
Robotic Team Navigation in Complex
Environments Using Stigmergic Clues

A thesis presented

by

Alfred Wurr

to

The Department of Computer Science

in partial fulfillment of the requirements

for the degree of

Master of Science

in the subject of

Computer Science

The University of Manitoba

Winnipeg, Manitoba

July 2003

c©2003 - Alfred Wurr

All rights reserved.

Thesis advisor Author

John Anderson Alfred Wurr

Robotic Team Navigation in Complex Environments Using

Stigmergic Clues

Abstract

Robotic agents in dynamic environments must regularly navigate reactively, relying

solely on their immediate local perceptions to make navigation decisions. In environ-

ments with complex topography, features such as terrain undulation, geometrically

complex barriers and similar obstacles form local maxima and minima that can trap

and hinder agents navigating reactively. When agents are operating in groups, navi-

gation is even more difficult, requiring agents to explicitly communicate to plan and

coordinate their actions. The cost of explicit communication can be substantial,

however, making it desirable to avoid its use in many domains.

Accordingly, in this thesis I present methods to allow a team of agents using

reactive navigation to assist one another in their explorations through implicit com-

munication. Agents accomplish this by modifying their environment in a manner

meaningful to other agents in order to share knowledge about advantageous loca-

tions. The effectiveness of the various methods presented is shown in a number of

experiments in which a team of agents is required to locate a goal situated somewhere

in an unknown and complex simulated indoor environment.

Contents

Title Page . i
Abstract . iii
Table of Contents . iv
Acknowledgments . vii
Dedication . viii

1 Introduction 1
1.1 Terminology . 2
1.2 Motivation . 3
1.3 Method . 4
1.4 Research Questions . 5
1.5 Summary . 6
1.6 Thesis organization . 6

2 Related Literature 8
2.1 Agent Control Architectures . 8

2.1.1 Logic-based Agents . 9
2.1.2 Behaviour-based Agents . 10
2.1.3 Hybrid Agents . 15

2.2 Multi-agent systems / Teamwork . 17
2.3 Navigation and Embodied Domains 19
2.4 Communication and Navigation . 29
2.5 Stigmergy in Robotic Agents . 34

2.5.1 Stigmergy and Teleautonomy 42
2.5.2 Summary . 43

2.6 Using Games for AI Research . 44
2.7 Summary . 47

3 Stigmergic Navigation 49
3.1 Overview of Approach . 50
3.2 Stigmergic Markers . 51

iv

Contents v

3.3 Agent and Environment Structure . 52
3.4 Box-canyons . 53

3.4.1 Marking Bottlenecks . 54
3.4.2 Marking Local Maxima . 56

3.5 Stigmergic trail-making . 58
3.5.1 Marking Local Minima . 62

3.6 Stigmergic Navigation . 63
3.7 Comparison with other work . 64

4 Implementation 68
4.1 Agent Structure . 68
4.2 Half-Life Environment . 70
4.3 Agent Implementation . 71
4.4 Action Selection Process . 72
4.5 Perception Mechanisms . 75
4.6 Movement and Action . 76
4.7 Marking the Environment . 77

5 Experimentation 80
5.1 Experimental Set-up . 81
5.2 Scenario . 82

5.2.1 Result Recording . 84
5.3 Experimental Results . 85

5.3.1 No Markers . 87
5.3.2 Bottleneck Markers . 87
5.3.3 Local Maxima Markers . 92
5.3.4 Bottleneck and Local Maxima Markers 95
5.3.5 Bottleneck, Local Maxima and Local Minima Markers 98
5.3.6 Stigmergic Trail Markers . 101
5.3.7 Stigmergic Trail and Bottleneck Markers 104
5.3.8 Stigmergic Trail, Bottleneck and Local Maxima Markers . . . 106
5.3.9 Stigmergic Navigation . 109
5.3.10 Stigmergic Navigation and Teleautonomous Control 112

5.4 Discussion . 115

6 Conclusion 117
6.1 Findings and Analysis . 118
6.2 Challenges . 120
6.3 Future Work . 122
6.4 Conclusion . 125

Contents vi

A Schemas and Assemblages 137
A.1 Motor Schemas . 137
A.2 Perceptual Schemas . 139
A.3 Assemblages . 141

B Result listings 147
B.1 No Markers . 148
B.2 Bottleneck Markers . 150
B.3 Local Maxima Markers . 152
B.4 Bottleneck and Local Maxima Markers 154
B.5 Bottleneck, Local Maxima and Local Minima Markers 156
B.6 Stigmergic Trail Markers . 158
B.7 Bottleneck and Stigmergic Trail Markers 160
B.8 Bottleneck, Local Maxima and Stigmergic Trail Markers 162
B.9 Stigmergic Navigation . 164
B.10 Stigmergic Navigation and Teleautonomous Control 165

Acknowledgments

Dedicated to...

Chapter 1

Introduction

The focus of this thesis is to increase the effectiveness of a team of robotic agents

using reactive navigation - navigating using only the current perceptions available to

the robot - to explore complex and dynamic environments. Robotic agents employing

reactive navigation suffer from several problems. Local maxima and minima and a

lack of goal-directed ability are among the more common drawbacks. Agents that

are only reacting may be attracted to a local stimulus, but one that is really only a

waypoint on the route to a goal - a local maximum. On the other hand, the same agent

may attempt to move in a direct line to a visible goal, but be prevented from reaching

it by an interposing barrier - a local minimum. These problems (explored more fully

in Chapters 2 and 3) can hinder the explorations of agents using reactive navigation

exclusively, preventing them from finding their goals in a timely fashion. To solve

these problems, I explore how agents can help each other navigate by identifying

desirable locations and sharing this knowledge with each other by modifying the

environment.

1

Chapter 1: Introduction 2

This chapter begins with an introduction of terminology to establish a common

vocabulary for later discussion. This is followed by a description and discussion of the

research questions being studied and my approach to answering them. The chapter

concludes by describing the structure of the remainder of the thesis.

