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Abstract
Much of the existing research on teams in multi-

agent systems focusses on improving the performance
of predefined groups of agents. Comparatively little re-
search has been done on the coalition formation pro-
cess – how to create teams of self-interested agents.
Furthermore, many of the existing coalition formation
approaches make restrictive assumptions about either
the agent mode or the domain in which the agents in-
teract, that limit the applicability of these approaches
to more realistic scenarios. This paper presents a new
coalition formation approach that avoids making these
assumptions, and evaluates this model against a base-
line approach from the perspectives of system through-
put and coalition stability.

1 Introduction

Most work in multi-agent systems involves the im-
provement of the performance of predefined groups.
How those agents came to be in a group is often ig-
nored. This area, commonly known as coalition for-
mation, is an important one both from the standpoint
of studying how more effective groups can evolve (and
ultimately supporting applications such as electronic
marketplaces), as well as for studying the underly-
ing cooperative mechanisms that give rise to groups.
Most work on coalition formation approaches has used
agent models and domains that include significant re-
strictions on the capabilities of the agents and their
interactions with each other. For example, existing
research often assumes that all members of a coalition
are equal and bring the same amount of value to the
group (e.g. [3, 9]). Agents are also often only allowed
to belong to one group at a time (e.g. [2, 5]). Do-
mains often restrict agents to a single goal or type of
task (e.g. [2, 7]), or to a set of tasks of different types
where there is no conflict between the tasks (e.g. [4]),
eliminating the decision about the order to perform
the tasks.

We are interested in creating improved approaches

to coalition formation that are more reflective of the
characteristics of real-world groups. In particular, we
are focussing on domains where self-interested agents
have conflicting goals, are not restricted to a single
group, learn about others based on their interactions,
and are of disparate value to a group.

This work proposes a new coalition formation ap-
proach that encompasses these aspects, providing in-
creased realism over existing methods. The following
sections describe the approach, its implementation in
a software domain, and an evaluation comparing it to
that of Dutta and Sen [4], a recent approach that also
attempts to deal with some of the factors that have
previously been ignored in coalition formation. Before
this we begin with an overview of related research.

2 Related Work

Breban and Vassileva [2] have outlined a coalition
formation approach for an information marketplace
that is based on long-term coalitions and trust rela-
tionships between agents. When vendor and customer
agents interact in this approach, they negotiate a price
for a piece of information, which is discounted if they
share a coalition. If the agents can agree on a price,
the interaction is deemed successful, and if they are
not, the interaction is classified negatively, allowing
agents to maintain a trust level of others and base the
likelihood of joining a coalition upon this trust. While
their use of trust relationships is a key differentiator
from other research, their approach limits agents to a
single coalition at a time, and agents are homogeneous
and only ever have a single goal to consider.

Anderson et al. [1] have combined reinforcement
learning and coalition formation in a robotic soccer
domain. In their work, agents on a soccer team pos-
sess different abilities – some are of higher skill than
others. Agents begin with no innate knowledge of their
domain, and they learn the appropriate behaviours by
observing the actions of others. Implicit coalitions are
formed when individual agents begin excluding others



that they perceive to be of lower skill level, deciding to
only learn from those agents that are performing at a
higher level. This approach uses coalition formation to
control the direction of reinforcement learning. How-
ever, the coalitions that are formed are implicit and
do not manifest themselves in any shared information
or group behaviour. Agents in this approach are not
self-interested – they share a collective goal and use
more of a team-based approach.

Lerman and Shehory [5] have developed an ap-
proach to coalition formation for electronic market-
places, focussing on scalability. Their approach pro-
duces coalitions as emergent behaviour from a set of
very simple rules at the agent level. Buyer agents in
this approach are homogeneous and follow a set of
rules local to their environment – there is no learning
or tracking of history. Agents join other agents pur-
chasing the same product as they are, and the price
the agents pay for their product is determined by the
size of the group they are in. Once the price is set and
the order is filled, the agent may leave the group in
search of a better price if desired. While the results
of the experimentation are positive, the simplicity of
the agent model makes the approach unsuitable for
implementation in more realistic scenarios.

