the fact that after that training there 
are some significant differences between individual agents, 
skewing the average. Balch [8] reports similar diversity in 
learning in soccer, gravitating toward roles based on past 
experience.  We will be running additional trials in future 
and comparing agent by agent to test this. 

These results provide an initial confirmation of the utility 
of peer-reinforcement: peer-reinforced agents can achieve 
similar behaviour over time to objectively-reinforced 
agents. While a team that is receiving perfect reinforcement 
will learn faster than one that is not, perfect objective 
reinforcement for each action cannot be expected in most 
real-world situations.   

2.2. Heterogeneous Peer Reinforcement 

In the implementation described above, reinforcement 
comes from peers, but agents are not basing that 
reinforcement on skills they themselves have mastered – 
players recognize when others are doing something good or 
bad and reinforce this, but cannot necessarily do better 
themselves.  While humans do this routinely, in the real 
world, we do not often see “do as I say, not as I do” 
reinforcements in so pure a form as that seen in this 
implementation.  This is because in the majority of settings, 
when learning a task humans have some degree of ability to 
start with, and if we issue reinforcements to others these 
include almost unavoidable bias based on those skills.  The 
implementation of the previous Section is more reminiscent 
of a children’s soccer team, where individuals have no 
skills on which to base their own opinions.  While learning 
in a soccer team made up of human adults would still 
involve reinforcement based on instructions given earlier 
by a coach, this reinforcement would be heavily biased (or 
in some settings replaced) by reinforcement based on that 
agent's own opinions as to desirable activity.  

Once this occurs, we are in a heterogeneous situation, in 
that a real soccer team will be highly unlikely to have 
players of identical skills in all respects.  It can even occur 
to some degree in a team that started out as homogenous, 
due to differences in learning experience.  This in fact 
occurs in the previous experiment – two agents can be 
significantly different because while they have been 
running equal lengths of time, one can collect many more 
reinforcements, especially once it begins learning to kick 
the ball reasonably well and keeping it moving beyond 
agents that still track poorly. 



 

 

Once reinforcements are given that are not purely based on 
some outside ideal, we have a host of potential agent 
complexities – from weighing reinforcements against one 
another to modelling the abilities of other agents in order to 
weigh reinforcements received from them.  While 
ultimately we are working to deal with all of these issues by 
experimenting with peer reinforcement in agents that model 
their teammates (this is the subject of current work), our 
focus in this paper is on examining the applicability of peer 
reinforcement in purely reactive agents without regard to 
higher-level agent functions such as modelling others.  In 
order to both further demonstrate the applicability of this 
methodology to simple agents and as a step toward dealing 
with more complex settings, we have examined the use of 
peer reinforcement in a heterogeneous situation to 
complement the homogenous work described above. 

In the domain of soccer, there is a natural element of 
heterogeneity in that a goalkeeper has a very different job 
than any other player on a team.  We selected this as a 
natural choice for heterogeneous experimentation and 
allowed several non-goalkeeper agents to train a 
goalkeeper over time.  This implementation uses a similar 
approach to Q-learning as that of Section 2.1.  A 
goalkeeper receives reinforcement from the players training 
it based on the behaviour those players observe, and gets 
no reinforcement from external events.   That is, the 
goaltender is primitive enough that if a goal is scored it 
does not know on its own that this indicates a problem with 
its behaviour.  

In this implementation, a goalkeeper localizes by sighting 
two field marker flags on the same horizontal and vertical 
line, then calculating a circle around each with radius equal 
to the distance of the flag.  These two circles will intercept 
at two points, only one of which will be on the field, and 
this point is the location of the agent.  From this the agent 
extrapolates its perception of location (we divide the 
potential locations in the vicinity of the goal into a grid of 9 
units) and direction (facing forward, reverse, or neither).  
The agent also perceives the ball at 7 distance ranges and 4 
points of direction relative to itself, yielding a total of 756 
perceptual possibilities.  It is possible to reduce this by 
viewing the field as symmetric on either side of a centre 
line, which is another element of current work.   

