
Complex AI on Small Embedded Systems:
Humanoid Robotics using Mobile Phones

Jacky Baltes and John Anderson
Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada

Email: jacky,andersj@cs.umanitoba.ca
http://aalab.cs.umanitoba.ca

Abstract

Until recent years, the development of real-world hu-
manoid robotics applications has been hampered by a
lack of available mobile computational power. Un-
like wheeled platforms, which can reasonably easily be
expected to carry a payload of computers and batter-
ies, humanoid robots couple a need for complex con-
trol over many degrees of freedom with a form where
any significant payload complicates the balancing and
control problem itself. In the last few years, how-
ever, an significant number of options for embedded
processing suitable for humanoid robots have appeared
(e.g. miniaturized motherboards such as beagle boards),
along with ever-smaller and more powerful battery tech-
nology. Part of the drive for these embedded hardware
breakthroughs has been the increasing demand by con-
sumers for more sophisticated mobile phone applica-
tions, and these modern devices now supply much in the
way of sensor technology that is also potentially of use
to roboticists (e.g. accelerometers, cameras, GPS). In
this paper, we explore the use of modern mobile phones
as a vehicle for the sophisticated AI necessary for au-
tonomous humanoid robots.

Introduction
Until the last few years, intelligent mobile robotics has been
greatly hampered by the size, power consumption, and com-
putational limitations of available mobile computing plat-
forms. While small mobile robots such as the Khepera
have been used in applied research for many years, the ap-
plications of these were limited because of on-board pro-
cessing ability, and the units were expensive (several thou-
sand dollars each). More typical equipment likely to be en-
countered in the average AI lab would be platforms such as
the Pioneer-II, which are large enough to carry laptops or
full-size internal computing systems, but remain similarly
expensive and carry significant demands due of their size
(heavy lead-acid batteries and larger motors).

Conversely, recent years have brought about a revolu-
tion in available computational ability in embedded systems
from the standpoint of mobile robotics. Smaller, power-
ful and less power-hungry processors, cheaper flash mem-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ory, and better battery technology have combined to al-
low far more effective embedded systems than were previ-
ously possible. Consequently, a generation of systems that
are lighter and more robust now affords the possibility of
smaller, lighter, and more adaptable robots. For the same
reasons, these small, powerful embedded systems have also
moved out of the industrial sector and into the realm of con-
sumer electronics, giving much higher computational ability
in embedded devices for everything from video equipment
to automobiles. In particular, mobile phones have evolved
from basic telephone and contact management abilities to
handheld computers supporting sophisticated applications.
The latter provide particularly exciting possibilities for AI
and robotics: they combine powerful computational abilities
with on-board peripheral devices (cameras, accelerometers,
GPS units, bluetooth networking) that are in many cases im-
provements over what was available just a few years ago and
would have to be separately managed.

Our work involves the development of control, planning,
learning, and vision in humanoid robots. While small em-
bedded processors have previously been used to power small
humanoid robots (e.g. (Yamasaki et al. 2001), Manus I
(Zhang et al. 2003), Tao-Pie-Pie (Baltes and Lam 2004),
Roboerectus (Zhou and Yue 2004), and Hansa Ram (Kim
et al. 2004)), these examples range in cost from $1000 to
$20,000 US. Currently, we have moved from using these
older types of embedded systems to developing sophisti-
cated robotics platforms using mobile phones. Used mod-
ern mobile phones can be had for $100-$200 US (or indeed,
even for free as a result of recycling programs) and provide
all the facilities necessary to power complex adaptive hu-
manoid robots for a fraction of the cost of several years ago.

Our interest in humanoid robots is in developing the kinds
of broad adaptive behaviour that are necessary to support
service robots of the future (e.g. for nursing or firefighting).
These behaviours include being able to actively balance on
uneven surfaces (e.g. move through grass or gravel), plan
complex motions, such as crawling, carrying, and climbing,
as well as combinations of these (e.g. pick up dirty laundry
from underneath the bed), and interact with other robots or
humans (e.g. move furniture in groups). The broad nature
of these tasks is extremely challenging to AI in general, let
alone intelligent systems running on small embedded pro-
cessors such as mobile phones.

