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Abstract. Stereo vision for mobile robots is challenging, particularly
when employing embedded systems with limited processing power. Ob-
jects in the field of vision must be extracted and represented in a fashion
useful to the observer, but methods must also be in place for dealing with
the large volume of data that stereo vision necessitates, in order to main-
tain a practical frame rate. We are working with stereo vision as the sole
form of perception for Urban Search and Rescue (USAR) vehicles. This
paper describes our procedure for extracting and matching object data
using a stereo vision system. Initial results are provided to demonstrate
the potential of this system for USAR and other challenging domains.

1 Introduction

This paper describes our current research into practical stereo vision for au-
tonomous and teleoperated robots. Stereo vision as a form of perception has
many benefits for autonomous intelligent systems: in ego motion detection and
simultaneous localization and mapping (SLAM) for example. For a teleoperated
vehicle, stereo vision can be used to assist a human operator in judging distances,
marking landmarks for localization purposes, and identifying desired objects in
the environment.

The domain with which we employ stereo vision is that of Urban Search and
Rescue (USAR). The goal of USAR is to allow robotic vehicles to explore urban
areas following a disaster, locating human victims as well as dangerous situations
(e.g. gas leaks). Robotic vehicles have the advantage of being able to traverse
narrow voids that would be difficult for humans to reach, and also alleviate the
need to place human rescue workers in dangerous situations.

Our own interests in this area lie in artificial intelligence and computer vision.
We design autonomous robots that use vision as the sole sensor to support ego-
motion detection, localization, and mapping. Recognizing that it will be some
time before Al technology becomes sophisticated enough for an autonomous
system to perform well in such a challenging domain, we also work to provide
vision-based solutions to enhance human teleoperation.



This paper describes the process by which we provide stereo vision for au-
tonomous and teleoperated robotic vehicles under the conditions typical of USAR.
We outline a novel algorithm for matching stereo images based on regions ex-
tracted from a stereo pair, and detail the steps taken at various points in the
overall vision process to adhere to the twin goals of basic hardware and general
solutions. We begin by reviewing other recent efforts to use vision as a primary
perceptual mechanism, and follow by describing the phases involved in visual
interpretation using our approach. Initial results of employing this approach in
practice are then provided.

2 Related Work

Stereo vision is attractive because it generates a depth map of the environment.
There are two basic approaches to the matching of stereo images: pixel-based
and region-based approaches. Pixel-based approaches use feature points to match
between images. Matching pixels between images is typically made more efficient
through the use of epipolar constraints: if the cameras are perfectly calibrated,
only one row in the image needs to be examined to find the same pixel in both
images. While this is a reasonable approach from a computational standpoint,
this method suffers from the problem of mismatching feature points. Calibrating
the cameras in order to support this is also non-trivial, and in domains such as
USAR, the expectation that a fine calibration will remain accurate over time as
a robot becomes entangled with debris is unreasonable. Matching regions rather
than pixels is an alternative intended to decrease mismatching, because much
larger areas are matched to one another. However, these larger regions require
correspondingly greater computational resources for a match to be performed.
The approach we detail in Section 3 improves on standard region-based matching
through the simplification of regions, requiring fewer computational resources for
matching.

The two most important steps in region-based matching are the identification
and representation of features in the image. Research is active in this area,
since current approaches often encounter environments that cause failure rates
to become unmanageable. Examples of approaches currently being advocated
include those of Lowe [5], Carson et al., [3] and Ishikawa and Jermyn[4].

Lowe’s work [5] introduces an object recognition system known as Scale In-
variant Feature Extraction (SIFT). This approach uses a feature representation
that is invariant to scaling, translation, and rotation. For rotational invariance
and efficiency, key locations are selected at the maxima and minima from the
difference of the Gaussian function applied in scale space. Once a set of keys are
defined for a given object, live images are scanned and objects are selected using
a best-bin-first search method. Bins containing at least three entries for an ob-
ject are matched to known objects using a least square regression. Experimental
results show that the system is effective at detecting known objects, even in the
presence of occlusion, since only three keys are necessary for a match to occur.



Lowe and others have employed this method to implement a localization for
reasonably structured environments [7], but nothing as unstructured as USAR.

In Carson et al.’s [3] Blobworld representation, pixels in an image are as-
signed to a vector containing their color, texture, and position. Texture features
employed for categorization include contrast, anisotropy (direction of texture),
and polarity (uniformity of texture orientation). Regions are grouped spatially
if they belong to the same color and texture cluster. A gradient is generated in
the x and y directions, containing the histogram value of pixels in that region.
For matching, the user must begin by selecting blobs from the image that will
be used for comparison against a database. Regions are matched to the database
by the quadratic distance between their histograms’ x and y values, in addition
to the Euclidean distance for the contrast and anisotropy texture.

