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Abstract

Intelligent agents designed to perform in the real world should by definition
be tested and evaluated in the real world.  However, this is impossible in
many situations: a lack of resources may rule out construction of a complete
robotic environment, for example, or the desired domain may be physically
inaccessible for testing.  In such situations, the use of a simulation system to
provide an environment in which to test and examine the intelligent system
is necessitated.  In the past, such systems have acquired a poor reputation
within the AI community, mainly due to the sometimes grandiose claims of
systems that are tested solely under simulated conditions.  In this paper we
explore the conditions under which simulation is justified, examine the
inadequacies of currently available systems for the testing and examination of
intelligent agents, and describe Gensim, a new system designed to address
these inadequacies.  Rather than providing a single, parameterized domain,
Gensim provides a collection of facilities allowing users to design complete
environments for examining and testing intelligent agents.  The system also
provides a clean interface, allowing widely differing types of agents to be
studied.  While some bias is unavoidable, these facilities are designed to be as
widely applicable as possible.

1.  Introduction: Simulation and Intelligent Systems Research

Intelligent agents designed to perform in the real world should by definition
be tested and evaluated in the real world.  However, intelligent systems
continue to be developed using simulated worlds despite this obvious fact:
typically, an agent is designed to demonstrate some aspect of intelligence and
is tested in simulation, with the assumption that the demonstrated
behaviour will scale appropriately to the real world. However, the continuing
disparity between the relatively small number of deployed systems and the
large number of systems that perform only in simulated environments has
come to be one of the strongest and most often cited arguments against the
utility and future of intelligent systems (e.g. [Dreyfus, 1981; McDermott, 1981]).
This criticism is not undeserved.  In many early cases, simple simulated
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worlds were chosen innocently, under the mistaken assumption that the
differences between such environments and the real world were
insignificant.  However, many systems are tested in simulated environments
that make unreasonable simplifying assumptions in order to avoid issues
that would be problematic to the system.  Very few of these are deliberate
attempts to mislead, but the poor science demonstrated in the unrealistic
assumptions made by such systems has led to suspicion of any modern
intelligent system that performs in a simulated environment.

The difficulty with this suspicion is that it confuses problems that may arise
from using a simplified environment with those that arise from using a
simulated environment.  Simplified environments can never be like the real
world, and only intensive analysis of the assumptions made in constructing
these worlds can gauge the applicability of the results obtained from them.  A
simulated environment need not be an overly simplified model of reality.
Indeed, even simplification is not in and of itself a problem.  Pollack (in
[Hanks et al., 1993]) goes to great pains to illustrate that not only is
simplification not a problem, it is as absolutely necessary for experimentation
in AI as it is in any science.  Simplification is required to isolate a given
phenomena in a complex system, and is a critical tool to any scientific
endeavour.  Any difficulty lies in the lack of analysis of assumptions made
when using a simplified world.  Rather than qualifying results obtained from
such research, general (and sometimes grandiose) claims are often made that
are not logically entailed by the research itself.

When (in AI) we state that the environment a given agent operates in is a
simulated  one, it means only that the objects around the agent and the
physics of the world itself exist only in the form of a computer program.  The
agent interacts with information provided by the program rather than the
physical objects themselves.  This program can be as complex or as simple as
desired: simulation does not necessarily imply over-simplification.  The
suspicion of simulated environments is justified in that in many cases,
simplification is hidden beneath simulation (due to the lack of analysis
described above).  In any truly scientific effort, however, the two issues should
be dealt with separately.

Despite this overall suspicion, there are many logical reasons for using
simulated environments for testing intelligent agents.  The foremost of these
concerns the nature of the field of Artificial Intelligence itself.  AI is an
immature science, and as such it does not yet possess a wealth of broadly
accepted theories to form a concrete foundation for ongoing research. The
result of this is that researchers in learning, for example, cannot make use of a
generally accepted theory of planning to qualify or simplify their research.
Similarly, researchers in vision cannot make use of a generally accepted
theory of learning.  In both of these cases, any overlap from one subfield to
another entails making assumptions about unsolved problems in the other
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subfield (qualifying and possibly compromising one's own research) or
embarking on a number of potentially extremely time-consuming research
projects in order to provide a more solid foundation for the original research.
Nowhere is this overlap felt more than research involving intelligent agents.
Almost any research project in this area involves the integration of a number
of areas (e.g. vision, knowledge representation, robotics), with the necessity of
solving open problems in those areas or making assumptions about the
nature of those problems.  Thus, if one develops a theoretical architecture for
an intelligent agent, unless one intends to solve every open problem in areas
such as computer vision and robotics, one is forced to make (possibly
incorrect) assumptions about how these various peripheral aspects will
operate when more complete theories are available.

The use of a simulator in intelligent agent research is thus largely an issue of
practicality: the large collection of interrelated problems encountered when
implementing an intelligent agent necessitates the use of a simulator to aid in
accounting for those pieces of the theory that are not complete.  The focus of
any individual research project in intelligent agency may be quite narrow (e.g.
demonstrating the utility of a new form of representation within an
intelligent agent).  In such cases, it is irrelevant (from the point of view of the
original research) to provide complete answers to peripheral problems such
as sensing, given the effort required to solve these problems.  Admittedly,
peripheral areas such as sensing are not independent of other aspects of
intelligent agency, but can be de-emphasized as long as the assumptions made
to deal with them are explicit and reasonable, and that results from such
research are interpreted in light of those assumptions.   Indeed, Pollack (in
[Hanks et al., 1993]) points out that the assumptions we make about
peripheral areas can suggest further experiments involving these areas: an
important consideration given AI's current stage of maturity.  In addition to
conserving research resources, simulators are also often required because of a
lack of physical resources. Few research facilities can afford the staggering cost
of supplying enough robotic technology to meet the needs of all the
intelligent systems research projects they support [Etzioni and Segal, 1992] nor
the manpower to maintain this equipment.

There are many reasons beyond resource limitations for choosing to use a
simulator in the development of intelligent agent designs. A software testbed
can, in many ways, provide a great deal more control over the testing
environment when compared to testing intelligent systems in the real world.
A simulator can present a common environment across many trials,
providing exactly the same initial state and planned course of events for each,
and can be used to isolate the testing environment from interference from
aspects not controllable in the real world [Cohen et al., 1989].  Because of these
control abilities, domains can also be saved and shared, allowing simulation
environments to serve as a broad metric for comparing intelligent agents
[Howe, 1993; Hanks et al., 1993]. Using simulated domains, a long series of
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trials can be performed with much greater speed than could ever be expected
of the real world.  Simulated environments can also duplicate worlds that are
inaccessible for testing, or are too dangerous to risk physical loss of equipment
during system development.    Simulated environments are generally more
easily modified than the physical world to suit new testing conditions, and
simulators can also be used to create worlds that are more demanding than
any physical world.  This allows the developer to test an intelligent system at
extreme conditions (e.g. a high frequency of problem cases) that might be
difficult to stage in a physical environment.

Still other advantages come about as a result of using software over hardware.
Current hardware technology causes many problems in demonstrating AI
systems: for example, robotic units often break down and cause errors
unrelated to the intelligent system under evaluation.  Such failures can
sometimes occur with great frequency, slowing down the research process
considerably [Etzioni and Segal, 1992].  Given that most cutting-edge research
will be near or beyond the limit of current hardware technology to adequately
support,  it will often be more reliable to examine the behaviour of the system
under simulation rather than in the real world.  Indeed, many laboratories
with a wealth of robotic equipment continue to use simulation for precisely
these reasons.  Etzioni and Segal [1992]  also point out that current robotic
technology can also severely limit realism: manipulators and visual sensors
often cannot perform to the degree that is required in some domains.  This
necessitates the same kinds of simplifying assumptions for which simulators
are criticized.   Indeed, many projects involving the use of robotics artificially
manipulate and simplify the physical domains in which they operate to cope
with hardware limitations [Etzioni, 1993].

This is not to say that simulation is always an adequate substitute for reality:
the use of a simulator for evaluating intelligent agents is by no means
without disadvantages.  Howe [1993] points out that the very ease of use that
simulators bring to the testing process can allow researchers to construct
experiments too quickly, without the clearly stated hypotheses and careful
methodology that physical domains encourage.  However, the most obvious
difficulty with employing a simulator has already been alluded to: the ability
to make simplifying assumptions (even to avoid issues that are impossible to
deal with otherwise) can easily lead to making broader,  invalid assumptions
about the way the world works [Agre, 1988].  This problem has also been noted
in other fields where simulation is employed:  In general, the control that
simulation models allow can also allow researchers to model only those
aspects of an environment that they choose to be significant, ignoring other
aspects that may have a much greater impact on results than is initially
assumed [Friedland, 1977].

In the past, such assumptions have led to an overall lack of understanding of
the physical world and how agents operate in it (which in turn have resulted



-5-

in many of the limitations of classical planning theories).  However, relying
on completely implemented peripheral systems, as many recent systems
attempt to do, forces much of the overall research effort to be expended on
intricacies that may not be the real focus of research.  It also forces the
reasoning in such systems to operate at a low level, and in general restricts
such systems to simple environments: the focus is on making complete
simple systems rather than complex systems that leave some peripheral
questions unanswered.  Systems that include complete sensory and effectory
apparatus (e.g. [Agre, 1988; Chapman, 1990; Maes and Brooks, 1990] have
shown that the complete implementation approach will work in reactive
domains where few if any high-level, long-term decisions are required.
However, more complex domains involving extensive coordination and
high-level decision-making are beyond the scope of such approaches.  Clearly,
both approaches that focus on the complete implementation of simple
systems as well as those that focus on given aspects of complex systems have
their roles to play in intelligent systems research.  Both perspectives approach
the same puzzle from opposite ends, and each makes its own assumptions.
What is important from a scientific viewpoint is that those assumptions be
explicit and that results produced be explained in light of those assumptions.