1.1 Terminology

Before the topic and issues of this thesis can be discussed meaningfully, it is

necessary to first define and describe some of the terminology used throughout this

work.

A natural starting point is to first define the term agent. An agent in this work

refers to a software construct situated in an environment in which it is capable of

acting autonomously in pursuit of its goals [Russell and Norvig, 1995; Weiss, 1999].

This collection of software instructions is embedded in the body of either a physical

or simulated robot. In the latter case, agents are also referred to as softbots to

emphasize their non-physical nature. In either case, however, an agent is embodied

in the sense that it occupies a space in an environment and affects that environment.

Embodied agents consist of sensors used to observe their world and actuators (or

effectors) manipulated to carry out actions within it, in addition to their cognitive

components. The terms agent and robot are used somewhat interchangeably in this

work (and much other work in Artificial Intelligence).

Embodied agents are mobile by nature, needing to move about their environment

to locate and accomplish their objectives. For these agents, goals include interacting

with or changing the state of other entities (physical objects or other agents) located

Chapter 1: Introduction 3

somewhere in the environment, and specific locations may also be associated with

goals.

A complex environment in one in which the physical features of the domain are

geometrically intricate and/or irregular in outline. This includes outdoor environ-

ments (e.g. forests, or rocky and hilly regions) and building interiors. Similarly, a

dynamic environment is a domain that is subject to frequent changes in the position

of objects and entities within it and possibly even changes in layout and structure.

The term world model is another term used frequently in this work. A world

model refers to an internal map using some chosen representation that can be used

by an agent to solve problems in the domain.

While additional terminology will be introduced throughout this thesis, these

provide the basic definitions needed to understand the remainder of this work.

1.2 Motivation

Robotic agents are being used with greater frequency for specialized tasks such

as rescue or security-related jobs (e.g. hostage situations) in dangerous and unpre-

dictable settings [Baltes and Anderson, 2003]. Simulated robotic agents are also

employed as characters in the dynamic and complex simulated worlds of computer

games. When faced with an unknown environment or when using possibly out-dated

or inaccurate maps (such as after a disaster), an embodied agent must often navigate

relying heavily or solely on local information available via the robot’s sensors. More-

over, agents in embodied domains often must make navigational decisions quickly. As

a result, reactive navigation must often be used to augment methods that use explicit

Chapter 1: Introduction 4

planning to navigate or to replace them entirely. Whether used exclusively or as part

of a hybrid approach, improving reactive navigation is therefore desirable.

1.3 Method

My method for improving reactive navigation involves identifying useful locations

and drawing attention to these locations by modifying the environment. Precisely

what makes a location useful or significant is domain-dependent, but useful locations

would include both positive elements (e.g. a goal is visible) as well as potentially

negative elements (e.g. marking a cliff edge). By modifying the environment, it

becomes possible for navigating agents to perceive a useful location at a distance and

move toward it (or similarly avoid an undesirable location).

The marking of obstacles and helpful elements is commonly employed in human

settings, such as modern highways where road signs and lines of the road provide

drivers with information about what lies ahead. In a multi-agent setting, this ap-

proach allows benefits acquired by the exploration of one agent to be disseminated to

others. While taking advantage of such distributed interactions in order to improve

the performance of a collective is a common theme in multi-agent systems, most ap-

proaches to this require extensive explicit communication (see Chapter 2). The work

presented here explores the improvement of navigation methods without the use of

explicit communication, through the dropping of visible objects to serve as markers.

Using variations of this basic concept, I demonstrate methods that a team of agents

using reactive navigation can employ in order to accelerate their search process. I

illustrate methods to avoid local minima and maxima, as well as a method that allows

Chapter 1: Introduction 5

a goal, once discovered, to be navigated by others more quickly on subsequent trips.

This is accomplished without the use of explicit communication between agents, and

with no use of elaborate internal world models or high-level navigational planning

mechanisms. These methods are also collaborative in nature - it is not simply one

agent solely marking elements for the benefit of all colleagues, but a collaborative

process between many individuals. Chapter 3 provides an in-depth description of the

techniques that I employ to achieve these results.

1.4 Research Questions

This thesis addresses the following research questions:

• Will identifying locations of high utility without the use of explicit communi-

cation improve the exploration performance of a team of reactively navigating

agents in an unknown, complex and dynamic environment?

• Will identifying locations in this manner allow reactively navigating agents to

escape highly enclosed or complicated areas more readily?

• Will identifying locations in this manner suffice to draw agents to open areas

of the environment and cause them to explore an area and locate a goal faster?

• Will cooperatively constructing a minimal trail of markers to preserve and reuse

knowledge about the location of a discovered goal allow a team of reactive agents

to more readily locate the goal on subsequent trips?

Chapter 1: Introduction 6

These research questions are examined in specific settings using a computer game

environment as a simulator (described in detail in Chapters 3 and 4).

1.5 Summary

In this chapter I have defined terminology essential to discussing this work, in-

troduced reactive navigation, including its problems and applications and the funda-

mental research questions with which this research is concerned. Having introduced

the vital aspects of this work, I conclude this chapter by outlining the composition of

the remainder of this document.

1.6 Thesis organization

This thesis is structured as follows:

• Related Literature

• Stigmergic Navigation

• Implementation

• Experimentation

• Findings and Recommendations

Chapter 2: Related Literature

Presents background and discussion of previous work in areas related to this the-

sis to give the reader an understanding of the issues involved. This includes an

Chapter 1: Introduction 7

overview of agent architectures, multi-agent systems, navigation, communication and

stigmergy. The chapter concludes with a discussion of using computer games as a

test-bed for exploring issues in artificial intelligence (AI), including those covered in

this work.

Chapter 3: Stigmergic Navigation

This chapter describes the approach that this thesis uses to deal with some of the

problems associated with reactive navigation.