Wavelet-based Indexing of Images using Region Fragmentation (WINDSURF)
[1] is another recent approach to region extraction. In this approach the wavelet
transform is employed to extract color and texture information from an image.
A clustering algorithm is used on the output coefficients from the wavelet trans-
form, producing regions that contain similar color and texture waves. By using
only the coefficients, regions are clustered without considering spatial informa-
tion. One limitation in this approach is that the region count must be defined, so
clustering of dissimilar regions can occur in the presence of images that contain
more features than expected.

3 Pragmatic Stereo Vision for USAR

The aim of our overall approach is to identify useful regions and match them be-
tween stereo images, with limited computational resources and under conditions
typical of the USAR domain. We divide the process of performing region match-
ing in stereo vision into five stages: Image Blurring, Edge Detection, Region
Extraction, Region Simplification, and Stereo Matching. Each of these stages
performs a specific function in terms of allowing a visual scene to be matched
using stereo vision.

3.1 Preprocessing

Raw images obtained under the conditions typical of a USAR domain are ex-
tremely prone to noise. In addition to texture and lighting variations in the
domain itself, noise is affected by the quality of the image capture hardware
itself. This noise makes the detection of edges, and ultimately regions and ob-
jects, extremely difficult, and thus inconsistencies introduced by noise must be
minimized through some form of image smoothing, such as blurring.

We employ Gaussian blurring in this process for a number of reasons. First,
Gaussian blurring provides circular symmetry [8] - that is, lines and edges in
different directions are treated in a similar fashion.

This leaves the image in a state where we can begin to identify objects in
the image with the expectation of some degree of accuracy. The first step in this
process is to determine rough boundaries through edge detection.



We employ Sobel edge detection in our implementation, because it is com-
putationally simple and proves robust under a variety of conditions. Sobel edge
detection involves the application of two convolution masks across the image. Af-
ter applying each mask, normalization is performed by dividing each pixel value
by four. The resulting pixels are examined against a threshold value, where val-
ues larger than the threshold indicate an edge.

3.2 Region Growing

Our approach to region segmentation involves growing regions from individual
pixels using a stack-based approach. At any point, the pixels on the stack repre-
sent those from which future expansion of the region will take place. We begin
by marking each pixel in the smoothed image as unexamined, and then mark
a single pixel as examined and place it on the stack. We repeatedly pop the
topmost entry off the stack, and attempt to grow the region around it by ex-
amining the pixels immediately above and below, and to the left and right. If
any of these pixels is an edge in the edge map, it is ignored (edges thus form a
strong boundary for regions). Each new pixel is tested to see if it is a color match
to the region being built, by summing the squares of the differences across all
color channels. If this value falls below a defined threshold for error, the pixel
is considered to be a part of the current region, and is placed on the stack to
further extend the region. The threshold for color error is the mean color value
of all pixels currently in the region, allowing the threshold to adapt as the region
is grown. The algorithm terminates with a completed region once the stack is
empty. A threshold is set on the acceptable size of a grown region, and if the
region size falls below this level, the region is discarded.

Our initial approach to growing a set of regions using this algorithm was
to begin searching the image for a non-visited pixel, growing a region using
the algorithm described above (while marking each pixel as examined when it
is placed on the stack), and then starting the next region by searching for an
unexamined pixel. This approach was functional, but in practice, linear scanning
wastes resources because many unsuccessful regions are attempted. We have
found it more fruitful to begin with randomly selected points (20 for a 320 x
240 image), selecting the location of each after regions have been grown from all
previous points.

We also attempt to merge regions by comparing each to others that it abuts
or overlaps, and merging if one of two thresholds are exceeded. The first of these
is the percentage of pixels that overlap, requiring a significant overall similarity,
and is generally most useful in merging small regions. For merging larger regions,
the likelihood of a large percentage overlap is small, and so the threshold used
is a total pixel overlap. By using overlap rather than color separation as a basis
for merging, shadows can be properly joined to the objects that cast them, for
example, or glare to the objects the glare is placed upon, without having to set
an excessively high color threshold.

At this point, we have a collection of strong regions in each of the two images
(the second pair in Figure 1). Each region is represented by a map between the



Fig. 1. Segmented regions (middle) from the raw image pair (top) after blurring and
edge detection, with convex hulls plotted (bottom).

original image and the region (a set of boolean pixels where each 1 indicates a
pixel present in the image), as well as a set of region attributes: its size, mean
colour value, centroid, and a bounding box.

3.3 Region Simplification

The next step in providing useful visual information to a robotic rescue agent is
the matching of regions between a pair of stereo images. This is a complex pro-
cess that can easily consume a great deal of the limited computational resources
available. Our initial stereo matching process involved examining all pixels that
could possibly represent the same region across the stereo pair, requiring check-
ing for a match between hundreds of pixels for each potential match. We have
considerably simplified this process by simplifying the structure of the regions
themselves, allowing us to match a much smaller set of data. This process is
analogous to smoothing noise out of an image before looking for edges.

