
Improving Cooperation in Spatially Distributed Agents

Sara McGrath, John Anderson, and Jacky Baltes
Department of Computer Science, University of Manitoba, Winnipeg, Canada R3T2N2

ummcgrat,andersj,jacky@cs.umanitoba.ca

Abstract
Agent trust and its effect on cooperation is an im-

portant concern in multi-agent systems, both in im-
proving cooperation in application areas such as elec-
tronic marketplaces, and understanding its effects on
low-level agent interaction. We present a mecha-
nism for facilitating cooperation in multi-agent sys-
tems based on that of Dutta and Sen [4], that adds spa-
tial awareness and removes the assumption of global
knowledge of other agents. This approach employs lo-
cal methods to propagate the existence of other agents
as well as trust information. We evaluate this mech-
anism in comparison to that of Dutta and Sen, and
illustrate that it improves performance in a spatially
oriented environment, both in terms of the quality and
quantity of work performed.

1 Introduction

The ability to trust other agents is an obvious factor
in allowing cooperation between agents to ensue. The
nature of trust and its effect on cooperation have thus
proven to be important topics in both multi-agent sys-
tems (MAS) and game theory. While there has been
a great deal of work in these areas from a theoret-
ical standpoint (e.g. the seminal iterative prisoner’s
dilemma (IPD) work of Axelrod [2] and related works
that have followed it in trust and coalition formation),
application-oriented multi-agent systems research has
also been inspired by real-world problems of trust. The
modern electronic marketplace, for example, has pro-
vided many challenges in identifying both rogue agents
and potentially good trading partners, and policing
fraud and deception. Trust and reputation manage-
ment is also an important component of peer-to-peer
(P2P) networking. Agents in these systems must be
able to trust each other (here in terms of receiving
valuable data from an agent one agrees to share data
with), or the system will collapse. These tend to use
Prisoner’s Dilemma (PD)-like techniques as part of an
interaction policy between agents. BitTorrent [3], for

example is a P2P system that enforces a reciproca-
tive [8, 2] or tit-for-tat-like policy on file sharing: peers
will only share with peers who share with them.

Recent work on trust and cooperation in multi-
agent systems can be divided into two categories: high
level work that focuses on particular elements of trust
or specific application areas (e.g. [5]), and low-level
work on basic agent interaction in problems that epit-
omize a number of areas (e.g. [1, 8, 7, 4]). Within
the latter realm, one important issue is that of spa-
tial locality and its affect on stable cooperation be-
tween agents. While there has been some work on both
the effects of building up trust in neighbourhoods of
agents [7, 4], and including mobility [1], much work on
spatial locality has emphasized evolution: how popu-
lation distributions change when agents can alter their
strategies based on the success of others (e.g. [2] and
later works).

We are interested in studying the spatial aspects
of trust and cooperation in low-level agent interac-
tion while considering the issue of scalability. In order
to ultimately be applicable to the real world, the ap-
proach used to choose agents to interact with must
not make broad assumptions, such as global knowl-
edge of other agents, that cannot be supported in large
domains. The more such constraints are discarded,
the greater the likelihood that work will be of use to
higher-level multi-agent systems research, and to im-
mediate applications. In this paper we present an ap-
proach to managing trust and cooperation in spatially-
oriented multi-agent systems. We illustrate an imple-
mentation of this approach, and compare its perfor-
mance to that of Dutta and Sen [4], the closest and
best-performing prior work to this. We begin with a
review of related work in this area.

2 Related Work

As stated above, much work in MAS has emerged
from Axelrod’s IPD studies [2]. An IPD involves a
standard PD scenario, which has been shown by Ax-



elrod to subsume a great many real-world problems
in areas from commerce to biology, in a setting where
agents will encounter one another repeatedly. Agents
thus have the ability to respond to the prior behaviour
of other agents in each new encounter. Memory of
prior interactions is the most obvious addition to a
primitive agent model in order to deal successfully
with IPD situations, and significant exploration of as-
pects of memory, including limiting agent memory, has
ensued [1, 8]. At a higher level, Esfandiari and Chan-
drasekharan [5] began looking at simple ways to gain
and spread trust through a network of agents. Mean-
while, Dutta and Sen [7] continued looking at increas-
ingly complex means of not only encouraging emergent
cooperation (with inherent memory), but proactively
adapting to fluctuations in supply and demand of skills
while continuing to cooperate.