Despite the obvious need for simulation in the design and testing of
intelligent agents, the tools currently available for this purpose are less than
ideal.  Many are useful only for testing particular types of agents, or even one
particular agent design.  Others provide only one simple domain for testing.
Because of this, many intelligent agent research projects   (e.g. [Hammond et
al., 1990; Agre and Horswill, 1993]) simply develop their own simulation
systems particular to the agent and domain of interest, rather than attempt to
constrain their research into a form suitable for an existing simulation tool.
In our own work, we found this to be unfeasible.  Because of the redundancy
involved in re-implementing simulation technology for various projects,
and the modifications required to cope with changing designs during the
evolution of a single project, we desired a simulation system that could be
tailored for use with a wide variety of agents in a wide variety of
environments.  In this paper, we review the specific requirements for such a
simulator, and illustrate the problems with existing systems in light of these
requirements.  We then describe Gensim, a simulation system designed to
function as a generic testbed for intelligent agent designs, and describe the
features that make it uniquely suitable for these purposes.

2.  Requirements of a Simulation System for Intelligent Agents

Simulation systems have become an important tool for examining real
systems under research conditions, in fields ranging from physiology to
natural resource management.  A simulator provides a model of a real
system, allowing the modeller to study how that real system behaves under
conditions of interest, and examining the consequences on the entire system
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of a change in some aspect.  However, a simulation system for intelligent
agents has an additional motivation that brings much additional complexity
to such a system.  In addition to providing an accurate account of change in a
modelled environment, a simulation system for intelligent agent designs
must provide a virtual reality for the agents existing in the simulated
environment.  It must provide a view of the world to intelligent agents
through their own perceptual systems, and integrate the actions of these these
agents (through their effectory systems) with change from other sources in
the simulated environment  [Anderson and Evans, 1994].

In a simulation system for intelligent agents, neither of these two roles can be
emphasized at the expense of the other.  The current stigma attached to using
simulation systems in conjunction with intelligent systems development
illustrates what happens when sacrifices in the realism of a simulated
environment are made.  Similarly, if the accuracy of the environment
surrounding a collection of intelligent agents is stressed over the accurate
interaction between the agents and that environment, the performance of
those agents will not reflect reality.

The ability to provide a virtual reality for intelligent agents is a broad goal of
simulation testbeds for intelligent agent development.  Any individual
research project will have many more specific needs, however.  We may
desire to examine a single agent design across a variety of problem domains,
or to examine the performance of a range of agents within a single domain.
The particular focus of each research project dictates additional requirements:
one may be interested in decision-making in a single agent, for example, or
cooperative behaviour between multiple agents.  To deal with such a range of
interests, any simulation system designed for intelligent agent testing must be
generic: it should make as few assumptions as possible about the nature of the
environments it is modelling, and the agents that inhabit those
environments.  It is impossible to completely eliminate all such assumptions,
simply because agents and the simulator must communicate with one
another in order to provide perceptual information to agents and to inform
the simulator of the agent’s decisions.  Such communication mechanisms
constrain the design of agents and the design of the simulator itself.
However, like all other assumptions, their impact should be minimized.

In addition to placing as few constraints as possible on potential agents and
environments, a generic simulator must endeavour to provide the features
necessary to support the wide range of projects in intelligent agent research
described above.  In order to support testing of various agent designs across a
wide variety of environments, for example, a simulation system for
intelligent agents must be modular.  Each agent, ideally, should be a
completely separate computational process from the rest of the simulator, and
should have an identical interface, so that agents can be easily interchanged.
Such a simulation system must also be able to support multiple intelligent
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agents in a single environment.  While many projects involve the reasoning
methods of only a single agent, few realistic domains are exclusively single-
agent domains, and one common criticism of an intelligent agent design is a
lack of provision for reasoning about other agents.  Thus, the ability to
support multi-agent simulations is crucial for a generic simulator.  Even
though much of the responsibility for coordinating actions between multiple
agents rests with the agents themselves (e.g. having the ability to reason about
how other agents may interfere with one's actions, and preventing and
correcting for such interference), special support for multiple agents must be
implemented in a simulator as well.  This includes aspects such as separate
storage space for the knowledge of multiple agents and the ability to handle
change from several different agents at the same time.

Given that a generic simulator is to be used to run an arbitrary collection of
agents in a given domain, the relationship between agents and their
simulated environment must also be clear and explicit in order to ensure the
accuracy of the simulation.  Among other things, any assumptions about the
timing of actions, chains of causation over time, sensory abilities, and way in
agents communicate (e.g. refer to objects) with the simulator must be clearly
understood by modellers to ensure accuracy and utility.

A lack of precise description of such features has traditionally been a problem
in simulation systems for intelligent agents.  Details of communication
between an agent and simulator are often sketchy, as are assumptions made
by the simulator about the internal operations of agents and other parts of the
domain.  Indeed, basic concepts such as what the simulator considers an
"action" or an "event" to be is often left to speculation.  This makes it
exceedingly difficult to rate the suitability of a simulator for a given
application.

The interface between the agent and the environment should also be as
simple as possible, to reflect the real world (and rely on fewer assumptions
about the domain and agents).  The input of the simulator (output of primary
agent processes) should ideally be the direct actions that the agent is
performing on each object in the environment (e.g. grasp teapot; lift teapot).
The agent will have its own expected set of results for each action it is carrying
out, and the simulated environment confirms or refutes these expectations
and carries on a simulation of a causal consequences of the actions of the
agent.  For example, the agent may pick up the teapot and expect the teapot to
be in its hand.  The simulator, upon receiving the information that the agent
is carrying out this action, can then update the environment accordingly:
depending on the physics defined for the environment, and the particular
conditions in effect at the time, the teapot may or may not actually wind up in
the agent's hand.  The agent can then be informed of what actually occurred.
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Finally, a generic simulator should be able to control many aspects of the
functioning of the environment.  The actual domain features that must be
controlled vary from experiment to experiment, but a generic simulator
should provide for control of elements that are common to many domains
(e.g. how much sensory information is presented to the agent, how often the
agent receives such information, how often the environment may be altered).

These criteria represent the basic requirements of a generic system for testing
and examining designs for intelligent agents.  While they were arrived at
through the analysis of the the needs of our own ongoing research projects
[Evans et al., 1992; Anderson, 1995], we believe these projects to be
representative of current research trends in intelligent agency, both in terms
of their general objectives and their requirements for simulated
environments.  Other suggestions for requirements exist: for example, [Hanks
et al., 1993] review specific issues in intelligent agent research, with the
implication that simulation must look toward providing support for such
issues.  Many of these points are subsumed by the very fact that such a
simulator must be as generic as possible. For example, supporting a wide
range of environments entails several of the requirements of Hanks et
al.[1993], such as providing for external events and using a well-defined
model of time.

3. Existing Simulation Systems

In recent years, several simulation testbeds have been developed for the
purpose of testing and examining intelligent agent designs.  These include:
Phoenix [Cohen et al., 1989; Howe and Cohen, 1990], a generic simulator that
is used as part of a larger system for controlling fire-fighting agents; Tileworld
[Pollack and Ringuette, 1990], a grid-based system for examining the
performance of intelligent agents in domains where the stability and
importance of goals varies; Mice [Durfee and Montgomery, 1989; Montgomery
et al., 1992], a multi-agent testbed also based on a grid-like structure; and Ars
Magna [Engelson and Bertani, 1992], a sophisticated system which attempts to
accurately simulate the functionality available in current robotic technology.

Each of these simulators is in itself a very powerful system, and each has
particular strong points that make it well-suited to some aspect of intelligent
agent research.  Mice, for example, provides highly specialized facilities for
multi-agent interaction, is highly programmable (thus providing for a wide
range of control over the environment), and provides a concise interface
between agents and the simulator.  Tileworld, while being somewhat less
general than Mice, provides an even more easily modified environment, in
that it is a single grid, with temporary holes the agent is expected to fill by
moving tiles, rather than a programmable environment.  The system
provides various parameters (e.g. the length of time a hole will exist) that
allow the user to vary the environment.  The system has also been
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demonstrated to be of use in several domains, and has been used outside its
original development group for the testing of problem-solving algorithms
[Kinney and Georgeff, 1991].  Phoenix provides facilities that have allowed its
developers to construct a very complex fire-fighting environment, both in
terms of the interaction of multiple agents and the number, kind, and
distribution of objects in the environment. The system also allows agents to
have differing, limited perspectives of the complete environment. Finally,
Ars Magna provides a toolkit for constructing complex environments that
allow simulation of current robotics technology.  The system provides for
limiting the perceptual abilities of agents, and has a large number of tuneable
parameters.

Despite being very useful in particular environments, none of these systems
come close to meeting the requirements defined in the previous section.
Phoenix, for example, is a specialized system developed to support a
particular agent design and a particular environment.  While its authors
claim that the system is useful in other areas [Cohen et al., 1989], it would
seem to be difficult to adapt the system to any environment that did not bear
a strong resemblance to its fire-fighting domain.  The system also provides
only limited multi-agent capabilities (a centralized form of control), a very
limited number of adjustable parameters, and no programmable facilities for
constructing a new domain.  Ars Magna has similar difficulties.  While
providing a large number of facilities for constructing variations on a mobile
robot domain, it is not clear how one could begin to implement other types of
domains using this tool, even though its authors claim that the indoor robot
simulator could "probably approximate" other robotic environments as well
[Engelson and Bertani, 1992].  While the systems interface functions are well-
described, the relationship between agents and the simulator is not.  The
internal operations of the simulator are also poorly described, making an
attempt to construct a different variety of domain difficult.