Figure 1: The modified Robotis Bioloid robot STORM

We have been competing for the last three years at major
robotics competitions (RoboCup, FIRA) using humanoids
whose main computational demands are supported using
mobile phones. While RoboCup (RoboCup 2009) involves
mainly soccer and a few challenges closely related to soc-
cer (e.g. a ball throw-in), the FIRA HuroCup (FIRA 2009)
competition is specifically designed to encourage the devel-
opment of the types of broad robotic skills in which we are
interested. The same physical robot must be able to partic-
ipate in events ranging from basketball free-throws to ob-
stacle course runs, to a climbing wall, taking place over ex-
tended periods of time. The computing demands to support
the artificial intelligence necessary for such a range of ac-
tivity (managing everything from computer vision, to active
balancing and intelligent control, to localization and plan-
ning) would tax a full-sized desktop system, let alone a mod-
ern mobile phone.

This paper explores our experiences with using mobile
phones for supporting sophisticated real time artificial in-
telligence in the domain of robotic control. We begin by
describing our typical research platform. Following this, we
describe with issues in adapting phones for these purposes,
and discuss variations in OS, IO support, and issues in soft-
ware development. We then illustrate the abilities of mobile
phones for AI by describing three elements of our work that
are representative of the difficulty of supporting AI on such
systems: real-time computer vision, localization, and.

Humanoid Robots: Hardware and Software
For a physical platform, we begin with the Robotis Bioloid
humanoid robot kit: these provide 18 degrees of freedom,
use reasonably powerful and robust motors given their cost,
and are far easier to acquire and assemble than building
skeletal components from scratch. The Robotis kit includes
a small AVR ATMega128 embedded controller for manag-
ing the individual servos of the robot. In our work, this is
only used for low-level position control of the servo motors.
Figure 1 shows one of our robots, STORM, using this plat-
form, along with a mounted Nokia 5500 mobile phone for
perception (visual feedback, active balancing sensors) and
on-board computing.

The main drawback of using Mobile Phones is that they
provide very little IO resources. We therefore add a custom-

built IrDA interface, based on the Microchip MCP 2150
IrDA transceiver, to the humanoid kit. This allows the mo-
bile phone to control the high-level motions of the robot.

While the Bioloid kit comes with firmware that can record
and play back basic motions, this is not suitable for the com-
plex motions we require, and so we replace this firmware
with our own (requiring reverse-engineering part of the orig-
inal Robotis firmware). The firmware also supports a 3-axis
accelerometer from Analog devices, so that phones that do
not have internal accelerometers can use an external sensor
for active balancing.

Adapting Mobile Phones for Embedded
Control Systems

There is is a huge variety of mobile phones available on the
market, and dozens more are released each year. The cost
of these devices is extremely competitive compared to many
embedded systems (given their speed, memory, and included
sensing devices), because they are produced in huge volume.

While economy of scale and the ability to have many nec-
essary sensing devices included in an embedded system is
very attractive to a researcher interested in supporting arti-
ficial intelligence and robotics on such systems, one is also
well advised to heed the old motto: Caveat Emptor. Even
from the same manufacturer, individual phones often have
different versions of the same OS, support different exten-
sions, and may sometimes run totally different OSs. The
model number often confuses more than it helps in trying to
decipher the OS that is run by a device. For example, the
Nokia 6600 and 6680 are Nokia Series 60 devices, which
is a very good OS for robotics purposes, whereas the Nokia
3300 and 3500 are Nokia Series 30 devices, which are not
programmable. But the Nokia 6230 is a Series 30 device and
the Nokia 3230 is a Series 60 device.

It is also important to realize that mobile phone manufac-
turers see these phones as finished consumer products, and
therefore do not expect them to be “illicitly hacked” (from
their perspective) to be used as embedded control systems.
At best, some manufacturers encourage the development of
third-party applications, but these applications often run in a
sandbox which strictly limits which hardware is accessible
to the application.

In spite of these hurdles, mobile phones can provide an
extremely cheap development platform with high speed pro-
cessing, LCD, buttons, wireless, bluetooth, infrared and one
or two cameras in a very small and lightweight package.
This section details our experiences with adapting these de-
vices for robotics applications, including working with real
time operating systems, developing software, and ultimately
developing an IrDA interface for supporting IO.

A Tale of Caution
The most ubiquitous development environment for mobile
devices is Java 2ME from Sun. It is available for a large
number of devices and is standardized. However, J2ME re-
ally only standardizes the language and some of the GUI
components, as well as data structures: several key tech-
nologies of interest to a researcher are only available as JNR

libraries, which may or may not be supported.
For example, we purchased 13 “developer phones” from

Sony Ericsson in 2004. These Z1010 phones include two
cameras, Bluetooth, infrared, and had external storage on a
memory stick. Initial development went smoothly and even
though (as expected) the frame rate of the vision processing
was slow, it would have been sufficient for robotic soccer.
We found out the hard way, however, that Sony Ericsson
does not allow access to Bluetooth nor IrDA infrared, nor
to the external memory - even for developer devices. The
company also refused to allow us to return the phones once
we found out their limitations. We will therefore not recom-
mend Sony Ericsson phones in any way.

