

A GENERIC DISTRIBUTED SIMULATION SYSTEM
FOR INTELLIGENT AGENT DESIGN AND EVALUATION

John Anderson
Department of Computer Science

University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2

andersj@cs.umanitoba.ca

Keywords: Generic Simulation, Distributed
Simulation, Intelligent Agents, Multiagent Systems.

 ABSTRACT

Using a simulator to design and evaluate intelligent
agents in realistic environments places enormous
demands on a simulation tool: everything from
supporting multiple agents and their interactions, to
providing detailed control over trials in an
environment, to accurate perception within
computational bounds. While the computationally
intensive nature of this process is the most obvious
reason to consider distributed simulation, we have also
found that distributed simulation provides solutions to
timing and perceptual problems that are particularly
difficult in single-system simulation. This paper
describes ongoing work on DGensim, a distributed
version of the Gensim single-system simulator, and the
significant advantages that distribution brings to the
simulation process in this case. We also discuss the
difficulties of preserving the generic aspects of a
simulator in a distributed setting.

 1. INTRODUCTION

While Artificial Intelligence is contributing
important elements to applied simulation research,
simulation has also has an extremely influential role to
play in pure and applied AI research. Even those who
insist that intelligent agent research requires the
physical embodiment of agents usually employ
simulation as an integral component of the design of
those agents (e.g. Balch, 1998a). Simulation also
provides important elements of control for the
evaluation of intelligent systems (Hanks et al., 1993),
as well as solutions to problems in the real world that
are beyond the capabilities of current AI technology,
allowing research one area to proceed despite the
immaturity of research in related areas (Anderson,
1995). Simulation also allows us to model natural
intelligent systems, thereby deriving a better
understanding of the techniques employed in those
systems and ultimately the means to exploit those
techniques in new applications (e.g. Picault and
Collinot, 1998)

Using a simulator to design and evaluate intelligent
agents in realistic environments places enormous
demands on a simulation tool: everything from
supporting multiple agents and their interactions, to
providing detailed control over trials in an
environment, to accurate perception within
computational bounds (Anderson, 1995). Surrounding
these specific issues however, is the more pervasive
problem of wide applicability: in order to perform
ongoing research, where agent designs and the
environments in which they are examined change as
development pursues, we require a tool that will easily
support such changes. Similarly, there are many
applications outside of the development of intelligent
agents themselves in which complex environments
populated by such agents are useful: natural resource
management (Deadman and Gimblett, 1994), biology
(Kester, 1996), economics (Deadman, 1999), and
sociology (Halpern, 1999) to name a few. Ideally, a
simulator generic enough to support diverse agents and
environments should also be applicable to these areas
and others.

With this in mind, we developed Gensim, a generic
timeshared simulator for multi-agent systems
(Anderson and Evans, 1995). We have employed this
system ourselves in intelligent agent design and
verification (Anderson, 1995; Anderson and Evans,
1996) and have shown its potential in areas outside of
this environment (Anderson, 1997; Anderson and
Evans, 1994). This system is generic in that agents
and environments can be easily defined and
interchanged in a modular fashion. The system also
provides pragmatic support for agent sensing, control
over agent timing, and facilities for constructing
domains and agents. However, Gensim has several
significant limitations in its original form, and others
for which we have developed compromises that are
still philosophically awkward.

The major motivation for considering distributed
simulation, in most cases, is the increased computing
power it makes available (Hamilton et al., 1997). In
fact, some take the view that the very purpose of
distributed simulation is to reduce the simulation time
when compared to sequential simulation (Pham et al.,

1998). The advantage of additional computational
power is certainly attractive in an application such as
multiagent modeling. When modeling intelligent
agents a great proportion of system resources is
required to support the decision-making processes of
these agents – especially so in heavily deliberative
agents and agents that themselves model their world.
While other simulators deal with this by assuming a
simple reactive (and thus low resource consumption)
agent model (e.g. Balch, 1998b), or by replacing
agents with process-based simulation wherever
possible (Hamilton et al., 1997), Gensim allows the
implementation of as many internally sophisticated
agents as desired. This forces the ongoing simulation
to proceed more slowly on a single machine, though
internal simulation time is of course unaffected. Much
of the work performed in our laboratory is multiagent
simulation work where the focus lies on agent
collaboration or competition, and the evaluation of
individual agent designs under experimental conditions
is especially important. In addition to increased
computing power, the greater experimental control and
lower timesharing overhead afforded by placing the
processes associated with a single agent on a single
machine are also beneficial in such situations.

