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Abstract. In many multi-robot tasks, it is advantageous for robots to
assemble into formations. In many of these applications, it is useful for
the robots to have differing capabilities (i.e., be heterogeneous) in terms
of perception and locomotion abilities. In real world settings, groups
of robots may also have only imperfect or partially-known information
about one another as well. Together, heterogeneity and imperfect knowl-
edge provide significant challenges to creating and maintaining forma-
tions. This paper describes a method for formation control that allows
heterogeneous robots with limited information (no known population
size, shared coordinates, or predefined relationships) to dynamically as-
semble into formation, merge smaller formations together, and correct
errors that may arise in the formation. Using a simulation, we have shown
our approach to be scalable and robust against robot failure.

1 Introduction

Formations are desirable in collections of robots for many reasons, including
maximizing area coverage, sensor coverage, and minimizing contact while mov-
ing quickly as a group. Heterogeneity in robots is similarly advantageous in many
settings: parsimony in control, budgetary considerations, and specialization of
tasks all make simpler robots with divergent capabilities desirable. Knowledge
may be inconsistent between robots, making for more diversity, and commonly-
assumed global knowledge may not be available. For example, in a rescue sce-
nario, robots may be lost due to failure, and agencies may arrive with new equip-
ment over time, preventing total population from being known with certainty.
Communication may be noisy or temporarily disrupted, leading to inconsistency
in information across members. All of these factors conspire to present a difficult
challenge for the creation of formations and their maintenance over time.

In this paper, we present a distributed approach to formation control in
multi-robot teams that deals with such challenging scenarios: robots may be
heterogeneous in terms of movement abilities, sensing, and other equipment;
knowledge of others, including identity and the overall size of the team, is as-
sumed to be imperfect; and communication is assumed to be unreliable. Our



approach is also intended to assume that failure of robot hardware is a strong
likelihood over time, and that other robots may be available to replace them by
physically sensing or encountering the ongoing formation in the environment.

Our approach deals with these challenges by limiting the number of robots
that each formation member interacts with directly, while not putting any re-
striction on the size of the team itself. This theme has been successful in the
past [1,2]. Existing methods, however, do not address addition and removal of
robots from the formation, and are not particularly tolerant of robot failure. We
have created a mechanism for new robots to gain entry to the formation, and
for existing robots to adapt given the failure of others. The combination of these
two properties addresses the fact that we do not know how many other robots
are in the environment, and that the robot population can change at any time.
This builds on our previous work [3], which assumed only that communication
had to be local (no broadcast) and where heterogeneity in sensing was limited
to the inability to identify other robots.

2 Related Work

There are many existing approaches to formation control. One common theme
is to employ elements of central processing. Some approaches restrict processing
to a single robot [4], while others pre-compute portions of the paths centrally [5].
Any central processing introduces a single point of failure, and should be avoided
in cases when possible. Under our approach, the responsibility for formation
control is distributed, and no single robot is essential.

Another common theme is to use leader and follower robots. One way to
accomplish this is through hierarchical leadership [2,6]. These methods define
multiple levels of leadership, but still suffer from the fact that the failure of any
of the leaders would disable some portion of the formation. Our approach would
be affected by the loss of a robot, but has mechanisms to recover from such a
loss. Techniques involving chains of robots can also be considered to fall under
this category. Such techniques can either have a predefined ordering of robots [1]
or can determine this ordering at runtime [3]. Our technique employs the concept
of following a target, but does not have any predefined relationships.

Another large class of formation control techniques that use local rules to
maintain formations in a somewhat decentralized way. For example, Hadaegh
et al’s approach [7] allows for the dynamic addition and removal of formation
members, but does not scale well, as all members need to communicate with one
another. Leonard and Fiorelli [8] demonstrate a method that employs virtual
robots, whose purpose is to direct and organize the formation. This approach is
robust against robot failure, but requires robots to have a shared frame of refer-
ence. Other approaches of this type [9, 10] are able to maintain formations, but
are very domain specific and do not allow large numbers of potential formations.
Our approach allows for a large number of potential formations, and requires
communication only with a robot’s immediate neighbors.