Dutta and Sen [4] have proposed a partnership for-
mation approach that encompasses some of the char-
acteristics of realistic scenarios. In their work, agents
are heterogeneous in ability – each agent has expertise
in a particular type of task. When performing tasks
in their expertise, they can complete them in less time
and with higher quality than tasks that are not in their
expertise. They can also request aid in completing a
task from another agent. The aid is granted if a co-
operation possibility exists – that is, if the estimated
cost of the helping agent to complete the task is less
than the cost of the requesting agent to complete the
task.

If a cooperation possibility exists, the helping agent
will agree to perform the task based on a probabilis-
tic formula that incorporates not only the cost of the
task but the opinion of the helping agent about the
requesting agent. This formula is described by:

Pr(i, k, j) =
1
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where Ck
ij is the cost incurred by agent k to complete

task j for agent i ; β sets the initial cost an agent is
willing to incur when a previously unknown agent has
requested help; Ck

avg is the average cost of all tasks
performed by agent k ; and OPi is the balance of past
help that agent k currently has with agent i. An addi-

tional parameter, τ is used to adjust the shape of the
resulting sigmoidal probability curve.

Each agent maintains an opinion about others with
whom it has interacted, represented by the balance
of savings it has over time with the other agent. If
a helping agent completes a task with less cost than
the requesting agent could have done, the difference
in cost is stored. Over time, this cost balance is up-
dated as agents help one another. An agent that has
helped another agent many times will be less likely to
grant aid in the future, until some of the favours it
has performed are returned. Thus, this probabilistic
formula implements the concept of reciprocity in the
Dutta and Sen approach.

The domain in which this is implemented is an ab-
stract domain where agents perform tasks that re-
quire specific expertise. An agent is an expert at
only one (of three) task types, and must either suf-
fer through longer task completion times and poorer
quality results, or find others with greater expertise
to perform the work for them. In Dutta and Sen’s
approach, agents begin in an exploratory phase where
they choose an agent with whom they have not yet
interacted, in an attempt to learn something about
as many agents as possible. Once the agents have
completed a specified number of tasks, the exploratory
phase ends and agents begin to select the agent they
feel will be the most useful in terms of cost savings.

This approach encompasses some of the character-
istics of real-world groups previously outlined. Agents
are heterogeneous, for example, and learn about others
as they act in the world. However, there is no conflict
between goals, because the order of task completion
is irrelevant, and agents can complete as many tasks
for others as they are given in one turn. Coalitions
are also not explicit – each agent simply has its own
group that it is likely to cooperate with. Since agents
begin with no opinion about others, we can say for the
purposes of comparison that an agent’s coalition con-
sists of those agents thought of with a positive opinion
value. That is, those of whom the agent’s opinion has
increased since first interacting with them.

3 Experimental Domain

We have illustrated that even the most recent coali-
tion formation approaches that have been proposed
are lacking some of the characteristics of realistic sce-
narios outlined earlier. Thus, we propose a new coali-
tion formation approach and agent model, which we
will term the vandeVijsel agent model, which encom-
passes these characteristics. We begin by describing



the experimental domain for the evaluation of this ap-
proach, in order that the approach can be described
with examples.

The domain for experimentation is a package-
delivery domain based on that described by Sen and
Dutta [6]. That domain consisted of a central package
depot, where agents received packages that were be de-
livered to a location on one of a number of radial fins
extending outwards from the depot. An agent could
carry one of its own packages at a time, along but not
across fins, and could also carry an additional package
to an address on the same fin for another agent.

In order to make this domain more realistic, we
have extended it in several important ways. First,
packages are picked up from and delivered to depots
scattered randomly across the environment (a less re-
stricted grid). Agents are assigned multiple packages
upon arrival at a depot, in order that they might
have multiple, potentially conflicting goals (delivery
addresses in opposing directions). Packages are as-
signed an initial payoff value, calculated as a factor
α times the Manhattan distance between the starting
and destination points of the package. This payment is
reduced by one every time cycle, and thus α must be a
value that is proportional to the size of the domain to
ensure mainly positive values. In our implementation
this is set to 3 times the sum of the length and width
of the grid. Further, a penalty is assessed if packages
are never delivered (lost).