Despite the obvious advantage of increased
computing power, our major motivation in moving to a
distributed simulation model was in fact to increase the
fidelity of Gensim simulations, as will be described in
the next Section. While it is at least potentially
acceptable in many cases to wait for a simulation
involving computationally intensive agents to
complete, distributing a simulation allows for better
solutions to several awkward problems, including
timing across agents and more accurate perceptual
interface, thus leading to improved simulations.

These advantages led us to the development of
DGensim, a system under ongoing development in our
Autonomous Agents Lab. This system will ultimately
form the major non-robotic platform for agent
development and experimentation in our laboratory,
and because of this it is our intent to keep the generic
nature of the system as close to the original Gensim
system as possible. This should also allow its potential
transfer to the other application areas mentioned
above. The remainder of this paper introduces the
Gensim simulation approach, describes the
methodology employed in creating DGensim, details
the advantages that distribution brings to the Gensim
approach, and discusses the difficulties of providing
generic elements in a distributed simulation system.

2. GENSIM AND DGENSIM

As mentioned in the previous Section, Gensim
(Anderson and Evans, 1995) is a generic simulation
system for intelligent agent designs. It supports
multiple agents consisting of multiple timeshared
processes, manages an object-oriented environment,
treats the relationship between agents and their
environment consistently, and views agents and
environments as plug-in modules that are easily
substituted.

Simulator Agent

Environment

Procedural
Know ledge

of
Action

Focus

Perceptual
Information

Interface

Actions

Domain Knowledge

Agent
Processes

Declarative
Know ledge

of
Action

Figure 1. Conceptual View of Gensim (Anderson and
Evans, 1995).

Figure 1 illustrates a conceptual view of the
Gensim system. In Gensim, a LISP-based simulation
process manages an object-oriented view of the
environment, including the physical embodiment of
the associated agents themselves. Collections of agent
processes (also LISP-based) making up the decision-
making components of agents are timeshared, with
equal timeslices usually given to each agent. Agent
processes are run, and during their timeslices may or
may not commit to particular actions, which are
communicated to the simulator. The simulator
manifests these changes in a time-based manner (i.e.
manifesting the changes made during the agent
timeslices just completed), using an event queue to
manage future change. During agent time-slices,
agents also make requests for perceptual information
within their current context, and after the simulator
manifests the changes initiated during the current
cycle, this perceptual information is provided based on
limitations of bandwidth and recorded agent perceptual
abilities. The system also contains specialized
representations and mechanisms for keeping the event
queue to a limited complexity; balancing accurate and
pragmatic perception; allowing the translation of
references to objects in agents’ own world models in
actions communicated to the simulator; allowing

flexible autonomy for agents; and relatively easily
defining agents and environments in a modular
fashion. Details of these and other significant aspects
of the system may be found in (Anderson and Evans,
1995).

Given that the major computational overhead in
many multiagent simulations is the management of
intelligent agent decision-making processes, the
obvious choice for distribution is the movement of
such internals to separate hardware systems. While it
is desirable for experimental purposes to have a single
agent per machine in order that machine load does not
affect the performance of one agent over others, from
the standpoint of keeping the simulator more broadly
useful, it was decided to support as many agents as
desired per component system.

The basic model employed in DGensim is for the
most part the same as the original Gensim system of
Figure 1, with some important differences that will be
dealt with shortly. The physical organization and
execution layer of DGensim however, is quite
different. As shown in Figure 2, DGensim revolves
around a set of n node machines, n-1 of which are
dedicated to executing agent internals (the agent
processes of Figure 1, which ultimately take
perceptions, perform intelligent processing, and make
commitments to action). The remaining node runs the
environment manager, which performs most of the
functions of the simulator process of Figure 1, with
some very important exceptions that make significant
philosophical and practical improvements over the
original Gensim system. In order to deal with the
management of multiple agents per agent node, an
agent manager is employed. This process is initially
run on each machine that is to participate in the
simulation by supporting agent internals, and connects
to the environment manager via a prespecified Linux
port. When the environment manager is started on the
environment node, it makes contact with remote nodes
and transfers agent code to them. This transfer is
intended in future to allow the environment node to
choose the most appropriate machine for a particular
agent. The agent manager keeps track of the
communication ports and process details for all agents
on that particular machine. Beyond accepting agent
code, the agent manager is also sent limited
environmental information, which allows it to play
another important role that will be described shortly.