Symbian OS Series 60
After several failed attempts trying to use J2ME for image
processing, we chose the Nokia devices that run the Sym-
bian OS S60 development environment. The main reason for
this choice was that Nokia’s SDK is more open and supports
development in C++ and J2ME as well as other languages
such as Python.

The Symbian SDK Carbide provided by Nokia for its
phones is Windows-based and uses Eclipse as an integrated
development environment (IDE). The tool chain includes the
GCC Arm compiler, assembler, and linker, but also several
other tools to help manage various builds (emulator, debug,
release) and to help in internationalization. The first tool
bldmake takes as input a .bld file which specifies the
source files as well as the required libraries, and generates
various makefiles in several directories and the abld.bat
file which is used to control the build process. abld is a
generated script that allows the building of debug or release
versions for real hardware or emulators.

Even though Nokia only supports development under
Windows and Eclipse, most of the Symbian tools are im-
plemented in Perl and have been ported to Linux by the
GnuPoc (GnuPoc 2009) project. This allows the develop-
ment of S60 applications under Linux, which is our standard
development method. The main drawback to this method is
that most of the emulators do not run under Linux or the
Linux emulation layer Wine. This means that all testing
and debugging must be done on the phone hardware directly.
Since most robotics applications are highly sensitive to tim-
ing issues, we found that the use of the emulator is not very
useful in robotics in general.

The Symbian OS IrDA Interface
As previously mentioned, many phones possess an infrared
port, which would be ideally suited to communicate with a
small microcontroller responsible for various IO (e.g., ac-
celerometers, gyroscopes).

There are three possibilities for achieving this, each with
their own advantages and disadvantages.

Standard Serial Communication The conceptually sim-
plest method is not to use the IrDA layer at all, but to use
standard serial communication using infrared as the physi-
cal layer. This mode is supported on the early S60 phones,
most notably the Nokia 6600. By loading the ECUART in-
stead of the standard IrCOMM device library and by open-

ing port COMM::0 instead of IrCOMM::0, the phone will
emulate a standard serial connection with IrDA multiplex-
ing disabled. The advantage of this method is that any de-
vice that can be controlled using a standard serial line can be
connected directly. For example, our humanoid robot DAU-
DANwas built using AI Motor serial RC servos, which use
a standard 115 kbps serial communication protocol. Apart
from the IR transceiver, no additional hardware was nec-
essary. The significant disadvantage of this method is that
Nokia has disabled this feature in newer S60 phones.

IrDA Interface Physical Layer only
Since newer models of the Nokia phones do not sup-

port UART style IR communication anymore, but only IrDA
style communication, we investigated various methods for
communicating between the phone and additional hardware
such as microcontrollers. The interface consisted of a IrDA
transceiver and IrDA demodulator circuit, which would take
the IrDA infrared pulses and converts them into serial sig-
nals.

The problem is that the communication from the phone
expects to establish a IrCOMM serial communication. This
means that every message sent from the phone is wrapped in
a message container with start- and end-of-message mark-
ers and checksums. However, in some cases the connected
hardware (e.g., RC servo motors) uses a different start-of-
message header and will simply ignore the additional con-
tainer bytes.

Another version of our small humanoid robot, ABAREN-
BOU was built using just the transceiver and the demodu-
lator directly connected to AI Motor servos. The problem
was that some servo positions when sent as an IrDA mes-
sage would break the AI Motor firmware. In our case, these
servo positions were not needed and we simply disallowed
our application from sending these messages.

The main disadvantage of this method is that the phone
can only send messages - it cannot receive them, since the
AI Motor servos do not wrap their responses into a IrCOMM
frame. So even though the servos provide position and
torque feedback we were not able to use those in the mo-
tion planner.

IrDA Interface IrCOMM Layer in Hardware
The IrDA protocol provides a serial port emulation layer

called IrCOMM, which emulates a full serial port including
flow control and handshaking signals. It also automatically
multiplexes various channels over the IrDA link. The Ir-
COMM layer is built on top of the IrDA physical layer.

To implement a full IrDA layer on a small microcontroller
is a non-trivial task. Therefore, many hardware design-
ers use the Microchip MCP-2150 IrDA protocol controller,
a small chip that provides IrCOMM layer communication
without any additional hardware of software.