3 Approach

Our approach to formation control employs several strategies to deal with hetero-
geneity and limited information. To create a formation in a distributed manner,
formations must be built up as robots encounter one another in the environ-
ment. Procedures must be in place for smaller sub-formations to merge, and for
the formation to continue to emerge even as robots fail. As groups of robots
join into larger formations, the formation itself must be continually balanced, so
that a globally coherent shape emerges (e.g. if forming a V, smaller formations
either cannot all join one side, or must be repositioned if they do). Each of these
operations is detailed in the following subsections, following some preliminary
discussion to explain common elements of our approach. Because the approach
is distributed, it must also be possible for any robot in the formation to per-
form any required operation as needed. Under our approach, robots can initiate
direct communication with other robots that have been perceived or have been
previously identified, but can not perform broadcast communication.

3.1 Preliminaries

Our approach falls into the neighbor referenced category of Balch and Arkin’s
categorization [11]. Each robot in the formation has one associated target robot
that it maintains a position with respect to. This target robot is determined
dynamically, and is used to position the robot within the formation. It is also
possible for a robot in a formation to follow no one in some specifications (e.g.
the point of a V).

A formation in our approach is specified as a collection of interconnected
segments, each consisting of chains of robots formed over time. Each segment
has an associated angle and distance, specifying the desired angle and distance at
which each robot in the segment should keep its target. These may be specified
as functions, allowing segments to be lines or curves. Each segment also has
a relative length, which defines proportion in the formation by specifying the
desired length of the segment relative to the length of the shortest segment in the
formation’s definition. Overall, this allows a broad range of specified formations,
including open shapes (lines, Vs) and closed shapes (squares, rectangles) as well
as formations with curved segments. The only current restriction on shape in
our implementation is that an agent can have only one target to follow.

Any number of segments may connect together, and these connection points
are termed entry points. The robots occupying these positions in the formation
are entry point robots. These robots are responsible for handling joining and
merging operations, as well as estimating population size. These entry point
robots are not pre-determined: any robot becomes one if it happens to be located
at the point where a segment ends. A robot knows this by examining the segment
membership of its neighbours, and the number of neighbouring robots.

Each possible formation is common knowledge among all participating robots,
as is the desired current formation out of the many the robots may possibly know,
and a goal direction in which to move.



To deal with an unknown population size, each entry point robot maintains
an estimated count of each segment it belongs to. These in turn can be used
to estimate the size of an entire formation. To maintain a segment population
count, entry point robots send out counting messages to each of their neighbours.
Upon receiving a counting message, if the receiver occupies an entry point, it
increments the count in the message by 1, and sends it back to the sender. A
non-entry point robot will have at most two neighbours, and so a non-entry
point-robot receiving a counting message increments the count by one forwards
it on to the neighbor who did not send it. If messages are lost, or the count
becomes stale, it will be corrected by a future message.

To obtain an estimated count of the entire formation, a robot examines all
segments to which it belongs. It sums up the relative lengths of these segments,
and calculates the percentage of the total formation in these segments. It then
uses this information to extrapolate the number of robots in the complete for-
mation. This must be considered a rough estimate, since it is making the as-
sumption that a robot’s current neighborhood is representative of the formation
as a whole. However, it strikes a balance between accuracy and the extensive
communication beyond immediate neighbours that forcing entry point robots to
exchange population counts would entail.

3.2 Joining a Formation

There are two ways in which a robot can join a formation: creating a new for-
mation with another robot, or joining an existing formation. In our approach,
both of these options are initiated in the same way. When not participating in
a formation, robots periodically send out join requests to those they encounter.
A robot receiving such a request (the responding robot) may be in three dif-
ferent situations. First, the responding robot may not yet be in a formation,
in which case it would reply with a success message, along with instructions to
the sender for joining the new formation. Second, the responding robot may be
in a formation but not at an entry point, in which case the responding robot
would reply with a rejection message. If the responding robot has a target, it will
identify that target to the requesting robot as an alternative. Finally, in the case
where this is a valid entry point, the responding robot can reply with a success
message and integrate the joining robot. To perform this integration, the entry
point robot will choose the destination segment that is most out of balance and
adopt the requestor as a neighbor there (this is a common element to balancing
an existing formation, and is explained in Sec. 3.4). An example of successfully
joining a formation is illustrated in Fig. 1. Loss of communication during joining
will cause the joining robot to maintain its heading and speed while trying to
locate another place to join.