The most immediate result of the distribution of
agent internals is a much more natural, realistic flow of
agent decision-making over time due to a more
realistic execution of the underlying agent processes.
This is due in part to improvements in implementation
platform. The choice of platform for DGensim was

Allegro Common Lisp (ACL) under Linux, which
among other things allows OS-level threads as
opposed to the application-level timesharing of the
original Gensim system. One of the original intentions
for further development with Gensim (Anderson,
1997) was to port the system to Java, due to the
language’s strong supports for multithreading and
networking. The difficulty with this however, was
providing the same facilities for rapid agent and
environment construction and the same level of
support for AI components within agents afforded by
Lisp. However, given the advances in multiprocessing
and network sockets in ACL, the ACL/Linux platform
brings all the major advantages of Java, while allowing
code compilation, and the ease of definition discussed
above.

Environment
Manager

DGensim
Agent

Agent
Manager

remote node
 Action

Monitoring
Agent

Detailed OO model of
environment including
embodiment of agents

• • •

Action decisions
 Cues allowing Agent
manager to reconstruct
detailed perception for
Dgensim agent

environment node

DGensim
Agent

Agent
Manager

remote node

Figure 2. Overview of DGensim Organization.

2.1 Actions and Timing

There are also significant improvements in timing
accuracy brought about by distribution per se.
Because change initiated by agents is processed on an
agent-by-agent basis cyclically in Gensim, some
agents get a chance to have the change from their
actions manifested ahead of others in the same cycle
consistently. This leads to a predictable outcome of
single-cycle interactions by the ordering of agents
unless care is taken when defining those actions and
their possible interactions. This and related timing
problems are diminished in Gensim through the
encouragement of small time cycle lengths, limiting
the effect of this on the accuracy of a simulation, but
cannot be completely eliminated. Rather than
allowing an agent to take as many fixed time steps as
required to come to a decision upon action, and then
processing that decision along with those of other

agents during that same cycle, agents in DGensim send
their timestamped decisions asynchronously to an
action monitoring agent (see Figure 2). This relatively
simple agent (running on the same system maintaining
the object-oriented environment) organizes incoming
decisions and assists in correcting for limited network
delays using the timestamps on incoming actions to
order the queue of pending events.

While agent processes in DGensim make
asynchronous decisions for action, the environment
around those agent processes flows at a constant rate
through time – thus defining the flow of time for the
agents involved. The original organization of Gensim
was intended to approach this, but was limited in this
capacity simply because it was based on the concept of
a single agent decision-making process being executed
at a time. As in Gensim, the environment manager in
DGensim is a time-driven simulation, since it is
managing time for the external agent processes for
which it exists. It cannot simply take large temporal
leaps ahead to an upcoming future event and process it
if there are no other pending events, since agents may
make action commitments before these future events
are meant to occur. Others have pointed out that
complex time-based simulations can often become
unwieldy (Hamilton et al., 1997), but in this case a
time-based simulation is necessary. Time needs to
flow for the agent-decision making processes in a
constant manner, just as it does in the real world, since
the simulation itself exists solely for the purposes of
the agents that inhabit it.

Like Gensim, DGensim contains components that
assist in making the time-depended simulation more
efficient. For example, the event queue uses event
generators, which insert the next of a long chain of
events into the event queue when the current portion of
an event sequence is processed. This allows us to
represent ongoing sequences of events while only
having any one part of that in the queue at a time, and
also directly minimizes the amount of data that must
be examined when the event queue is altered.

This timing model is both more accurate and far
simpler to employ within DGensim agents than the
original. As it is however, it is susceptible to problems
with long network delays: in a wide-area network
scenario, it is entirely possible to have an action
commitment from an agent delayed enough that others
that might have interfered with it would have been
processed, and even related sensory information
already delivered to other agents. It is a fairly simple
matter to deal with small delays, based on the fact that
the environment is updated in discrete time steps.
Every event intended to occur during a particular unit
time is processed in sequence, and as long as an action

is received by the action monitoring agent within this
time boundary, the action monitoring agent will
rearrange the event queue such that everything is
updated as if the actions arrived at the appropriate
point in time. That is, there is a window of safety
around with an event can be delayed, and a simulation
may be designed to increase that window.