Tileworld and Mice also suffer many difficulties.  Tileworld’s tile-shifting
domain, while providing many tuneable parameters, is very closely tied to
the simulator itself, making any attempt to implement some other domain
using the tool formidable.  The domain is also much simpler in terms of its
overall structure than the domains supported by either Ars Magna or
Phoenix.  Part of the desire for choosing a simple domain (from the point of
view of the interaction of agents and the environment) such as tile-shifting
likely arises from the desire to avoid perceptual complications.  However, this
greatly biases the types of agents the system can implement, as it is impossible
to provide domain controls for such critical features as the information-
gathering abilities of agents, because the domain is too simple to require any.
Tileworld also supports only a single agent, and the interface between the
simulator and the single agent it supports is also not described in detail.
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Mice, while being well-suited to multi-agent domains, is almost entirely
concerned with the interactions of agents, to the detriment of the rest of the
environment.  The system is severely limited in supporting dynamic events,
for example, because the only changes in the environment are those made by
its intelligent agents.  The semantics of Mice domains are also awkward: each
action and event is considered to be discrete, regardless of the amount of time
that action or event requires.  Thus if an agent moves from one square to the
next, and that movement takes four time units, the agent completes the
move in the first time unit, and then must wait three more time units until
something new can happen to it [Montgomery et al., 1992]. Mice is also
heavily biased toward multi-agent coordination experiments:  most of the
events that can occur in Mice environment, for example, involve what
happens when agents bump into one another, or "capture" or "link" other
agents (these are generic terms with specific meanings in a particular
domain).  Mice domains are also fairly simplistic:  while they may be spatially
complex, the number and types of objects in environments implemented
using the tool is generally small (e.g. tiles, nondescript symbols representing
predators and prey).  Agents also do not have the kinds of information-
gathering abilities necessary to simulate real world environments.

Each of the above systems has many individual strengths and weaknesses,
only the most significant of which are described here.  More information on
each of these systems from the standpoint of testing intelligent agent designs
may be found in [Anderson, 1995].  Hanks et al. [1993] also describes many
further difficulties with the Tileworld system in particular.  Considered
broadly however, these simulators may be divided into two groups with
respect to their abilities to serve as a generic testbed for intelligent agents.
Some systems offer complex simulations of specialized domains (e.g.
Phoenix, Ars Magna).  Such simulators are often designed as part of a specific
agent architecture or domain implementation, and serve well in that capacity.
However, they generally prove inadequate when an attempt is made to adapt
them to a new domain or to a new type of agent.  Other simulators (e.g.
Tileworld, Mice) are more general, but provide a great deal of variation on
one (usually simple) domain.   These simulators are adequate for testing
simple strategies in problem-solving, but are inadequate for representing
more complex domains.

While each of these simulation systems is well-suited to some environments,
none provide the features necessary to make them truly generic.  Adapting
any of these simulators to an agent design or domain that it is not biased
toward would likely require a major effort.  This is unsuitable from the point
of view of developing intelligent agents, as well as from that of studying
simulated domains.  Agent architectures and domains are highly likely to
change during development, sometimes drastically, and if a simulator cannot
provide support for such changes, users are likely to spend most of their time
adapting one system or another to their changing designs.  The only
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alternatives currently available to this are adapt one of the many special-
purpose simulators that have been developed in conjunction with particular
agent designs (e.g. [Hammond et al., 1990; Agre and Horswill, 1992]), or to
make use of other forms of simulation, such as qualitative physics systems
(e.g. [Kuipers, 1986]).  Taking the former route involves exactly the same
problems as adapting the pseudo-generic systems described above.  The latter
choice, on the other hand, provides detailed simulation of a particular
environment, but none of the specialized features necessary to integrate
intelligent agents within a simulated environment.

The difficulty inherent in applying existing simulation systems to the task of
examining a broad range of agents in various domains has led to the
development of Gensim, a generic software testbed for intelligent agents that
addresses all of the criteria presented in Section 2.  The remainder of this
paper describes the Gensim system in detail.  The primary motivation in the
development of this system was to provide simulation for our own
intelligent agent research: after examining the prospects of modifying the
systems described above, it was decided that it would be more fruitful to
design a new system that could be used for ongoing development of agent
architectures and domains in which to examine these architectures.  The
study of existing systems also pointed out an obvious need for such a generic
testbed: a system satisfying all the requirement presented in Section 2 would
bridge the gap between the two classes of simulators described above,
providing a basis for future research in the design and evaluation of
intelligent agents.

4. Gensim

Gensim is a Lisp-based object-oriented simulation system designed explicitly
for the testing and examination of intelligent agent designs.  The system
supports multiple agents, each of which may consist of multiple timeshared
processes, has a concise interface between agents and the rest of the
environment,  clearly defines all restrictions and assumptions regarding the
agent-simulator relationship (e.g. action timing, perception) and provides the
ability to control many aspects of the simulation itself.  Gensim also has a
modular design, making it simple to take the basic simulator and program
any additional features required to support a given agent or domain structure.

Rather than simply providing a flexible domain, as is done in Ars Magna or
Tileworld, Gensim provides flexibility in the simulation process itself.  That
is, rather than providing extensive domain parameters, Gensim provides the
parameters and functions necessary for the user to define their own domain
and interfaces for agents.  This requires greater initial effort on the part of the
user, in order to define or modify a domain, but makes Gensim much more
widely applicable than any of the simulation systems described in the
previous Section.
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A high-level overview of Gensim is illustrated in Figure 1.  The simulator
itself manages the environment, represented as a collection of objects.  This
environment is objective: it is the universal set from which all intelligent
agents' perspectives are defined.  The simulator also possesses a collection of
procedural knowledge describing the actions that agents can perform on these
objects, as well as the physical events that can occur to these objects outside of
the influence of any agent.

Simulator Agent

Environment
Agent

Processes

Procedural
Knowledge 

of Action

Declarative
Knowledge 

of Action

Focus

Perceptual

Information

Interface

Actions

Domain Knowledge

Figure 1.  The high-level structure of Gensim.

A collection of agents is also defined, each of with its own view of the
environment based on its sensing ability and memory.  The reasoning
abilities of an agent are implemented as a set of timeshared processes, which
collectively allow the agent to perceive the environment around itself and act
on the basis of those perceptions.  As each action is carried out by the agent, its
effects on the world (both short-term and long-term) are manifested by the
simulator.  Agents are viewed as "black boxes" by the simulator, in that
Gensim neither knows nor cares how the agents arrive at their decisions for
action.  As indicated in Figure 1, some commonality in domain knowledge is
required in order for agents to interact with the simulator.  For example, the
actions that the agent can select from (represented largely in declarative form)
must be identifiable by the simulator, which then uses its own (largely
procedural) knowledge of action to modify the environment appropriately.
Agents also inform the simulator of their interests in objects in the
environment (their focus) in order to provide appropriate sensory feedback.
However, emphasis is on making agent's knowledge distinct from that of the
simulator, and the illustration in Figure 1 should not be interpreted as
implying that agents somehow physically share the simulator's knowledge.
Rather, the simulator provides an objective description of the domain,
consisting of all the objects in the environment (including the agents
themselves), and causal knowledge of how those objects interact with one
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another.  Each agent maintains its own (usually limited) perspectives of this
environment, much as the real world operates.

The basic design goal of Gensim was to support as wide a variety of agent and
domain designs as possible.   To this end, Gensim was designed to keep agent
and simulator knowledge as separate as possible, and thus limit the
knowledge each must have of the other.  A complete environment is defined
for the simulator, and agents are expected to have their own knowledge of the
objects in the domain and how they operate.  This is more complex than
simply allowing an agent to share the same internal objects manipulated by
the simulator, but allows much more flexibility in implementing complex
domains.  In particular, it allows agents' perspectives to differ, and limits
agents' knowledge to that information the designer of the domain wishes
them to possess.

In spite of this design goal, it is impossible to ensure that a simulation system
can support any domain or agent design.  Certain basic design concessions
must be made in order to use a domain or agent design with Gensim, just as
concessions must be made for any two systems to operate together or
communicate with one another.  In particular, the domain must be organized
to obey the timing principles on which Gensim is based.

4.1. Timing in Gensim

As mentioned in Section 2, the operation of the intelligent agents in a given
environment should proceed in parallel with the changing environment.
While this would be ideal, Gensim is currently implemented on a serial
machine, and thus must simulate parallelism using timesharing.  Gensim
supports multiple agents, each of which may consist of multiple processes,
and performs its own timesharing of those processes. The simulation of agent
operations is done by continuously cycling through each process of each
agent.  As agent processes run, they collectively perform actions and make
requests for perceptual information from the simulator.  After each process of
each agent has been executed, the simulator updates the environment based
on the actions of the agents (and other independent events), prepares sensory
information for each of the agents based on this modified world and a focus
description from each agent, and cycles through the agents again.

In simple simulators (e.g. [Agre and Horswill, 1992]), the basic time interval
around which the system is organized is often the time it takes an agent to
decide on an action to carry out.  Each action in such a system is thus based on
information gleaned from the world at a single point in time.  In the real
world, however, sensory information arrives continuously: by taking its time,
the agent can get many views of the environment on which to base its
decisions for action.  The agent pays for this ability proportionally through the
risk of unanticipated and unrecoverable change in the world around itself.
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Gensim supports this by organizing the system's timing around the interval
at which sensory information is presented to the agent.  For the purposes of
discussion, we will call this interval P.

By designing the system around the time required to gather information
about the world, an agent can be "interrupted" with new information about
the world every P seconds.  This interval is one of the standard tuneable
parameters in a Gensim environment, and is static throughout a simulation.
The amount of time a given agent is allowed to deliberate its choice of action
(the number of P intervals) is not limited by Gensim in any way.  Each P
interval gives the agent further sensory information, and the agent can
deliberate for as many intervals as desired, facing the consequences of change
and missed opportunities in the simulated world.  This discrete sensing
interval is not unrealistic.  Human vision, for example is not as continuous
as it might seem on the surface.  Experiments have shown that change over
intervals of approximately sixty milliseconds or less are perceived as
continuous by human vision [Graham, 1965]. So long as a simulator
presented sensory information at a rate greater or equal to this, a series of
discrete "snapshots" would be indistinguishable from a continuous process by
a human and could be accurately treated as such.  This same principle can be
applied to computational agents.

