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Abstract

At the heart of every stereo vision algorithm is a solution to the matching prob-
lem - the problem of finding points in the right and left image that correspond to a
single point in the real world. Applying assumptions regarding the epipolar rectifi-
cation and color similarity between two frames is often not possible for real-world
image capture systems, like those used rescue robots. More flexible and robust feature
descriptors are necessary to operate under harsh real world conditions. This paper
compares the accuracy of disparity images generated using local features including
points, line segments, and regions, as well as a global framework implemented using
loopy belief propagation. This paper will introduce two new algorithms for stereo
matching using line segments and regions, as well as several support structures that
optimize the algorithms performance and accuracy. Since few complete frameworks
exist for line segment and region features, new algorithms that were developed during
the research for this paper will be outlined and evaluated. The comparison includes
quantitative evaluation using the Middlebury stereo image pairs and qualitative eval-
uation using images from a less structured environment. Since this evaluation is
grounded in practical environments, processing time is a significant constraint which
will be evaluated for each algorithm. This paper will show that line segment-based
stereo vision with a gradient descriptor achieves at least a 10% better accuracy than
all other methods used in this evaluation while maintaining the low runtime associ-
ated with local feature based stereo vision.

1 Introduction

The ability to perceive depth in real-time is an essential part of any mobile robotic plat-
form. Information about the distance to objects in an environment is necessary for map-
ping, localization, and other high level tasks. Distance information is extracted using
either active or passive sensors. Active sensors, such as laser radar (LADAR), computes
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distances by emitting a signal into the environment and measuring the time it takes to re-
flect back to the sensor. Passive sensors, like cameras, simply collect the signals produced
by the environment. When using a passive sensor, distance cannot be directly calculated
since the time the signal takes to the reach the sensor is unknown. Multiple sensors can
be used to extract distance information by locating the same signal source, or feature, in
the environment and triangulating its position. Using two parallel cameras to observe an
environment is referred to as stereo vision.

A stereo vision system must be able to extract features from an image and locate the
corresponding features in a second image to perceive depth. The position difference or
offset between a feature found in the first and second image is called the disparity. The
disparity is measured horizontally and/or vertically for each matched pixel in the input
images. The disparity values assigned to each pixel of the input images together produce
a disparity image. Using the disparity image, a calibrated stereo system can triangulate
the 3-D position of matched points in the environment.

Most stereo vision systems use point features that are located by passing filters over
the input images. These filters produce a strong response at the corners and intersections
of objects, or within textured regions (Shi and Tomasi, 1994). Point features are useful
because the filters are very simple, and the extraction process has a very low computational
cost. The problem is that points are difficult to match without significant constraints
on the input images (Hollinghurst, 1997) due to a general problem with uniquely and
accurately matching a point feature.

To reduce the uniqueness problem, more complex solutions that contain structural
relationships can be used in the form of line segments, regions, and global frameworks.
Line segments are extracted by clustering pixels located at the edge of the intensity
change between two overlapping or neighbouring regions (Gonzalez and Woods, 2001).
Regions are formed by clustering pixels together based on a similarity in colour and/or
texture (Gonzalez and Woods, 2001) over a surface. Though regions and line segments
contain more information than point features, they are computationally more expensive
to extract from an image.

Global frameworks often model the stereo disparity extraction problem as a Markov
random field (MRF) (Felzenszwalb and Huttenlocher, 2004). An MRF is an undirected
graphical model connecting nodes of random variables. In the graphical model, nodes
that are not connected have the Markov propery that they are conditionally independent
random variables. Due to the connected nature of the problem the MRF contains loops
in the graph that produce an optimization problem that is NP hard (Boykov et al.,
2001). Two approximate solutions that produce reasonable results in practice are cut
graphs (Boykov and Kolmogorov, 2004) and loopy belief propagation (Felzenszwalb and
Huttenlocher, 2004). Global methods are known for producing dense high-quality depth
maps even with a very simple pixel comparison method. The major downside is that
global methods have a high cost in both memory usage and processing time.

The generation of accurate disparity images in real-time is the focus of this paper.
Point features are the most widely used stereo feature, and have seen successful imple-
mentation in (Salari and Sethi, 1990; Se et al., 2005). Line segment-based stereo vision
has been used primarily for uncalibrated stereo matching in (Bay et al., 2005; Zhang,
1995). Regions are primarily useful in environments when large areas of untextured sur-
face are present and has been used in (Veksler, 2001; Bleyer and Gelautz, 2005). This



project involves adapting and developing algorithms for stereo matching that are capable
of operating in real-time. Comparison of the three feature types and the global framework
is done by comparing errors in the resulting disparity images for standard test images.

The problem of real-time stereo vision processing in this paper is grounded in the
development of autonomous systems for urban search and rescue robots (USAR). Section 2
provides an overview of the principles of stereo vision and an examination of related work
in feature point, line segment, and region extraction. The implementation details of the
feature extraction and stereo matching problems are discussed in Sec. 3. Finally, the
evaluation results will then be analyzed in detail by examining quantitative, qualitative,
and runtime statistics (See. Sec. 4). The paper concludes with Sec. 5.

2 Related Work

Stereo vision is governed by a well defined relationship between the camera positions, the
points in the environment, and the position on an image where the points are projected.
The geometry governing the projection of stereo images will be examined first. Then
existing work in the extraction and matching of points, line segments, and regions will
be discussed including the benefits and limitations of each feature being examined. This
will be followed by an examination of global algorithms using loopy belief propagation.

2.1 Stereo Vision

Passive vision sensors, like cameras, provide only 2-D information about objects in a 3-D
world. However, when an object is viewed from multiple 2-D perspectives it is possible to
triangulate the 3-D position. Offsetting the cameras produces a measurable disparity or
offset of the pixels that is directly related to the distance of objects from the observer. To
determine the 3D position of an object four problems must be solved (Lucas and Kanada,
1981):

1. Camera parameters must be determined,

2. Features must be identified in each image,

3. Corresponding features in each image must be matched correctly, and

4. The feature’s distance must be calculated.

Using epipolar geometry (Hartley and Zisserman, 2004; Faugeras and Luong, 2001)
it is possible to improve the performance of stereo vision systems by reducing the search
space used in matching. Epipolar geometry (see fig. 1) defines a relationship between a
point, x, on the image plane, P, of camera, C, to a line, e’, on the image plane, P’, of
the second camera, C’, known as an epipolar line. Epipolar lines represent the possible
location of the image point, x’, on P’ for x on P that triangulates to the object point,
M. An epipolar line on P’ can be be visualized as the intersecting line between P’ and a
triangle with edges along the baseline joining C and C’, the line joining C, x, and M, and
the line joining M, x’ and C’.

The reduction of the search space for a point in primary image from a 2-D region
to a 1-D line in the secondary image is known as the epipolar constraint (Hartley and



Figure 1: The epipolar line, e’, represents the possible location of object point, M, on
the image plane, P’, of the secondary camera, C’, given the image point, x, on the image
plane, P, of the primary camera, C (Hartley and Zisserman, 2004).