In the event that an action arrives after its time unit
has been processed by the environment manager,
compromises must be made. In this case, other agents
may have already been given perceptions that might
have been different had the action been received in a
timely fashion (and if the delay is long, even made
further action commitments on that basis). Given that
the simulator is supposed to be an ongoing interactive
real world for agents to inhabit, rollback is generally
not an option. Rollback would also be difficult for
large numbers of agents, and more importantly the
mechanics of being able to roll back agent state change
the nature of the agents themselves. The latter would
lead to different results in experimentation than would
be seen otherwise. Other options are made available
however, in order to keep the simulator as general as
possible. First, an action may be simply invalidated,
as if it simply had not occurred, and the agent(s)
involved informed of this. From an agent standpoint,
this is not particularly realistic, but it may be useful in
some simulations. Another available alternative is to
process the event as if it had happened during the time
unit in which it arrived as opposed to the one in which
it was generated. Envision one agent throwing a ball,
and a second (the late agent) attempting to catch it. In
this situation, the end result would be as if the late
agent moved to catch the ball too late to receive it.
This is somewhat more suitable, but still inadequate
for most agent evaluation experiments because the
actions of the late agent itself were optimal – it was the
nature of the simulation that caused the delay. Still, it
is more philosophically pleasing than stopping a third
agent that did catch the ball after the late agent missed,
informing it that it in fact does not have the ball after
all, and magically transferring the ball back to the late
agent. We also allow both of these more viable
alternatives on an action-by-action level, allowing the
particular context to be considered as well.

Finally we allow a preventative measure that slows
the simulation down significantly but deals with these
problems as completely as can be expected. In
DGensim, it is also possible to force each agent to
transmit its actions regularly, including a no-op action
if the agent is not performing any useful activity. This
allows the environment manager to process one
timeslice after a complete set of these actions is
received. This is overwhelming in the case of a large

number of agents however, or a particularly small time
unit setting for the environment manager.

In the above scenario, we have been dealing with
the late arrival of an agent action. The opposite
scenario – the possibility that an agent may deliberate,
commit to an action, then do the same before it gets
perception from the first back because it is running
faster internally than the ongoing simulation – is less
troublesome. Here what is happening in terms of the
model is that an agent is choosing to commit to actions
without the aid of additional perception (the same
situation arises above if network problems lead
perceptions to be late). It is possible to implement the
time it takes to actually perform the action as part of
the action itself, which would cause a properly
implemented agent to delay the commitment until it
was effectively finished performing the first action,
and thus take care of situations where agent processes
were running artificially faster than the environment or
other agents.

Note that none of these approaches to dealing with
delay (except the case above where an agent can
effectively be made to act in synch with a slower
environment) is particularly appealing in the case of
experimentally evaluating agents: network delays
significantly affect results. Even in the situation where
the environment manager can expect a completely
regular response from each agent, it may not be worth
continuing experimentally if it does not get one (i.e. an
agent is severed from the simulation temporarily).
However, this is a particularly exacting application of
distributed simulation, and these approaches are
available to be used where that may be more suitable.
In our own work, because of the nature of the
problems we are investigating, we naturally use small
dedicated networks, and would consider an experiment
invalid if delays in action reception such as those
considered above occurred. On this scale however,
such delays are rare and thus an insignificant downside
in comparison to the timing benefits alone. However,
this problem does affect elements of generality to
which we are aiming. Issues related to this will be
explored in Section 3.

2.2 Perception

Perception and its relationship to the agent and
environment is another significant problem in Gensim
that was dealt with there through compromise, but
which can be significantly improved through a
distributed implementation. In Gensim (and DGensim
as well), perception is implemented pragmatically at
the object level (Anderson and Evans, 1995), in order
to remove the burden of pixel-level perception for
agents – one of the major reasons simulators are

employed in intelligent agent development (Hanks et
al., 1993; Anderson, 1995). In both Gensim and
DGensim, agents specify their interest using concepts
familiar to both the agent and the simulator (e.g. scan
for blue objects; where is the other agent) or may
simply gaze in a direction of interest. In the original
Gensim system, the simulator responds to this request
with object-attribute-value specifications for a limited
range (based on a model of the agent’s perceptual
abilities) of what can be perceived (given the agents’
perceptual and focus biases). However, this is an
artificial organization of perception, in that the
simulator is doing more than just removing the overly-
detailed burden of low-level vision – it is actually
doing all the agent’s perception for it aside from the
highest level of integrating those perceptions into the
state of the agent’s decision-making components. The
environment simulation process is deciding which
objects the agent can see, and which it is limited from
seeing. While some perceptual limitation is due
directly to the environment and does seem to fall
within these bounds (e.g. objects block one another,
fog can obscure objects), others are due to the agent
(what type of objects it is biased toward focusing
perceptual attention upon, for example). Placing the
perceptual component completely within either the
agent or environment is philosophically inaccurate and
technically problematic. Beyond philosophical issues,
there are practical issues involved here as well: this
sensory preparation is an extremely computationally-
intensive element, and it is necessary to strike a
balance in this aspect as well.

