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Physical multi-agent systems display many interesting phenomena, an understanding of which
holds the potential for valuable advances in many fields. Studying the emergent phenomena
displayed by the interactions of physically mobile agents in flocks and herds have the potential to
revolutionize everything from the study of animal behaviour to the design of road systems to
encourage particular traffic patterns. These same phenomena influence the design and
development of mobile software agents used for applications as diverse as mail sorting and e-
commerce. The study of these systems, however, demands sophisticated tools for the
development and support of these agents in software environments. This is inherent in the nature
of mobile or immobile agents that exist purely in software domains (e-commerce agents, for
example). However, software environments for development and examination of physical
mobile agents are also a necessity, especially for projects of any scale. Most research using
physical agents for experimentation examines only a very small number of agents because of the
cost and support required, and so even those who insist that intelligent agent research requires
the physical embodiment of agents employ simulation as an integral component of the design of
those agents (e.g. [Balch, 1998a]). Moreover, such software environments for examining and
developing intelligent mobile and immobile agents have also been shown to contribute
significantly to the overall robustness of large scale systems, allowing developer to analyze
potential problems and explore the consequences of changes [Amin, 2000]. Software tools for
the support of multi-agent systems also provide an important element of control for the purposes
of experimentation [Hanks et al., 1993], as well as solutions to problems in the real world that
are beyond the capabilities of current AI technology, allowing research one area to proceed
despite the immaturity of research in related areas [Anderson, 1995].

The demands of supporting mobile intelligent agent development and experimentation place
enormous expectations on a software tool for these purposes: everything from supporting
sophisticated individual action and group interactions, to providing detailed control over trials in
an environment, to accurate perception within computational bounds, to the efficient
management of the objects collectively representing the agents’ environment [Anderson, 1995].
Surrounding these specific issues however, is the more pervasive problem of wide applicability
or breadth: in order to perform ongoing research, where agent designs and the environments in
which they are examined change as development pursues (a very natural expectation in the
complex and poorly-understood domains to which intelligent systems technology is most
applicable), we require a tool that will easily support such changes. A development tool
supporting this diversity also has the potential for significant benefit in many other application
areas where complex environments populated by agents are useful: natural resource
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management [Deadman and Gimblett, 1994], biology [Kester, 1996], and economics [Deadman,
1999], to name a few.

We believe that the future success of agent-based systems will rely heavily on development tools
that directly support a broad range of agent types during development in a distributed setting.
The direct support of a broad range of agents will allow a single development tool to be used as
the nature of an agent changes during development, as well as for the tool to be applied to a very
broad range of application tasks. Development in a distributed setting will allow the
computational support of a large number of agents as well as a more accurate modelling of the
interaction between agents and their environment, and between individuals and groups of agents,
than is possible in a single-system setting. We are addressing these issues in DGensim, a
distributed tool for multi-agent system development and experimentation, under ongoing
development in the Autonomous Agents Laboratory at the University of Manitoba. DGensim is
based on Gensim, a generic single-system simulator for multi-agent systems [Anderson and
Evans, 1995; Anderson 2000]. We have already employed Gensim ourselves in multi-agent
system design, experimentation, and evaluation [Anderson, 1995; Anderson and Evans, 1996]
and have shown its potential in application areas outside of this pure multi-agent systems
research [Anderson, 1997; Anderson and Evans, 1994]. Gensim is generic, in that agents and
environments can be easily defined and interchanged in a modular fashion, and supports the
modular design of agent components. The system also provides pragmatic support for agent
sensing, control over agent timing, and facilities for constructing domains and agents.

DGensim is being developed to specifically deal with improving the issues of agent breadth and
distribution mentioned above. Dealing with breadth is a contentious issue in a development tool,
because there is an obvious balance between the power of a tool and the breadth of use of that
tool. Programming languages are almost universally broad, for example, but require a
correspondingly significant effort to mould the tool to any single precise use. Specialized shells,
on the other hand, deal with a much narrower range of potential applications (and are therefore
much less applicable) but require a greatly-reduced effort to employ in the situations for which
they are designed. The difficulty with the latter, as is common across all of AI, is that a greater
understanding of the potential domain may require changes that a chosen tool cannot support,
necessitating significant reimplementation. In our work, we attempt to take a middle ground by
providing built in elements and settings that allow a range of breath to be supported (agents with
very simple vs. complex perceptual abilities; agents with or without world models or mobility),
and as many optional facilities as possible (e.g. internal object-oriented knowledge
representation tools, which may or may not be employed by agents within the system, assorted
perception methodologies). The system is also as open as possible in terms of documenting the
protocols and standards used, and designed in as modular a manner as possible, in order to allow
the user to make extensions to the system in a modular manner [Anderson, 2000]. We have
found the latter of all things to be the most useful in our work, and conversely, the lack of
openness in other tools to be one of the most frustrating elements of employing them in multi-
agent systems development.

