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Abstract: To develop an efficient robotic system is always a challenge, in particular if the cost of
the system is also an important factor. This paper presents an overview of development of our 10
degree of freedom humanoid, Betty. Reducing the cost of the system requires optimization of all
aspects to retain its flexibility, reliability and performance at minimum cost. During the design
and development of Betty, we only use low cost hardware and open source software to address
both cost and performance issues. We develop a real-time kernel optimized to control servo
positions and read back servo data. Parameters of this kernel are controlled by a PID controller
resulting in an adaptive real-time kernel. After solving the forward and inverse kinematics of
our robot, we implemented portrait drawing as a sample application showing the performance
of our system.

Keywords: Real-time Embedded System, inverse and forward kinematics, simulation, portrait
drawing, PID.

1. INTRODUCTION

Designing and implementing a cost-oriented automation
(COA) system (e.g., a humanoid robot) is a crucial tasks
in the development of future service and entertainment
robots. Generally humanoid robots like ASIMO, HOAP
and QRIO are too expensive to be viable, commercially
successful consumer products. They are only affordable to
some well-funded research organisations. In recent years
there were several research publications discussing draw-
ing robot which usually required expensive equipments,
Calinon et al. (2005); Lu et al. (2009); Lin et al. (2009)
with high precision position and force feedback. So one of
our motivations in the research is to design and develop an
affordable humanoid robot system which could overcomes
this problem.

By implementing forward kinematics, the length of each
link and the angle of each joint is measured so we can
calculate its end effector position by using the Denavit-
Hartenberg (DH), Spong and Vidyasagar (2006) conven-
tion. In inverse kinematics, the length of each link and po-
sition of the end effector is given and we have to calculate
the individual joint angles. Currently we use a kinematic
diagram to solve the inverse kinematics problem. Finally,
we test the kinematics control by running it on different
applications: simulation, drumming, and portrait drawing.
The simulation is developed in OpenGL to provide a 3D
model view. We use OpenCV in Betty’s visual servoing
system to output a sketch-like portrait from the camera
so it could be drawn. Visual servoing is using computer
vision data in the servo loop to control the motion of a
robot, Chaumette and Hutchinson (2006, 2007).

The paper is organized as follows. In section 2 and 3 we
will look into hardware and software of Betty. Section 4
introduces forward kinematics and inverse kinematics of
Betty.

2. HARDWARE

The Upper body of Betty consists of a ten revolute joints
with ten degrees of freedom (DOF). Its head has four
DOFs which give pan, tilt, swing and one DOF for the
mouth. Each of its arms provides three DOFs, shoulders
allow lateral and frontal motions, and and elbows give
lateral motion. These joints are constructed by four Dy-
namixel AX-12 servos in the head and three Dynamixel
RX-64 servos for each of its arms as shows in Fig. 2. The
main reason we chose RX-64 to construct Betty’s arms is
it has higher final maximum holding torque, 64.4∼77.2
kgf.cm compared to only 12∼16.5 kgf.cm for the AX-
12 Robotis (2007, 2006). It will allow a RX-64 servo to
generate sufficient torque to support the weight of the arm.

In order to control the servos, we use Dynamixel’s ded-
icated controller, CM-2+ from Robotis as the central
control unit with its AVR ATmega128 microcontroller. The
real-time OS establishes communication with the servos.
The connections on the CM-2+ is illustrated in Fig. 1, Fig.
2 and Fig. 3 show the overview of Betty’s upper body. For
Betty’s vision, it has two Logitech QuickCam Orbit MP,
1.3 Megapixel, pan and tilt motorized webcam. The total
cost of the hardware is less than USD 3000.



Fig. 1. Overview of Betty’s upper body

Fig. 2. Betty’s joints construction

Fig. 3. CM-2+ Connection

3. SOFTWARE

3.1 Real-time Embedded System

The real-time embedded control system is needed enable
the communication between a controller program and the
robot’s servos. We develop a pre-emptive multi-tasking
kernel in the Control Program to handle several tasks.
Currently our kernel supports four tasks, Lau and Baltes
(2010). The first task is an idle task to toggle a LED which
is always ready to run to ensure that at least one thread is

Table 1. Communication Protocols

Protocol Command Structure

Absolute Position

FF011982828282828282828282E5
FF: Header
01: SyncWrite command
19: Speed
82: Position
E5: Checksum = lower byte of
∼(01+19+82+82+82+82+82+82+82
+82+82+82)

running and the task switcher is working properly. The
second task is the PC thread that handles serial port
communication between the Motion Editor program and
the CM-2+. The third task is the servo thread which will
prepare commands to send from the CM-2+ to the RX-
64 and AX-12 servos. Finally, the last task is the torque
thread that reads the current torque of each servo and
sends it through the PC thread. The pre-emptive multi-
tasking kernel uses a timer interrupt to switch between
different threads at an initial timer frequency of 10Hz. To
execute task switching, the kernel will save the complete
task state on the stack and then store the stack pointer in
the task control block (TCB).