Beyond memory, the issue of spatial locality and
its effect on cooperation has also been explored. Axel-
rod [2] looked at the evolution of spatially distributed
societies as agents were allowed to change strategy in
response to interactions with others, and Nowak and
May [6] later extensively studied the ratios between
payoffs in a PD scenario necessary for cooperation to
emerge. In an iterative setting, Armstrong and Dur-
fee [1] examined the effect of agents that could move,
but used spatial locality and the possibility of move-
ment only to examine the effects of memory.

Many of the lower-level approaches to agent inter-
action make strong assumptions about the nature of
agents: global awareness of all other agents in the en-
vironment, restriction of interest to only one product
in a marketplace, or participation in only one task or
group, for example. Each of these assumptions is lim-
iting in terms of the applicability of results to the real
world. In recent work, Dutta and Sen [4] have exam-
ined the issue of supporting stable cooperation among
groups of agents that deals with a number of these as-
sumptions, and is the closest work to that described
here. We explore their approach in the following sub-
section.

2.1 Dutta and Sen: Forming Stable Part-
nerships

The cooperative domain used in Dutta and Sen’s
recent work [4] involves the distribution of expertise
among agents. There are several types of abstract
tasks in the domain, with each agent being expert
in one and only one task type. An expert agent can
complete a task with high quality and in little time; a
non-expert will require much time and deliver a lower
quality result. The actual values of time and quality

are drawn from normal distributions depending on the
agent’s expertise at that task type. They denote the
cost of a task i for agent k as Ck

i , and as Ck
ij if task j it

is completed by agent k for agenti. Each of M agents
are each randomly assigned N tasks without regard to
type. The simulation ends when all agents have com-
pleted all of their tasks. Cooperation here is of obvious
benefit; if agents can recruit others with greater ex-
pertise for tasks than they possess themselves, greater
performance will result. An agent asked for help may
not immediately have a reciprocal request, and such
help must be returned later. This temporal distance
allows for agents to be exploited.

Dutta and Sen’s basis for cooperation lies in each
agent maintaining cost balance information on other
agents: how much each owes the agent or is owed by
the agent in terms of work performed. Dutta and Sen
describe a number of agent types based primarily on
the probability that an agent will assist another agent
when requested, given the current balance. This prob-
ability, Pr(i, j, k) that agent i will help agent k to
perform task j, is based on the cost of the task, how
much more or less it will cost the agent than its aver-
age prior tasks have, and how the agent (and possibly
other agents) view the requestor:

Pr(i, k, j) =
1

1 + exp
Ck

ij
−β∗Ck

avg−OPi

τ

(1)

OPi is the balance between other agents and agent
i, and β (0.5) and τ (0.75) are parameters that con-
trol the shape of the curve produced by Equation 1.
With these settings, the initial probability of helping
another agent is approximately 0.5.

Agents use estimates to keep track of who is good at
particular tasks to make appropriate choices for assis-
tance. Every agent keeps track of all others expected
time and quality for task types, starting with neutral-
ity and updating as it interacts with others, weighting
each new episode according to a learning factor α (this
value was not stated in [4]: we employed the common
value of 0.1 in our reproduced implementation).

Dutta and Sen define several agent types based on
variations of these concepts. Earned Trust Reciproca-
tive agents, which we will term helpful here for con-
venience, are agents that assist using probability for-
mula (1). They are reciprocative based on their own
balances, but also those of others: when an agent re-
quests help, inquiries about the balance of that agent
are made to all agents with which a positive balance
exists. They respond honestly to similar requests from
others, allowing these agents to exploit one another’s
knowledge. Individual Lying Selfish agents, which we



will term selfish agents, do not cooperate with requests
for assistance, but still try to exploit others by asking
for assistance themselves. Further, these agents always
report balances with others as negative values if they
are in fact positive, thus damaging the reputations of
helpful agents.