Chapter 4: Implementation

Chapter 4 outlines the specific implementation used to test and evaluate the effi-

cacy of these methods. This includes a description of the agents and their environ-

ment.

Chapter 5: Experimentation

Chapter 5 presents the results of the experiments executed using the approaches

described in Chapter 3 and an analysis of the results.

Chapter 6: Findings and Recommendations

Chapter 6 discusses the experimental results and conclusions that can be drawn

from them. It also outlines possibilities for future work in this area that can further

extend the ideas and methods contained in this work.

Chapter 2

Related Literature

This chapter provides an overview of research related to this thesis. As this work

draws on many areas, it is necessary to present the various topics outward from the

fundamentals. To this end, the reader is first presented with an overview of agent

control architectures. This leads into a discussion of multi-agent systems with an

emphasis on navigation in embodied domains. Following this is an overview of inter-

agent communication, comparing and contrasting explicit and implicit communication

mechanisms. The chapter concludes with a discussion of computer games in Artificial

Intelligence research, including a survey of researchers that have used computer games

to explore a variety of issues.

2.1 Agent Control Architectures

This section presents a review and discussion of agent control architectures in-

cluding logic-based, behaviour-based and hybrid agents to give the reader an under-

8

Chapter 2: Related Literature 9

standing of their strengths, weaknesses, and suitability to particular domains and

applications.

2.1.1 Logic-based Agents

Traditionally, agents have been designed using a symbolic approach [Brooks,

1991a]. In this approach agents use logical reasoning and maintain an explicit sym-

bolic representation of the world (usually referred to as a world model). Agents of

this type can be programmed to reason about complex ideas and concepts at a high

level of abstraction. In this paradigm, robot control is divided into sense, plan and

act phases, with each phase handled respectively by sensing, planning and execution

systems [Gat, 1997]. With each iteration of these phases, the sensing system exam-

ines the environment and updates an internally maintained world model accordingly.

The planning system uses this information together with the agent’s internal state

to decide on a course of action that is designed to achieve the agent’s goals [Weiss,

1999]. The execution system then carries out the actions specified by the planning

system using the agent’s effectors [Gat, 1997]. The cycle is repeated at regular and

very small time intervals throughout the agent’s operational period.

The advantage of agents that use this control approach is that they can plan ac-

tions to achieve their goals well into the future and utilize knowledge gained from past

experiences when making decisions. As a result, logic-based agents can be adept at

proactively working toward their goals by formulating plans to achieve them. Unfor-

tunately, many of the embodied environments where agents might be used (certainly

most real world environments) demand that agents make decisions with alacrity due

Chapter 2: Related Literature 10

to a high rate of environmental change. Consequently, agents do not have the luxury

of unduly pondering their current situation to achieve an ideal plan before acting on

it [Weiss, 1999]. To make matters worse, the size of the state-space that must be

searched in order to come up with an optimal or even reasonable plan in a complex

domain can be prohibitively large. Therefore, it is likely that plans will be outdated

before they are ready to be implemented (or during the course of their execution),

requiring re-planning. In real-world environments, this can be aggravated by inac-

curate sensory input, leading to greater deviations between the agent’s view of the

world and reality. As domains become more and more dynamic, these problems be-

come more severe, eventually causing such agents based on a sense/plan/act cycle to

become impractical [Brooks, 1991a].

2.1.2 Behaviour-based Agents

The limitations of symbolic methods inspired more reactive approaches to agent

control in the form of behaviour-based or reactive agents [Brooks, 1986; Kube and

Bonabeau, 1998]. The subsumption architecture proposed by Brooks [1986] is an

early example of a behaviour-based control architecture [Gat, 1997], representing a

radical departure from the logic-based approach. Rather than explicitly planning

and world modelling, subsumption-based agents simply re-observe the world at every

computational step and act on what they perceive at that instant. By doing so,

discrepancies between the agent’s view of the world and reality are limited (sensory

inaccuracies notwithstanding) [Werger, 1999; Weiss, 1999]. As a consequence, even

in the presence of sensory error, the effects of such errors are no longer cumulative.

Chapter 2: Related Literature 11

That is, whether an agent saw something incorrectly last cycle does not directly affect

the agent’s options in the current cycle, since it is no longer working with the earlier

erroneous information.

A subsumption-based agent’s decision-making function is assembled from a num-

ber of simple behaviours that are triggered in response to sensory input. Each be-

haviour is represented as a separate layer of control designed to accomplish particular

tasks, such as obstacle avoidance or movement toward a goal [Arkin, 1998]. Be-

haviours operate concurrently and asynchronously and receive sensory input directly

from the agent’s sensors. Behaviours react to sensory input and accomplish tasks by

sending motor control signals to the agent’s effectors [Arkin, 1998; Weiss, 1999]. Be-

haviour coordination is achieved by allowing higher priority layers to subsume lower

priority layers when several fire simultaneously [Brooks, 1986]. This involves either

suppressing sensory input signals before they reach a behaviour or by preventing con-

trol signals transmitted by the behaviour from reaching the effectors [Arkin, 1998].

The layering of behaviours allows an agent’s control structure to be evolved in-

crementally. As more complicated layers are added, they are given higher priority,

allowing them to subsume or inhibit the simpler behaviours that preceded them. The

pre-existing behaviours do not require and do not have an awareness of the new be-

haviours. As a result, they do not require modification as a result of the addition of

any new behaviours [Arkin, 1998]. Communication between behaviours is strongly

discouraged, except through interaction with the environment [Brooks, 1991a; Arkin,

1998]. The simple priority-based behaviour arbitration and lack of complex planning

allow agents to react quickly to situations that demand it.