In addition to the sensory interval P, a simulation system for intelligent
agents must be concerned with two further timing cycles.  The first of these is
A, the rate at which an agent commits to actions.  In any realistic
environment, A cannot be regular:  an agent must be allowed to react
immediately or take as much time to deliberate as it desires.   The other is E,
the rate at which changes are made to the environment.  In the real world,
change occurs continuously, but by the same argument used when defining
the P interval, a small discrete interval is indistinguishable from a
continuous process by a rationally-bounded agent. In an objective simulation
of a given environment, this E interval directly affects the accuracy of the
simulation.  By the principles discussed above, the longer the E interval, the
less continuous the simulation will appear to be.  However, since in the case
of Gensim the simulation exists strictly for the benefit of one or more agents,
no change need occur except at those times when information is presented to
those agents.   Because of this, E is a fixed length interval equal to the shortest
agent P interval in a particular simulation.

In an ideal situation, agents and the environment would proceed in parallel,
in real time.  Agents would deliberate continuously, committing to actions at
irregular points in time, and the world would proceed in parallel,
interrupting the agent with new sensory information every P seconds.   In
Gensim, however, two complications arise.  First, Gensim is implemented on
a serial machine, making it impossible for the agents and environment to
run in parallel.  Also, while agents must operate in real time, an
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environment may consist of many hundreds or thousands of objects, and it
may simply be impossible to maintain the state of all those objects in real
time.  Restrictions could be made to force the simulator to operate in real
time, but these would at the same time severely restrict the range of
environments that can be implemented.

These complications are dealt with in Gensim through timesharing, allowing
each agent process to run for precisely the length of one P interval.  After each
process has been run, the environment is updated (based on the actions of
agents as well as independent events that have occurred).  A new set of
sensory information is then provided, and agents may continue their own
processing.  This timing (for a single agent with a single process) is illustrated
in Figure 2.  Here, the agent processes are run repeatedly, each time for the
length of one P interval.  An agent may carry out an action during that time,
or may deliberate for a number of such intervals (e.g., the first action the
agent takes is deliberated upon for three intervals, the second for one
interval, etc.).  After each interval, the environment is updated.  These E
intervals are regular with respect to simulation time (in that each represents
the changes that occurred during the previous P interval) but are irregular
with respect to real time:  the environment may change significantly one
cycle, and only trivially the next.

Real Time

4A 1 A 1 2 A 1 3 A 2 A 3EE1 E E

Each block represents P seconds of 
simulation time

Figure 2. Timeline showing interleaving of agent/simulator processes.

The next time the agent process is run, it has new sensory information
available to it based on the environmental changes that occurred The agent
may, of course, simply choose to ignore this new information and continue
on with what it was doing previously.  Agent processes are implemented as
LISP functions, and users can explicitly specify that a given process is to run
for some fraction or multiple of an P interval if this basic timing is not
sufficient.  Figure 2 shows only one agent interacting with the simulator;
however, the same basic timing applies to multiple agents, or agents with
multiple processes.  All are granted specified time-slices, representing one
single unit of time being shared by all agents, following which the simulator
updates the environment appropriately.

We believe this timing to be adequate for most domains.  It can be criticized,
however, on one significant point: since the processes of an agent (and
indeed, the agents themselves) are serially timeshared, they cannot simulate
some of the interactions possible in truly parallel processes.  For example, an
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agent might consist of two processes: one to recognize objects in which it has
an interest, and another to decide what to do based on the objects it has seen.
When these run in parallel, the acting process would process input from the
recognition process as it became available. This is a much more complex
interaction than that possible under timesharing, where the recognition
process must recognize all the objects it can in a given interval and then pass
them all to the acting process.  This is a legitimate criticism, but like the
accuracy of the sensory interval, the effects of this depend entirely on the
interval size.  Like other applications of timesharing (e.g. operating systems),
the smaller the time-slices involved, the more transparent the timesharing
will appear.

4.2.  Managing Environmental Change

Now that the basic timing of Gensim has been described, the operations that
occur during agent and simulator time cycles can be examined.  As stated in
previous Sections, the primary purpose of a simulator is managing change in
a virtual world.  In Gensim, this world is modelled using an independent
frame-based system developed by the authors.  Each physical object in the
domain is described by a frame [Minsky, 1980], and these frames are organized
in a hierarchical fashion.  The system also supports message-passing,
procedural attachment to frames, a form of multiple inheritance, and the use
of multiple frame hierarchies.  The ability to manage multiple frame
hierarchies is critical in a multi-agent simulator, since the simulator must
keep track of the objective world and allow agents to maintain their own
models of the world using this same method of representation if they choose
to do so.  Alternatively, each agent can also make use of any other knowledge
representation system it requires: using the internal frame system is
advantageous in that it allows simpler interaction with the simulated world,
but is not required.  The various attributes recorded for each object in the
simulated world will, of course, differ by domain.  However, the system
assumes that each object has a given LOCATION  attribute, and that the
locations of all objects are recorded in a similar format.  Since the hierarchy is
organized primarily by class, retrieval by class is always an efficient process.
We recognize that retrieval by location may also be common in some
domains, and provide the option of indexing objects by location.

Change in the simulated world is managed through two facilities: agents
perform actions that can alter the world; and events (which may or may not
be independent of an agent's actions) may also occur.  An event is the
occurrence of change in the domain from an unspecified source.  For
example, a ball may hit a wall and bounce off; a toaster may pop; or the wind
may knock something off the shelf.  Note than none of these examples is
directly attributable to any agent: for example, the ball may have been thrown
by an agent, but from the point of view of providing an accurate physics for
the domain, this no longer matters.  An event is defined as a block of
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environmental changes that occur over a simulator interval.  Events may
propagate over time into an event series, which allows the simulator to
represent continuous change over time.  The simulator manages an event
queue, each entry of which consists of a point in time at which an event is to
occur, and the name of a routine that will cause the desired changes in the
domain to be manifested.  Functions are provided for creating random
elements in an event, and for spawning new events in the queue from
within an event (creating an event series).

Events are defined procedurally and are attached to the domain objects they
affect (this implementation will be described in greater detail presently).  A
ball, for example, may have a TRAVEL-THROUGH-AIR event defined for it,
which moves the ball through the air in a given direction at a particular
speed.  During the length of time the event runs, it may reduce the speed of
the ball and check to see if it hits something in the environment.  In either
case, the TRAVEL-THROUGH-AIR event will insert a new event in the queue (to
move the ball further along the next time the simulator runs, or to make the
ball stop or bounce if it has hit something).  Events may interfere with one
another: in the above example, a ball might strike another ball and divert it
from its path.  Once again, this is part of the physics of the domain to be
simulated, and routines are provided to dynamically insert, modify, re-order
and delete event queue entries to allow the user to implement this physics.

The accuracy of a domain depends a great deal on how events are
implemented.  Since each update of the world represents a specific time
interval, and since that interval can change from run to run, an event should
be designed to utilize the time factor involved rather than simply performing
the same discrete operation regardless of how much time is used. For
example, an event might move an agent one "unit" in a given direction on a
grid, or it might move an agent at a given velocity for the amount of time
available.  The former results in a poor simulation should the unit of time
vary from run to run, while the latter is unaffected.  As mentioned
previously, the amount of control allotted to the user by a simulator such as
Gensim makes it possible for poorly-designed simulations to be designed as
easily as well-designed simulations.  It is up to the user to use the facilities
provided in a manner appropriate to the domain and to the degree of
accuracy desired.

Actions are closely related to events.  Unlike events, change induced by an
action has an explicit source: an action is performed by an agent with the
intent of accomplishing some objective.  Actions in Gensim consist of three
components: an intention component, representing the agent's internal
justifications for and expectations of the action; an agent-causal component,
consisting of the immediate physical actions the agent performs in order to
bring about it's intentions; and a domain-causal component, consisting of the
changes that occur later in time due to time delays or physical interactions
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with other objects in the environment.  Thus a ball being thrown by an agent
and breaking a window consists of the agent's intention to throw the ball (the
reasoning and justification behind its decision), the actual arm motion that
causes the ball to be thrown, and the course of the ball, culminating in its
collision with the window.  The agent knows only of its intention and the
motions that it itself carries out; the agent's knowledge of what happens after
the ball leaves the agent's hand is entirely dependent on the agent's
perception (seeing what unfolds) and/or the accuracy of the agent's prior
knowledge of the physics of the domain (predicting what will happen).

The simulator is concerned with manifesting the physical effects of an action
on the environment.  Thus, actions within the simulator itself are
represented in two parts: the immediate changes that would have taken place
during the cycle in which the agent performed the action, and a series of
future events the action sets in motion.  These are inserted into the event
queue as the simulator manifests changes based on the action.  An action can
cause any number of future events to occur:  however, each of these events
must be independent of the others.  For example, an action like THROW
performed by an agent might cause the ball to travel through the air and
eventually through a glass window.  The THROW action cannot set up this
series of dependent events.  Rather, it must simply cause the ball to leave the
agent's hand in the current time interval and have some velocity in a given
direction.  The implementation of the action can then set up a TRAVEL-
THROUGH-AIR event, as described above.  This event can in turn propagate
itself, and the resulting sequence of events implements the desired
behaviour.  A sequence of such events is shown in Figure 3.  An agent throws
a ball, which travels-through-air during a number of intervals, hits
something and bounces, and will eventually come to a stop.  Note that only
one of this series of events will be in the event queue at a time, since each one
spawns the next.  This sequence is also non-deterministic: as the future
unfolds, existing scheduled events can be modified or cancelled by other
actions and events through the use of the event facilities described earlier.

Throw Travel-through-air • • • Travel-through-air

Hit Travel-through-air• • • Travel-through-air

Figure 3.  An action spawning events in the event queue.

As per events, the representation of actions described here is strictly the
perspective of Gensim, and not that of any particular agent.   Each agent can
and generally does have is own representation of the actions it can perform,
and will naturally have its own expectations of what carrying out the action
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will do to the world.  This knowledge is stored in its own separate knowledge
base, along with other forms of knowledge about the domain.  The actions
defined as part of the environment, on the other hand, define the objective
physics of the domain independent of any agent.  As agents carry out actions
during their own time-slices, they communicate the actions (names and
parameters) to the simulator.  The simulator then updates the environment
by invoking its own procedural representations of these actions through
message-passing.