Dutta and Sen’s implementation employs 3 task
types, 100 agents, and 100 to 1000 tasks per agent.
Each turn, each agent receives one task of its own and
will either perform the task itself, or get another agent
to perform the task for it. Agents may perform an un-
limited number of tasks for other agents each turn.
Every agent has a list of all other agents, kept sorted
based on the estimated cost of completing this turn’s
task’s type. The agent asks each agent in list order for
help on its task. If it reaches itself before any agent
assists it, it does the task itself.

3 Considering Spatial Distribution

The implementation described in the previous sec-
tion is one of the better to be found in the litera-
ture in terms of eliminating unrealistic assumptions.
However, there are two important aspects that Dutta
and Sen have omitted, which we address in this paper.
First, there is an assumption here that spatial distri-
bution does not matter: agents simply know everyone
else and can deal with everyone. Second, maintain-
ing a list of all agents in the system, let alone keep-
ing it sorted by estimated task cost, is not possible in
larger societies of agents. In this section, we describe
an approach and implementation that removes these
assumptions.

Without these assumptions, agents must discover
potential partners over time, in addition to who good
partners are. When we consider the element of spa-
tial distribution added to the concepts detailed in sec-
tion 2.1, a logical approach is to begin with spatial
neighbours. Each agent in our approach begins know-
ing the existence of only its immediate neighbours.
Such agents also require mechanism for discovering
distant agents. Asking neighbours for the identities of
other agents is a logical approach once the spatial na-
ture of the domain is taken into account. This general
concept has had success in referral systems [10], as well
as in P2P systems [9]. In our approach, agents may re-
quest new partner information from current partners
each turn, and requests on a turn are allowed until
known agents are exhausted or new information is re-
ceived. Responding agents share only their partners’
identifiers (IDs), and so each agent initially knows no
details of new agents it discovers. This also makes for a

more realistic scenario: in large systems where agents
can join and leave often, treating existing agents sim-
ilarly to new ones allows the approach to scale, as
opposed to maintaining additional information about
previously existing, but unknown, agents.

The agent types we define are based on those de-
fined by Dutta and Sen [4]. Helpful agents are willing
to share information on other agents probabilistically.
We employ a variant of the probability formula (1) –
removing the task costs – to determine if an agent is
willing to share the IDs of its partners. Once a help-
ful agent decides to share partner IDs, it only shares
nicely – that is, it will share all (and only) partners
with a balance > 0. In respects other than sharing
partners, our helpful agents are identical to Dutta and
Sen’s, in order to facilitate comparison. Selfish agents
behave similarly to those in [4] (i.e. uncooperative,
lying), but must also have a selfish policy for shar-
ing information about new potential partners. Here,
selfish agents are willing to spread knowledge of the
existence of other agents, but only bad ones: those
with a balance < 0.

As stated above, agents can request partner lists
until new information is received. However, we must
also have a strategy for choosing which agent to begin
asking for partners from. Agents assume that helpful
agents will share better partner lists, and so need not
ask for partners of agents with negative balances. Fur-
ther, agents need to ask as many agents as possible for
their partners, in order to explore the space of agents.
Thus, we do not want to always ask the first agent
on the list of partners, because unlike the complete
lists of [4], this position will not change. We could
ask the person with the highest balance, but this may
not change much, leading to a local maximum. As we
need some randomization to explore the space of po-
tential partners, all agents in our approach randomly
choose a known agent, and if that agent has a positive
balance, ask it to share its partner list.

This approach was implemented using Swarm, a
common MAS simulator, to model the agents and do-
main. We evaluated the effects of introducing the
concept of physical space and the removal of global
agent knowledge in comparison to an implementation
of Dutta and Sen’s approach according to pseudocode
supplied in [4]. The next section describes the results
of this evaluation.

3.1 Evaluation

We began by reimplementing the approach of Dutta
and Sen [4], and attempting to replicate their results.
We employed the same values for β and τ in formula



(1), and used a learning parameter α of 0.1, using
the same 3 task types, 100 agents (50% selfish, 50%
helpful), and 500 tasks per agent, with each assigned
to an expertise by a uniform random distribution.