Our experiences with the Microchip MCP 2150 were
mixed. The MCP 2150 has some bugs, which ultimately
means that it is not able to establish a IrCOMM link with
the Linux IrDA stack. Furthermore, devices based on S60 20
and 21 can communicate with an MCP 2150, but the newer
S60 30 and 31 cannot establish a link.

Since the MCP 2150 wraps the communication into a Ir-
COMM frame, the phone can both write and read messages

<State id="Scan For Target" > <Enter>
%%v(angle) = 0;
if (previousState == %%State("Target Right Forward")) {

%%v(newAngle) = 20; /* Turn 20 degrees first */
%%v(angleAdjust) = +10; }

else {
%%v(newAngle) = - 20; /* Turn 20 degrees first */
%%v(angleAdjust) = -10; }

</Enter>
<Process>

if ((%%v(newAngle) >= -190) && (%%v(newAngle) <= 190)) {
if (%%v(angle) != %%v(newAngle)) {

turn((%%v(angleAdjust) * TEN_DEGREE) / 10);
%%v(angle) = %%v(angle) + %%v(angleAdjust); }

else {
%%v(newAngle) = - %%v(newAngle) - 40;
%%v(angleAdjust) = - %%v(angleAdjust); } }

else {
%%Transition("Random Walk"); }

</Process>
</State>

Table 1: An XML schema for a behaviour that scans for a
target by turning right/left with increasing sweeps

from the attached hardware. We used this scheme in our
small humanoid robots STORM (figure 1), and ROGUE.

IrDA Interface RCOMM Layer in Software
In light of these experiences, we suggest the use of the

IrDA protocol with the physical layer only as the most flex-
ible solution. We implemented our own minimal IrCOMM
layer to establish a connection between the phone and our
hardware. Unfortunately, this requires the use of a micro-
controller (e.g., PIC or AtMega AVR). However, many de-
signs for complex robots such as humanoids or snake-like
robots already require a microcontroller for motion planning
and processing of sensory information.

Complex AI on Mobile Phones
Having described some of the hurdles that have to be navi-
gated in terms of employing mobile phones as robot control
hardware, we now discuss the actual use of these platforms
for sophisticated, real-time artificial intelligence. There are
many significant and interacting AI problems in the domain
of mobile robotics, which is why this domain is ubiquitous
from the standpoint of both research and teaching.

As a basis for dealing with a complex world, a robot must
first be able to move about in it coherently, and combine re-
active and deliberative reasoning. Our agent architectures
are reactive and behaviour-based, and use behaviour trees to
support a balance between deliberative planning and reac-
tion. A behaviour tree involves successive levels establish-
ing a context for lower-level behaviours, which are imple-
mented as finite state machines. These are described us-
ing our own XML-based meta-language, in order to pro-
vide a machine-processable description of the intent of a be-
haviour. The specification of behaviours includes precondi-
tions (enter functions) and postconditions (exit functions). A
slightly simplified example of a simple behaviour that scans
for a target with increasing sweeps is shown in Table 1.

The XML schemas include additional markup to refer
to states by name (%%State("Random Walk") access
variables (%%v) and to trigger transitions to other states
(%%Transition).

Behaviours are organized into behaviour trees. Higher

Figure 3: Interface of our motion development system. Left,
the development of a position; Right, the combination of
these positions into motions.

level behaviours can override or enable other lower level be-
haviours. For example, a Perception behaviour may disable
the scan for target behaviour and enable the state Target In
Front if it recognizes the target.

One of the design goals of the meta language was to be
highly efficient. Instead of adding a XML parser and in-
terpreter to the agent, the meta language is parsed and in-
terpreted offline and converted into highly efficient C code.
This code is then compiled and executed on the mobile
phone. For example, the example above shows that the pro-
grammer uses state names (e.g., “Random Walk,” and “Scan
For Target”). However, the states’ names are converted to
integers in the C code. Because of this formalized state rep-
resentation, we can also easily generate alternative represen-
tations when they are useful, such as visualizing the finite
state machine as a graph. For example, figure 2 shows the
state transition graph for a simple approach task. The robot
first approaches a target and then walks away from it.

The actual behavior code on the mobile phone must ul-
timately prescribe movements for the robot. These move-
ments are defined atomically, and are developed beforehand
as motor control programs using a software interface (fig-
ure 3. The interface allows one to move the robot into a
specific position and save this position. The interface also
allows one to set the trim (i.e., offset) for all joints as well as
the home position.