Agents use actions (and indirectly, events) as mechanisms for change in the
world.  As each agent process is run, an agent performs actions and records
their performance in a data structure accessible to the simulator.  After all
agents have been run in a given cycle, part of the task of the simulator is
taking all these actions and updating the environment based on their effects
(e.g. altering objects, inserting or modifying future events).  Some effects will
be as the agents anticipated, while others (due to random ill effects,
misinformation on the agent's part, or interaction with other actions on the
same cycle) will not.

The manner in which the actions of agents are viewed by Gensim is very
different from that of previous simulation systems.  In the past, simulators
have often been described as "carrying out" or "executing" the actions of an
agent: such phrases invite an inappropriate comparison between the agent-
simulator relationship and the relationship between and classical planner
and its executor.  The real world has almost no comparison with such an
executor, and neither should any simulator intending to model it.  The real
world is not a servant that carries out the commands of a disembodied agent.
Rather, the agent physically participates in an ongoing interaction with other
objects that collectively constitute the world.  A simulator, it follows, should
provide an environment that can be changed, rather than serving as a
method for accomplishing this change.

In keeping with this view, Gensim does not allow agents to "instruct" the
simulator in any way; rather, agents commit to and carry out actions during
the time periods in which they are active (i.e. during Ai time-slices shown in
Figure 2).  When an agent commits to an action such as "Throw the ball", it is
not viewed as a "throw" instruction that is carried out by the simulator,
returning some result to the agent.  Rather, the agent is viewed to have
carried out the agent-causal portion of the action during the previous Ai
interval.  The simulator, having been given knowledge that the agent has
performed this action, in turn alters the affected parts of the environment
during the time interval in which it is active.  That is, the simulator changes
the environment based on the agent-causal portion of the action, and
continues the changes indicated by the domain-causal portion of the action
over time.
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This distributed view of action, placing control of the agent-causal portion
within the agent and the the domain-causal portion in the simulator,
emphasizes the dual nature of action: an agent will always have some
responsibility, with the physics of the environment providing the rest.    It
also takes care of many semantic problems that are evident in previous
simulators.  In a timeshared simulator, when an agent "instructs" the
simulator to perform some action, not only is it difficult to place a locus of
control for the action, it is also difficult to provide accurate timing for the
action.  When can an agent assume that the action has occurred?  When do
results come about?  Disregarding questions such as these lead to the
awkward action/event processing of simulators such as MICE.  Since the
action itself is entirely contained within the bounds of the simulator in such
primitive models, the agent itself really has nothing to do with carrying out
the action.  It simply decides that it wants something to happen, and the
simulator magically makes it so.  Gensim, on the other hand, allows agents to
be viewed as active participants in ongoing interaction with the world, rather
than as passive decision-makers.

Emphasis on event-based processing is a relatively recent phenomena in AI,
stemming mainly from recent work in reactive architectures.  Because of this,
most well-known theories of action concentrate on reasoning about specific
actions in plans, rather than the connection between an action and future
events.  However, the view of actions and events used by Gensim does have
similarities to some more modern theories.  In particular, Lansky [1986]
presents a view of change as composed of sequences of events.  Agent
reasoning about change then becomes reasoning about the history of events
that have occurred.  However, this model concentrates on agent's internal
reasoning about change, rather than actually modelling action in a simulator.
Since agent's views and representations of actions are independent of the
Gensim model, an agent can use this or any other representation internally to
reason about action.

This view of activity is also similar to some approaches in temporal
reasoning.  For example, McDermott [1982] represents event causation using
the predicate  ECAUSE(P,E1,E2,RF,I), with the following semantics: event
E2 follows event E1 after a delay in interval I unless P (a series of exceptions)
becomes true.  RF is an real number representing where in the time interval
of E1  the delay begins, with 0.0 indicating the beginning of E1  and 1.0
indicating the end.   This performs well theoretically and is useful from the
standpoint of analyzing causation (again, a function internal to agents not
normally useful in a simulator).  However, much of the representation is
impractical.    For example, consider the requirement of knowing of the
length of E1 in order to implement RF: clearly we cannot know how long E1
will be until it is completed.  McDermott's approach also omits some
implementation-related aspects (e.g. multiple effects, links between actions
and events, variable I intervals) provided by Gensim.
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4.3.  Perception

In addition to performing actions, agents also interact with the simulated
world through perception.  Perception is the most difficult design aspect of
any simulator for intelligent agents:  on one hand, it is a crucial aspect of
virtually any domain, while on the other, simplification of perception is one
of the primary motivators for using a simulator, and the greater the
simplifying assumptions, the more limited the simulator will be.

The perception abilities of intelligent agents are much more active processes
than might first be assumed.  We do not simply see whatever our eyes
happened to be directed toward, for example: we pick and choose from the
image, discerning what interests us.  What we have already seen also alters
further perception, helping to define a focus for perceptual efforts.  In more
computational terms, a set of anticipatory schema (domain-specific
knowledge indicating the sensory information in which the agent has an
interest) acts as a filter for the vast amount of knowledge available from the
world.  This knowledge directs the agent to explore the world, looking for
given pieces of information.  This exploration directs the agent to specific
information (objects) in the environment, which then modifies the
anticipations the agent has for future sensations [Neisser, 1976].  Within this
cycle, one of the basic problems of implementation is that an agent must be
allowed to specify its interest in given aspects of the environment, but must
also be given access to information independent of those interests.  Perception
must exist to confirm the agent's expectations of the world, but also must
provide the agent with new information (not necessarily what it expects to
see or is directed toward) in order to form the expectations of the world that
guide its sensory abilities [Niesser, 1976].

Gensim attempts to follow this model as closely as is practical.  However,
some aspects of perception are simplified, in order to simplify the simulator
itself and to conform to one of the basic design goals of Gensim: a simple
interface between agents and the simulated environment.  One of the major
simplifications concerns the internal processing within this cycle.  The cycle
described above is based on a hierarchical model of vision [Goldstein, 1984],
with the environment itself dictating bottom-up processing (processing a
visual image into various edges and features), and domain knowledge
possessed by the agent directing top-down processing (processing from
features to objects using expectations).  Contrary to this model, perception in
Gensim is defined at the object level.  That is, an agent senses a combination
of complete objects and specific sensory aspects of those objects (e.g. a ball, or
the fact that it is red or round), rather than examining the individual edges
and features that make up an image of the object itself.

This partially invalidates the hierarchical model, in that we gloss over the
lower-level feature processing that allows the agent to distinguish objects.
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However, removing the complexity of low-level vision from the design of an
agent is comparatively the most computationally significant sensory
simplification that can be made.  In addition, some of the essential character
of the hierarchical model of vision is still preserved, in that the information
presented to an agent after each P interval is selected based on interests
expressed to the simulator at the end of the previous P interval.

The ability of an agent to express a focus for its sensory abilities is provided in
Gensim through a sensory request mechanism.  This mechanism allows an
agent to express interest in certain aspects of its environment, and the
methods by which Gensim fulfils sensory requests allows the agent to receive
limited sensory information not only about its focus of interest, but also about
objects outside that focus.  This provides the balance between anticipation and
exploration characteristic of the hierarchical model described above.

Sensory requests operate in much the same manner as actions, as described in
Section 4.2.  An agent makes a sensory request for some particular set of
information, and this request is recorded by the simulator.  After all agent
processes have been run on a particular cycle, the simulator updates the
environment according to the actions and events that have occurred during
the interval, and then prepares sensory information based on each agent's
requests.

Two possible sensory requests are implemented in Gensim (additional
facilities may be defined as agent actions).  An agent is allowed to explicitly
gather information about a given object through an explicitly defined LOOK
request.  An agent can also SCAN in a given direction (recall that directions
and locations are part of the definition of a domain) to get a general overview
of objects in its vicinity.

Part of the definition of a Gensim domain is the definition of domain-specific
aspects of LOOK and SCAN.  Like actions, the knowledge required to fulfil
sensory requests is defined in procedural form as part of a domain definition
and attached to the simulator's knowledge of the agents themselves.  The
ability of an agent to LOOK  and SCAN  can differ from agent to agent.  For
example, the procedural implementation of SCAN for one agent may result in
descriptions of a given number of objects of a certain size (i.e. the agent sees
large objects first).  A differing implementation may have the agent see all
objects within a given distance. The actual methods employed by Gensim to
describe objects to agents are described in the next Section.

Each agent has a finite bandwidth (defined as simulator's knowledge of the
agent), implying that they can perceive only a certain number of objects at a
time.  In addition to this bandwidth, each agent has a limitation on the
number of SCAN and LOOK operations it can perform in a cycle.  The abilities
of scanning and looking can also be made mutually exclusive to one another
within a cycle.  These limitations can be used to enforce bandwidth
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information very strictly, or to have a fairly loose concept of bandwidth,
depending on the domain.  If any bandwidth is exceeded (e.g. if there are three
looks, and the first two present all available objects, or if there are the number
of looks and scans exceeds the limit), the information is simply not made
available to the agent.  Note that these bandwidth limitations implement the
ability of senses to return information to the agent, not the ability of the agent
to process that information.  The timing of agent processes may enforce a
much stricter limitation on the ability to process sensory information than
the sensors have to provide it.

Information outside of the sensory focus defined by an agent’s requests is
provided by filling any remaining bandwidth with objects according to agent-
specific biases.  An agent may be biased toward perceiving large objects before
small ones, or colourful objects before dull objects, or in the case of more
sophisticated agents, objects directly connected to the agent’s ongoing
activities before less useful objects [Anderson, 1995].