Zisserman, 2004; Faugeras and Luong, 2001). Using the epipolar constaint images can be
aligned so that the rows in the primary image are aligned with the rows in the secondary
image. This allows matching to be performed without considering offsets in the vertical
direction. The process of aligning the images is known as epipolar rectification.

Epipolar geometry is affected by external differences between the primary camera and
secondary camera and the internal parameters of each camera. The external parameters
include (Lucas and Kanada, 1981) the position and rotation difference from C’ to C as
shown in figure 1. The internal parameters include focal length, sensor width and height,
and optional lens distortion parameters. If the internal and external parameters are known
for the cameras it is possible to use the essential matrix (Faugeras and Luong, 2001) to
compute the epipolar line. The essential matrix is defined as:

E = [t]xR

where [t]x is a 3x3 translation matrix and R is a 3x3 rotation matrix. The [t]x matrix
contains the position difference, or translation, between the cameras in the form:

[t]x =







0 −tz ty
tz 0 −tx
−ty tx 0







The essential matrix satisifies the epipolar contraint when:

x̂′TEx̂ = 0

where x̂ and x̂′ are the normalized image coordinates of x and x′ computed using the
calibrated internal parameters of the camera.



If the camera parameters are unknown then an approximation of the Essential matrix,
known as the fundamental Matrix (Faugeras and Luong, 2001), can be used. Computing
the fundamental matrix requires a minimum of eight matching points between the stereo
images. These point matches require a high quality matching algorithm that produces
accurate results without the use of the epipolar constraint.

Using the epipolar constraint it is possible to greatly increase both the speed and ac-
curacy of any stereo matching system. The main issue is that calibration or unconstrained
matching must be performed before the epipolar constraint can be used. In addition, the
cameras must be very rigidly mounted since even small changes in the parameters of the
cameras can produce large errors in the epipolar lines.

To calculate the distance to M, the only remaining variable is the conversion factor
from image disparities to real-world distances. This can be determined by either mea-
suring the baseline distance from C to C’ or the distance from C to M. Methods for
triangulating the position of a 3-D world point are described in (Trucco and Verri, 1998).

Point matching using epipolar geometry has been implemented in many prior works
including (Urmson et al., 2002; Shibata and Kawasumi, 2004; Murray and Jennings, 1997;
Sunyoto et al., 2004). Matching feature points between images is referred to as the
correspondence problem (Salari and Sethi, 1990). Problems arise when a feature is distinct
but not unique, occluded, or not fixed in the world. Non-unique points include texture
features on a heavily textured surface that are distinct but repeated at other locations.
The sidedness constraint (Bay et al., 2005) is often used in stereo matching to resolve
the uniqueness problem. The constraint simply assumes that if a feature is located to
the left of a second feature in the primary image, it will also be located to the left in the
secondary image. Though the constraint is not always true, it is useful in many situations.
Occlusion occurs when a feature is not visible in one of the images due to a foreground
object overlapping a background object. Another problem with feature detection is that
the feature must be fixed in the world. An example of an unfixed feature (Shi and Tomasi,
1994) can be found in a picture of a tree. The point where two branches cross produces
a strong corner, but the point is not fixed so the position changes as the perspective
changes.

2.2 Feature Points

A feature point (Shi and Tomasi, 1994) refers to a distinct fixed point in an image, and is
primarily found in corners and textured areas (Shi and Tomasi, 1994). Each point in the
image must be evaluated to determine its fitness as a feature point. Three highly successful
methods of point feature extraction are Shi and Tomasi’s eigenvalue features (Shi and
Tomasi, 1994), Lowe’s Scale Invariant Features (SIFT) (Lowe, 1999) and Bay, Tuytelaars
and Van Gooland’s Speeded Up Robust Features (SURF) (Bay et al., 2006).

The feature point extraction method used by Shi and Tomasi (Shi and Tomasi, 1994)
is useful for extracting texture features and corners. The image is evaluated using a 2x2
matrix with the form:

Z =

(

g2x gxgy
gxgy g2y

)

where gx and gy are the horizontal and vertical gradient values. Gradient measures the
first order change in the intensity of the pixel values over a defined kernel, and for images



Figure 2: The Difference of Gaussian (DOG) used in SIFT is generated by subtracting
sequences of Gaussian blurred images. Each new octave is created by shrinking the image
to one quarter of the original size. Images from (Lowe, 1999).

Figure 3: The image shows SIFT being used for feature detection. The arrows indicate
the orientation and scale of the feature point. Images from (Lowe, 1999).

is computed horizontally and vertically. The two eigenvalues are then calculated for the
matrix Z. Small eigenvalues indicate a flat colour, while one large and one small value
indicate a horizontal or vertical line. Two large eigenvalues are generally found at corners
or texture points.

SIFT extraction (Lowe, 1999) identifies strong features and the scale at which they



Figure 4: The feature descriptor histogram information is generated using gradients sam-
pled around the feature point. Images from (Lowe, 1999).

produce the most distinct response. To locate points that remain visible at different
scales, a series of Gaussian blurs and resizes are applied to the image. After each blur,
the resulting image is subtracted from the previous image to produce a Difference of
Gaussian (DOG) as shown in figure 2. From each pixel in the DOG, the centre pixel is
selected as a base feature if it is the minimum or maximum difference for the 3x3x3 area
around the point. The 3x3x3 are includes the current pixel and the neighbouring pixels
in the previous, current, and next scale. The base set of features is initially filtered by
removing points with low contrast using a threshold. The remaining points are filtered
using the principle curvature, which is evaluated by computing the trace and determinant
of a 2x2 Hessian matrix evaluated at the point. The Hessian matrix:

Z =

(

Dxx Dxy

Dxy Dyy

)

where D∗ is the derivative in the horizontal, vertical, and diagonal direction computed
using the difference of neighbouring points. The DOG is repeated for several octaves of
an image, where the next octave is reached by resizing the image to one quarter of the
previous size. Orientation is assigned to the final points using the gradient response of
sample points around the feature. The resulting orientation and scale is demonstrated in
figure 3. A feature descriptor is generated by sampling a rotated area around the feature
that aligns with the features orientation. Using 16 sample regions around the feature
arranged in a 4x4 grid, an 8 bin gradient histogram is created per grid region as shown
in figure 4. The gradient histogram contains the sum of the gradient responses in each
grid region with longer vectors indicating strong responses in the direction shown. As
a result of the sampling each feature contains a 128-dimensional descriptor that can be
used to compare the features. When searching for a matching keypoint we expect the
gradients histograms of all 16 grid regions to be very similar in magnitude between the
two keypoints.