A separate window tab is used to combine these positions
into motions. Each motion has a cycle time associated with
it and each part of a motion has a arrival time associated
with it. Thus, the interface allows the user to easily adjust
the speed of a whole motion or individual parts of the mo-
tion. The trajectory of all joints is shown in the bottom win-
dow. STORM (figure 1) has twenty atomic motions, includ-
ing: start walking, take step with right foot, take step with
left foot, stop from left walk, stop from right walk, sideways
step left, sideways step right, and kick with right foot.

These movements are then available to be played back
as required by any of our programs running on the mobile
phone - here, by the particular state out of a behaviour cur-
rently in control of the robot. In order to respond adaptively
within a given state, and appropriately make transitions be-
tween states, a robot must be able to perceive its current en-
vironment (real-time vision), and know its current location
within it (localization and mapping). The remainder of the
paper explores the design and implementation of these two
facilities, using mobile phones, as examples of adapting so-

Figure 2: Automatically generated state transition graph for a simple approach and avoid task. Solid lines are state transitions.

phisticated artificial intelligence to these embedded devices.

Vision Processing in Robotic Soccer
STORM uses the Nokia’s camera as its main sensor. The
camera is used to properly approach objects in the field of
view of the robot as well as to supply information for local-
ization and mapping.

To be robust enough to deal with a complex environment
such as robotic soccer, the vision processing makes little use
of colours, and makes use of a very fast approximate region
segmentation algorithm. First, the algorithm scans the im-
age and extracts scan line segments (i.e., segments of similar
colour) of approximately the right size. This step is similar
to standard region segmentation algorithms.

However, we noticed that implementing a full union-find
algorithm was too slow for a mobile phone, since it took
about 2 seconds per image. The adaptations needed here
are typical of adapting sophisticated computation to mobile
phones: since most objects of interest in the soccer, envi-
ronment are relatively small, we use a flood fill pixel merge
algorithm, to find the associated region for a scanline. The
flood fill algorithm keeps track of which pixels have pre-
viously been visited, and thus will visit each pixel at most
once. The returned region is then checked for size (i.e., num-
ber of connected pixels), size of the bounding box, aspect
ratio, and compactness. Only in the final step does the algo-
rithm test whether the average colour of the region matches
the object colour. If any of these tests fail, the object is re-
jected. Using only average colours of regions results in ro-
bust recognition of the ball and the goals and takes on aver-
age approximately 200ms.

An approximation of the relative position of objects is
possible by determining the pan and tilt angles of the phone
(from the servo on which it is mounted), and then calculat-
ing the distance to the centre of the image. In this domain, it
is safe to assume that these objects are on the ground plane.
The relative position of an object at the centre of the image
will have the closest approximation, so the camera is cen-
tered on important objects such as the ball before a decision
is made as to what action to take next.

Goals are also detected as objects. Each goal is a distinct
colour (prescribed by RoboCup rules). If both goal colours

are found in one image, the regions of each goal colour are
merged with other regions of the same goal colour. The goal
colour that is present in the largest merged region is consid-
ered to be the goal currently being viewed.

To help the feature-based localization method described
in the next section, we use a complex camera calibration
based on the Tsai camera calibration algorithm (Tsai 1986).
This calibration is only done once for each robot. Given
this calibration information, we are able to map points in
the image accurately to their real world coordinates. This is
essential, because it allows us to determine the distance and
orientation of the ball to a feature point (ball, goal post, line)

Before localization can occur, features must be extracted
from the image. The relevant features for localization on the
soccer field are lines, goals, and the centre circle. Every 5th
column in the image, the system scans from the bottom of
the image towards the top. If there is a transition from a
green pixel to a white pixel, the pixel p is remembered in a
list. The scan continues upward, so there may be more than
one transition pixel in a column.

Lines are then found by running a gradient guided Hough
transform (Hough 1962). For each point pi, a set of adjacent
points is determined. Triplets are formed from these by in-
cluding one point to the left of the point pi, and one point to
the right of pi. There are several triplets that can be formed
this way out of the neighborhood of adjacent points. Each
triplet votes for an unbounded line in the image. This vote
is fuzzified by voting for a small range of slopes through the
point pi.

The peaks in the Hough accumulator space determine the
equations of possible lines. For each peak in the accumula-
tor space, we search along the pixels determined by the line
equation to find start and end points of the lines. This results
in a set of line segments.

The line segments are ordered based on their size. The
longest line segment is assumed to represent the edge of the
playing field. Given the distance and gradient of the line
segment, the position and direction of the robot can be com-
puted.