In addition to providing visual abilities, we must recognize that perception
often involves integrating information from several senses [Neisser, 1976].
This is a point often ignored by simulation systems, but is addressed in
Gensim through two additional components to perception. First, an event
may cause some noise or other obvious disturbance in the environment.
This can be represented using a SIGNAL command (e.g. (SIGNAL PHONE-RING
SOME-LOCATION) is used in one current Gensim application [Anderson, 1995]
to allow agents to perceive a ringing telephone).  Signals are passed as is to
agent processes when they are run; therefore the agent must have some
concept of what the simulator is signalling (in this case, what a "bang" is).
Once again, a limit can be indicated for the number of signals an agent can
accept in a cycle, with additional signals being lost.  This signalling ability
allows limited non-visual perception, and in many domains may be used to
reinforce visual perception rather than as an alternative to it.

Finally, limited sensory information at a level higher than the basic object
level is available.  When an agent carries out actions, it is possible when
updating the environment based on those actions to signal the fact that an
error has occurred during the course of the action.  That is, if an agent picks
up a ball, and the simulator decides that the course of change has caused the
agent's hands to slip and the ball to drop, the agent may (at the discretion of
the developer of the domain) be informed of the fact that an error has
occurred, rather than forcing it to look and see that the ball has been dropped.

Since the agent's interests in terms of sensory information are expressed only
once per cycle (P interval), the ability of Gensim to simulate real-world
sensing depends largely on the length of this interval chosen for a particular
simulation run.  As mentioned in Section 4.1, humans make use of
extremely small intervals, giving them a great deal of control over the
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information received by senses.  Even though the sensory bandwidth is
limited (mainly in terms of selective attention), the ability to give new
anticipatory schemas quickly allow humans to maximize that bandwidth.
Thus, a large P interval limits the ability of an agent to control senses.

4.4.  Agent-Simulator Communication

One important aspect of perception and action has been omitted in previous
Sections.  For an agent to perform an action using some object, or be able to
look at a given object, communication must take place: the agent must
somehow describe the object(s) it is interested in to the simulator.  If an agent
picks up a ball, for example, it must somehow inform the simulator which
ball the action has been performed with.  Similarly, if the agent wants more
information about "that thing over there", it must describe the object as best it
can, in order for the simulator to differentiate it from other objects and thus
respond with the correct information.

Communication is one aspect of the relationship between an agent and the
real world that can never be completely approximated by a simulator.  The
reason for this is that no communication whatsoever takes place when an
agent interacts with the real world (at least in the sense that communication
is normally thought of).  When an agent wants to pick up an object, for
example, it just does so: it doesn't have to communicate this fact to the world.
This is in part because the world does not exist for the benefit of an agent, the
way a simulator does: any agent is simply an object in the world, like any
other physical object.  It is also due to the fact that the real world keeps track of
itself: an agent's actions physically alter objects, rather than indirectly
manipulating some virtual representation of those objects.  A simulator, on
the other hand, keeps a detailed representation of every object in the world,
and changes in the world are manifested by alterations in these abstract
entities.  Because it no longer occurs naturally, change initiated by agents
must be communicated to the simulator in some way.  A stronger tie between
the agent and the rest of the world is thus necessary.

However, in most simulators, this tie is far too strong.  Many simulators do
not even use separate representations of objects for agent and simulator: the
identical physical chunk of knowledge that describes an object to the
simulator also describes it to any agent.  When compared to the real world,
this is like taking each object in a physical environment, labelling it with a
unique agreed-upon symbol, and referencing everything in that fashion.  This
"trafficking in constant symbols" [Agre and Chapman, 1989] is widespread,
unrealistic, and completely unacceptable.  Supporting multiple agents already
eliminates the use of symbolic labels on all domain objects to provide
perception to agents, since each agent must have its own perspective in any
useful multi-agent domain.  Even if this point is ignored, perception would
still be extremely limited if agents were forced to use the same internal object
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structures that the simulator manipulates.  There would, for example, be no
mechanism for limiting access to certain visual aspects, since the agent would
automatically acquire all the knowledge of an object maintained by the
simulator.

As stated above, there is no complete answer to this problem, as the use of a
simulator itself introduces the need for artificial communication.  Indeed, the
problem of linking perception to internal representation is a severe one, that
goes far beyond simulation applications [Etzioni, 1993].  The question thus
becomes one of providing these communication abilities in a way that is as
unobtrusive as possible to the rest of the architecture of an agent.  There are
two comparisons that can be made to the way in which humans specify
objects in ongoing activity that aid us in this task.  Suppose Henry is looking
across the surface of his desk, looking for a pen (assuming that there are
several on the desk).  One could argue that when Henry sees a specific pen he
wants, he guides his hand to pick up the pen by referring to it in an indexical-
functional or deictic [Agre, 1988] manner.  That is, the pen he wants to pick up
is designated by reference to Henry himself or the objects Henry knows about.
Thus the pen may become THE-PEN-BY-MY-LEFT-HAND, or the RED-PEN-BY-
THE-COFFEE-CUP.

On the other hand, it could be argued that Henry, having looked at the desk,
would designate the pen he desires using some internal symbol (the label or
designation for this symbol being unimportant, Q1V479 having as much
meaning internally as PEN-11).  In this case, Henry could guide his hand by
referring to the pen as PEN-11  (or Q1V479 , or whatever): the internal
information kept about this pen (estimates of distance from Henry's hand, for
example) obtained through vision would guide Henry to the pen.

Both of these methods allow agents to designate objects in a manner distinct
from their designation within the simulator.  Equally importantly, neither
endows the agent with any special ability to access the simulator's objective
knowledge.  The former method, by requiring the agent to describe an object
from its own perspective, puts the onus on the agent to generate a description
if it does not already represent objects in such a fashion.  This may be
inappropriate in time-constrained environments, since an agent may have to
spend most of its time generating symbolic descriptions.  Thus, if multiple
agents were to be compared, those that already make use of a deictic
representation would be artificially more successful, since they could spend
their entire time allotment doing useful work as opposed to generating
descriptions of objects for purposes  of communication.

Because of this possible bias, Gensim supports both methods of description.
The former type is known in Gensim as an object descriptor, and is a data
structure that describes an object by its relationship to the agent itself or
objects the agent knows about.  Two examples of object descriptors appear in
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Figure 4. Each object descriptor consists of a header identifying the structure,
and a conjunction of clauses.  Each clause states some condition that a
domain object must satisfy to match the description.  These may be standard
comparisons (e.g. in the first example, we state among other things that the
colour of the desired object is red), or may be arbitrarily complex user-defined
conditions.  When making use of such comparisons, descriptions may be
recursive.  The second example illustrates this: we compare the colour of the
object to that of another object referred to from the agent's perspective (in this
case, the ball that shares the same location as the agent itself).

The choice of attributes used to form the clauses of an object description is
almost entirely up to the agent.  Only one restriction is made, in the interests
of computational efficiency.  When processing an object description, the
initial list of potential objects to which the description could refer consists of
every object in the environment.  In order to make this initial list
considerably smaller, Gensim makes the assumption that one of the clauses
will be an attribute under which domain objects are indexed.  This is by
default a class, and thus a clause describing the class of the desired object is
required.  As previously mentioned, locations may also be used as an index
on objects (the lack of a class clause in the second example in Figure 4
indicates this, and also illustrates the type of symbolic location label that is
typical of such an index).

(DESC (equal class ball)
      (equal color red)
      (less-than weight 5)
      (equal location by-sink))

= "The red ball that weighs 5
   pounds sitting by the sink"

(DESC (equal location (1 1))
      (equal color
        (DESC (equal class ball)
             (equal location self))))) 

= "The object at location 1,1
   that is the same color as the
   ball that is where I am"

Figure 4.  Two examples of object descriptors.

The use of these descriptors enforces a strict barrier between the knowledge of
the agent and that of the simulator.  However, as mentioned previously, the
simulator and agent must have certain concepts in common in order to be
able to communicate with one another.  In the above examples, both must
agree on the concept of "red", what a "ball" is, and what a "weight" attribute
describes.  This implementation of object descriptors also requires that the
simulator and agents share class names for objects, as well as the same
representation of locations.  This violates to some degree the desired
distinction between agent and simulator knowledge bases.  It also involves a
relatively minor sacrifice in agent autonomy [Barker et al., 1992].  However,
they are absolutely required for any communication to take place: there can be
no communication without some agreement on the definition of objects.
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Thus, overall, we view the physical separation of agent and simulator
knowledge as essential, but shared aspects of that representation as equally
essential.

As mentioned previously, there are some cases where this method of
referring to objects is impractical.  In addition to the previously cited example,
there may simply be situations where it is desirable to measure the
performance of agents without including the overhead of generating
descriptions of objects.  This is especially useful to those who view this
method of communication as artificial, for which there is indeed some
argument.   In these cases, Gensim provides object references, which allow an
agent to reference its own internal symbol for an object when informing the
simulator of actions or sensory requests.  An object reference is a much
simpler structure than an object descriptor, consisting only of the agent's
symbol for the object and a marker labelling the structure as an object
reference.  When an agent refers to an object via an object reference, a
description is created by the simulator at translation time (that is, when it
comes time to update the world based on the action that contains the
reference, or to fulfil a sensory request on the same basis).  This is done by
allowing the simulator access to the agent's knowledge base.  An object
descriptor is constructed by the simulator based on the agent's knowledge of
the object, and is evaluated as described above.  Because it requires the
simulator to access to the agent's own knowledge base, object descriptions can
be used only in agents that make use of the simulator's own internal frame
representation system for knowledge representation.  This form of
communication violates the basic tenet of complete separation of agent and
simulator knowledge, and also limits autonomy, but may be required in some
situations.  Note that this does not create the same "trafficking" problem
described by Agre and Chapman [1990]:  here, the simulator is examining the
agent to see what symbols it uses internally to describe a given object, not the
reverse.  Both methods of communication are necessarily imperfect, but only
by virtue of the fact that in the real world no communication of this sort is
necessary.  In that such communication is unavoidable in a simulator, we
view both of these alternatives as valid approaches.