Chapter 2: Related Literature 12

Despite their profound impact upon the direction of autonomous agent research

[Arkin, 1998], subsumption-based agents possess significant limitations [Balch and

Arkin, 1993]. For one, the control system is hardwired into the agent’s behavioural

structure and inter-relationships. In many situations a lower-priority layer may in

fact be more important than a higher layer, but only a single behaviour can take

control at any given moment [Arkin, 1998]. As a result, alterations to the control sys-

tem can require significant redesign of the entire system [Arkin, 1998; Moorman and

Ram, 1992]. Scalability is another problem. As system complexity grows, the num-

ber of behaviours can increase dramatically and coordinating any significant number

becomes problematic [Pirjanian, 1999; Brooks, 1990; Tsotsos, 1995]. Also, since these

agents do not maintain state, they are unable to exploit previous experiences or learn

from past mistakes [Moorman and Ram, 1992]. As a result, purely reactive agents

can oscillate between different stimuli, preventing them from achieving their goals in

a timely fashion [Balch and Arkin, 1993]. Finally, since the individual layers do not

explicitly cooperate, they cannot work together to accomplish complex tasks (such

as by sequencing behaviours).

As a result of the subsumption architecture’s drawbacks, many other behaviour-

based architectures followed in its wake, attempting to improve on the template laid

down by Brooks. Among these new approaches was Ronald Arkin’s schema-based

architecture [Arkin, 1998]. This approach sought to allow multiple behaviours to

influence an agent’s actions simultaneously by utilizing the concept of potential fields

(or superposition) [Pirjanian, 1999; Parunak et al., 2001]. In a potential field-based

approach, an agent’s attraction to or repulsion from an object can be given a value

Chapter 2: Related Literature 13

at any particular location in the environment based on perceptions obtained from

that location. The potential fields of a set of objects (e.g. goals and obstacles) can

be combined into an overall potential field for the agent’s surroundings. This allows

the agent to follow a gradient across the field, avoiding obstacles and being attracted

to goals. Potential fields are most commonly viewed graphically as a physical map

(a potential field map, e.g. [Arkin and Balch, 1998]) showing the direction an agent

would go in at any spot, given the combination of attractions and repulsions. However,

a potential field can be represented as a function, a collection of rules, or any other

representation that allows fields to be combined.

Schema-based behaviours divide control into perceptual schemas and motor schemas

that are tailored to specific aspects of an agent’s environment [Balch and Arkin, 1998,

1997, 1995; Pirjanian, 1999]. Perceptual schemas are associated with motor schemas,

and are responsible for sensing specific aspects of the world and providing motor

schemas with relevant stimuli. Perceptual schemas can themselves be used by other

perceptual schemas to form more complex perceptual schemas and provide higher-

level interpretations of the environment [Arkin, 1998]. Motor schemas, by contrast,

are responsible for operating the agent’s actuators to achieve these goals. On every

computation cycle, each active schema computes an ideal movement vector based

on its particular interests and input from relevant perceptual schemas. Together

these vectors form a potential field that captures the agent’s positive and negative

attraction to objects and entities within sensory range from its current position in

the environment [Arkin, 1998]. To proceed to a goal while avoiding collisions, the

agent follows the path (gradient) of steepest descent by summing and normalizing

Chapter 2: Related Literature 14

the vectors to compute a final heading and speed of travel.

Complex tasks are accomplished by grouping related behaviours together into col-

lections (known as assemblages) and activating them in an appropriate sequence or

by combining their outputs together [Mataric, 1997; Balch and Arkin, 1997]. For

example, Mataric [1997] achieves flocking behaviour among a team of agents by sum-

ming the outputs of three behaviours (safe-wandering, aggregation and dispersion).

Each assemblage is tailored to handle specific situations that the agent is likely to

encounter in its lifetime. The influence of each of the individual behaviours that

make up an assemblage is set by a gain value. This value is set according to each be-

haviour’s relative importance, and can also be used to remove a behaviour’s influence

altogether when it is not appropriate to a particular state [Arkin, 1998].

Many other behavior coordination mechanisms have also been used, such as voting

and winner-take-all behaviour arbitration. In voting methods, each active behaviour

votes for and against each of the various possible actions and the action with the

highest weighted sum of votes is chosen and executed. Winner-take-all arbitration, by

contrast, selects a single behaviour from the set of available behaviours and empowers

the chosen behaviour to take whatever actions it deems necessary. Though many other

mechanisms exist [Pirjanian, 1999], most have in common the ability to allow multiple

behaviours to simultaneously influence an agent’s actions [Mataric, 1997]. Pirjanian

[1999] provides an in-depth survey and review of the many behaviour arbitration

mechanisms for the interested reader.

In addition to allowing for greater flexibility in behaviour arbitration, more recent

behaviour-based approaches relax many of the philosophical restrictions of subsumption-

Chapter 2: Related Literature 15

based (and other purely reactive) agents. This includes endowing agents with greater

representational power to permit them to carry out more complex tasks and achieve

higher goals [Mataric, 1997]. This is accomplished by retaining limited information

about the world and the agent’s past experiences across computational cycles within

the behaviours themselves [Balch and Arkin, 1993]. Balch and Arkin [1993], for ex-

ample, avoid redundant exploration in a schema-based agent (discussed in Section

2.3) by recording visited locations in a spatial grid and avoiding them.

Although adept at reacting to situations, behaviour-based agents are not as well-

suited to taking proactive action to achieve their goals. This is especially true of

purely reactive agents because they do not reason or comprehend their surroundings

at a high level, but rather respond automatically to their current situation [Gat,

1997]. It is also difficult to achieve even for behaviour-based agents that employ

world models and retain state, though somewhat less so [Mataric, 1997; Arkin and

Balch, 1997].

2.1.3 Hybrid Agents

In order to allow agents to be simultaneously reactive and proactive, agents have

also been implemented using hybrid architectures. Hybrid agents blend a reactive

subsystem that is responsible for the agent’s short-term safety and a deliberative

subsystem that performs higher level planning of long-term goals [Arkin and Balch,

1997].