In order to deal with agent breadth, we integrate into the system a shell for a broad agent known
as an improvising agent. Improvising agents were originally designed to deal with modelling
breadth in human problem solving [Anderson, 1995; Anderson and Evans, 1996, 1994]. The
breadth displayed in such activities is not dissimilar at a component level to the breadth
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associated with less-than-human level intelligent agents in a broad range of applications,
allowing this agent architecture to be highly applicable in generic multi-agent settings.
Improvisation is a common technique in human problem solving, involving real-time decision
making using a common routine or plan, together with the abstract knowledge that can be used to
supplement the plan or replace that plan when it has no useful recommendations. Improvisation
has been previously shown [Anderson, 1995; Anderson and Evans, 1996, 1994] to be a flexible
means for real-time decision-making under resource bounds in complex domains. Agents can
rely strongly on their routines when knowledge or decision-making time is scarce, and can spend
arbitrary amounts of time constructing and reasoning about available options to the extent to
which these resources are available. We implement improvisation using constraint-directed
knowledge structures, which allow an agent to reduce the problem of dealing with a broad range
of possible actions to allowing its action to be constrained by a number of constraints that can be
evaluated in real time. Changing the constraints associated with individual actions, tasks, or
higher-level means of evaluating and comparing tasks allows for rapid and radical change in the
way an agent operates, which in turn allows agents to be modified rapidly in response to
changing tasks. Moreover, the means by which an agent recalls and evaluates constraints is itself
controlled by a constraint-directed process, once again allowing a few small changes to
drastically change the agent’s behaviour and abilities and directly supporting a broad range of
agents. We are working to include within DGensim a cleaner and simpler framework for
defining such agents over and above the interface already available in Gensim. The original
interface will still support the ability to define and work with agents of any kind (that is, to
include one’s own code rather than developing a suitable improvising agent), but the supplied
framework will also provide the ability to quickly construct new agents on a spectrum of purely
reactive to purely deliberative, and the ability to easily alter those agents as development
progresses. This framework, like the rest of DGensim, is Lisp based, directly supporting the
mobility of agents: because code and data are interchangeable, the migration of an agent from
one system to another in a distributed setting is a simple process.

Beyond the breadth of agents described above, DGensim’s second goal is the support of breadth
in a distributed setting. Distributed development is a crucial element in a tool for the
construction and support of multi-agent systems. The most obvious reason for this is that when
developing and experimenting with intelligent agents a great proportion of system resources is
required to support the decision-making processes of these agents, and distribution is a well-
understood means of bringing about these additional resources. Indeed, the some take the view
that the very purpose of a distributed development/simulation environment is purely to increase
the overall speed when compared to that of a single system [Pham et al., 1998]. The advantage
of additional computational power is certainly attractive in an application such as multi-agent
systems. While other (single-system) tools deal with the resource problem by assuming a simple
reactive (and thus low resource consumption) agent model (e.g. [Balch, 1998b]), or by replacing
agents with process-based simulation wherever possible [Hamilton et al., 1997], this does little
toward supporting a broad range of agents.

Despite the obvious advantage of increased computing power, the major reason distribution is
crucial in supporting multi-agent systems, and much of the focus of the current work on
DGensim, is that a distributed setting directly contributes to the ease of agent support and to a
greater fidelity of modelling. While it is at least potentially acceptable in many cases to wait for
a multi-agent application involving computationally intensive agents to complete on a single
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system, distributing an application allows for better solutions to several problems that we have
found to be very awkward in working with multi-agent development tools in a single system
setting.

One of the most significant of these is timing issues between agents. For example, because
agents are timeshared cyclically in Gensim, some get a chance to perform their actions ahead of
others in the same cycle, leading to predictable outcome of single-cycle interactions by the
ordering of agents, unless care is taken when defining those actions and their possible
interactions. This and related timing problems are dealt with in the original Gensim system as
well as in other timeshared simulators through the encouragement of small time cycle lengths,
limiting effects on accuracy in a simulation. The distribution of agents removes artificial
timesharing and gives a more grounded basis for the interaction between agents. Agent
processes in DGensim make asynchronous decisions for action, while the environment around
those agent processes flows at a constant rate through time – thus defining a natural flow of time
for the agents involved.