Note that the above approach is biased toward particular
types of objects (the ball, goals) and is heavily reliant on
lines. One of the more forgiving aspects of robotic soccer

Figure 4: Localizing using a known point, its relative posi-
tion, and relative orientation of a line. Image from the robot
with highlighted line segments and the calculated position
are shown in the lower image.

is that the playing area is extremely structured in terms of
lines compared to most common, everyday environments.
Elements of many domains (e.g. driving uses lines exten-
sively) can be similarly approached, but we are still a long
way away from performing general vision using embedded
systems such as mobile phones.

Localization and Mapping in Soccer and Beyond
Just as most complex domains require sophisticated sensing
such as vision for feedback, most domains require know-
ing at least something about one’s position in order to act
appropriately. Moreover, most domains will allow perfor-
mance in general (including the ability to better know one’s
own position) if an up-to-date map of the world around the
agent is available. In some domains, reasoning can be spe-
cific enough to be able to focus on certain aspects of the
domain in this regard. In soccer, for example, knowing the
position of the ball is especially important. The ball’s posi-
tion relative to the robot is easily determined from an image
containing the ball. However, without knowing the world
position of the ball, we cannot do anything useful with it:
kicking in just any direction could put the ball out of bounds
or even into the robot’s own goal. Even in a basic case such
as this, the problem of localization and keeping at least a
limited map of what is occurring on the field is thus crucial.

Absolute localization of the robot plus relative localiza-
tion of the ball will give absolute localization of the ball.
Absolute localization can be calculated as long as a point
is viewed with a known world coordinate, and knowing the
robot’s world bearing from it. One instance of this in soccer
is when a goal post is seen (figure 4). Once this is accom-
plished, dead reckoning can be used with some accuracy for
a short time afterward.

Because soccer is a fast-moving game, this is the extent
of localization performed by STORM. Just as previously oc-
curred with vision, one of the factors being relied upon here
is the significant structure inherent in a soccer field. Com-

plex domains that humans deal with easily, such as navigat-
ing a previously-unknown room in an average home, gener-
ally have much less structure that can be relied upon. More-
over, such domains may require a longer-term map com-
pared to moving on a soccer field.

There are many approaches to doing more sophisticated
localization and mapping. One that particularly showcases
the use of the mobile phones we employ is multi-agent si-
multaneous localization and mapping (SLAM) - beginning
in an unknown environment, a group of robots must create
a shared map while navigating using the partial map cre-
ated thus far in order to explore further. There have been
numerous prior approaches to this problem (e.g. (Burgard
et al. 2000; Rekleitis, Dudek, and Milios 1997)). In our
work (Bagot, Anderson, and Baltes 2008), we use multiple
robots navigating in an obstacle course environment, where
obstacles are colored to allow vision to be the sole sense
employed. Figure 5 shows STORM and ROGUE, both using
Nokia mobile phones, jointly navigating using this method.
Each robot maintains its own map, but shares information
via the phone’s bluetooth to the other robots employed, so
that mutual perspectives constrain interpretation and correct
error. Based on this shared information, they also make
sensible choices for choosing frontiers to explore in the un-
mapped portions of the domain. While much prior work on
SLAM exists, most of this is done with wheeled robots us-
ing sophisticated sensors such as laser rangefinders. In our
work, using vision alone is more error prone: the motion
and jitter introduced by humanoid movement both makes
ongoing tracking of objects more challenging and introduces
greater error in estimating the robot’s pose.

Figure 5: STORM and ROGUE jointly performing SLAM on
an obstacle course.

A SLAM solution gradually builds a map by mapping
visible spatial area relative to the current estimated pose of
an agent, which is unknown to begin with. Therefore any
odometry error during motion propagates to landmark loca-
tion in the map. In our work, we employ a particle filter,
based on that of Rekleitis (Rekleitis 2003). A particle filter
is a probabilistic model that maintains a number of weighted
estimates of the robot’s current pose (location and orienta-
tion) as particles, and uses new incoming evidence to filter

out incompatible hypotheses and propose new ones. The
particle population size is 100, which is manageable with
the mobile phones’ processing power, but successful results
have been reported (Kwok and Fox 2004) with a particle
population size of 50. Population depletion is handled with
a simple select with replacement re-sampling algorithm, as
used by Rekleitis (Rekleitis 2003).