Thus far, we have only discussed the abilities provided by Gensim to aid in
communication from agent to simulator.  Another vital ability, however, is
the ability for the simulator to effectively communicate sensory information
to agents.  Two of these methods, signals and errors, have already been
discussed.  However, in many domains, the majority of information
communicated to agents by the simulator will be in the form of direct
responses to sensory requests.  As mentioned above, a primary motivation is
the separation of agent and simulator knowledge bases.  While the simulator
can access agent frames in order to generate object descriptions, allowing
direct agent access to simulator frames is unacceptable.  Thus descriptions of
the objects maintained by the simulator are provided to agents as sensory
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information.  This is performed in a computationally simple manner: in
fulfilling the sensory request, the simulator has access to all information
about a particular object.  The simulator simply singles out all attributes of the
object marked as VISIBLE (part of the definition of an object), and adds them
as a group to the buffer containing the sensory information for the agent.
Thus an agent might request information about "the object in my hand", and
be told that it is a white cup filled with tea.  Examples of the kind of
information that is given to agents as a result of sensory requests is illustrated
in Figure 5.   In each of the two examples shown, all the attributes given as
sensory information are attributes maintained about the objects in question
that have been labelled as  VISIBLE.  As mentioned previously, information
obtained from all sensory requests are kept in a single buffer, and it is
naturally the agent's responsibility to link these descriptions to objects in its
own knowledge base or insert them as new objects if the agent is maintaining
a world model.  Thus if an agent knows about a yellow ball at a given
location, and sees such an object at a different location, it is up to the agent to
decide if the object has moved or if the latter object is physically distinct from
the first.

SCAN N

Results:

Requests: 
LOOK (DESC (class clock)
           (location (10 3)))

((class dog) (colour white)
(spotted yes) (location (8 2))

((class clock) (location (10 3))
(colour gold) (time 4:00))AGENT

N

Figure 5.  Example sensory requests and results.

4.5.  Defining a Gensim Domain

Having described the operation of the facilities provided by Gensim, we can
now examine how the various entities that make up a Gensim environment
are defined.  In designing Gensim, we have emphasized the development of
common facilities for constructing simulated domains, rather than facilities
for supporting a single specialized domain, as has been done previously.
Gensim provides definition facilities (functions and macros) to allow users to
easily describe aspects of the domain where names and function will vary (e.g.
agents, actions, domain objects).  Other aspects of a domain that have a stable
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purpose (e.g. locations, domain-specific aspects of vision) are provided
through user-defined functions with specific names.

There are essentially two aspects to defining any domain in Gensim.  First,
objects that exist in the domain must be defined, and the simulator's
universal knowledge of how those objects may be manipulated (the objective
physics of the domain) must be described.  After an objective domain is
available, each intelligent agent and its associated perspective of the
simulator's objective knowledge must also be defined.  As mentioned
throughout this paper, simulations including intelligent agents must treat
those agents both as objects within the simulator and decision-making
processes in their own right.

(DEFAGENT BILL :PROCESSES '(P1 P2 P3) :PARTITION 'BILL-FRAMES 
               :STATE-VARIABLES '(X Y Z))

(DEFUN P1 () 
;recognize and handle errors from the previous cycle
....)
(DEFUN P2 ()
;recognize objects given sensory information from the simulator
...)
(DEFUN P3 ()
;choose an action based on the current situation
...)

(DEFACTION 'THROW 'THROW-OBJECT :ATTACH-TO BILL)
(DEFUN THROW-OBJECT (some-object)
 ;send a throw message to some-object, and update the changes this
 ;action makes to bill
 (SEND 'THROW TO-BE-THROWN)
...)

(DEFEVENT 'TRAVEL-THROUGH-AIR 'TRAVEL :ATTACH-TO BALL)
(DEFUN TRAVEL (DIRECTION)
  ;Procedural aspects of an event: make the ball move
  ;in the given direction, and check for collisions, inserting new 
events
  ;in the event queue as appropriate
...)

Figure 6.  Definition of Agents, Actions, and Events.

The former category is accomplished through an explicit DEFAGENT macro.
This facility defines the names of the processes an agent consists of and allows
overriding of the simulation parameters that control how long each process
runs.  It creates a frame partition to hold the agent's knowledge (should the
agent wish to make use of the built-in knowledge representation
mechanisms), and defines a frame in the simulator's knowledge base to hold



-30-

3

information about the physical nature of the agent.  It also allows the user to
specify state variables, whose values are to be saved and restored each time an
agent process is run.  Together, the agent partition and this list of variables
provide the execution context of the agent's processes.  This facility also
allows the user to use specific functions to  the agent's knowledge base and
reset it after each run.  Figure 6 illustrates an example of this process: an agent
named BILL is defined, consisting of three processes (P1,P2,P3), and a frame
partition known as BILL-FRAMES.  Functions for initializing and resetting the
agent's knowledge base are names, and the values of several variables (X,Y,Z)
will be saved and restored as part of the execution context.

The second aspect of agent definition, the internal knowledge and processing
of an agent, is largely left up to the design of the user.  Functions must be
defined to match those described in the agent definition above, but their
internal workings are left unconstrained.  For example, the definition in
Figure 6 is for a reactive agent used in a Gensim domain we have constructed.
The first two processes recognize errors and objects, essentially integrating
sensory information, and the third uses this new knowledge to select an
appropriate action from a finite set of possibilities.

Class
PRIMARY-AGENT

Instance
BILL

Throw:  remove the object from
the agent's possession list, and
set up a travel-through-air event
for it.

Messages Move-self:  update agent orientation to
place self at a new location.

Figure 7.  Actions attached to a particular agent.

As mentioned previously, an agent can make use of any internal
representation for action it desires.  However, the agents' internal
representations of its own abilities (or those of others) is essentially a model
of the simulator's own knowledge of action.  A procedural definition of each
action (possibly specific to particular agents) must therefore exist within the
simulator, in order for it to be able to update the world accordingly as agents
go about their own courses of activity.  These definitions are provided using
an explicit DEFACTION  facility, an example of the use of which is also
illustrated in Figure 6.  The DEFACTION macro names an action (in this case,
the action is called THROW), associates a procedural definition with the action
(the procedure THROW-OBJECT in this case), and links the action to a particular
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agent or group of agents known to the simulator.  In the example, this action
definition is particular to Bill, but it is also possible to construct an action that
is applicable to several or all agents.

An abstract view of this structure is shown in Figure 7.  Bill has two actions
which it can perform, throwing an object and moving itself.  These are done
through message passing, in the same manner as the event processing
described in Section 4.2.  The THROW action in this case, sends a throw message
to an object, and the object can then proceed as dictated by the physics.  If a ball
were thrown by Bill, the result would be the sequence of events previously
shown in Figure 4: a string of TRAVEL-THROUGH-AIR events, ending with
hitting another object or running out of energy and halting. Once again, this
is the simulator's knowledge of the agent and what it can accomplish.  Such
actions must be defined within the agent's own knowledge base in any
manner in order to provide the agent with a suitable view of its own abilities.

Thus, agent actions operate as follows: as agent processes are executed by the
simulator, actions are performed.  Once all processes for every agent have
been carried out, a cycle is completed, and the environment is updated.  One
of the tasks to be performed during this update is to reflect change made by
the agents' actions.  This is done by taking all the actions performed by each
agent in turn, and for each action, sending a message to the frames containing
information about that particular agent.  This invokes the simulator's
procedural representation of that action, bringing about change to the
environment.  The name of the message to be handled is the same as the
name of the action (e.g. a THROW message is sent to the frame defining the
simulator's knowledge of Bill after Bill indicates the performance of a THROW
action), and is defined by DEFACTION, as is the name of the procedure to
manifest the changes that action makes on the environment.  The call to
DEFACTION shown in Figure 6, for example defines the name of the procedure
used to handle the effects of Bill's THROW action to be THROW-OBJECT.  Once
again, this is the simulator’s view of the agent’s performance of an action:  it
defines only what the simulator needs to manifest change.  Internally, the
agent may reason about action in whatever way it desires, from a simple
STRIPS formalism, to making use of the facilities for action provided by
Gensim (e.g. an agent could manage its own internal event queue), to
custom-designed representations for actions.

As mentioned in Section 4.2, events are handled in a manner similar to that
of actions, except that the procedures describing the effects of an event are
attached to the objects participating in the event (using a DEFEVENT facility, an
example of which is shown in Figure 6).  To use the example from section 4.2,
if a ball can participate in a TRAVEL-THROUGH-AIR  event defined on it,
TRAVEL-THROUGH-AIR will exist as a procedural attachment to the particular
ball on on some class structure above it.    When TRAVEL-THROUGH-AIR is
taken from the event queue, an appropriate message is sent to the object
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participating in the event, activating the procedural attachment.  The object-
oriented approach used by Gensim to implement actions and events is
modular and allows the physics of a domain to be defined and extended
easily.

In addition to intelligent agents, Gensim also supports two further agent types
required for defining a wide range of realistic domains.  Controlled agents
represent entities in the environment which are a source of change, but may
not necessarily fit the criteria to be considered an intelligent agent.  In a
kitchen domain, for example, there are objects such as toasters and ovens,
which are by no means intelligent, but still have effects on the world (bread to
become brown, food to be cooked, etc.).  These agents are similar in some ways
to intelligent agents, but are much simpler in terms of simulation: they have
no deliberative aspects, and therefore no computational processes to be run.
They do, however, have events associated with them: a toaster, for example,
would require the definition of a toast event, which will presumably be
implemented to cause any bread in the toaster to get dark and the toaster to
eventually pop , and an unplug  action, which would stop the process.
Controlled agents are activated (usually through the actions of primary
agents), and contribute events to the event queue during the interval in
which the simulator is updating the environment.