We found that while helpful agents performed at
least as well as the results shown in [4], and with a
similar linear fit, selfish agents performed more poorly.
This led to some interesting observations in their re-
sults. We calculated the time and quality results for
doing all tasks alone (i.e. no help) as a low baseline
vs. optimal baseline of having expert help on both
task types in which an agent was not an expert. Since
tasks are equally distributed, doing all tasks yourself
results in average times of two HIGH and one LOW
for every three tasks (since lower expertise results in
higher completion time), while quality should be two
LOW and one HIGH (since lower expertise results in
lower quality results). Thus, we should see

timeavg = (2∗HIGH+LOW)/3 = (20 + 1)/3 = 7
qualityavg = (HIGH+2∗LOW)/3 = (2 + 10)/3 = 4

Similarly, if we obtain expert help on all tasks, all
times should be LOW, and all quality HIGH, leading
to an average time of 1, and an average quality of 10.
These can be used for guidelines as to how many tasks
agents are doing themselves; averages around a time of
7 and quality of 4 (a base average) indicates they are
mostly working by themselves, where 1 and 10 (an op-
timal average) indicate a considerable amount of help.
Because learning in this environment is very simple,
after the first few turns, agents are almost certain to
only ask experts for their help. Once an agent begins
to ask non-expert agents for help, the help probability
calculations ensure they are unlikely to receive any,
and will have to do the task themselves. Thus, we
would expect agents who are being helped regularly
to have optimal (or near-optimal) averages. Selfish
agents, because they will not help and should not be
helped in return, should have averages around the base
average.

Dutta and Sen [4] do not calculate the actual av-
erages for their agents, instead plotting average time
and quality totals for each agent. If, however, we cal-
culate the actual averages from the number of tasks,
the data shown in Figure 1 is obtained.

The values in these tables are created from previ-
ously averaged data, and so are not precise. However,
even considering this inaccuracy, we can observe two
interesting phenomena. First, agents are not learn-
ing to cooperate with each other as well (or as long)
as expected. The results shown in [4] only show the
first 100 tasks onward, but by that time, learning has

Figure 1: Dutta and Sen’s average times and quality
for selfish and reciprocative agents.

largely converged. Average times don’t change, imply-
ing that helpful agents aren’t avoiding exploitation af-
ter the first 100 tasks have been accomplished. Second,
selfish agents’ average quality totals change very lit-
tle between 100 and 1000 tasks (from 1000 to 1400),
and most of the change occurs before the 400th task
(where agents are at 1200). This implies that the 50
selfish agents were able to complete up to 900 tasks
each with a net quality increase of approximately 400,
an average quality of approximately 0.45, with aver-
age task cost approaching 0 as the number of tasks
approaches 1000. As the lowest quality is drawn from
the LOW distribution of 1, this seems highly unlikely.
A more reasonable explanation is that selfish agents
are doing every other task, and getting another agent
to perform the other tasks for them. Dutta and Sen’s
results only show averages of the total task times and
qualities per agent, so there is no way to know if recip-
rocative agents are performing more tasks than would
seem appropriate. They do look at the average savings
accumulated by both selfish and reciprocative agents
for both 20 and 40 tasks, with varying percentages
of agents. At 50% selfish agents, with 20 tasks, re-
ciprocative agents have average cost savings of about
100 and selfish about 30, while with 40 tasks, recip-
rocative agents have average cost savings of 400, and
selfish still about 30. These figures would suggest that
reciprocative agents are gaining greater savings with
other reciprocative agents (as the selfish ones are not
saving much), but contradicts the data in Figure 1.

After considering these possibilities, we ran our sim-
ulation with only selfish agents, and only reciprocative
agents. As expected, purely selfish agents stayed at
the base averages, while purely reciprocative agents
quickly moved closer to the optimal averages, indi-
cating that each of these agent types behaved as they



Figure 2: Average time and quality for only helpful
(top) and only selfish (bottom) agents, from a repro-
duction of the experiments of [4].

should in our implementation (Figure 2). We obtained
better results when we removed the exploration pe-
riod specified in [4] which forced each agent to ask ev-
ery agent for help once. Helpful agents form stronger
bonds more quickly, and stabilize at higher perfor-
mance levels. As accurate replication of [4] was our
intent, only the original baseline results are shown.