The actions a goalkeeper can perform are turning toward 
the ball, or turning to 22, 45, or 67 degrees on either side 
relative to the angle at which the ball was last perceived (7 
turns total), as well as moving forward or backward, or 
doing nothing.  To at the same time examine shaped 
reinforcement, we also included single action entries 
involving pairs of actions, coupling each turn with a 
forward and backward movement, resulting in 14 additional 
actions and 24 possible learned responses to any 
perception.  Catching is an additional action, which the 
agent attempts automatically when it is within 1.5 units of 
the ball and has any confidence in the ball’s location 

(confidence is maintained as in the previous setting, but is 
used here only for deciding whether to attempt a catch). 

A teammate allocates a unit of positive reinforcement 
(through communication) when the goalkeeper is perceived 
to be close enough to the ball (one unit of space) to attempt 
a catch. Similarly, a teammate provides a negative unit of 
reinforcement when the ball is perceived to be within 1.5 
units of the goal line.  Reinforcement passes back through 
the agent’s action history in as before, and the change in ε 
over time is made slightly higher (changing after 30 actions 
rather than 8) but over time still yields the same balance of 
exploration to exploitation. 
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Figure 3. Cumulative goals, saves, and save % as 
simulation progresses, in perfectly reinforced agents. 

To examine the efficacy of peer-reinforcement in this 
setting, we set a standard by examining learning over time 
in a team of perfectly reinforced agents (reinforced 
objectively and accurately upon every goal and save).  The 
results of this are depicted in Figure 3.  Cumulative goals 
(made by 3 trained players) and saves as the simulation 
progresses are shown according to the left hand scale, and 
the save percentage, illustrating learning from 
reinforcement, is plotted on the right hand scale.  After 
some initial outliers as learning begins, the goalkeeper’s 
performance increases steadily as training progresses. 
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Figure 4.  Cumulative goals, saves, and save % as 
simulation progresses, in peer-reinforced agents. 



 

 

The results in the identical setting for a team of peer-
reinforced agents are illustrated in Figure 4.  Here peer 
reinforcement is delivered by the same agents attempting to 
score on the goalkeeper, representing a team practice 
situation as opposed to a real game where one’s opponents 
would not be expected go give such reinforcement.  This is 
a minor consideration however, we could just as easily 
have the goalkeepers teammates observe goals scored by 
others.  This would, however, have required more players 
and a slower simulation, resulting in less goalkeeper 
training in the same overall time.   

After the same initial outliers as learning begins, learning in 
the peer-reinforced setting (the same 3 scoring agents here 
reinforce the goalkeeper based on their perceptions, as 
would happen in a team practice setting) actually proceeds 
with a slightly steeper curve.  The performance of this 
goalkeeper at the end of the simulation was better even 
though the simulation was stopped before the perfectly 
reinforced team.  While objectively under different 
combinations of parameters we have found much better 
goalkeeper performance (on the order of 25-30% saves), 
this setting does illustrate that the performance of peer 
reinforcement is just as good as that using objective 
reinforcement.  While the agent can receive multiple 
reinforcements from peers for the same goals and saves, not 
all are perceived by the recipient, and not all peers see 
enough to give a reinforcement in any action episode.  The 
actual increase in performance here we attribute to peer 
reinforcement as a form of shaped reinforcement:  
reinforcement is being given in more specific contexts, and 
this also reinforces the results of Mataric [5] and Balch [3] 
indicating that such reinforcements can improve learning.  

3.  Discussion and Future Work 

In this paper we have demonstrated the efficacy of peer-
reinforcement in multi-agent learning, using simple reactive 
agents.  While peer reinforcement in a homogeneous 
situation takes longer to achieve the same results, this form 
of reinforcement is much more realistic than the objective 
reinforcement at all times assumed in other approaches.  In 
the particular heterogeneous situation used here, the shaped 
nature of peer reinforcement was also evident.   

We believe this to be an important form of reinforcement 
that despite not being covered in modern reviews of 
reinforcement learning (e.g. [9]), is well-worth future 
experimentation.  We are currently working on extending 
the reactive agents used here to employ very simple models 
of other agents, in order to be able to gauge conflicting 
reinforcements.  We will then be able to experiment with 
this in more subtle areas and deal with other complex issues 
such as deception in this form of reinforcement. 

We are also interested in combining peer reinforcement 
with imitation.  Imitation by viewing or communicating 
agents’ behaviours and the reinforcements they receive for 
these [4,5, and more primitively in 10, 11]) has also been 
shown to be of great use in multi-agent settings.  We intend 
ultimately to experiment with combining both the imitation 
of others and the integration of reinforcements received 
from them, under both honest and deceptive settings. 
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