The solution to this problem in DGensim is to
move the management of perception to a point
between the agent decision-making components and
the simulated environment. In DGensim, the bulk of
perception is managed by the agent managers running
on each agent machine. In response to an agent’s
perceptual request, the agent manager receives a
description of objects that could be perceived based on
the physical aspects of the environment – it is up to the
agent manager to filter these according to the
particular biases of the agent itself. This places
perception in a much more natural position in a
simulation organization, and removes a significant
amount of unnecessary work from the environment
manager. However, it also results in the potential for
an inordinate amount of information transfer, and
potential network overload for a large number of
agents.

In order to restrict the amount of information that
must be physically sent across the network by the
environment manager, agent managers contain
simplified environmental information: stereotyped

views of objects in the environment that are exported
to agent managers by the environment manager each
time a new environment is used. When the agent
manager accepts a particular agent, a registration is
created indicating the mapping between agent and
manager, a part of which states the frequency with
which sensory information should be sent to the
particular DGensim agent (via its manager). This
effectively states the speed at which the agent can
perceive objects. The environment manager maintains
the agent’s current orientation and maximum sphere of
attention (physical attributes of the agent’s body,
which it is managing as part of the environment), and
relays very basic object information to the appropriate
agent manager. This information is essentially which
object stereotypes to invoke and the particular changes
beyond those stereotypes. The agent manager then
reconstructs detailed attribute perceptions (the
information originally provided by the simulator in
Gensim) based on the information received and its
local knowledge. This approach pragmatically
balances reasonable perception with network
bandwidth, and also allows us to deal with the
perception-related problems described earlier.

This rebalancing of the function of perceptual
information service is also in part a consequence of
distribution: given that agents are now separated from
the environment processes by machine boundaries, it
makes sense to move those elements of perception that
do not belong in the environment there as well. This
also assists significantly in improving efficiency: In
Gensim, the bulk of the simulation time was spent
preparing perceptual information and translating it into
the object references or descriptions an individual
agent would comprehend for each unique agent
(DGensim employs the same deictic object description
facilities provided for Gensim; the interested reader is
referred to (Anderson and Evans, 1995) for more
details on this). Moving a significant portion of the
work previously done by the environment simulator to
the distributed components allows the simulation to
run more efficiently and keep up with distributed agent
internals. This in turn helps to minimize the problems
associated with getting perception information back to
agents in a timely fashion as discussed above.

In this section we have outlined a few of the major
benefits brought about by a distributed redesign of the
original Gensim system. In each case however,
solutions improving upon aspects of the original
Gensim system has impacted to some degree on the
generic nature of the system. Since generality is a
major focus in both Gensim and DGensim, the impacts
on generality of dealing with the problems discussed

above, as well other aspects of moving to a distributed
simulation, need to be examined in more detail.

3. BREADTH, GENERALITY, AND DGENSIM

When employing a tool for examining intelligent
agents within a simulated environment (or to take a
different perspective, constructing a simulation model
that happens to employ intelligent agents), breadth and
generality in such a tool is extremely important. While
it is certainly possible to construct completely
specialized environments from scratch for each new
project (and this occurs in AI and other areas with an
unfortunate preponderance), we would prefer a tool
that is flexible enough to support a wide range of
agents and environments. Clearly this avoids
unnecessary reimplementation, but control and
verifiability aspects, for example, are involved as well.
A tool allows a researcher to ensure that
implementations under comparison have identical
constraints placed upon them, and helps to ensure
scientific validity in the results obtained. More
importantly however, a flexible tool is required
because of the complexity of the agents and
environments themselves. Complex software systems
can neither be completely understood nor completely
designed in advance. This will sometimes necessitate
changes in design approach in mid-stream, and if our
original tool does not support such changes, the tool
must be abandoned and some (possibly extensive)
reimplementation performed. In the hypothetical
worst case, we have to completely re-build the entire
environment and agents de novo with each small
design change. The desire to impose control and avoid
reimplementation was our primary motivation for
building the original Gensim system. In Gensim, we
attempt to make as few assumptions about the nature
of agents, the nature of environments, and the nature of
their interface as is possible. Gensim does not assume
any particular mode of operation for an agent, and
makes no assumptions beyond a representation for
space in an environment. Some assumptions must be
made in order to have a coherent interface between
agents and a simulated environment (e.g. common
name for concepts or an ability to translate these, so
agents can refer to objects in the environment; the
common representation for space in order to specify
objects and activities relative to the position of the
agent). A common model of perception and action is
also necessary, so that agents may communicate their
committed actions appropriately and receive
perceptual information from the simulated
environment. These however, are relatively
insignificant compared to the architectural assumptions
of most agent-based simulators (Anderson, 1995;
Anderson and Evans, 1995).