In evaluating the extensions described in Section 3,
we distributed 100 agents (50% of each type) on a
square spatial layout grid with no empty space, and
allowed each to know of the existence of the (up to)
8 neighbours surrounding any agent. The resulting

Figure 3: Average time and quality for helpful (top)
and selfish (bottom) agents with local agent knowledge
in the vertical, horizontal, and diagonal directions.

performance of this configuration (Figure 3) shows
that under more challenging conditions - considering
space and removing the assumption of knowledge of all
agents - helpful agents do somewhat better than that
those of Dutta and Sen [4]. Further, selfish agents do
more poorly, indicating less exploitation in the system.

There is still much room for improvement in the
spacial considerations described in Section 3, as there
are still situations where agents do not become known
to one another. Consider the agent distribution in
Figure 4, where two light (helpful) agents highlighted
by a dashed ellipse are surrounded by dark (selfish)



agents. They will know each other, but no other agents
(since the selfish agents surrounding them will never
pass on knowledge of any nearby reciprocative agents).
Their performance is thus limited.

Figure 4: World map of helpful (light squares ) and
selfish (dark) agents, with an area of significance high-
lighted.

4 Conclusions and Future Work

In this paper, we compared the previous work of
Dutta and Sen to an approach we developed that is
spatially aware and removes the assumption of knowl-
edge of all agents. Agents no longer know of every
other agent through a global mechanism, but discover
who is in the world themselves, resulting in a more
distributed and much more scaleable algorithm.

In replicating Dutta and Sen’s implementation, we
noted interesting implications of their previous results,
as selfish agents appear to break down cooperation
instead of being refused cooperation, forcing helpful
agents to work on their own. Averaging agent per-
formance gave a clearer picture of agent behaviour,
demonstrating that learning was very basic in this do-
main, and worked best without much exploration.

There are still many opportunities for future work.
In this domain and in [4], agents are able to complete
as many tasks as they accept in one turn. This is
clearly unrealistic; future experiments should explore
agents only being able to complete a few tasks a turn,
and could look at the implications for bottlenecks, and
scarcity of “good” agents in this case. Balancing the
workload among the agents would become more im-
portant, as agents could be easily overworked and un-
available if all agents asked the same ones for help.

Further, the agent types in this experiment (and
in Dutta and Sen’s work) are still reasonably simple.
More complex agents (e.g., agents that lie some por-
tion of the time) may have a profound impact on the
system. Similarly, agents could be selfish but truthful,
or helpful but lying. In such cases (as in the real world)
it would likely be more helpful to share partner lists
based on a measure of perceived honesty instead of a
balance of work shared. It would also be interesting
to add new agents over time.

References

[1] Aaron A. Armstrong and Edmund H. Durfee.
Mixing and Memory: Emergent Cooperation in
an Information Marketplace. In Proceedings of
ICMAS-98, pages 34–41, 1998.

[2] R. Axelrod. The Evolution of Cooperation. Pen-
guin Books, England, 1984.

[3] Bram Cohen. Incentives Build Robustness in
BitTorrent. In Proceedings of the 1st Workshop
on Economics of Peer-to-Peer Systems, Berkeley,
2003.

[4] Partha Sarathi Dutta and Sandip Sen. Forming
stable partnerships. Cognitive Systems Research,
4(3):211–221, 2003.

[5] B. Esfandiari and S. Chandrasekharan. On How
Agents Make Friends: Mechanisms for Trust
Acquisition. In In Proceedings of the ICMAS-
01 Workshop on Deception, Fraud and Trust in
Agent Societies, pages 27–34, 2001.

[6] M. Nowak and R.M. May. The spatial dilemmas
of evolution. International Journal of Bifurcation
and Chaos, 3:35–78, 1993.

[7] Sabyasachi Saha, Sandip Sen, and Partha Sarathi
Dutta. Helping based on future expectations. In
Proceedings of AAMAS-03, pages 289–296.

[8] Sandip Sen. Reciprocity: a foundational principle
for promoting cooperative behavior among self-
interested agents. In Proceedings of ICMAS-96,
pages 322–329, 1996.

[9] Maggs Sripanidkulchai and Shang. Efficient con-
tent location using interest based locality in peer-
to-peer systems. In InfoCom 2003, 2003.

[10] Pinar Yolum and Munindar P. Singh. Emergent
properties of referral systems. In Proceedings of
AAMAS-03, pages 592–599. ACM Press, 2003.