SURF (Bay et al., 2006) is a keypoint extraction method that makes use of fast
approximations to produce a significant speed improvement over SIFT. The DOG filter
in SIFT is replaced with a fast Hessian detector, H(x, σ), evaluated at the position x and



Figure 5: The Gaussian second order derivative can be approximated using box filters as
shown above. Images from (Bay et al., 2006)

Figure 6: The images above shows a sample set of features generated by SURF. The left
image shows a circle around the strongest keypoints. The image on the right shows the
orientation and rotated sample region used to generate the descriptor. Images from (Bay
et al., 2006)

Figure 7: In SURF the feature descriptor information is generated by computing the sum
of gradient and the sum of absolute gradient in the x and y direction. Images from (Bay
et al., 2006)



scale σ. The Hessian matrix,

H(x, σ) =

(

Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

)

where Lxx(x, σ) is the Gaussian second order derivative in the horizontal direction, with
Lyy(x, σ), Lxy(x, σ) being similar but in the vertical and diagonal direction. The fast
Hessian detector takes advantage of the fact that the large scale convolutions can be
extracted quickly from integral images using box filters. The box filters approximate the
Gaussian using a rectangular convolution with constant weights for all elements as shown
in figure 5. In the integral image the sum of all pixel values above and to the left of
a pixel are accumulated into a single value. An integral image can be used to compute
the response of a box filter in constant time regardless of the size of the region. Using
an integral image reduces the computation cost by making convolution a constant time
operation, and removing the need to resize the image during a change in octave. Points
are selected if they contain the maximum or minimum response in a 3x3x3 area around
the points and in the previous and next scale. The response is measured using,

det(Happrox) = DxxDyy − (0.9Dxy)
2

whereD is the box filter approximation of L. When a point is selected, the gradient is used
to assign an orientation as demonstrated in figure 6. SURF use a 64-dimensional descrip-
tor, that like SIFT are based on gradient responses around the feature. The descriptor
uses a sixteen window grid around the point, but the histogram in SIFT is replaced with
four values as shown in figure 7. The four values are generated using the sum of the
gradient response and absolute gradient response in the x and y direction.

The key advantage of SIFT feature and SURF extraction is that they produce high
quality feature descriptors at interest points of the image. In addition, the computation
cost is predictable and can be controlled to some extent. For example, both SIFT and
SURF are rotationally invariant, however, in stereo processing it can be assumed that a
feature point will not rotate too much between the cameras. This allows for faster fea-
ture descriptor extraction by removing the orientation assignment and descriptor rotation
phases of the feature extraction.

SIFT (Lowe, 1999) and SURF (Bay et al., 2005) use a high dimensional feature de-
scriptor with responses between −1.0 and 1.0. Similarity between two features is generally
measured using the Euclidean distance between the points in a high dimensional feature
space (Beis and Lowe, 1997). The distance from each feature to all other existing features
is computed, and a match is accepted if the best match has a distance less than the sec-
ond best match distance scaled by a threshold ratio. The feature is compared against as
many other features as possible to prevent a single point to point comparison from being
accepted simply because there is not enough information to reject the match.

2.3 Line Segments

The extraction of line segments can be approached using either global or local meth-
ods (Jang and Hong, 2002). Both methods rely on identifying boundary pixels using one
of several methods of edge detection. For more information refer to (Heath et al., 1997).



Figure 8: The left image is used to generate the Hough space shown on the right. The
values in the Hough space are plotted using φ on the horizontal axis and ρ on the vertical
axis. Points of high accumulation in the Hough space indicate strong lines in the image.

Most global line segment extraction algorithms are extensions of the generalized Hough
transform (Kim et al., 2003). In the generalized Hough transform, each boundary pixel
votes for candidate lines in the Hough space accumulator as shown in figure 8. Candidate
lines are calculated using the line equation:

y ∗ sin(φ) + x ∗ cos(φ) = ρ

where x and y are the position of the pixel, φ is the orientation of a perpendicular line to
the candidate line, and ρ is the length from the origin to the perpendicular intersection
point. The accumulator is a two dimensional table that plots φ against ρ. For each φ value
in the accumulator, ρ is calculated and the resulting point at (φ, ρ) in the accumulator is
incremented. Once all boundary pixels are processed, a search is done in the accumulator
to find peaks that exceed a threshold number of votes. Once a peak has been found the
neighbouring bins in the accumulator are suppressed to prevent a similar line from being
selected. This generalized Hough transform is used to extract lines from the image. Many
other methods have been presented, for example (Kim et al., 2003; Mirmehdi et al., 1997),
to deal with the extraction of line segments. The primary difficulty involved with global
line segment extraction algorithms is that they have long running times, and can generate
imaginary lines formed by textured surfaces.

The simplest form of local line segment extraction uses chain coding (Gonzalez and
Woods, 2001). Chain code values represent the location of the next pixel in the chain
using either a 4 or 8 connected neighbourhood. The boundary is followed starting from
an initial edge point (generally the top-left most point in the chain) and followed until the
chain returns to the start. Noise can be filtered from the chain code using a median filter
over the connection direction. The final chain code is then examined for line segments by
finding runs of equal values. Local line segment methods are more sensitive to noise in the
image, therefore most of the recent work in this field focuses on joining small segments
into larger segments (Kim et al., 2003; Jang and Hong, 2002).

Line segment matching is generally considered to be a more difficult problem than
interest point matching. Although it seems simple to view line segments as simply a
connected start and end point, the problem is that the position of the end points on line



segments tend to be very unstable (Bay et al., 2005). This makes end point matching
more difficult than single interest point matching. The two primary features of a line
segment used in matching are the colour information around the line segment, and the
topology of line segments. Bay, Ferrari, and van Gool (Bay et al., 2005) use colour
information from points three pixels to the left and right of a line segment to generate
histograms. The histograms from the two candidate lines are normalized, and the distance
between them is calculated using the Euclidean distance between histogram bins in the
defined colour space. The colour information produces soft matches (Bay et al., 2005)
reducing the number of potential matches. By applying the sidedness constraint (Bay
et al., 2005), the incorrect matches are filtered out to produce the final set of matching
lines. The use of colour information is limited to situations where the capture devices
produced very similar colour output. In the more common situation, colour information
varies between the images (Hollinghurst, 1997) due to automatic brightness and contrast
correction differences between the capture devices.

If colour information is ignored, then the matching can be based on the topology
of line segments in an image. Hollinghurst (Hollinghurst, 1997) has defined a set of
rules for topological matching that includes initial matching and refinement operations.
Using geometric constraints, initial matches are generated based on overlap, length ratio,
orientation difference, and disparity limit. The initial matches are refined by applying
constraints that either support or suppress a potential match. Matches are suppressed if
they match multiple lines segments or if they violate the sidedness constraint. Support
is generated by collinearity and connectivity. The forms of support that are important
include parallelism, junctions at endpoints, and T-junctions. These constraints are applied
to the initial matches until only supported matches remain.

Like point matches, line segments matching can benefit from the epipolar constraint.
Zhang (Zhang, 1995) examined a method of calibrating stereo cameras by measuring the
amount of overlapping area in line segment pairs for a given calibration. Calibration with
line segments would be used in place of the eight point algorithm for point-based stereo
matching. In his experiments, the extrinsic calibration for the two cameras were unknown,
so the Essential matrix was estimated by using rotated points on an icosahedron. He
found that given a set of matched line segments, the Essential matrix could be estimated
as accurately as a fully calibrated trinocular system (Zhang, 1995) that was used as
the ground truth in the experiment. One problem is that there is no discussion of the
line segment matching problem, and it appears that prematched (possibly by a human
operator) line segments were used. As a result, it is difficult to predict how line segment-
based stereo vision calibration will work in the presence of noise found in real-world
images.