We implement interrupt linear queue as the data structure
to handle communication data. Queue is a data structure
where item insertions are made at rear and item retrievals
or deletions are made at front of the queue. Because the
first item added to the queue will be the first one to be
removed so it is commonly refer as first-in-first-out (FIFO)
data structures, Jeff (2010). We also implemented circular
queue solution and the experimental results are discussed
in our other publication, Lau and Baltes (2010).

3.2 Motion Controller

Motion Controller is a program running in a PC to control
the motion based on the vision input. Currently we use
Absolute Position as the communication protocol which
has advantage of simplicity in implementation compare
to other protocols. The different protocols were discussed
in another paper, Lau and Baltes (2010). Based on this
protocol, the Motion Controller will send instructions to
the CM-2+’s Control Program. For instance, we use a
SyncWrite command to move the servos to specific po-
sitions synchronously. Table. 1 shows the structures of the
Absolute Position protocol where SyncWrite commands
were sent to move all servos to move from position 512
to 520 at the speed of 100. We divided the positions and
speed by 4 so each of them can be wrapped into one byte
in hexadecimal. According to Table. 1, each SyncWrite
command of the Absolute Position protocol will send 14
bytes of instruction in one packet.

3.3 PID Controller

Proportional-Integral-Derivative, PID controller is the
most popular industrial feedback control algorithm. Im-
plementation of the PID controller in our Control Pro-
gram is based on the feedback of latency and jitter from
torque responses which will modify its context switching
frequency. We need to ensure that our pre-emptive kernel
is robust enough so that the Control Program can modify



Fig. 4. Block diagram of PID controller

its context switching frequency in real-time. Fig. 4 shows
the theory of the PID controller.

In the PID control loop, the control output (co) is calcu-
lated based on the following equations:

e(t) = sp− pv (1)

Pout = KP e(t) (2)

Iout = KI

n
∑

t=0

(e(t)) (3)

Dout = KD[e(t)− e(t− 1)] (4)

co = Pout + Iout +Dout (5)

Firstly, the error, e(t) is calculated in equation (1) by
subtraction of the set point, sp and the process variable, pv
which is the latency of current run, t where t = 0, 1, 2...n
. Then the proportional, integral, and derivative terms
of output are determined by equations (2), (3) and (4).
Finally, all PID outputs are summed to calculate co as
equation (5). KP , KI and KD are the constants gain of
proportional, integral and derivative respectively. The PID
controller will find the context switching time which has
the lowest control output and it will be adjusted to reach
the desired set point based on the latencies and jitters
measurements.

4. IMPLEMENTATION

By solving Betty’s kinematics problem with the Denavit-
Hartenberg (DH) Convention in forward kinematics and
geometric approach in inverse kinematics; it allows Betty
to perform in three applications which are Wii drum
kit, portrait drawing and simulation. Fig. 5 explains the
coordinate frame system attached and assigned to each
arm.

4.1 Forward Kinematics: DH-Convention

In the interest to calculate the global position of Betty’s
hands, we have to compute the forward kinematics. Al-
though, a simple two-joint planar manipulator analysis is
possible to solve with some simple transformation matri-
ces. But the accumulated kinematics analysis of multiple-
joint manipulator can be extremely complicated. Denavit
and Hartenberg used screw theory in the 1950’s to show
that the most compact representation of a general transfor-
mation between two robot joints required four parameters.
These are now known as the Denavit and Hartenberg con-
vention (D-H convention) and they are the de facto stan-
dard for describing a robot’s geometry, Hooper (2010a).
Thus, this project applies DH-convention to solve the
forward kinematics analysis problem because it introduces
a simplified presentation to calculate the position and the
orientation of the end effectors which is widely used in
robotics and animation. In this convention, each homo-
geneous transformation, Di is represented as a product of

Fig. 5. Kinematic diagram of Betty’s coordinate frame
system

Fig. 6. XY-plane projection of Betty’s right arm

four basic transformations matrices get the global position
of any particular point at joint i, Spong and Vidyasagar
(2006).