Hybrid agents are typically composed of a planning module, reactive module and a

control module that arbitrates and integrates the other two [Gat, 1997]. The planner

Chapter 2: Related Literature 16

produces plans that are executed in the form of suggestions to the reactive layer,

allowing the agent to perform complex and time-extended tasks. The reactive module

attempts to follow the suggestions of the planner, while ensuring the agent’s safety by

reacting to events that require an immediate response [Gat, 1997]. The middle layer

is responsible for mediating between the deliberative and reactive layers. It must

deal with the differing representations and harmonize conflicting commands issued

by each layer.

The central problem or challenge in this approach is achieving an optimal, or

at least acceptable, balance between reactive and proactive behaviour [Weiss, 1999].

Agents that are too reactive are at the mercy of their impulses and the limitations of

their sensor range. Conversely, an agent that is too deliberative may be too slow to

respond to changing circumstances.

While hybrid approaches are a viable and proven alternative [Arkin and Balch,

1997; Gat, 1997; Reece and Kraus, 2000; Bonasso et al., 1997], hybrid agents are

anything but parsimonious. Many researchers [Balch and Arkin, 1993, 1997; Werger,

1999] believe the limits of reactive and behaviour-based agent control can be pushed

further before resorting to traditional symbolic reasoning and planning techniques.

This research takes a similar view.

Regardless of the specific control methodology that agents employ, the difficulties

in single agent control are multiplied when autonomous agents are working together as

a team. Section 2.2, discusses the challenges and motivations for multi-agent systems

in this regard.

Chapter 2: Related Literature 17

2.2 Multi-agent systems / Teamwork

As problem scale and complexity increase, a single-agent solution to many prob-

lems quickly becomes impractical. Security patrolling, disaster rescue, and even much

lower-level support tasks such as simple mapping of unknown terrain generally call for

the use of a team of agents for reasons of redundancy, adequate coverage, efficiency,

and specialization of expertise [Brooks, 1991a; Resnick, 1998]. In the event that a task

requires extensive expertise or abilities in various areas, constructing a single robot

able to perform all the necessary sub-tasks results in an overly complex individual

that is difficult and costly to build and maintain [Brooks, 1991a]. In such a situation,

a preferable alternative is to decompose a large or complex problem into many simpler

sub-tasks that individuals with different abilities can work on separately as part of

a larger team. Since these problems are much simpler than the overall global task,

agent complexity can be reduced substantially [Arkin and Balch, 1998]. In addition

to distributing expertise, using a group of agents allows us to exploit the inherent par-

allelism of naturally distributed tasks such as search and rescue or foraging, allowing

global goals to be achieved many times faster [Burgard et al., 2000].

The degree of coordination and cooperation among a team of agents spans a broad

range. At its most basic, teamwork can be incidental: agents simply occupy the same

environment and share common goals with no explicit cooperation [Nwana et al.,

1996]. Agents’ actions can be moderately more coordinated, where they perceive one

another and may cooperate, but do not require each other’s help to complete tasks

[Nwana et al., 1996]. This loosely coupled cooperation is suitable primarily for tasks

such as foraging, where it is theoretically possible for a single agent to complete the

Chapter 2: Related Literature 18

task on its own given enough time. The challenge in this setting is avoiding redundant

effort and keeping agents from impeding each other (lest the additional agents worsen

performance) [Buck et al., 2002]. The degree of cooperation falls into a spectrum,

up to a point where each agent performs an explicit role in an overall scheme for

achieving the system’s goals [Nwana et al., 1996]. Here agents explicitly share goals

and plans, communicate with one another and synchronize their actions in order to

achieve improved overall system performance [Tambe et al., 1999; Veloso and Stone,

1998].

In order to achieve the necessary level of cooperative or global behaviour a vary-

ing degree of centralized versus decentralized control is required. Isolating decision-

making and planning in a centralized controller lends itself well to highly coordinated

group behaviour. However, it can also create a potential bottleneck as the load on a

central controller grows. Consequently, it tends to scale badly as group size increases

[Mataric, 1997]. This is partly because the communication between agents and the

central controller also grows as the number of agents increases. Perhaps worse, if con-

trol is completely centralized, failure of the central controller implies a breakdown of

the entire system [Kube and Bonabeau, 1998]. Beyond the issue of load on a central

controller, the use of centrally created plans for a group also fares poorly as problems

become more difficult. The additional complexity of planning for a team of agents

slows the planning process and as a result, a centrally calculated plan for a large

group is even more likely to be unusable by the time it is completed due to changes

in the environment [Parunak et al., 2001].

The drawbacks of centralized control can be alleviated by allowing agents to make

Chapter 2: Related Literature 19

decisions locally [Durfee, 1999]. Doing so allows the central controller to focus more on

global performance of the team, leaving individuals to handle the details. By doing

so it becomes possible for agents to function for varying periods of time without

being in constant contact with a group controller or their peers [Stone and Veloso,

1999]. This has the added advantage of reducing communication overhead as well.

The resulting multi-agent system is more robust and scalable as a result [Kube and

Bonabeau, 1998]. The precise degree of centralized versus decentralized control is a

design decision that is driven by the domain in which the multi-agent system is to be

employed.

Regardless of the control method used, issues such as inter-agent interference,

communication efficiency and planning are all of concern [Stone and Veloso, 1999;

DesJardins et al., 1999]. As the agent population grows, the probability that an

agent will obstruct another’s path (in an embodied domain) or interfere with another’s

work grows. In order to minimize interference, agents can communicate to plan their

actions, declare their intentions and collaborate in general. However, communication

is slow and its overhead grows with team size. These and other costs can make its

drawbacks greater than its benefits [Balch and Arkin, 1994], as will be discussed in

Section 2.4.