The implementation of this software domain places
agents randomly on the grid and allows them to move,
and also supports interactions between agents in the
same grid locations, as well as the maintenance of
coalitions. The next section describes the vandeVi-
jsel agent model, and describes how these agents form
effective coalitions.

4 The vandeVijsel Agent Model

In order to encompass greater realism in our agent
model, we have made vandeVijsel agents fallible in
terms of memory. A low memory attribute leads to los-
ing packages and forgetting depot locations, affecting
individual performance and effectiveness in a coalition.
We have also made these agents variable in terms of
speed, trust (the tendency to trust others with pack-
ages rather than delivering them itself), and honesty
(the degree to which these attributes are exaggerated
when reported to others, in order to appear more at-
tractive to a potential coalition). Each agent is given
a random value between 1 and 10 for each of these val-
ues when the agent is created, and these values remain

static. Agents have a maximum payload of 10 pack-
ages at a time, restricting the degree to which they
can help others, and do not have prior knowledge of
depot locations. Each of these limitations deals with
elements in Section 2 that were noted problems with
prior research.

An agent’s speed attribute, rather than fixing a uni-
form rate of speed, deals with the likelihood of move-
ment from one grid unit to another in a given cycle. A
random number is generated, and movement is auto-
matically allowed 40% of the time, and disallowed 20%
based on this value. The remaining 40% is governed
by a second random value from 0–9, and if this value
is less than the agent’s speed attribute, the agent is
allowed to move. This results in best case movement
of 80% of the time (speed value of 10), and worst case
movement of 44% (speed value of 1). Over time, an
agent with a speed value of 10 will move 20% further
over a period of time than an agent with a speed value
of 5.

The basic action each agent must decide upon each
turn from the standpoint of the domain is the direction
of travel. As it is a self-interested agent, it chooses
this to maximize payoff of the packages it carries. It
thus chooses a package to deliver such that the sum
of the payoff of this package along with the remaining
payoffs of other packages are maximized (for further
details, see [8]). The exception to this occurs when
the agent is carrying a package for another agent, in
which case that this will take priority over the agent’s
own package. As described in the next subsection, an
agent will only agree to deliver a package for another
agent if the package in question is within 10 units of
the agent’s current destination. Thus, it will not leave
the area without first delivering the package for the
other agent.

Once the agent has made the decision on direction
of movement, it moves and then checks if its new loca-
tion contains a package depot. If so, it adds the depot
to its list of encountered depots, delivers any packages
addressed to this depot (the payoff of these packages
goes to the agents originally assigned the packages),
and asks for new packages (if it has room in its pay-
load).

After moving, memory fallibility is handled by gen-
erating a random number between 1 and 1000, and if
(10 minus the agent’s memory attribute) is less than
this value, this causes the agent to forget one depot
at random. A similar likelihood governs the agent for-
getting a package, which will lead to a penalty for
the agent (or the agent that trusted this one with the
package) when it is not delivered.



4.1 Forming and Maintaining Coalitions

After each agent moves, it is given a list of others
(encountered agents) that occupy the same location,
and the possible interactions that could be performed
between each are processed individually. First, the
agent determines if it shares a coalition with the en-
countered agent. If the agents share a coalition, the
agent can request aid in delivering packages from the
encountered agent. The encountered agent will agree
to deliver a package for the asking agent if the pack-
age’s destination is within 10 units of its current des-
tination and it has room in its payload.

If a coalition is not shared, the agent begins by eval-
uating the encountered agent for suitability in coali-
tions of which it is a member. If the sum of the reported
attributes of the encountered agent is no more than 5
points below the average of a coalition, and no individ-
ual attribute is more than 5 points below the average of
that attribute in the coalition, the encountered agent
is considered suitable. The agent determines a list of
suitable coalitions, ordered by average attribute differ-
ence, and proposes membership to each in turn. The
encountered agent evaluates these via the same criteria
but from the opposite viewpoint: it is interested that
the coalition not be too low-valued (the same stan-
dard of 5 is used), and membership is rejected if the
coalition is not suitable to the encountered agent. If no
coalition is still shared at this point, the agent can also
propose to form a new coalition with the encountered
agent, and the evaluation of this is then performed us-
ing the reported attributes of each of these agents. If
a coalition is shared at any point, the ability to make
delivery assistance requests ensues immediately.