Di = Rz,θi
Tz,di

Tx,ai
Rx,αi

=

[

cosθi −sinθi 0 0

sinθi cosθi 0 0

0 0 1 0

0 0 0 1

][

1 0 0 0

0 1 0 0

0 0 1 di1
0 0 0 1

][

1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1

][

1 0 0 0

0 cosαi −sinαi 0

0 sinαi cosαi 0

0 0 0 1

]

=

[

cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di
0 0 0 1

]

(6)



Table 2. The DH-parameters for both arms

Joint,i ai αi di θi

1 0 α1 =90 0 θ1

2 l0 α2 =90 0 θ2

3 l1 α3 =0 0 θ3

4 0 α4 =90 0 θ4

5 l0 α5 =90 0 θ5

6 l1 α6 =0 0 θ6

In equation (6), Rz,θi is rotation matrix for angle thetai by
z-axis, Rx,αi

is rotation matrix for angle alphai by x-axis,
Tz,di

is transformation matrix for length di by z-axis and
Tx,ai

, is transformation matrix for length ai by x-axis.
The detail descriptions of the DH-parameters are:
ai - the distance between two joint axes measured along
x-axis.
αi - the relative twist between two joint axes measured
about x-axis.
di - the distance between the two perpendiculars measured
along the joint axis, z-axis
θi - joint angle about the z-axis

According to the coordinate frame system in Fig. 5, the
DH-parameters are shown in Table 2.

To establish the homogeneous coordinate between origin
and arms, both shoulders’ coordinate frames are translated
to the origin at Betty’s torso with translation matrices, TL

and TR for left and right shoulder respectively.

Where, TL=







1 0 0 t0
0 1 0 0
0 0 1 −t1
0 0 0 1






and TR=







1 0 0 t0
0 1 0 0
0 0 1 t1
0 0 0 1







Once the DH-parameters and relative frames are deter-
mined, we will combine the transformation matrices as the
product of translation and DH-Convention matrices. The
example shown in equation (7) and (8) is the calculation
of the right hand’s global position which denoted as PR;
based on the rotation angles of θ1, θ2 and θ3 from the
origin O with the transformation matrix MR.

MR = TRD1D2D3

=

[

1 0 0 t0
0 1 0 0

0 0 1 t1
0 0 0 1

][

cosθ1 0 sinθ1 0

sinθ1 0 −cosθ1 0

0 1 0 0

0 0 0 1

][

cosθ2 0 −sinθ2 l0cosθ2
sinθ2 0 cosθ2 l0sinθ2

0 −1 0 0

0 0 0 1

]

[

cosθ3 −sinθ3 0 l1cosθ3
sinθ3 cosθ3 0 l1sinθ3

0 0 1 0

0 0 0 1

]

(7)

PR(x, y, z) = MRO (8)

4.2 Inverse Kinematics

Previously we discussed how to calculate the global po-
sition with DH-Convention based on the assigned servos’
rotation angles. This section is concerned with the inverse
method of finding each of the joints’ angle with a given
global position. For the implementation of Betty’s hand
positioning, we use the geometric approach for solving

the inverse kinematics problem. The reason of using ge-
ometric approach is because the design of Betty’s arms
is geometrically simple. Therefore, it is easier to solve
compare to general inverse kinematics problem, Spong and
Vidyasagar (2006). Generally there are two solutions to a
inverse kinematics problem, which could be ± 45 degrees
and this multiple solutions scenario adds to the challenge
of the inverse kinematics problem. However we can identify
the correct solution with a trigonometric function called
atan2 that will find the proper quadrant when given both
the X and Y in a theta = atan(Y/X) argument, Hooper
(2010b). Based on Betty’s coordinate frames system in Fig.
5 and Fig. 6 , the equations to calculate the servos’ rotation
angles for Betty’s right arm are shown as:

θ2 = atan2(Z/Y ) (9)

r2 = X2 + Y 2 (10)

β = acos((l2
1
+ l2

2
− r2)/(2l1l2))...(Law of Cosines) (11)

θ3 = π − β (12)

θ1 = atan2(X/Y )− asin(l2 ∗ sin(beta)/
√
r2) (13)

4.3 Simulation

Simulation is a fundamental tool in humanoid robotics,
fulfilling many important roles. For example, it is used
to validate controllers with respect to safety and per-
formance considerations; the controller development cycle
of programming, testing and improvement is made more
convenient through simulation, which should be easier,
safer and quicker to execute than experiments on a real
robot, Joshua et al. (2008).