2.3 Navigation and Embodied Domains

Navigation is an essential component of agents operating in embodied domains,

since they need to move and explore their environment in order to achieve their goals

[Nehmzow et al., 2000]. The challenge of navigation increases in tandem with the

Chapter 2: Related Literature 20

topographical complexity of the environment. Navigating in a flat open area with

uninterrupted sight lines and few obstacles is relatively straightforward. However,

many domains that agents may be faced with are not so simplistic. For example,

building interiors form complex environments containing many corridors, doorways,

walls and obstacles. At its most basic, navigating within buildings involves finding

and negotiating relatively narrow doorways and hallways and possibly locating and

climbing stairs (or controlling an elevator). Navigation in both indoor and outdoor

domains can become much more complex, as agents may be faced with terrain undu-

lation, irregularly shaped obstacles, and winding maze-like layouts that make finding

and navigating to a goal problematic.

Intelligent navigation in complex environments typically involves localization and

path planning [Baltes and Anderson, 2003]. Localization is the process of determining

an agent’s position in its environment, while path planning is the process of calculating

a collision-free path through the environment from the agent’s current position to its

desired destination. Path planning requires either pre-existing knowledge about the

environment, such as a map and the locations of objects within it [Reece and Kraus,

2000] or the ability to discover this information. Accurate localization is also essential

for path planning to be successful, because if the agent is in error about its current

location, the path that is calculated to get it to its destination will be likewise incorrect

[Verth et al., 2000].

A variety of localization techniques exist, including methods that use odome-

try, global-positioning, and radio-sonar positioning [Werger and Mataric, 1999]. In

odometry-based localization agents begin in a known starting location and contin-

Chapter 2: Related Literature 21

uously update their locations as they travel [Werger and Mataric, 1999]. Global

positioning, on the other hand, works by dividing the environment into a grid where

locations can be identified by coordinates. Radio-sonar methods triangulate posi-

tion by sending out sonar pings and calculating position based on differences in ping

times. Unfortunately, odometry-based navigation works only over short distances

[Nehmzow et al., 2000] as cumulative errors in odometry can quickly result in dis-

crepancies between the agent’s actual and perceived location [Brooks, 1991b]. The

latter two methods both require preparation of the environment ahead of time and

complicated sensory equipment [Werger and Mataric, 1999].

In addition to accurate localization, path planning algorithms require and operate

on symbolic representations of the environment. These may be provided a priori,

constructed at runtime based on an agent’s perceptions, or both in combination.

Storing, constructing and maintaining these maps can require considerable resources

in terms of both space and time [Balch and Arkin, 1993]. For this reason, in practice

agents often possess only a simple map based on previous travels (if any map at all),

rather than a detailed blueprint of the area they are to navigate [Fu et al., 1996]. To

make matters worse, if the environment is dynamic and subject to extensive change,

any dynamically constructed map may have only a limited viable lifetime. In such

situations, path planning becomes limited in its utility, as the path planner is reduced

to planning based only on the agent’s immediate perceptions and/or based on a partial

map that the agent builds as it navigates. Consequently, embodied agents must often

navigate in environments that are partially (if not wholly) unknown for periods of

time [Sgorbissa and Arkin, 2001].

Chapter 2: Related Literature 22

Even with an accurate map of the environment and reliable localization, path

planning algorithms can take too long to compute a path in a fast changing environ-

ment. Plans must be changed or replanned each time anything affecting the planned

path changes. These drawbacks are even more severe when agents are planning and

acting as a team [Mataric, 1997], because of the greater complexity of group plans and

uncertainty about the possible actions of teammates. Agents must also be prepared

to adjust to changes in the environment initiated by others. For example, an agent’s

intended path may be abruptly cut off by objects placed by others or by the bodies of

other agents themselves. All of these factors contribute to making systems that use

path-planning exclusively impractical in many real world scenarios [Brooks, 1991a].

As a result, local navigation decisions are sometimes better handled using reactive

navigation techniques (as opposed to path planning) in unknown and rapidly changing

domains [Sgorbissa and Arkin, 2001]. Instead of prescriptively navigating to a desired

location via path planning, reactive navigation emerges from the agent’s responses to

its immediate local perceptions [Mataric, 1997]. This allows agents to react quickly

to changing circumstances, does not require a perfect map of the environment, and

since agents maintain at most a limited model of the world, localization is often not

as crucial [Groner and Anderson, 2001]. Reactive navigation has also been referred

to as local navigation as the agent, at each computation step, decides on the best

direction in which to move to achieve its aims based only on its local perceptions

[Sgorbissa and Arkin, 2001].

Unfortunately, reactive control mechanisms such as those based on potential fields

are vulnerable to local minima. Local minima situations occur when an agent can

Chapter 2: Related Literature 23

Figure 2.1: Box-canyon situation

see its goal, but must first move away from the goal to ultimately reach it [Pirjanian,

1999]. Typically, a certain amount of noise or randomness is added to the agent’s

chosen vector in order to deal with the problem of local minima [Balch and Arkin,

1995, 1994; Pirjanian, 1999]. Agents can similarly become trapped in local maxima

where they lack the stimuli needed to choose a movement vector. For example,

box-canyons (see Figure 2.1) are a common local maxima problem, where agents

are unable to see a goal of any type [Sgorbissa and Arkin, 2001] and are reduced to

wandering randomly before stumbling upon an exit [Balch and Arkin, 1993]. The lack

of goal-directed ability makes purely reactive navigation unsystematic, and agents (as

individuals and as a team) do not benefit from the knowledge they have gained by

exploring an environment (unless they are constructing a detailed world model as

Chapter 2: Related Literature 24

they explore) [Moorman and Ram, 1992]. Thus, if an agent trapped in a box-canyon

finds its way out and gets trapped in the same box-canyon again, it must repeat its

search for an exit. In addition to local minima and maxima, agents are also subject

to cyclic behaviour, where they oscillate between multiple stimuli and never reach

their goals (or at best waste time) [Balch and Arkin, 1997; Arkin and Balch, 1997].