The generality and breadth capabilities of a
simulation tool can be viewed as a spectrum along
numerous dimensions, including the degree of
programming effort required (typically the stronger the
reliance on pre-programmed components, the smaller
the breadth of situation the tool can fit) ; the breadth of
agents that can be supported (in Gensim, for example,
agents must fit the above criteria – this includes many
agents but certainly not all possible agents); and the
breadth of environments that can be represented. In
particular, supporting a wide variety of agent types or
architectures makes considerable demands on a
simulator: in many simplistic agents, for example,
using the perceptual facilities available in Gensim is
overkill, while in others the perceptual model would be
too unrealistic (e.g. agents where low-level vision is an
important part of the agent architecture). Similar
criticism can be made of any other agent decision. In
this situation and others concerning generality, Gensim
and DGensim attempt to hit a middle ground.
Supporting every possible agent type, for example, is
simply not viable: there would be so many potential
facilities for perception alone and so much custom
programming required that the tool would become
largely unusable. Instead, Gensim and DGensim
implement a range of facilities that attempt to hit what
most agents in an experimental situation would
require, allowing the use of custom programmed
components where these will not suit. Similar
provisos exist for other aspects of these systems as
well.

The practical objective of DGensim is unchanged
from that of the original Gensim system: to provide a
generic platform for intelligent agent research.
However, like the issues of breadth discussed above,
there are issues of breadth and generality peculiar to
the element of distribution itself that must be
considered, and similar mid-level approaches taken.
The difficulty with distributed simulators in this regard
is that they have a far wider range of motivation than
non-distributed simulators, and far more significant
architectural consequences of those disparate
motivations. In distributed simulations, primary
motivation ranges from providing significantly
detailed graphical environments suited to human
participants, to focusing on the interactions of
computational agents. Environments range from the
corners of the internet to local area networks, and
reliability, security, control, and level of fidelity and
graphic detail (e.g. Jinxiong and Sartor, 1994; Reese,
1994) vary considerably, as do the number of expected
agents (for example, DIS (IEEE, 1993) vs. DDD (Song
and Kleinman, 1994)). More pervasive issues such as
the integration of different simulation tools (e.g. the
DIS (IEEE, 1993) and HLA (DOD, 1998) standards)

also surround this spectrum. In short, the range of
variability in even the same application area is orders
of magnitude larger in a distributed simulation,
because the element of distribution increases the
potential applicability of the simulation and the impact
on design significantly.

Given that our own primary motivation is the
examination of intelligent agents and their interactions,
we currently assume a local network, where security
and reliability are not strong issues (though these are
not completely absent either). Even with these
restrictions, perfect generality is impossible without
weakening a tool to the point of uselessness (as would
perfect generality in any of the issues mentioned
earlier), and so tradeoffs are made as they were in the
original Gensim system to balance utility with
generality. One significant aspect of this has been the
design of the system itself (Figure 2). It is logical in
an organizational sense to keep the environment on a
single machine and distribute the agent internals, since
the latter are loosely coupled and the former is highly
interactive, making the synchronization of elements of
the former difficult and computationally expensive
(Hamilton et al., 1997). It is also logical in a practical
sense from our own perspective, in that sophisticated
agent internals are the most computationally costly
elements of our own simulations. Within this
organization we can still support a broad range of
agents and environments, but the choice of distributing
agent internals and leaving the environment on a single
machine limits true generality in several ways. Most
obviously, the physics of the environment cannot be
computationally overwhelming, since they are on a
single machine.