2.4 Regions

The primary goal of region segmentation is to reduce the amount of information that must
be considered by higher level processes. This is achieved by representing many pixels in
an image as a single object. In real-world environments this is a very difficult problem,
since it requires more than a simple clustering of similarly coloured pixels. This is due to
the fact that objects often have inconsistent colouring, caused by textured surfaces and
uneven lighting.



Figure 9: Results of scale-space watershed segmentation using Gaussian diffusion (Top)
and CLMC (Bottom) to reduce over-segmentation. Images from (Vanhamel et al., 2003).

Though many region-based segmentation algorithms exist, patterned and heavily tex-
tured surfaces remain difficult to segment, since the boundary of a textured region is
generally not well defined. Many approaches have been proposed including the use of
fuzzy logic (Hanmandlu et al., 2004), wavelet transforms (Ardizzoni et al., 1999), discrete
cosine transforms with Gabor filters (Kachouie et al., 2004), and Gabor filters with wa-
tershed transforms (Zhu and Basir, 2003). A key weakness of most of these methods is
that they rely on supervision during the segmentation, because the number of textured
regions must be precalculated for each image.

Researchers are attempting to address the problem of needing to know the number or
regions by developing statistical analysis algorithms (Pok et al., 2004; Tay et al., 2002)
that estimate the number of regions. These methods attempt to group sample areas
from the image into texture bins. Then using the contents of the bins, analysis is done
to determine the number of active textures. These methods often depend on a careful
selection of parameters for the algorithm. For many application domains a simple region
segmentation may produce reasonable enough results for practical usage.

Watershed segmentation (Gonzalez and Woods, 2001) is a popular form of region
segmentation. Using the gradients of an image, local minima are selected as the seeding
points for new regions. From the region seed points a hill climbing approach is used,
where neighbours with a higher gradient are added to the region. The hill climbing is
repeated until all the points in the image are assigned to a region. Watershed algorithms
tend to over-segment an image due to noise in the captured processes. The effects of
the over-segmentation can be reduced using a scale-space frameworks (Vanhamel et al.,
2003), like Gaussian diffusion and CLMC, for merging neighbouring regions as shown in
Figure 9.

A second method for segmenting images (McKinnon and Baltes, 2004) uses stack-based
region growing with simple colour thresholding. The threshold values are small enough
that regions only grow across a small portion of the image. These small regions are then
merged into larger regions based on the amount of overlapping area. By growing small



Figure 10: The region segmentation (bottom) is produced from the raw image (top). The
dot inside the regions represent the centroid point. Images from (McKinnon et al., 2005).

Figure 11: Convex hulls are used to represent the shape of regions. The hulls require
few points so they reduce the memory and processing requirements of the region. The
length of the lines radiating from the centre of mass are used as the hull signature. Images
from (McKinnon et al., 2005).

portions of a region then merging the segmentation is able to extract regions that contain
simple textures and uneven lighting. This method works well in many environments (see
Fig. 10), since a large number of objects feature simple surface colour and texture. The
key problem with this method is that the segmentation requires several iterations through
the image and is therefore too slow to achieve real-time performance.

Segmented regions are initially represented by defining all the pixels that belong to the



region, which is inefficient for both memory usage and matching. If only the boundaries
are stored, then the memory required to represent a region is greatly reduced. In an early
version of the region segmentation considered for use in this paper (McKinnon et al., 2005),
regions are reduced to a convex hull boundary using Graham’s scan (Corman et al., 2001).
The convex hull is then reduced to a signature consisting of a set of distance lines that
radiate from the regions centre of mass to its hull boundary (see Fig. 11). The match
quality for two regions is calculated using the sum of squared error in the signatures.
The key benefit of the signature representation is its constant size, which allows for fast
comparison. In addition, regions can be rotated quickly by simply shifting signature values
to the left or right, allowing rotated regions to be compared just as quickly as upright
regions. Region bounding with convex hulls has been tested and shown to be a good
representation of simple objects, however, more complex regions containing non-convex
boundaries are poorly represented (McKinnon et al., 2005).

2.5 Belief Propagation

Belief propagation (BP) is an iterative method for solving Markov random field (MRF)
problems (Felzenszwalb and Huttenlocher, 2004). Solutions to the stereo matching prob-
lem use a special case of BP known as loopy BP (LBP) since the message passing described
below includes cycles or loops in the nodes of the MRF. As an initial note, calculations
are performed using negative log probabilities, since max-product equations are replaced
with min-sum, which improves numerical stability. Using a set of finite labels, L, and
pixels, P , a label fp ∈ L is assigned to each pixel p ∈ P . The goal is to compute the
quality of a labeling at each pixel which maximizes the energy function,

E(f) =
∑

p∈P

Dp(fp) +
∑

(p,q)∈N

W (fp, fq) (1)

where N is the set of edges connecting the node to its neighbouring nodes. As equation 1
shows, the goal is to compute a set of labels that maximize the data match, Dp(fp), as
well as maintains smoothness, W (fp, fq), across neighbouring nodes. The optimal labeling
for each node is computed using an iterative message passing scheme that propagates
information through the MRF. The messages, mt

p→q(fq), from p to q are computed using
the function,

h(fp) = Dp(fp) +
∑

s∈N (p)/q

mt−1
s→p(fp) (2)

mt
p→q(fq) = min

fp
(V (fp − fq) + h(fp)) (3)

where N (p)/q is the neighbours of p excluding q, and V (fp− fq) is the discontinuity cost
between labels in the node. The discontinuity cost can be computed in a variety ways
including the Potts, linear or quadratic model using the distance between neighbouring
labels. The message passing is run for a maximum number iterations or until convergence,
however, convergence is not guaranteed to occur in LBP (Yedidia et al., 2003).

LBP produces good solutions in practice, but at a high cost in both memory and
computation. In (Felzenszwalb and Huttenlocher, 2004), LBP for stereo is implemented
using disparity as the set of labels. The data cost for a label is computed using the
absolute difference of intensity for a pixel in the first image from a pixel offset by the



Figure 12: The left and right input images used in the description of the algorithm.

label’s disparity in the second image. When the discontinuity cost is linear the LBP
algorithm can distribute the cost in linear time, since information is exchanged only with
neighbouring labels processed left to right then right to left. The computation time of the
LBP implementation in (Felzenszwalb and Huttenlocher, 2004) is O(nkT ) where n is the
number of pixels, k is the number of labels, and T is the number of iterations. To reduce
T , an image pyramid is used that propagates belief across a coarse to fine resolution
version of the MRF. It should be noted that memory requirements are significant, with
5nk floating point values required to process the LBP. This means that a 320x240 image
with 64 labels will require just under 100MB of memory to store the finest resolution of
the graph.

2.6 Summary

As the literature review above demonstrates, there is a significant amount of development
being done in the area of stereo depth extraction. Though global algorithms like BP and
local features like SIFT and SURF have been used extensively there is still a large gap in
the number of complete solutions using line segments and regions. The implementation
details in the next chapter outline the research work that has been done in this paper to
explore new methods of local feature-based stereo depth extraction.