Our particle filter differs from that of Rekleitis (Rek-
leitis 2003) in its motion model (wheeled robots were used
in (Rekleitis 2003), whereas humanoids must account for
more error-prone motion and also movements that are im-
possible for wheeled robots, such as a side step) and in its
particle weight update method. After an action (e.g. a left,
right, forward, or backward rotation or translation) the pose
estimate of each particle is updated based on the motion
model (i.e. an estimate of how far a step or turn should be
able change the robot’s position), and then the weights are
updated based on visual feedback. The pose estimation with
dead reckoning is much more difficult to deal with in this
work than Rekleitis’, because we are using a single camera
whose view is altered by the many degrees of freedom of the
robot, rather than a fixed laser scanner. While the pose es-
timation is based on the motion model, the camera’s visual
feedback is used to alter the weight, to avoid the accumula-
tion of estimated odometry error that would otherwise occur.
Our image processing approach returns the polar coordinates
of objects in the camera’s field of view, but during locomo-
tion this is very noisy due to motion blur. Our weight update
method consequently uses a certainty factor in the camera
data and a constant decay. The best particle at any point is
then the weighted average of all particles.

In this work, landmarks are mapped relative to the best
particle in an occupancy grid (with 25x25cm grid cells) with
a recency value associated with each grid cell. A recency
value [0, 255] is associated with each grid cell instead of the
more common posterior probability. If the recency value of
a grid cell is greater than zero, a landmark is believed to exist
in the corresponding grid cell. This recency value is updated
based on current perception. If the sensor senses an object,
and the coordinates of the object relative to the best particle
in the particle filter map to a grid cell with a recency value
greater than zero, then the recency value is incremented; oth-
erwise, it is initialized to 128. If the sensor does not sense
an object, landmarks are extended to circles with radius r,
if a line segment with length l (maximum sensor range) ex-
tended from the best particle intersects a landmark circle,
the recency of the corresponding grid cell is decremented
(Figure 6).

Each agent communicates its estimated pose and all land-
marks in its local map, along with its target pose (desired
coordinates and orientation for motion planning) to other
agents using the bluetooth capabilities of the mobile phone.
Agents attempt to reconcile landmarks in their own local
maps, possibly extending these, and also store the pose and
target pose of the agent nearest to them.

To support a global coordinate system, we adopt the
sequential deployment technique of (Anderson and Pa-
panikolopoulos 2007). Agents enter the environment one
after another from the same pose, which results in the same

Figure 6: Recency update method.

unique origin in a local coordinate system for each agent.
Thus, when describing the location of a landmark, no ro-
tation or translation information is required. The weakness
of this is the error in local pose estimation, but that itself
should be improved over time as SLAM unfolds. Internally,
each agent maintains the pose of the nearest agent and their
current target pose.

Unlike (Burgard et al. 2000), we use no centralized
method for dealing with frontier selection. We also do not
maintain a shared set of targets requiring consistent commu-
nication from all agents. Instead, we attempt to use implicit
coordination to minimize coverage overlap between agents
without relying on communication, by exploiting the fact
that each agent maintains the communicated pose and target
pose of the closest agent to it. As SLAM unfolds, agents
select target poses such that each must be a frontier on its
local map, but in addition, the Euclidean distance from the
target pose to the nearest agent must also be greater than the
maximum sensor range.

In our approach, the sharing of information is designed to
improve the accuracy of SLAM but still allow it to operate
without multiple individuals. That is, should bluetooth com-
munications be interrupted, each agent’s own particle filters
will still operate using their own perceptions: they will sim-
ply not have as broad a range of information on which to
base decisions about the best particle. Similarly, agents will
still make the best decisions they can for deciding where
to explore, but with a poorer estimation of where the agent
nearest it is going, there will be more redundant exploration
performed.

The evaluation presented in (Bagot, Anderson, and Baltes
2008) did not show appreciable improvement in mapping
accuracy by using the input of multiple agents. We believe
this was because of the sheer volume of error in this domain
(i.e. there are many similar landmarks) along with error in
movement that could not be accounted for because we did
not employ an internal model of the agents’ walking gait,
but even as it stands the model should be useful in a do-
main where landmarks are more predictable. The work does
show, however, that something as sophisticated as a particle
filter taking in real-time vision and the communicated per-
ceptions of other agents is possible to successfully deploy
using mobile phones.

Discussion
In this paper, we have described our experiences with adapt-
ing mobile phones for use in artificial intelligence and
robotics, including dealing with operating systems and over-
coming restrictions on IO facilities. We have also described
work specifically in robotic control software development
for mobile phones, in computer vision, and in performing
localization on these devices.

While there are still hurdles to overcome in using mobile
phones broadly in AI, there are some promising signs for the
future. In 2008, the Symbian Foundation announced their
plans to merge software assets from various manufacturers
to form Symbian Platform, a open source version of the
Symbian OS released under the Eclipse Public Licence. In
late 2009, the first version, Symbianˆ1, was released. The
Beagleboard (BeagleBoard 2009) was the first hardware that
was targeted by this version.