3.3 Merging Formations

In our approach, merging two distinct formations forces robots in one formation
to sequentially join the other, and thus makes use of the techniques described in



Fig. 1. The joining process. The formation pictured is a rectangular box formation.
Entry points are marked with “*’ (1) Robot A7 detects a nearby formation, initiating
communication with A6. (2) A6, being an entry point, directs A7 towards its left side.
(3) AT Joins the formation. A5 recognizes that it is now part of a longer segment and
drops entry point status.

Sec. 3.2. When any robot perceives another, it queries that robot for formation
membership, and if it is part of a formation, requests a size estimate. At the same
time it performs a size estimate of its own formation (Sec. 3.1). The smaller of the
two formations is asked to transform into a line formation (this involves a chain
of adopting one’s nearest neighbour, rejecting anyone further, until everyone has
only a single neighbour), to facilitate joining the larger formation one at a time.
The robot at the front of the new line has an entry point to merge to, located
in the other formation. This causes a chain of formation joining, as each robot
in the line recognizes it has no target and attempts to join the formation next
to it.

3.4 Balancing a Formation

Because robots may join at any entry point in the formation, balance needs to be
maintained between segments and ultimately across the formation. To accom-
plish this, we employ a balancing technique that allows the entry point robots to
move other robots between segments. The entry point robot first computes the
ideal number of robots in each of the segments in which it participates. This is
done by estimating the total number of robots in these segments (Sec. 3.1), and
then performing a vector multiplication according to the fractions that should
be in each segment according to the desired proportion for each segment, speci-
fied in the formation description. The resulting values are called the ideal counts
for these segments. The segment whose actual count is furthest below its ideal
count is selected as the destination segment, and the segment which is furthest
above its ideal count is selected as the source segment. Assuming these differ-
ences are at least one, the entry point agent instructs its neighbor in the source
segment to become its neighbour in the destination segment, and its neighbour



in the destination segment to become the neighbour to the shifted agent (Fig. 2).
While this moves only one robot at a time, it is important to view this occurring
in a distributed manner: if a distant part of the formation is short on robots,
multiple local shifts will eventually cause them to move there.
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Fig. 2. In panel 1, the V formation is unbalanced. In panel 2, the entry point robot
has instructed robot B to change segments. In panel 3, we see the result of the rear-
rangement of robots into the new balanced formation.

3.5 Communication Interruptions

All the above operations require ongoing communication, but only across small
local distances. Still, these may be interrupted at times. In general, the worst
case for communication interruption during any of these operations results in
a breaking up of a formation (a heartbeat not heard after ten seconds in our
implementation leads one robot to think its neighbour has failed). In that worst
case, the robots are still close to one another and can pick one another up
again as communication resumes, through the operations defined in the previous
subsections.

Inconsistencies are also possible because of communication problems. For
example, because it is possible for communications to break down in the middle
of a balance, it is possible for an entry point robot to ask its neighbor to shift to
a different segment, and yet have the neighbor occupying that position to remain
where it is, resulting in two agents occupying the same position in the formation.
This is repaired by periodically checking the intended segment ID for each of
an entry robot’s neighbours with that actually reported by the neighbour, and
managing conflicts by requesting one robot to move, essentially restarting the
rebalance. There are a number of other analogous measures for dealing with
potential inconsistencies; all of these may be found in [12].

4 Implementation

We implemented this approach using the well-known player/stage [13] simulation
package, using Pioneer2 DX robots equipped with laser and fiducial scanners,



with both of these sensors operating in a forward direction. We used three dif-
ferent sensing ranges, allowing for heterogeneity in sensing. We also used three
separate maximum speeds, giving heterogeneity in locomotion ability.