3 Implementation

My approach to feature-based stereo matching involves the development of two new fea-
ture extraction and stereo matching components. The line segment and region-based
extraction and matching developed and implemented during this paper project will be
explained in detail. The preprocessing stage of the line segment and region-based algo-
rithms are the same, so they will be discussed before the feature specific details.



Figure 13: The integral images generated for the left and right input images.

3.1 Preprocessing for Line Segment and Region Extraction

In this section, the preprocessing algorithms for the line segment and region extraction
will be outlined. The steps of the preprocessing algorithm are:

1. Integral Image Generation

2. Haar Feature Extraction

3. Gradient Thinning

For simplicity, speed, and grounding, the algorithms described in this implementation will
be examined using the 8-bit gray-scale images of dimensions 320x240 shown in figure. 12.

The integral image is an efficient data structure for extracting large amounts of data
from images in constant time. In an integral image, the value stored in each pixel is the
sum of all intensities in the area above and to the left of that pixel, as shown in figure 13.
This means that the sum of any rectangular subregion inside the integral image can be
extracted with only four table lookups and three addition/subtraction operations. For
example, integral images can be used to apply a blur to an image with a simple box
kernel. This is achieved by taking the summed area in a rectangular region around each
point and normalizing by the area of the rectangle. The benefit of this method over
conventional blurs is that runtime is independent of the kernel size and, unlike separable
kernels, requires no additional temporary storage.

Another application of integral images is to extract arbitrarily sized Haar features from
an image. Haar features a contructed using multiple box filters as shown in figure 14,
and unlike a Gaussian filter provide a constant weight for each sample in the filter. There
are several Haar features that can be extracted from an image, however, this algorithm
focuses on vertical and horizontal gradient features. During the Haar feature extraction
stage of the algorithm, the two gradient features are extracted at a kernel size of 4x4 (see
figure 15), 8x8, and 12x12 pixels. The values are cached into a lookup table to improve
performance during the matching stage. These features then provide the input for both
gradient thinning and matching.

The gradient thinning algorithm is based on the Canny method (Canny, 1983), with
the addition of the Haar feature gradients and an efficient data structure. The goal of this



Figure 14: A partial set of Haar features used in the extraction of data from integral
images. The sum in the black area is subtracted from the sum in the white area. This
set includes both up-right and diagonal features.

Figure 15: The gradient magnitude of the left and right input images.

method is to extract the peak points by keeping only the strongest gradient magnitudes
along the gradient orientation. From the cached Haar features, one kernel size is selected
for gradient thinning with the most common choice being 4x4. The points are initially
thresholded using the magnitude of the gradient and are then used to activate an edge
cell (EC).

The EC is an efficient data structure for storing gradient orientations as shown in
figure 16, since it allows binary comparisons of the gradient orientation. Each EC is
a dual layer ring discretized into 8 cells, allowing a resolution of 45 degrees per ring.
The inner layer is offset from the outer layer by a distance of 22.5 degrees, and the
combined layers produce a 22.5 degree resolution for the EC. The gradient orientation
of each pixel activates one cell in each layer of the pixel’s EC. Using this activation,
the EC can be quickly tested for a horizontal, vertical, or diagonal orientation with a
binary logic operation. ECs can be compared against each other using either an equal



Figure 16: The Edge Cell (EC) binary data structure for storing orientation information.
The key benefit of the EC structure is that it allows fast binary comparisons of the
gradients.

Figure 17: The edge cell activation of the points remaining after gradient thinning.

operator, which returns true if both cell layers overlap, or a similar operator, which
returns true if at least one cell layer overlaps. The thinning direction is determined by
the EC activation, and only the strongest gradient points (see figure 17) along the thinning
orientation are processed further. Using the EC, a thinning direction can be computed
using two operations. For example, the EC shown in figure 16 can be tested to see if it is
diagonal in one binary operation, and since it is true it would then be tested to check if it
is on the forward slash diagonal, which returns false. Without the EC the fastest way to
check the thinning direction would be to use a binary search through the floating point
gradient orienation value. In most environments the binary comparisons should execute
faster then the floating point comparisons.

3.2 Line Segment Extraction and Matching

In this section, the line segment extraction and matching algorithm will be outlined. The
steps specific to this algorithm are:

1. Binary Segmentation



Figure 18: The final line segments extracted by the described algorithm.

2. Overlap Clean-up

3. Dynamic Program Matching

The binary segmentation is the core of the line segment extraction and makes use
of the EC data structure described above. For each active pixel, the EC is separated
into two Split ECs (SEC) with the first containing the inner ring activation, and second
containing the outer ring activation. An 8-neighbour binary segmentation (Gonzalez and
Woods, 2001) then tests each of the two SECs separately against its neighbours. The
binary test for the neighbour returns true if that neighbour EC is similar (at least one
cell overlaps) to the current SEC. For example, the EC shown in figure 16 is split into one
SEC with activation only in bit number 6, and a second SEC with activation only in bit 7.
During the segmenation the SEC with bit number 6 activated will join with neighbouring
ECs that have bit 5 and 6, or 6 and 7 activate. The final result of the segmentation is
that each pixel is a member of two thinned binary regions, or line segments as they will
be referred to from now on. The overlapped line segments are useful, but we generally
prefer that each pixel only belong to a single line segment.

There are two cases of overlap that need to be cleaned up to produce the final result.
The first clean-up step is the removal of any line segments contained mostly within another
longer line segment. This is achieved by simply having each pixel cast a vote for the longer
of the two line segments for which it is a member. Any line segment with a number of
votes below a threshold is discarded. The second clean-up step involves finding an optimal
cut point for any partially overlapping line segments. This is achieved by finding the point
in the overlapping area that maximizes the area of a triangle formed between the start of
the first line segment, the cut point, and the end point of the second line segment. The
overlapping line segments are then trimmed back to the cut point to produce the final
line segment. Any line segments smaller than a defined threshold are discarded at the end
of this stage. The final set of line segments (see figure 18) are then used in the matching
process.

The matching of line segments is a difficult task since the end points are generally
poorly localized and the segments can be broken into multiple pieces due to noise in the
image. In addition, some line segments may not be completely visible in both images



Figure 19: Entries along the diagonal may only move along the diagonal, while those
outside the diagonal may move towards or parallel to the diagonal.

due to occlusion. To address these problems, a dynamic programming (DP) solution is
applied to the line segment matching problem. This implementation will be defined as
DP Line Segment Descriptor Matching (DPLSDM). The DP table consists of points from
the source line segment, ls1, making up the row header, and the points from the matching
line segment, ls2, making up the column header. The goal is to find the overlapping area
that maximizes the match value between the points of the two line segments. To compare
the points of two line segments, we return to the Haar features extracted earlier. The
match value for two point feature vectors, v1 and v2, is calculated as the sum of the feature
vector match function.