Perception is another of these significant problems. In Gensim, perception is implemented
pragmatically at the object level [Anderson and Evans, 1995]: agents specify their interest
(“scan for blue objects”) or direction of interest, and the simulator responds with object-attribute-
value specifications for a limited range (based on a model of the agent’s perceptual abilities) of
what can be perceived. However, this is an artificial view of perception, in that the simulator is
doing more than just removing the burden of low-level vision from the agent – it’s actually doing
all the agent’s perception for it aside from the highest level of integrating those perceptions into
the agent’s state decision-making components. While some perceptual limitation is due directly
to the environment (e.g. objects obscure one another, or fog can obscure objects), others are due
to the physical abilities of agents (how far one can see in dim light, for example). Placing the
perceptual component completely in either the agent or environment is philosophically
inaccurate and technically problematic. Like agent decision-making, this sensory preparation is
also computationally intensive and has practical limits of acceptability. The distribution of
computational processes in DGensim allows perception to be handled by physically distinct
distributed processes that do not take away from the computational resources allocated to agent
decision making. One of the most important elements of DGensim is a scheme for caching
environmental information, allowing the distribution of perceptual processes while still limiting
the amount of information transfer that must occur to support agent perception.

Space limits the extent of technical discussion that can be made in a position paper, but a high-
level illustration of the general organization employed in DGensim appears in Figure 1. Agent
internals are distributed across a network of individual Linux systems (where each system can
run a number of agents as individual processes if desired). Rather than the awkward lock-step
timing of the original Gensim system (where individual agents could take any number of time
steps to reach decisions for activity, but required similar internal time step lengths and
specialized facilities to preserve state information), agents in DGensim send their timestamped
decisions asynchronously to an action-monitoring agent. This relatively simple agent (running
on the same system maintaining the object oriented environment) organizes incoming decisions
and assists in correcting for limited network delays using the timestamps on incoming actions.
This timing model is both more accurate and far simpler to employ within DGensim agents than
the original. Perception is provided in the same pragmatic object-level fashion as the original
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Gensim, but is managed by perception agents running on each agent machine in order to restrict
the amount of information that must be physically sent across the network by the environment
management system. Perception agents contain simplified environmental information, which
can be thought of as stereotyped views of objects in the environment. Perception agents register
with the environment manager and state the frequency sensory information should be sent to the
particular DGensim agent, effectively stating the speed at which the agent can perceive objects.
The environment manager maintains the agent’s current orientation and maximum sphere of
attention, and relays very basic object information to the appropriate perception agent. This
agent then reconstructs detailed attribute perceptions based on its local knowledge. This
approach pragmatically balances reasonable perception with network bandwidth, and also allows
us to deal with the perception-related problems described earlier: those elements of perception
not within the agent itself (objects obscured by poor local visibility, or dim light, or other time-
specific elements) are handled outside of the agent itself, as well as away from the main
environment manager.
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Figure 1. Overview of the DGensim approach.

The primary motivation of DGensim is unchanged from that of the original Gensim system: to
provide a generic platform for multi-agent systems research. However, like breadth in a single-
agent simulator, there are issues of breadth and generality in a distributed simulator that must
also be dealt with. In distributed simulations, primary motivation ranges from providing
significantly detailed graphical environments suited to human participants to focusing on the
interactions of computational agents. Environments range from the corners of the internet to
local area networks, and reliability, security, control, and level of fidelity and graphic detail vary
considerably (this particular element is equally true regardless of distribution, e.g. [Jinxiong and
Sartor, 1994; Fröhlich, 2000]). Similarly, the number of expected agents (e.g. DIS [IEEE, 1993]
vs. DDD [Song and Kleinman, 1994]) also varies immensely. More pervasive issues such as the
integration of different protocols (e.g. the DIS [IEEE, 1993] and HLA [DOD, 1998] standards)
also surround this spectrum. In short, the range of variability in applications is several orders of
magnitude larger in a distributed setting. Given that our primary motivation is the support of



-6-

intelligent agents and the examination of their interactions, we currently assume a local network.
Even with this restrictions, perfect generality is impossible without weakening a tool to the point
of uselessness, and so tradeoffs are made as they were in the original Gensim system to balance
utility with generality.

This system is in ongoing development using Allegro Common Lisp under Linux. One of our
earlier intentions with Gensim [Anderson, 1997] was to port the system to Java, due to the
language’s strong supports for multithreading and networking. The difficulty with this, however
was providing the same facilities for rapid agent and environment construction, and the same
level of support for AI components within agents, afforded by Lisp. However, given the
advances in multiprocessing and network sockets in ACL, the ACL/Linux platform brings all the
major advantages of Java, while allowing code compilation, and the ease of definition and
extension discussed above. The code-data interchangeability inherent in Lisp also, as mentioned
above, directly supports the mobility of agents within this scheme as well.

We have recently received a grant from the Canada Foundation for Innovation to explore issues
of heterogeneous computing within this framework, in order to increase the ability of this
approach to handle issues such as reliability and interoperability in the development of large-
scale multi-agent systems. It is hoped that this work will further increase the breath of agents
supportable under the more widely varying distributed computing situations discussed above.
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