Our robot controller is behaviour-based [14], and consists of three behaviours.
These behaviors are the same as those used in our previous work [3]: goal seek-
ing, formation keeping and neighbor avoidance. Goal seeking causes all robots
to move towards a known common goal location. This is used to simulate lo-
calization and goal selection. Formation keeping ensures that robots stay at the
desired distance and angle from their target robot. Finally, neighbor avoidance
ensures that robots don’t get too close together or hit each other.

Because some robots will have short sensing distances, we allow them to
be assisted by those with better sensing abilities, by querying their immediate
neighbors for the visibility of other robots. This allows robots to get a reasonable
idea of whether a specific robot is in front of or behind them. In practice, this
type of message is usually sent to a robot’s target. The target then returns
whether or not it can sense the sending robot. If a robot is visible to its target
while the target faces forward, this indicates it has passed the target and should
be behind it. In such a case, the following robot slows down and allows the target
to resume its appropriate position.

Heterogeneity in locomotion ability is addressed by having each robot send
out messages to its neighbors. These messages indicate the minimum of the
robot’s top speed, and the top speed of its neighbors. Eventually, this will prop-
agate the speed of the slowest member to all formation members. This allows
all formation members to properly maintain formation without leaving members
behind.

Each robot has a common representation of the formation in terms of rela-
tionships between segments. Segment membership is stored as a bit vector in
each robot.

5 Evaluation

Because the main thrust of this approach is its support of heterogeneity, we
examined the effects of heterogeneity on scalability and tolerance of failure.
Since other approaches do not support the range of conditions for which ours is
intended, a direct comparison was not possible.

As a basis for performance, we defined a measure of formation error. Based
on the total number of robots in the formation, we calculate the ideal number
of robots per segment. We then calculate the absolute difference between the
number of robots in the segment, and this ideal. The formation error is the sum of
these absolute differences from the ideal segment counts. Other metrics employed
include the maximum number of robots in formation, and the number of trials
that result in a single formation. Further metrics and additional experimentation
can be found in [12].

The trials were run in an obstacle-free simulated environment, which was
approximately 40 metres wide by 1000 metres long. Robots assembled into a V



formation with two segments of equal length. Robots were required to maintain
a 45 degree angle, and maintain a separation of 2 metres. Robots were initially
distributed across random grid points within a 6 metre x 6 metre area within the
environment. Further dispersion of robots from this is observed initially, because
of obstacle avoidance and desire to move toward the goal.

We defined three different levels of perceptual and locomotion ability, and
we refer to these levels as poor, moderate and good. For sensing, we used a
range of 6 metres for poor, 8 metres for moderate, and 10 metres for good. For
locomotion ability, we used 1 m/sec for poor, 2 m/sec for moderate, and 3 m/sec
for good. We established 7 profiles, each describing the percentage of robots in
the simulation that have each level of ability along each of these dimension.
These profiles are described in Table 1. In the case when the number of robots
in a trial is not evenly divisible into the specified groups, remaining robots were
granted moderate sensing or locomotion.

Profile Number |Poor|Moderate|Good
0 0% | 100% | 0%
25%|  75% 0%
50%| 50% 0%
0% 75% 25%
0% 50% | 50%
25%| 50% | 25%
50% 0% 50%
Table 1. Sensing and locomotion profiles
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To examine scalability, we varied the number of robots in the simulation.
We used populations of 5, 10 and 15 robots. For population, we tested all 7
locomotion and all 7 sensing profiles. To examine robustness against failure, we
used 10 robots, and selected 3 chances of failure, each paired with a maximum
number of failed robots. Every 30 seconds, our logging server tells a robot to fail
with a given probability. The probabilities of failure were 0, 0.1 and 0.4. These
were paired with a maximum number of 0, 1 and 2 robot failures respectively. As
with the scalability trials, we tested all 7 sensing and locomotion profiles within
each category of failure.