As mentioned, this has not at all been a problem in
our own work, but may be such in others, and the
ability to distribute the environment itself is in our
plans for the future. Also as mentioned earlier, we
have attempted to hit a middle ground and lessen the
load on the environment manager by moving much of
the work associated with perception to remote nodes as
well. More significantly, the network assumptions
made in our own work (by the nature of the problems
themselves) forbid much in the way of trouble with
network failures or lag, important issues in wide-area
simulation. We also intend to attempt to make this
approach more applicable to wider areas in future as
well, through the addition of additional mechanisms
for dealing with network delay and failure.

One of the ways in with DGensim is more
restrictive than the original Gensim is in its ability to
deal with agents with variable autonomy. While there
is no more that is required to be shared between a
DGensim agent and its environment than there was in

the original Gensim system (while perception
processing has been moved, the same mechanics and
shared concept requirements of perception persist),
Gensim agents could take advantage of the fact that all
agents were stored on the same physical machine and
share agent components. This allowed not only agents
with lower autonomy through the sharing of
knowledge and components, but served to very quickly
define large numbers of similar agents and also made
the simulation more efficient in some cases. In a
distributed scenario, supporting this could be
overwhelming in terms of information exchange if
agents with shared components were distributed, and
so a restriction is made forcing the use of this feature
to agents residing on the same machine. This is not
impossible to handle, but introduces issues of
consistency and control where users must be careful of
machine load balancing to ensure the accuracy of
agent performance in simulation.

4. DISCUSSION AND FUTURE WORK

As mentioned earlier in this paper, DGensim is in
ongoing development using LISP on a network of
Linux-based machines. We have currently made what
we believe are reasonable assumptions to provide a
useful tool supporting a broad range of agents and
environments efficiently and effectively. While we
have designed the system in particular for
experimenting with intelligent agents in spatially-
explicit multiagent settings from the point of view of
the design and performance of those agents, we believe
this system to be applicable to other areas where
multiagent simulation is of use as well.

DGensim is also in ongoing development in a
larger sense. What is described in this paper is the first
phase of a much larger distributed simulation system
which will hopefully be just as powerful while dealing
with some of the issues affecting the implementation
of significantly large numbers of agents along with a
wider range of distribution. The next phase will
involve the distribution of the environment across
multiple machines as well as agent internals. As stated
earlier, the tightly interactive nature of environmental
components makes synchronization difficult.
However there are strong elements of locality of
reference in agent interaction in virtually any physical
environment, pointing toward geographical division as
a logical choice. With reference to generality, there
have also been numerous applications of applied
multiagent simulations with a strong spatial reasoning
aspect, especially in environmental or ecosystem
management settings (e.g. Deadman and Gimblett,
1994). In such cases, changing the internal
representation of the environment to be compatible
with a common GIS format, and allowing agent

perception to effectively become a GIS query would
form both an effective means of handling the physical
aspects of perception (i.e. before they are given to the
agent manager as detailed in Section 2), and providing
a detailed spatially-oriented representation as well.
This would be especially useful in domains where
fairly strong geographic boundaries could be defined
(i.e. where the likelihood of agent sensory range
overlapping a boundary and thus having to be serviced
from two different machines would be minimal). We
also intend to add the ability for agents to migrate from
machine to machine to rebalance loads and (in the case
of a distributed environment as well) make the overall
simulation more efficient and dynamic. Given that
agent code migrates from the initial controlling
(environment) machine to the distributed agent
machines at the outset of a simulation, this in
particular would not be a difficult extension.

Finally, we are interested in improving this system
to provide more effective control and more precise
simulations in heterogeneous environments, where
different numbers of agents and their effect on
machine execution speed must be dealt with, as well as
varying network loads and network types. We are
currently proposing funding for a large scale
heterogeneous distributed system employing several
different network facilities, machine architectures, and
operating systems, in order to begin this work.

This paper has described an effective tool for the
examination and experimentation of intelligent agents
in simulated worlds, as well as the construction of
simulations employing intelligent agents. We have
endeavoured to illustrate that despite the common view
of distributed simulation as a necessary evil for large-
scale simulations of difficult problems, with its
overhead paid back in increased performance, the
distributed approach in fact brings about many
practical advantages in this case. In particular, simpler
timing (and at a lower level, the implementation of
timing), and the provision of a pragmatic agent
perception component benefit greatly specifically from
being implemented in a distributed setting. While this
is by no means a simulator that can be used to
implement every possible distributed simulation, we
believe it is applicable not only to the initial problem
to which it was designed, but a wide range of
applications outside of this. Future work will extend
this range while keeping the pragmatic choices
outlined here in mind.