Nokia has also been pushing Posix compatibility by pro-
viding a posix emulation layer for Symbian OS and ac-
quiring Trolltech, the company that makes the excellent QT
graphical user interface library.

Therefore, we believe that Symbian OS and Nokia phones
in particular will provide even better opportunities for em-
bedded control applications in the future.

In the mean time, the fact that there is a natural tension
in manufacturers between wanting to see these devices used
while trying to ensure that commercial control remains in-
tact means that those wanting to use these as general com-
puting devices will regularly see obstacles placed in their
paths. The best bet in navigating these obstacles is a large
group of technically-able and dedicated users.

Just as one example, with version 31 of the Symbian OS,
Nokia introduced a mandatory signing process for applica-
tions. For applications that wanted to make use of certain
features - most notably to us, wireless bluetooth - the file
system had to be digitally signed before being uploaded to
the phone.

Initially, a developer was able to request (free of charge)
a signing key that was valid for a limited period of time for
a specific phone. In 2008, the process changed and an appli-
cation had to be uploaded and signed via a website, which
required a working Internet connection during development.
While this is only a small restriction, it caused a big problem
for us, since during robotics competitions, Internet access
is sketchy at best. Luckily, hacks for various phones dis-
abling the signature check or the capabilities check quickly
emerged and allowed us to use the phones during competi-
tion.

Disclosure
The autonomous agents laboratory at the University of Man-
itoba received five Nokia N95/N96 devices in 2008 through
the Nokia University Relations program.

References
Anderson, M., and Papanikolopoulos, N. 2007. Improving
multirobot, cooperative search via local target queues. In
Proceedings of IEEE IROS-07, 2590–2595.

Bagot, J.; Anderson, J.; and Baltes, J. 2008. Vision-based
multi-agent slam for humanoid robots. In Proceedings of
the 5th International Conference on Computational Intel-
ligence, Robotics and Autonomous Systems (CIRAS-2008),
171–176.
Baltes, J., and Lam, P. 2004. Design of walking gaits for
tao-pie-pie, a small humanoid robot. Advanced Robotics
18(7):713–716.
BeagleBoard. 2009. Beagleboard website. http://
www.beagleboard.org.
Burgard, W.; Fox, D.; Moors, M.; Simmons, R.; and Thrun,
S. 2000. Collaborative multi-robot exploration. In Pro-
ceedings IEEE ICRA-00, 476–481.
FIRA. 2009. Fira hurocup rules. http://www.
fira2009.org/gamerules/hurocup-laws.
pdf.
GnuPoc. 2009. Gnupoc website. http://gnupoc.
sourceforge.net/.
Hough, K. Y. 1962. Mehod and means for recognizing
complex patterns. U.S. Patent 3069654.
Kim, J.-H.; Kim, D.-H.; Kim, Y.-J.; Park, K.-H.; Park, J.-
H.; Moon, C.-K.; Ryu, J.-H.; Seow, K. T.; and Koh, K.-
C. 2004. Humanoid robot hansaram: Recent progress and
developments. JACIII 8(1):45–55.
Kwok, C., and Fox, D. 2004. Map-based multiple model
tracking of a moving object. In Proceedings of RoboCup-
2004, 18–33.
Rekleitis, I.; Dudek, G.; and Milios, E. E. 1997. Multi-
robot exploration of an unknown environment, efficiently
reducing the odometry error. In Proceedings of IJCAI-97,
1340–1346.
Rekleitis, I. 2003. Cooperative Localization and Multi-
Robot Exploration. Ph.D. Dissertation, McGill University.
RoboCup. 2009. Robocup website. http://www.
robocup.org.
Tsai, R. Y. 1986. An efficient and accurate camera cali-
bration technique for 3d machine vision. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recog-
nition, 364–374.
Yamasaki, F.; Matsui, T.; Miyashita, T.; ; and Kitano, H.
2001. Pino the humanoid: A basic architecture. In Stone,
P.; Balch, T.; and Kraetszchmar, G., eds., RoboCup-2000:
Robot Soccer World Cup IV. Berlin: Springer Verlag. 269–
278.
Zhang, R.; Vadakkepat, P.; Chew, C.-M.; and Janardhanan,
J. 2003. Mechanical design and control system config-
uration of a humanoid robot. In Proc. of 2nd Int. Conf.
on Computational Intelligence, Robotics and Autonomous
Systems (CIRAS 2003).
Zhou, C., and Yue, P. K. 2004. Robo-erectus: a low-cost
autonomous humanoid soccer robot. Advanced Robotics
18(7):717–720.