Algorithm 1: match feature vector

Input: Feature vector v1 and v2
Output: The matching value for the features, R
M = 0, T = 0;
foreach Dimension i in v1 and v2 do

P = v1i + v2i;
if P >= 0 then

M = M +min(v1i, v2i);
T = T +max(v1i, v2i);

end

if P < 0 then
M = M +min(−v1i,−v2i);
T = T +max(−v1i,−v2i);

end

end

R = M/T

Each insertion into the table involves selecting a previous match value from the table,
adding the current match value, R, and incrementing a counter for the number of points
contributing to the final result.

The insertion of the match values into the dynamic programming table requires certain
assumptions to prevent the table from becoming degenerative. The assumptions are
defined algorithmically using the variables x for the current column, y for the current



row, Dp for the dynamic programming table, St for the match sum table, Ct for the
point count table, and R for the current match value. The Dp value is generated from
St/Ct and for simplicity the assignment Dp[x][y]← Dp[x−1][y−1] is actually St[x][y] =
St[x−1][y−1]+R and Ct[x][y] = Ct[x−1][y−1]+1. With that in mind, the assumptions
used to generate the Dp table are:

1. To prevent oscillation, if a match diverges from the centre line it cannot converge
back to the centre line. The entries in the table sample previous entries as shown
in figure 19, and is enforced using the algorithm 2.

Algorithm 2: compute match

Input: The empty line matching dynamic programming table Dp for ls1 and ls2
Output: The completed line matching dynamic programming table Dp for ls1

and ls2
foreach Element, x, in the ls1 do

foreach Element, y, in the ls2 do

if x = y then
Dp[x][y]← Dp[x− 1][y − 1];

end

if x > y then
Dp[x][y]← compute best(Dp[x− 1][y − 1], Dp[x− 1][y]);

end

if x < y then
Dp[x][y]← compute best(Dp[x− 1][y − 1], Dp[x][y − 1]);

end

end

end

2. No point in the first line can match more than two points in the second line. This
prevents the table from repeatedly using one good feature to compute all matches,
and is enforced by defining the behaviour of the compute best function using algo-
rithm 3. This assumption enforces a general belief that two matching line segments
will have a comparable length in the range of 50% to 200% in the number of points
in each line segment.

Algorithm 3: compute best

Input: Element index x1, y1 in ls1, and x2, y2 in ls2
Output: The best match results from either x1, y1 or x2, y2
if Ct[x1][y1] > Ct[x2][y2] + 1 then

return Dp[x2][y2];
end

if Ct[x1][y1] + 1 < Ct[x2][y2] then
return Dp[x1][y1];

end

return max(Dp[x1][y1], Dp[x2][y2]);

The best match value is checked in the last column for all rows with an index greater
than or equal to the length of ls2, or for any entries in Ct with a count equal to the



Figure 20: An example match table is shown in the top-left. The count table (Ct) (top-
right) and sum table (St) (bottom-left) are generated iteratively using algorithms 1, 2, and
3. The resulting dynamic programming (bottom-right) table is generated by combining
the St and Ct table. From the best matching entry in the outer edge of the table, the
best path is back traced through the dynamic programming table by selecting the best
previous entry using the same direction rules that generated the table.

size of ls1. Once a best match value is found, a back trace is done through the table to
find the point match that produced the best match. The position difference between the
matched points in ls1 and ls2 is used to determine the disparity of the matched pixels.
Linear regression is used to generate a disparity function that maps a point in the line to
a disparity value for each point in ls1. The best match value is then recalculated using
the disparity generated by the linear regression line, since the best match value should be
based on the final disparity match. The matching process is repeated for all ls2 segments
in the potential match set. A matching example is shown in figure 20.

To reduce the number of line segments that are compared in the DPLSDM, a few
simple optimizations are performed. The primary filtering is achieved by only comparing
line segments that have similar edge cell activations. The secondary method is to apply a
threshold to the maximum search space, and this is done in two ways. The first threshold
involves placing a bounding rectangle extended by the size of the search space around ls1,
with a second rectangle placed around ls2. If the two bounding rectangles overlap, then
the comparison continues. The second threshold is done on a point-by-point basis, with



points outside the search space receiving a match value of zero. These simple optimizations
greatly increase the speed of the algorithm, making real-time performance achievable.

A final filtering process is applied in the DPLSDM to account for line segments that
have no exact match in the second image. Noise during the line segment extraction can
cause a segment to be split into multiple pieces making the matching process more error
prone. To address this problem, the best disparity functions generated by the linear
regression at the end of the matching process is stored and then applied to each line
segment once more. A matching score for the line segment is generated by applying the
disparity function to each point in the line segment and computing the error between the
point in the first image and the displaced point in the second image using algorithm 1.
The disparity function that produces the lowest match score is used to generate the final
disparity image.

3.3 Region Extraction and Matching

The region extraction method is adapted from a path planning algorithm using Flexible
Binary Space Partitioning (FBSP) (Baltes and Anderson, 2003). The adapted FBSP
separates an image into regions of occupied and free space by recursively cutting the
image into subregions at a cutting line. The gradient thinned edge activation is used to
identify occupied and free space in the image. Any active EC in the thinned image will
be flagged as occupied, with all other points assigned as free space. The cutting line is
selected by computing the entropy and information gain, at each row and column in the
current region.

Algorithm 4: compute entropy

Input: The percentage of free, Pf , and occupied, Po, space
Output: The entropy, E, of the subregion
E = −(Pf ∗ log 2(Pf ))− (Po ∗ log 2(Po));

Algorithm 5: compute gain

Input: The entropy, E, of regions RB, R0, and R1
Output: The information gain, G, of a region cut
G = ERB − (area(R0) ∗ ER0 + area(R1) ∗ ER1)/area(RB);

Entropy and information gain is computed using the percentage of free, Pf , and occu-
pied, Po, space resulting from the candidate cutting line. The entropy E of a subregion
is calculated using algorithm 4. The information gain, G, for a base region, RB, and two
subregions, R0 and R1, created by splitting RB at the cut line is calculated using algo-
rithm 5. The cut that produces the highest information gain is used if the gain is greater
than zero. Using an integral image generated from the gradient thinned edge activation,
Pf and Po for each region can be computed in constant time for all possible cut lines. A
sample segmentation using this method is shown in Figure 21.

Stereo matching is achieved using the same feature descriptor and matching function
as the DPLSDM algorithm 1. The difference in FBS Descriptor Matching (FBSDM) is
where the feature comparison is done. Initial investigations indicated that matching cut
points in the left and right FBSP results produced unreliable results, since the cutting
order in the FBSP was inconsistent between similar images. This led to a matching
solution that required an exhaustive evaluation of the search space. It was thought that



Figure 21: The regions selected from the test image using flexible binary space partition-
ing.

the regions could be matched by creating a feature descriptor contained within the entire
boundary of the region. This matching method, however, produced poor results due to
occlusions in the image. To achieve more robust results, feature points are selected at
the four corner points and the centre of a region. From the five points, the four strongest
matches at each disparity in the search space are used to produce the final match result.
The disparity that produces the strongest matching result is assigned to all pixels in the
region.

4 Evaluation

This section describes the results of our evaluation of the described algorithms on the
Middlebury data set as well as from real-life video footage from our robots.