BIBLIOGRAPHY

Anderson, J., “Supporting Intelligent Agents in
Individual-Based Ecosystem Models”, Proceedings
of the Eleventh Annual Conference on Geographic

Information Systems, Vancouver, BC, February,
1997, pp. 3-6.

Anderson, J., Constraint-Directed Improvisation for
Everyday Activities, Ph.D. dissertation, Department
of Computer Science, University of Manitoba,
March, 1995. 397pp.

Anderson, J., and M. Evans, “Real-Time Satisficing
Agents for Complex Domains”, Proceedings of the
Ninth Florida AI Symposium, Key West, FL, May,
1996, pp. 96-100.

Anderson, J., and M. Evans, "A Generic Simulation
System for Intelligent Agent Designs", Applied
Artificial Intelligence, Volume 9, Number 5,
October, 1995, pp. 527-562.

Anderson, J., and M. Evans, “Intelligent Agent
Modelling for Natural Resource Management”,
International Journal of Mathematical and
Computer Modelling, Volume 20, Number 8,
October, 1994, pp. 109-119.

Balch, T., (1998a) Behavioral Diversity in Learning
Robot Teams, Ph.D. dissertation, Department of
Computer Science, Georgia Institute of
Technology, December, 1998. 204 pp.

Balch, T., (1998b) Javabots Software,
http://www.cc.gatech.edu/~tucker/JavaBots

Deadman, P., “Modelling Individual Behaviour and
Group Performance in an Intelligent Agent-Based
Simulation of the Tragedy of the Commons”,
Journal of Environmental Management 56, 1999,
pp. 159-172.

Deadman, P., and R. H. Gimblett, “A Role for Goal-
Oriented Autonomous Agents in Modeling People-
Environment Interactions in Forest Recreation”,
Mathematical and Computer Modelling 20:8, 1994,
pp. 121-131.

U.S. Department of Defence (DOD), High Level
Architecture Interface Specification, Version 1.3,
April, 1998 (http://www.dmso.mil/hla/).

Halpern, B., “Simulation in Sociology”, American
Behavioural Scientist 42:10, August, 1999, pp.
1488-1508.

Hamilton, J. A., D. A. Nash, and U. W. Pooch,
Distributed Simulation (Boca Raton, Fl.: CRC
Press), 1997. 390 pp.

Hanks, S., M. E. Pollack, and P. R. Cohen,
“Benchmarks, Test Beds, Controlled
Experimentation, and the Design of Agent
Architectures”, AI Magazine 14(4), Winter, 1993,
pp. 17-42.

Institute of Electrical and Electronics Engineers
(IEEE), International Standard, ANSI/IEEE Std
1278-1993, Standard for Information Technology,
Protocols for Distributed Interactive Simulation,
March, 1993.

Jinxiong, C., and M. Sartor, “Fluids in a Distributed
Interactive Simulation”, Proceedings of the 5th
Annual Conference on AI, Simulation, and
Planning in High Autonomy Systems, Gainesville,
Fl, Dec. 1994.

Kester, K., Individual-based Simulation Modelling:
Approaches and Application in Insect Behaviour
and Ecology. Symposia at Annual Meeting of the
Entomological Society of America, Louisville,
1996. HTTP://www.inhs.uiuc.edu/cbd/ESA-
Annual/ESA_WWW_design.html.

Pham, C., H. Brunst, and S. Fdida, “How Can We
Study Large and Complex Systems”, Proceedings
of the 13th Annual Simulation Symposium, Boston,
April 1998, pp. 126-134.

Picault, S., and A. Collinot, “Designing Social
Cognition Models for Multi-Agent Systems
through Simulating Primate Societies”,
Proceedings of the Third International Conference
on Multi-Agent Systems, Paris, July, 1998.

Reece, D., “Extending DIS for Individual
Combatants”, Proceedings of the 5th Annual
Conference on AI, Simulation, and Planning in
High Autonomy Systems, Gainesville, Fl, Dec.
1994.

Song, A., and D. Kleinman, “A Distributed Simulation
System for Team Decision Making”, Proceedings
of the 5th Annual Conference on AI, Simulation,
and Planning in High Autonomy Systems,
Gainesville, Fl, Dec. 1994.

BIOGRAPHICAL INFORMATION

Dr. J. Anderson is an Assistant Professor in the
Department Computer Science, University of
Manitoba. His research involves aspects of
autonomous agency and multiagent systems, including
intelligent agent architectures, simulation
environments for developing and experimenting with
agents, agent collaboration, and mobile robotics.