Thus, an ideal agent navigation system is one that has the responsiveness of local

reactive navigation and the proactivity of path planning methods. One solution to this

problem is to allow agents to maintain state to remember experiences and places they

have been [Balch and Arkin, 1993]. However, a fundamental design goal of purely

reactive agents is that they maintain little or no state information [Brooks, 1986].

Even though behaviour-based agents relax this restriction it is still generally desirable

to minimize state information in these agents for reasons of parsimony. Both methods

can be used in agents, where local navigation is practiced by the reactive subsystem

and path planning methods are employed in a deliberative controller, such as the many

hybrid implementations (as discussed in Section 2.1.3) [Arkin and Balch, 1997; Fu

et al., 1996]. In systems that employ path planning, reactive navigation allows robots

to respond to the unexpected in real-time and handle aspects of the environment that

have changed or were not known ahead of time [Balch and Arkin, 1993]. Consequently,

improving local navigation is desirable, whether it is used exclusively or as part of

the reactive sub-system of a hybrid agent. In either case, local navigation plays a

part in an agent’s navigation, making it desirable to improve it as much as possible.

Moreover, if reactive navigation can be made more effective, it can be employed more

widely without resorting to more expensive path planning techniques.

Chapter 2: Related Literature 25

One such effort in improving local navigation is the work of Balch and Arkin [1993],

which presents an exploration strategy that breaks the environment into a spatial

grid stored in the agent’s memory. In this work, each cell in the grid corresponds to

a coordinate position in the environment. As the agent explores the environment, a

spatial mapper records the number of times a location has been visited. An avoid-past

motor schema is then used to cause the agent to move in a vector away from visited

areas. By avoiding locations that have previously been visited, the agent naturally

moves toward areas that have not been explored (or at least not thoroughly). When an

agent became trapped in a box-canyon, it would gradually visit locations throughout

the room and eventually cause the agent to move away from visited locations toward

the exit. As a result, the robots in Balch and Arkin’s experiments were found to

handle box-canyons better than without the use of a spatial grid. Balch and Arkin’s

spatial grid approach is, however, intended to improve the explorations of a single

agent, not a team of agents.

To improve the explorations of a team of agents, Burgard et al. [2000] implemented

a team of robots that construct a global map of the environment as they explore and

assign probabilistic utility values to key target points in the environment. The utility

of a target point is a function of the likely degree of unexplored area perceivable by the

robot upon reaching that point (with higher degrees of unexplored areas being more

valued), and the cost of reaching the point based on the robot’s current location. Since

unexplored areas have higher utility, the agents’ search pattern minimizes overlap and

the team is able to explore an area faster than otherwise. However, this technique

depends on agents being able to reliably share information and requires extensive

Chapter 2: Related Literature 26

communication. As well, localization is still necessary, and the challenges localization

presents remain an issue.

Sgorbissa and Arkin [2001] attempt to improve local navigation for a team of

reactive agents operating in an unknown and complex environment. Using line-of-

sight communication, agents employ two basic local navigation strategies that share

either an agent’s state or goals. In the state-sharing strategy, robots that are in

trouble are attracted by teammates that are not, in order to extract themselves from

undesirable situations. Conversely, in the goal-sharing strategy, robots communicate

their goals with one another and are drawn to teammates that can see or have seen

their goal [Sgorbissa and Arkin, 2001]. Consequently, robots are drawn more directly

to their goals.

Navigating in or as part of a group introduces another level of difficulty to the

navigation task. When operating in a group, agents need to be prepared to adjust

their movements to avoid other agents that cross their path. In addition, it is often

desirable for a team of agents to move as a unit in formation. If agents are expected or

designed to move and navigate in formation, they must know their place in the group

and actively work to maintain that position. They must be able to avoid obstacles

and quickly retake their proper position within the larger group [Balch and Arkin,

1995].

Balch and Arkin [1995, 1998] and Arkin and Balch [1998], for example, embed for-

mation control in a team of Unmanned Ground Vehicles (UGVs). These automated

scouts use four main formations (diamond, wedge, line, and column) when moving

across terrain. Formation control is embedded in their schema-based reactive sub-

Chapter 2: Related Literature 27

systems by addition of a maintain-formation behaviour. The formation behaviour is

concerned with keeping the UGV in proper position relative to its teammates accord-

ing to the currently active formation. The formation behaviour calculates the UGV’s

desired direction and velocity using a perceptual schema detect-formation-position to

determine where it should be relative to its teammates. The motor schema maintain-

formation then calculates a vector of travel toward this ideal position [Arkin and

Balch, 1997].

Similarly, Fredslund and Mataric [2002] present a method that allows agents to

travel in formation using only local sensing and limited communication. In this work,

agents move in chains ordered according to numeric identifiers (ID’s) assigned to

each team member. A single agent adopts the role of conductor and is responsible for

broadcasting formation changes to the team. Agents follow a teammate with an ID

higher or lower depending on the formation. In centered-formations, the robot with

an ID in the middle of the chain becomes the conductor. In non-centered formations,

the robot with the lowest or highest ID is elected conductor. As the agents travel, they

broadcast their identity and position to their teammates. Each agent is responsible for

moving as required to keep a teammate with appropriate ID (depending on formation)

at a particular distance and angle.

Werger [1999] produces formations among a team of robotic soccer agents by

the addition of a dispersion behaviour. When a robot senses something near to its

left or right side, it moves away from the object (robot or obstacle). This has the

effect of causing agents to move in formation, reducing interference between them.

Offensively, as agents follow the ball they are kept at a distance from each other by

Chapter 2: Related Literature 28

the repelling effects of the dispersion behaviour. The behavioural tension between

the dispersion and ball attraction behaviours was found to cause agents to advance

in rough v-formation towards their opponent’s goal, leaving them well-positioned to

recover the ball if the teammate with ball possession were to lose it. Defensively,

agents were found to orient themselves in a semi-circular formation by the combined

attraction to the ball and repulsion from each other by the dispersion behaviour

[Werger, 1999]. Mataric observed similar emergent global flocking behaviour using

only local sensing and the interaction between three basic behaviours (avoidance,

aggregation and dispersion) [Mataric, 1997]. Both Werger and Mataric’s formations

are distinguished from Balch’s formations above, in that a specific geometric distance

is not specified [Balch and Arkin, 1998].