4.1 Middlebury Data Set

The Middlebury data set (Scharstein and Szeliski, 2002) is considered a standard in the
evaluation of dense stereo vision algorithms. The data set was expanded in (Scharstein
and Szeliski, 2003; Scharstein and Pal, 2007) to include more stereo pairs. The key ad-
vantage of the stereo pairs provided in the Middlebury set is that they include both input
images and dense disparity maps. There are several tests defined in (Scharstein and
Szeliski, 2002) for comparison of dense two frame stereo methods. These tests include the
total number of matching pixels in the entire image, in areas of occlusion, and in texture-
less regions. The area of occlusion test targets regions that are only visible from a single
image. The textureless regions provide information about the ability of an algorithms to
in-fill areas with no matchable information. These tests are not well suited for semi-dense
stereo matching, since they focus on areas with little or no matchable information. Unlike
dense algorithms, semi-dense methods focus on areas of maximum information density in
the image. Therefore, a different performace metric is used in this evaluation.



Figure 22: The matching results for unoccluded pixels within 1 pixel of error compared
against the ground truth disparity image. The above graphs show the percentage of
correctly matched pixels among the active pixels identified by the three feature extrac-
tion algorithms. Tests were performed using the entire 2005/2006 Middlebury Stereo
set (Scharstein and Szeliski, 2002).

4.2 Quantitative Evaluation

This evaluation includes four methods of stereo matching applied to images from the 2005
and 2006 Middlebury stereo set (Scharstein and Szeliski, 2002). For each of the images in
the stereo set four algorithms are used to produce a disparity image. The four algorithms



are:

1. Loopy belief propagation (LBP)

2. Speeded-up robust features (SURF)

3. Dynamic programming line segment descriptor matching (DPLSDM)

4. Flexible binary space descriptor matching (FBSDM)

LBP and SURF were selected for comparison along with DPLSDM and and FBSDM pri-
marily due to the availablity of working implementations of the algorithms. However, they
are good choices since the represent two ends of the stereo matching sectrum. SURF uses
local feature points with high dimensional feature comparison, while LBP uses a global
framework and simple color difference-based comparison. In addition, both methods have
very few parameters that require hand tuning to achieve reasonable results.

The disparity image for each method is evaluated for the percentage of active pixels
and percentage of correct matches within +/ − 1 pixel of the disparity defined by the
ground truth disparity image. The +/ − 1 threshold for correctness is used to account
for the sub-pixel disparity errors not handled in the matching algorithm. In addition,
results are evaluated at unoccluded pixels by identifying pixels that map from the left to
right and right to left disparity image. The basis for this evaluation is that if some form
of occlusion detection existed in the matching algorithm, then it would discard errors in
occluded regions which cannot be matched. Summary statistics are generated for each
method across the entire image set, and the original per image results are also shown in
Figure 22.

A paired t-test of the four methods of stereo matching is applied using the percentage
of correct matches within +/−1 for each image set. Testing if DPLSDM> SURF produces
a t-score of 7.778, DPLSDM > FBSDM produces a t-score of 6.24, and DPLSDM > LBP
produces a t-score of 3.4. Comparing DPLSDM against the other three methods produces
1-sided p’s less than 0.05 indicating that DPLSDM produces results that are statistically
better.

Two examples where all four methods performed well are the Cloth 1 and Rocks 1
image pairs. Both of these image pairs have a smooth disparity image with very little
occlusion. In addition, the objects in the environment are rich with texture; however in
the Cloth 1 image set the texture is created by a repeating pattern. The SURF features
performed the most poorly, and this probably occurred for several reasons. SURF will
encounter problems when the features appear to be very similar, since the best match must
be better than the second best match using a ratio threshold. Since the feature descriptor
for each of the textured patches in the image will be very similar, it is very likely that those
features will be discarded. The DPLSDM and FBSDM methods performed extremely well
on the two test pairs, indicating that their feature descriptor is extremely robust when
dealing with repeated textures. In general, the DPLSDM and FBSDM methods appear
to perform best when the line segments or regions are small, and the disparity image
is smooth. The LBP outperformed the other three methods on these two test images
indicating that it achieves significant benefits when disparity images are smooth.

The Art and Lampshade 1 image pairs provided the most challenge for all four meth-
ods. These image pairs contain highly variable disparity images with large areas of occlu-
sion. In addition, they contain a number of thin objects that occlude textured surfaces.



As a result, the descriptor generated at the boundary between the thin object and the
textured surface can be very different. Since SURF, DPLSDM, and FBSDM use bound-
ary descriptors they are all degraded by the complex boundary interaction. A problem
specific to the FBSDM method is visible in these image pairs as well. When large areas of
untextured surfaces are extracted it is very likely that they will be cut into multiple pieces
due to the splitting criteria. If a region contains only points inside the untextured surface,
then the region will match to some arbitrary location inside the untextured surface, caus-
ing all matches within that region to be incorrect. The LBP was degraded significantly
as well, which is most likely caused by the sharp changes in the disparity image. The
sharp changes prevent the smoothness term from having a strong effect on the outcome,
therefore data matching is more heavily relied on.

4.3 Qualitative Evaluation

To aid in evaluation, the Middlebury stereo set are preprocessed to apply constraints to
the stereo pairs. All image pairs in the Middlebury set are aligned using epipolar rectified,
so the search space is limited to the same row in both the left and right image. Also,
the minimum and maximum horizontal disparity is known for all stereo pairs. Although
these constraints are used in the evaluation of the SURF, DPLSDM, and FBSDM stereo
methods, it will be shown that all three methods work well even when these constraints
are not maintained. The LBP has been excluded from these tests due to a lack of support
for 2-D search spaces and an extremely large memory requirement.

The problem with constrained image pairs is that they represent a best case environ-
ment for solving stereo vision problems. In mobile robotics, the environment is far more
dynamic, with many unknowns with regards to the camera position and capture settings.
To rectify image pairs camera calibration or an initial estimate of the epipolar geometry
must be performed. The camera calibration can be represented in terms of absolute cam-
era positions with the essential matrix, or using the estimates in the fundamental matrix.
The calibrations can be precomputed and used very effectively if the two cameras are
locked in position relative to one another other. A problem arises, however, if the robot
must change the camera’s convergence distance to adjust focus between near and far ob-
jects. Changing the convergence distance of the two cameras changes the configuration
of the stereo cameras, a property that is difficult to compensate for using precomputed
calibrations. Allowing variable convergence also introduces a problem with minimum and
maximum disparity ranges, making it difficult to constrain the search space. In addition,
unrectified image pairs have both horizontal and vertical disparity components that in-
crease the search from a 1-D line to a 2-D region. Since no ground truth disparity image
exists for the natural scenes discussed in this section, a qualitative comparison will be
used.

The similarity of displacement images is simply evaluated by finding an assigned dis-
placement in the SURF output and locating a nearby measurement in the same position
of the DPLSDM and FBSDM output. If the displacement in all three methods are within
a few pixels they are considered similar. Due to the difference in the location of assigned
feature point, accurate quantitative result are difficult to extract from the output. As a
result, visual inspection of the similarity between the output is suggested.