We ran our trials on Amazon EC2, using 50 c¢l.medium instances, performing
50 repetitions for each trial. A trial was considered complete when either 5
minutes had elapsed, or all robots were in the same formation with no robot
changing segments for 10 seconds.

6 Results

This section provides an overview of our findings. A more detailed description,
along with many additional results, can be found in [12]



Our results showed that neither heterogeneity in sensing, nor heterogeneity in
locomotion ability had a large impact on robots’ ability to create and maintain
formations using our approach. In Figs. 3 and 4, we see that the maximum
number of robots in formation at a given time is high for all sensing profiles.
This indicates that formations are being created, and maintained in different
areas in the environment.

Despite a high percentage of robots in formation, ending a trial by achieving a
single overall formation was not common (~ 5% of trials). Part of the reason for
this is the distance between robots given the distributed nature of this approach.
Once robots have coalesced into only a few sub-formations, it can become difficult
for robots from different formations to encounter one another and merge further.
While a single formation may not always be the end goal, we intend to experiment
further with an additional behaviour attracting robots to others perceived at a
distance, and other related behaviours that may influence the likelihood of a
single end formation.

The results in Fig. 5 and 6 show that the formations that are being created
are generally correct. The large error bars are present because this statistic is
sampled at the end of the trial. If a correct formation is not achieved, the forma-
tions may be in the middle of a joining or balancing operation. This potential
for increased error means that this is actually quite a conservative metric.

The results referenced in this section are for the variation of sensing profiles
only. Variation of locomotion profiles had a similar effect. Full results can be
found in [12].
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Fig. 3. Maximum number of robots in formation as population size changes.
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Fig. 4. Maximum number of robots in formation as chance of failure changes.

Formation Error

3.50

3.00 T —

230 T T TT T B Sensing Profile 0
:E 2.00 _ T B Sensing Profile 1
2 T N Sensing Profile 2
g 10 W Sensing Profile 3
i

100 m Sensing Profile 4

‘{ m Sensing Profile 5
030 H W Sensing Profile 6
0.00 ~
0.00 10,00 15.00
Robots

Fig. 5. Formation error as population size changes.



Formation Error

3.00

N Sensing Profile 0

2

N Sensing Profile 1

M Sensing Profile 2
o Sensing Profile 3

Error { Robots )
=
u
=]

5

® Sensing Profile 4

m Sensing Profile 5

0.50 +
Sensing Profile 6

0.00 +

1] 10 40

Chance of Failure (%)
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7 Discussion and Future Work

We have described a distributed approach to formation control that is indepen-
dent of the number of robots and supports heterogeneity in sensing and loco-
motion. Using a simulation, we have shown that our approach is robust against
robot failure, and that it is scalable across a number of different population sizes.

These are positive results given the significant challenges of the conditions
under which this operates. We demonstrated that neither heterogeneity in sens-
ing nor heterogeneity in locomotion ability seriously impact the performance of
this approach. The establishment of formations also indicates that our approach
adequately compensated for limited knowledge of others and the inability to
assume a given perceptual or locomotion ability.

There are a number of immediate avenues of future work. First, we would like
to experiment with even larger populations of robots, and extend heterogeneity
to elements such as robot size and terrain that may not be traversable by all
robots. In addition, we would like to experiment with more complex formations.
We also plan to explore metrics for evaluating formations that better reflect de-
centralized approaches such as this. We would like to implement several existing
approaches to formation control, and use these metrics to get a better idea of
how our approach compares to others.

We are currently moving to replicate these experiments using Citizen micro-
robots in a mixed reality environment using global vision [15], after the prior
RoboCup Mixed Reality League. The small size of the microrobots allows a rea-
sonable population on a small physical area, while the virtual elements employed
in mixed reality can allow a large surface by having terrain that scrolls under



the robots, as well as obstacles represented virtually. Since catastrophic obstacles
(e.g. fire, pits) can be simulated, would also allow a rationale for robot failure
to replace the statistical failure used in the simulation studies.
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