We simplify regions by generating a convex hull for each, allowing us to
replace the set of points outlining the region with a simpler set describing a
polygon P, where every point in the original point set is either on the boundary
of P or inside it. We begin with the boolean grid depicting each image. The
exterior points along the vertical edges (the start and end points of each row)



are used to generate a convex hull approximating the region using Graham’s
Scan. We form a representation for the convex hull by drawing radial lines at
5 degree intervals, with each line originating at the centroid of the region and
extending to the hull boundary. The length of each such line is stored, allowing
an array of 72 integers to describe each region. The final stereo pair in Figure 1
illustrates the result of this process.

3.4 Stereo Matching

With convex hull simplification, the efficiency of matching can be greatly im-
proved. With each convex hull, the very first stored value represents the distance
from the centroid to the hull boundary at the 0-degree mark. A comparison
of the similarity of two regions can then be easily performed by summing the
squares of the differences of the values in the 72 corresponding positions in the
two arrays (implicitly superimposing the centroids). Beyond greatly decreasing
the number of individual points to match, this representation makes the time
required to compute a comparison independent of region size. There is no par-
ticular threshold to a match - each region is matched to its strongest partner
in the corresponding stereo image. We do, however, constrain matches for the
purposes of maintaining accuracy by forcing a match to be considered only after
its appearance in three successive video frames. This is particularly useful for
noisy and poorly lit environments such as USAR. The top stereo pair in Fig-
ure 2 illustrates the matching of three regions between the raw stereo sample
pair in Figure 1. The lines plotted in each region are used as an indication to
a teleoperator of the angle that one would region have to be oriented to match
the orientation of the other, and can also be used as estimation of confidence in
an autonomous situation.

Since we are matching regions without regard to the location in the visual
frame, similar regions can be matched despite unreasonable spatial displacement.
This is equally true without employing convex hulls, and is part of the nature of
this domain. Because the robot is moving over very uneven terrain, cameras are
likely poorly calibrated, and as the domain is unpredictable, we cannot make
strong assumptions about the position of a region in each of a pair of stereo
images. If this were employed in a domain where such assumptions could be
made, the process could be made more accurate by strongly constraining the
distance between potential matches in regions in a stereo pair, thereby lowering
the number of potential matches that would have to be considered.

4 Performance

This system has been implemented and tested using an unmodified area in the
Computer Science department at the University of Manitoba. Spike, the robot
used in this project, is a one-sixth scale model radio-controlled toy car with rear
wheel drive (Figure 2, top). The radio controller has been modified to allow the
vehicle to be controlled through the parallel port of any PC. The PC used, a



533MHz C3 Eden VIA Mini-ITX, with a 256Mb flash card, is carried in the
interior of the vehicle. For this hardware configuration, we developed our own
miniaturized version of the Debian Linux distribution, refined for use on systems
with reduced hard drive space. The vision hardware consists of two USB web
cameras capable of capturing 320 by 240 pixel images. The cameras are mounted
on a servo that allows the stereo rig to pan in a range of plus or minus 45 degrees.

Figure 2 also illustrates the matching abilities of this system. The raw im-
age shown previously results in 40 regions for the right image and 42 regions
for the left (including regions carried forward from previous frames). For appli-
cations in teleautonomous vehicle control, we currently display to the operator
only the three strongest stereo matches present, in order to provide useful infor-
mation without cluttering the camera view. In the first sample match (Figure 2,
middle), the three strongest image matches (as indicated by the colored boxes
surrounding the matched pairs) are all correct, despite the offset in images due
to the camera angle. Lighting in the area varies over time, resulting in changes
in the matched pairs. The second sample match (Figure 2, bottom) illustrates a
mismatch between two similarly shaped hulls.

Fig. 2. Implementation and Demonstration. Top: Spike, the mobile robot used for this
work. Middle and Bottom: sample matches.

We have observed very good improvement through the use of region sim-
plifications with no decrease in match accuracy. As a baseline for comparison,



the hardware described above delivers a capture rate of 2.5-2.9 frames per sec-
ond when performing no vision processing. Using region matching (including all
phases described above) with convex hulls results in a frame rate of 2.3-2.5 fps,
while not employing convex hulls results in a frame rate of 1.5-1.8 fps.

5 Conclusion

This paper has described our approach to stereo vision matching, which forms the
basis of visual perception for both autonomous and teleoperated robots. This lays
the ground work for the use of higher level facilities employing stereo vision, in-
cluding 3D scene interpretation, mapping, localization, and autonomous control,
some of which have already been employed in our systems with single-camera
vision [2]. The next step in this ongoing development is to include elements of
camera calibration suitable for the USAR domain. The goal is to design a self-
calibrating system that can automatically produce the Fundamental Matrix [6],
which allows an object matching search to be constrained to a single line, rather
than the entire image. This will improve the running time and accuracy of the
stereo pair matching process. We also intend to replace the elements of vision
based sensing in our autonomous systems with stereo vision using this approach.
The research presented in this paper represents a core component in the
development of vision to support autonomous and teleoperated processing in
complex domains such as USAR. It is also applicable to many other domains,
and indeed, will be even more efficient in domains where assumptions about
lighting, color calibration, and predictability in the environment can be made.
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