The hand scene (see figure 23) is captured using two average quality web cameras that



Figure 23: Hand. Images of a hand against an indoor background. The top left and
right images are the original captured images. The resulting disparity image from the left
image for the SURF (middle-left), DPLSDM (middle-right), and FBSDM (bottom) based
stereo. Dark pixels are near to the camera, bright pixels are further from the camera.

produce low levels of noise and have similar colour properties. Prominent features in the
scene include a hand near the camera, desks in the background, a solid coloured wall, and
high saturation in one image from a window. This scene has a large disparity range in
both the horizontal and vertical direction. For the SURF, DPLSDM, and FBSDM stereo
methods a search space of +/ − 40 pixels horizontally and +/ − 20 pixels vertically is
used on the 320x240 pixel images. The resulting disparity images appear very similar
across the three methods. The region-based method produces a large area of error in the



Figure 24: The Dungeon. Images of an indoor scene with a large disparity and colour dif-
ference between the two cameras. The top left and right images are the original captured
images. The resulting disparity image from the left image for the SURF (middle-left),
line segment (middle-right), and region (bottom) based stereo matching. Bright pixels
are near to the camera, dark pixels are further from the camera.

untextured area of the image. All three features produce incorrect results in the occluded
area to the left of the hand, as expected due to a lack of occlusion handling.

The dungeon scene (see figure 24) is captured using two poor quality web cameras.
The colour difference between the two frames is significant due to brightness/contrast
differences in the camera capture settings. Like the previous example, this scene has a
very large horizontal and vertical disparity. The search space used for matching in this



image set is +/−40 pixels horizontally and +/−40 pixels vertically with an image size of
320x240. Once again all three methods produce similar disparities, with the region based
method failing on the large untextured area of the wall. This example demonstrates that
all three methods are extremely robust to colour differences in the capture device due to
the fact that they primarily focus on colour gradients.

4.4 Real-time Performance Evaluation

Runtime is an important consideration when choosing a stereo algorithm for real-time
tasks including USAR robotics. LBP, SURF, DPLSDM, and FBSDM are evaulated using
a Linux operating system with a single core 1.8Ghz processor with 1GB of RAM. The
performance evaluations are done with the Middlebury test images for consistency. For
each image pair, the loopy belief propagation, SURF, line segment and region-based
stereo algorithms are run five times with mean and standard deviation shown in seconds
of processing time in figure 25.

The first difference worth noting in the runtimes is that the LBP requires significantly
more time than the feature-based methods. High runtimes for the LBP result from every
label in every pixel requiring processing on each iteration. Feature based methods gener-
ally only require a few passes over every pixel in the input image before the data set is
reduced for matching. Figure 25 clearly demonstrates the cost of using a global solution
for the stereo matching problem.

The SURF, DPLSDM, and FBSDM stereo methods achieve similar runtime perfor-
mance which is generally below one second per frame as shown in figure 26. The books
image pair is a good example of when the environment is computationally expensive for
the DPLSDM. When the DP table used in the line segment matching involves many long
line segments the algorithm can require a significant amount of processing. In general,
the runtimes for these three methods are similar enough to not have a significant impact
on the choice of stereo algorithms.

5 Conclusion

This paper provides a description and comparison of four methods for stereoscopic dis-
parity extraction. The evaluation shows that the DPLSDM provide more reliable results
then LBP, SURF, and FBSDM for each matched pixel. Evaluations of accuracy using
the 2005 and 2006 Middlebury stereo set show that on average DPLSDM outperformed
LBP by 10.8%, FBSDM by 14.2%, and SURF by 22.8%. DPLSDM also provides runtime
performance similar to SURF and FBSDM, while significantly outperforming the LBP’s
global framework. Though DPLSDM produces more accurate results using the defined
accuracy metric it is still semi-dense with an average of 9.6% coverage in the disparity
image. In addition it provides no framework for infilling untextured regions or identifying
occluded regions of the image.

The main contribution of this paper is the DPLSDM and FBSDM algorithms that
have been described and evaluated in this paper. The development of DPLSDM included
the introduction of the EC data structure for storing gradient orientations. The EC data
structure provides a computationally efficient method of storing and performing opera-
tions on orientation information. The introduction of this data structure was essential



Figure 25: The runtime statistics of the four stereo algorithms used in the quantita-
tive evaluation. Tests were performed using the entire 2005/2006 Middlebury Stereo
set (Scharstein and Szeliski, 2002).



Figure 26: The runtime statistics of the three local feature based stereo algorithms used in
the quantitative evaluation. Tests were performed using the entire 2005/2006 Middlebury
Stereo set (Scharstein and Szeliski, 2002).



to improving the performance of the gradient thinning and line segment extraction algo-
rithms.

The line segment extraction algorithm allows fast local extraction of line segment
features from an image. Combined with the filtering stage, the algorithm produces high
quality line segments for use in stereo matching. With some additional effort focused
on infilling gaps produced by noise in the image, I believe this method of extraction
could produce some of the highest quality line segments available for computer vision
applications.

The line segments and feature descriptors extracted at each point provide the frame
work for a dynamic programming solution which achieves high levels of accuracy. The
key to making use of dynamic programming in this algorithm was the replacement of
the standard minimization and penalty value with a maximization and count table. The
maximization and count produce accurate results even when matching different size line
segments, without requiring a hand tuned penalty value. The use of dynamic program-
ming to solve line segment matching is quite novel, however, I believe that this matching
method can be significantly improved upon as discussed in the future work section.

The FBSDM introduces a new method of performing fast region segmentation. The
fast segmentation uses flexible binary space partitioning and integral images to produce
a fast over-segmented image. The regions produce good-quality dense disparity images
with the exception of regions in large open spaces. The FBSDM could be improved upon
by adding a post segmentation merging stage that combines neighbouring regions if there
is no active pixels seperating them, but this is left for future consideration.

In summary, the DPLSDM and FBSDM explore an interesting new approach to gener-
ating stereo displarity images. With some refinement, I believe these data structures and
algorithms could provide a significant improvement to stereo vision systems and computer
vision in general.

5.1 Future Work

A limitation of the DPLSDM implementation is that errors early in the dynamic pro-
gramming table propagate through the rest of the solution. Future work should focus
on replacing the dynamic programming structure with a more robust method of sharing
information between nodes on the line segment. One option would be to use belief propa-
gation with information shared between neighbouring points on the line segment. Unlike
the dynamic programming solution, belief propagation would move information both for-
wards and backward through the line segment. In addition, since the line segment does
not contain loops it is guaranteed to converge to a solution.

The feature descriptor is also a useful area for further study. Since the feature descrip-
tor is fundamental to any stereo matching algorithm it should be a priority to find the
best possible method of extracting the descriptor. A good feature descriptor must balance
the speed and quality of the extraction and matching process. This paper demonstrates
that integral images provide a fast method of feature extraction, but the feature is limited
to being built with box filters. Further investigation will be necessary to determine if the
speed benefits of integral image features offset the loss in precision of the box filter.
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