Because this relies on reported values, dishonest
agents can flatter themselves to gain access to bet-
ter coalitions. A base attribute inflation factor of
(10 − h)/3, where h is the agent’s honesty value, is
employed to create reported attribute values. This
factor is adjusted for each agent attribute value indi-
vidually when the agent is created by adding a random
value between 0 and itself, allowing variation between
agents of the same honesty and between attributes in
the same individual.

Once coalitions exist, they must be maintained.
Maintenance involves removing agents that are not liv-
ing up to the performance expectations of the coalition
(largely due to agents having been deceptive about
their abilities). The performance of an agent is as-
sessed every cycle after delivering 10 packages for coali-
tion members, allowing only a limited time for ex-
ploitation by poorly-performing agents. After move-
ment and encounters are processed, the average payoff

is calculated for all members of a coalition, and those
falling below the average by more than a specified fac-
tor are removed. Through experimentation, this factor
has been set at the sum of the X and Y dimensions of
the grid. Coalitions cease to exist when they contain
only one agent.

5 Dutta/Sen Agent Model

In order to examine the efficacy of this approach,
we have adapted the partnership formation approach
of Dutta and Sen [4] described in Section 2 to this do-
main. To allow for the disparate agent expertise cen-
tral to that approach, each Dutta/Sen agent is given
the ability to be an expert in a particular quadrant of
the grid. This expertise allows them to move 100% of
the time in their expertise quadrant, and 50% of the
time when outside their expertise quadrant.

Movement in the Dutta/Sen agent model is the
same as in the vandeVijsel agent model, with the ex-
ception of the expertise quadrant. Agents receive a
list of encountered agents after movement, and the
cost of having encountered agents assist with pack-
age delivery is estimated. In cases where others can
offer a cost savings, assistance is requested and the en-
countered agent will provide aid with probabilistically
based on Equation 1 if it has room for an additional
package, duplicating the basic coalition formation ap-
proach used in [4]. Recall that part of this equation
involves increasing the likelihood of cooperation based
on the opinion of another agent, as captured by the
cost savings realized (or not) by that agent. These
savings are tallied whenever an agent completes deliv-
ery of a package for another agent, at which time the
estimates of that agent’s expertise are also updated.

6 Evaluation

In order to evaluate the performance of the van-
deVijsel agent model as compared to the Dutta/Sen
model, we ran 10 trials of 50,000 time cycles for each
agent type in a software simulation. Each trial con-
sisted of 500 agents operating in a 100x100 grid with
100 package depots. We examined both the through-
put and coalition stability of each approach.

Figure 1 shows the aggregate throughput by all 500
agents of each type, averaged over the 10 trials. The
vandeVijsel agents achieved a 38% improvement in
throughput over the Dutta/Sen agents. The single
factor that could exert the greatest influence on this



Figure 1: Comparison of overall system throughput for
the vandeVijsel agent and Dutta/Sen agent, averaged
over 10 trials

result other than the coalition formation approach is
the speed of the agents: if one group of agents are arti-
ficially faster than the other without regard to forming
coalitions, this comparison would be biased.

In order to produce an speed comparison between
these two approaches, we must obtain the effective
speed of an average agent of each type. The speed of
a vandeVijsel agent is directly related to the agent’s
speed attribute (resulting in a worst-case movement
rate of 44% and best-case movement rate of 80%). The
effective speed of a Dutta/Sen agent depends directly
on the amount of time the agent spends inside and
outside its quadrant of expertise. Tracking this value,
we found that on average, a Dutta/Sen agent spends
22402 time cycles (45%) in its expertise quadrant, and
27598 time cycles (55%) outside of its expertise quad-
rant. Since Dutta/Sen agents move 100% of the time
in their expertise quadrant, and 50% outside of this
quadrant, this translates to an effective movement rate
of 72.5% for a Dutta/Sen agent.