Other sources of change in any simulated environment may arise
spontaneously from random elements in the world: for example, while an
intelligent agent could throw a ball and knock a lamp off a table, a strong
wind could also blow the same lamp off the table independently of any
intelligent agent.  Change of this type in a Gensim domain is supported by the
definition of random agents.  Random agents are similar to controlled agents,
in that they have no deliberative aspects and induce change by triggering
events.  Random agents are run each cycle, and contribute random aspects as
specified in their definition.   Together, Random and Controlled agents
support the definition much more complex and dynamic domains than
would be possible otherwise.  Previously,  complete scripts have been used
(e.g. in Phoenix) to support dynamic change [Howe, 1993].  The use of
controlled and random agents, on the other hand, allows us to support
ongoing events in a dynamic fashion, by having sequences of events unfold
through the event queue described in Section 4.2.  The event queue can also
support scripted changed in the environment, simply by pre-loading events
before running a simulation.

As mentioned at the beginning of this Section, part of the definition of the
domain falls outside of the automated facilities described thus far.  The most
obvious example of this is the definition of a physical map of the domain.
This is done by first setting a parameter in the simulator to record the valid
directions supported by the domain (e.g. left, right, up,down,forward,back),
and their inverses (if supported).  Following that, the map itself must be



-33-

3

implemented in a function called NEXT-LOCATION, which accepts a current
location and a direction and returns the next location.  This forms the basis
for all movement in the domain, and also defines the format of locations.  To
date, we have used both symbolic and grid-based locations in Gensim
domains.  NEXT-LOCATION is a simple mathematic function for grid-based
domains, making their definition simpler.

Other aspects of domain definition are defined in much the same way.
Standard functions exist for SCAN and LOOK (as described in Section 4.3),
implementing the domain-specific aspects of these sensory requests.  Users
are expected to modify these functions  accordingly to suit their domain.  This
sounds much more intimidating than the process actually is in practice: the
functions that must be defined as part of a Gensim domain rely entirely on
other aspects of the domain that the user has already described (e.g. what
locations and directions are available), and require no knowledge of the
internal structure of Gensim itself.  Thus, it is no more complicated than
making use of any other programming toolkit.

In addition to the facilities for programming complete domains, Gensim also
provides a number of system and agent parameters that can be varied from
run to run.  These include the length of a process time-slice and various
sensory options for individual agents.

4.6.  Overall Gensim Algorithm

As a whole, Gensim is a complex software system.  However, as is evident
from previous Sections, this complexity is mainly due to the interaction of its
many components.  Each aspect of Gensim, from agent's senses to defining
actions, is semantically explicit and relatively easy to make use of.

Now that all individual components have been examined, the overall
algorithm of Gensim is easily described.  This algorithm is shown in Figure 8.
After initializing the system, Gensim enters a repetitive cycle of timesharing
agents.  Each agent process is run, during which agents perform actions and
request sensory information.  Before the world is updated by the simulator to
reflect the changes made by these actions, any independent events are taken
care of, and controlled and random agents are allowed to manifest their
changes.  This represents the changes that occur during the time period in
which the agent was deliberating and performing its own actions.  After this
has been done, each agent in turn is examined, its actions extracted and the
environment updated accordingly.  Any errors that occur during this process
may or may not be returned to the user, depending on the domain.  Finally,
the  sensory requests of each agent are examined, and information based on
these requests is prepared and given to agents in preparation for the next
cycle.
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repeat until system halted
run each process of each agent
get all events for this cycle from event queue
update environment based on events
update environment and event queue based on controlled agent actions
update environment  and event queue based on random agent actions
for each primary agent
get all actions (translate object descriptions and references)
update environment based on actions
return any errors to agent
end for
for each primary agent
get all sensory requests (translate descriptions and references)
create descriptions based on sensory requests
return information to agent
end for
end repeat

Figure 8.  Overall Gensim Algorithm.

5.  Discussion

In this paper, we have described the main features and general operation of
Gensim, a generic software testbed for intelligent agents.  Gensim meets all
the criteria specified in Section 2:  it is modular, allowing the user to easily
substitute agents or modify aspects of a domain, supports multiple agents and
multiple processes, and the object-level interface between the agent and
simulator is straightforward.  The user can control many aspects of the
simulation through system parameters, and can design a domain to keep
track of any aspect not already built in to the simulator.  Perhaps most
importantly, however, the relationship between agents and the simulated
world provided by Gensim is clear and explicit, unlike previous simulators:
details of agent timing, actions and causality, and perception have all been
explicitly described.  This allows potential users to gauge the fit of their
domain to Gensim quickly, rather than attempting to implement the domain
and only later learning of semantic details that complicate the
implementation.  The wide variety of features provided by Gensim, coupled
with an extendible design, make the system applicable to a much wider
collection of domains and agent types than any of the simulators described
here.

In a recent survey and analysis of simulation in AI [Hanks et al., 1993], Cohen
describes three phases of research in which simulation plays a role.  In an
exploratory phase, a simulation testbed provides an environment in which
agents can behave in interesting ways.  In a confirmatory  phase, the
characterizations of behaviours of agents can be tightened through controlled
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experimentation employing a testbed, performing experiments designed to
test specific hypotheses.  In the third phase, generalization, the researcher
attempts to replicate results, demonstrating the findings of confirmatory
research in less confined settings.  Cohen notes that complex simulators and
agents are to be preferred for the first two phases, in that they can support
more interesting forms of behaviour.  However, of all the systems examined
in this paper (as well as others described by [Hanks et al., 1993]), Gensim is the
only system that can adequately support the generalization phase.  There is
much argument as to how generalization can be performed (e.g., how some
finding discovered through a given agent inhabiting the Tileworld can be
shown to be a general feature).  Hanks, for example, argues that it is difficult
for any result produced in simulation to be generalized [Hanks et al., 1993].
However, generalization of results produced by a testbed can be performed in
the same obvious way that results produced in the real world are generalized:
the same behaviour can be shown to be true in domains that differ widely
across many features.   In order to perform such generalization, simulation
technology must support the development of widely-differing, modular
domains, that can share a common interface between agents.  Systems such as
Gensim are a large step in this direction.

In addition to supporting a wide variety of domains and agents, Gensim also
provides support for representing varying degrees of autonomy in agent
architectures.  The facilities provided by Gensim allow variations in
autonomy along three lines: knowledge representation, concept sharing, and
communication.  Gensim’s knowledge definition facilities allow agents to
directly refer to and reason about the exact objects maintained by the
simulator for objective purposes (severely limiting autonomy); allow the
agents to share their own representations of domain objects between one
another (moderate autonomy); and also support complete independent world
models for each agent (high autonomy).  Domains can also be organized so
that agents need only have a few concepts in common, such as a common
reference for the location of objects (high autonomy), or must have common
definitions of a large number of concepts (limiting autonomy).  Finally,
several communication methods for identifying objects referred to in agents’
actions and sensory requests are available. Agents can simply specify the
specific symbol or name of an object used by the simulator when referring to
an object in an action or sensory request (low autonomy); can refer to its own
name or symbol for the object, (moderate autonomy); or can specify objects in
an indexical-functional or deictic [Agre, 1988] fashion, allowing an object to be
described by its relationship to the agent itself or to other objects the agent
knows about (high autonomy).

The price of all this flexibility is requiring the user to define all agents,
operations, and interactions supported by the domain.  In many cases, this
may itself be a complex effort.  As we have learned by experience, defining all
the interactions in a domain may take a great deal of time, simply because all
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the subtleties in the interaction of intelligent agents with a complex
environment may not be immediately recognizable.  Intricacies will often
arise in a partial implementation of a domain, necessitating modifications
from slight changes in the behaviour of objects to large-scale domain
redevelopment. This is yet another reason to use a generic simulator such as
Gensim over previous systems: a domain that may at first seem tailor-made
to one of the other simulation tools described in this paper may only be found
to be unsuitable after a partial implementation.

Gensim is implemented in Macintosh Common Lisp, and currently occupies
approximately 150k of source code, including its knowledge representation
system.  The system is currently being used in two research projects at the
University of Manitoba.  One involves the implementation of improvising
agents:  intelligent agents that flexibly apply both plan knowledge and
background knowledge of their task and environment to guide them through
improvised activity.  Gensim has been used in this application to illustrate
improvised behaviour in several complex domains that involve both
predictable interaction and dynamic external events, as well as both cognitive
and physical activity [Anderson, 1995].  The other involves the
implementation of a constraint-directed multi-agent coordination system
[Evans et al., 1992].  We are also working to make Gensim more useful as a
simulation tool for other other fields. For example, we are exploring the
needs necessary for the system to be used in a natural resource management
context, providing accurate simulation of domains that include intelligent
agents, rather than simply providing a testbed for the agents themselves
[Anderson and Evans, 1994].

To this point in time, we have concentrated largely on the simulation
mechanisms and the interface between the environment and the intelligent
agents the system supports, due to our desire to put Gensim to use in our
own research as quickly as possible.  We have delayed including many
features that will be absolutely necessary for more widespread use of the
system, such as a graphical interface.  Currently, Gensim produces textual
output informing the user of the domain changes that occur on each cycle,
the actions taken by each agent, and the perceptual information given to each
agent.  We also intend to develop user interface features to simplify the actual
programming of an environment, as well as methods of easily integrating
large amounts of spatial data.

This research has significance to the field of artificial intelligence, in that
improved environments for examining intelligent agents will facilitate more
direct comparison of intelligent agent designs.  While many of the
contributions of this work are embodied in the software system itself, the
overall design of Gensim makes many contributions on its own.  We have
examined common-sense, heuristically adequate implementations of action
and perception for example, and placed an emphasis on strict separation of
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agent and simulator knowledge, and stressed explicitly-defined interaction
between the agents and the simulated world.  Gensim is also significant to
simulation and autonomy, in that it provides direct low-level support for
agents of varying autonomy in multi-agent systems.  Finally, this research is
significant to the other areas where simulation plays an important role in
decision making.  In these areas, modelling of environments where the
behaviour of intelligent agents is a significant factor in environmental
change can be greatly improved by directly and accurately modelling the
behaviour of those agents through the use of a tool such as Gensim.  This will
in turn further benefit AI, through improved simulation facilities and the
adoption of more rigourous standards of modelling that are the norm in
these fields.
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