This program illustrates the simulation model of Betty’s
upper body with interactive moving joints which will
rotate according to nine joint angles. One of the main
objectives of this project is to illustrate various features in
OpenGL libraries which will demonstrate model rendering,
environment setting, visual effects and interactive control
capabilities. Another objective of this simulation program
is to avoid any miss-behaviour and collision of the robot in
the physical world control which will cause damage to the
servos. Therefore, this project implements DH-convention,
a forward kinematics analysis method to calculate the final
position of the end effectors, which refer to Betty’s hands.
This approach will enable the collision detection between
hands and obstacle based on the global positioning of
hands and objects. Where is demonstrated with Betty’s
right hand and a wall. Figure 7 illustrate basic simulation
model of Betty and warning detection when Betty’s right
hand collides with the wall by moving shoulder joint.

4.4 Drumming

This is a simple application to play Wii drum kit with
Hydrogen (2010a) and Joy2Key (2010). Hydrogen is an
advanced drum machine created by Alessandro Cominu.



Fig. 7. Simulation with wall and hand collision warning

Fig. 8. Flow diagram of Betty’s OpenCV image processing
module.

Its main goal is to provide professional yet simple and
intuitive pattern-based drum programming, Hydrogen
(2010b). Joy2Key is a keyboard emulator for joysticks
or gamepad. In this project it translates the drum pad
input from Wii drum kit into equivalent keyboard input
in Hydrogen. The output of this project was performing a
series of drumming motion with Betty’s inverse kinematics
control on a Wii drum kit.

4.5 Portrait Drawing

The objective of this project is to recognise human faces
and convert them to line art images which will be sketched
by using Betty’s inverse kinematics control. We convert
the 2D drawing into a set of joint angles which run on
the Betty’s right arm. Flow diagram in Fig. 8 shows
the general algorithm of image processing module in the
Motion Controller. In this module, we implement the Haar
Cascade Classifier (HCC) in OpenCV to perform face
detection. This classifier uses an XML file in OpenCV
root directory to classify the image. By default, OpenCV
provides several pre-trained classifiers to serve different
profiles such as frontal face, full body, lower body and
upper body. This project only interested in face detection,
so we use haarcascade frontalface default.xml, one
of the four provided frontal face classifier in OpenCV, Gary
and Adrian (2008). Based on one second detection interval,
if three consecutive faces are detected, a grayscale image
will be saved with cvHaarDetectObjects flag variable and
CV HAAR DO CANNY PRUNING option.

CV HAAR DO CANNY PRUNINGwill enable HCC to skip image
regions that are unlikely to contain a face, reducing com-
putational overhead and possibly eliminating some false
detection as discussed by Robin (2007). Then the module
will run the Canny edge detection algorithm in OpenCV
to convert a selected grayscale image to line art image by
adjusting the low and high thresholds as shown in Fig. 9.

After the Canny image is generated successfully, each pixel
will be mapped into 2D drawing space which is based
on the XZ-plane of Betty’s right arm coordinate frame.
Fig. 10 illustrate the mapping of pixels from left to right
and top to bottom. The mapping conversion is shown in
equations (14) and (15). Where (x, z) and (x′, z′) devote

Fig. 9. OpenCV image processing module

Table 3. Number of pixels in pixel mapping
images after pixel reduction

Pixel distance 0 2 5 10

Number of pixels 1502 1005 838 744

Fig. 10. Pixel mapping of drawing space image

respective coordinate on grayscale image and drawing
space; x′

start is the starting of W ′ and z′end is the ending
of H ′.

x′ =
x×W ′

W
+ x′

start (14)

z′ =
z ×H ′

H
− z′end (15)

Initially the total number of pixels in a drawing space
image is too large and it will take a great amount of time
to sketch the portrait in a dot matrix approach. So we use
a simple pixel reduction algorithm to reduce the number of
pixels by considering the distance between pixels from left
to right and top to bottom which represent by PD. Fig.
11 explains the algorithm which will measure the distance
between pixel where it will omit not more than two pixels
in consecutive pixels as seen in fourth row. Table 3 shows
the differences between total number of pixels according to
different PD values. Fig. 12 shows the comparison between
original Canny image, pixel mapping images with different
PD and actual drawing output when PD = 10 is selected.

5. CONCLUSION AND FUTURE RESEARCH

In this paper we demonstrate a cost-effective humanoid
robot based on its design and development of hardware



Fig. 11. Pixel reduction algorithm

Fig. 12. Comparison between Canny image, different pixel
distance and actual drawing output

and software. We also discussed three projects that imple-
menting forward, inverse kinematics, PID and vision sys-
tem. In future, we will work closely on active stereo vision
processing, human-robot interaction and speech synthesis.
We also plan to re-design Betty’s arms by adding wrists
which will significantly improve Betty’s motion control and
flexibility.
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