To compare these movement rates, we can translate
the percentage movement rate for a Dutta/Sen agent
to the speed attribute value required by the equivalent
vandeVijsel agent. A vandeVijsel agent is guaranteed
to move 40% of the time, and the other 40% is deter-
mined by its speed attribute. Thus, to calculate the ef-
fective speed attribute given the average rate of move-
ment of a Dutta/Sen agent, we subtract 40% from the
Dutta/Sen agent’s effective movement rate, and divide
the result by 4. We thus find that the movement rate
accomplished by a Dutta/Sen agent is equivalent to a

Figure 2: Comparison of actual throughput for van-
deVijsel agents with speed values 1 and 8, and the
average Dutta/Sen agent

vandeVijsel agent with a speed attribute of 8.125. The
random generation of attributes in vandeVijsel agents
results in an average speed attribute of 5, showing that
the Dutta/Sen agents are moving significantly faster,
on average, than our agents. In addition, given this
effective attribute value, we would expect the through-
put of the Dutta/Sen agent to match that of a similarly
fast vandeVijsel agent.

In fact, we find quite the opposite. Figure 2, il-
lustrating throughput broken down by speed, shows
the average Dutta/Sen agent displaying a throughput
similar to that of a vandeVijsel agent with a speed
attribute of 1. Not only are our agents attaining a
higher throughput, they are doing so while moving
more slowly, on average, than the Dutta/Sen agents.
There is an additional factor to consider in this that
also speaks positively of our approach. vandeVijsel
agents have a range of honesty, trust, and memory val-
ues: agents can be deceptive regarding their abilities,
lack the ability to trust others and gain the benefit
of coalitions, lose packages, and forget the locations
of depots. Despite these more challenging conditions,
the performance of vandeVijsel agents is still higher.

We also compared the two approaches on the ba-
sis of coalition stability: the rate of change in the
membership of the coalitions over time. In order to
make a valid comparison, we must ensure that we
are comparing similar coalition concepts between the
two models. For the vandeVijsel agent model, coali-
tions are explicit, so changes are easily tracked. For
the Dutta/Sen agent model, the closest concept is the
group of agents for which an agent has a positive opin-



Figure 3: Coalition Stability in each approach, per
coalition, averaged over 10 trials

ion, which ultimately controls the likelihood of coop-
eration in that approach. This results in a single coali-
tion for each Dutta/Sen agent.

Since the opinion stored by a Dutta/Sen agent rep-
resents a balance of cost savings, it can oscillate be-
tween positive and negative values as two agents es-
tablish a reciprocative relationship. Only over time
will the cost savings between two agents of comple-
mentary expertise increase to the point that they are
both positive. For this reason, we examine the num-
ber of positive opinions at specific time intervals and
evaluate the rate of change using the values at these
intervals, rather than an overall change.

Finally, we must also consider the effect of multiple
coalitions in the vandeVijsel approach, and the effects
of deceptive agents (neither of which are present in the
Dutta/Sen approach). Deceptive vandeVijsel agents
exaggerate their abilities in order to gain admission to
coalitions for exploitation purposes. They do this re-
peatedly, and are repeatedly removed when coalitions
realize that their abilities are not what they claim.
This results in a significantly higher number of mem-
bership changes that are not possible in the other ap-
proach, and so we compare stability on a per coalition
basis. Figure 3 illustrates that viewed in this fashion,
both models reach stability after approximately 10000
time cycles. The vandeVijsel agent exhibits slightly
more changes on average, largely due to the potential
for dishonesty among agents.

7 Conclusions and Future Work

In this paper, we have described a new approach to
coalition formation, which takes into account a num-

ber of important factors that are exhibited by real-
world groups. We have also compared an implemen-
tation of this approach to that of Dutta and Sen [4],
a recent approach that also attempts to take some of
these factors into account. This evaluation illustrated
that we could obtain significant throughput improve-
ment and similar coalition stability, while operating
under fewer assumptions than Dutta and Sen. Fur-
ther details of these experiments are available in [8].
Future work will entail dealing with other elements of
realism, in particular working with agents whose at-
tributes evolve over time, and populations that are not
closed.
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