Whether coordinating exploration strategies or moving in concert, varying degrees

of communication are required to allow agents to share their perceptions, announce

discoveries (such as the locations of a discovered goal) or in the event that the team

becomes separated, to regroup [Arkin and Balch, 1998; Balch and Arkin, 1994; Bur-

gard et al., 2000; Fredslund and Mataric, 2002; Groner and Anderson, 2001; Kube

and Bonabeau, 1998; Mataric, 1997]. The formations of Werger [1999] and Mataric

[1997] work primarily by observation and innate behavioural interplay, requiring min-

imal communication. Fredslund and Mataric [2002], by contrast, use communication

to broadcast their position and identity to their teammates and to negotiate and

announce formation changes [Fredslund and Mataric, 2002; Mataric, 1997].

The next section presents a brief overview of communication, and the strengths,

weaknesses and trade-offs involved in employing communication in single and multi-

Chapter 2: Related Literature 29

agent navigation.

2.4 Communication and Navigation

Explicit communication occurs as a result of a direct and purposeful information

exchange between two or more individuals. It allows entities to share and negotiate

plans, pool sensory information, and in learning situations allows agents to share

reinforcement [Stone and Veloso, 1999]. It may also be needed when agents are

outside visual range of one another. By communicating, agents can coordinate and

collaborate and signal their intentions to avoid performing redundant work.

Explicit communication has been used to aid navigation in many implementations

[Sgorbissa and Arkin, 2001; Vaughan et al., 2002, 2000b; Balch and Arkin, 1994].

Tambe et al. [1999] for instance, in their STEAM (a Shell for TEAMwork) system,

use direct communication between team members to support plan formation and

execution. STEAM uses an explicit teamwork representation based on joint intentions

(the group’s commitment to group actions) and a shared representation of group

plans for a robotic soccer team. In STEAM, agents communicate changes in active

team operators, such as when events invalidate an active team operator or enable a

previously inactive one. By using explicit communication, this information can be

passed to agents that may not be in a position to observe the events causing the

operator change.

Most domains have a cost associated with explicit communication. At a minimum,

explicit communication requires a common representation and means to communicate

[Tambe et al., 1999]. For physical robots, specific communication apparatus is needed

Chapter 2: Related Literature 30

to transmit and receive messages. For either software or hardware agents, software

communication primitives are needed to process and interpret communicated mes-

sages [Balch and Arkin, 1994]. Even the mere existence of explicit communication

(as opposed to the information in it) may endanger agents in some domains by giving

away the presence of the agents performing communication [Tambe et al., 1999]. As

well, if communicated information is not relevant to the recipient, time and effort

processing this information is wasted [Werger, 1999].

Explicit communication may also be prevented by the nature of the environment

(e.g. after disasters where infrastructure cannot be depended upon), and may be

subject to physical delays (e.g. in distant space scenarios). This, along with the

cost of actually generating and interpreting communication, provides ample reason

to attempt to minimize explicit communication. Agent parsimony provides another

motive: if we can adequately perform a task without explicit communication, it in-

volves less effort and is less costly in terms of agent development [Arkin and Balch,

1998]. The amount of teamwork that can be performed without explicit communica-

tion is also interesting from a multi-agent systems standpoint, since it provides insight

into the nature of communication and teamwork.

One approach is to make explicit communication more efficient and be more se-

lective in its use. In STEAM, for example, agents consider the cost of communication

before making a decision to do so, and avoid communicating information that they

believe other team members can already observe on their own. Groner and Anderson

[2001], on the other hand, minimize communication via passive cooperative localiza-

tion. This technique allows agents to selectively exchange data on the positions of

Chapter 2: Related Literature 31

navigational landmarks to allow them to re-localize in the face of ongoing uncertainty

and sensor error while still performing useful work. In their work, communication is

necessary, but is minimized in order to limit the amount of time agents spend com-

municating, freeing agents to continue with work more directly applicable to the task

at hand.

Rather than simply minimizing explicit communication, another possibility is to

replace it entirely with implicit communication. Implicit or indirect communication

occurs by observation using an agent’s pre-existing sensory apparatus (leveraging vi-

sion or sonar already needed for detecting the agent’s surroundings). Information

is passed through modifications to the environment and by observing the actions of

others [Werger and Mataric, 1999]. Implicit communication is also referred to as stig-

mergy in the literature, a term used in biology to describe the influence that previous

changes to the environment can have on an individual’s current actions [Holland and

Melhuish, 2000]. Stigmergy is a common control method in lower animals, especially

social insects [Perez-Uribe and Hirsbrunner, 2000].

Ants, for example, have evolved to secrete pheromone when transporting food back

to their nest. Other ants are attracted by the trail of pheromone that is created and

follow it to the newly discovered food source. As more ants detect the pheromone trail

and follow it, they lay down additional pheromone, making the trail more attractive

to others [Holldobler and Wilson, 1990]. When food runs out, more ants wander

away from the food source. With fewer ants on the trail, less pheromone is deposited,

attracting fewer and fewer ants. Coordination of a primitive sort is thus achieved not

by directly communicating ant to ant, but by modifying the environment in such a

Chapter 2: Related Literature 32

way that others can use this information [Resnick, 1998].

Termites, by contrast, use stigmergy to produce complex structures without ex-

plicit coordination of their actions. Instead, worker termites are stimulated to take

appropriate action at the proper time by observation of new structural features and

the activities of other termites. Coordination and sequencing of the tasks necessary

to complete a project is therefore directed by the structure itself, rather than explicit

communication between workers [Holland and Melhuish, 2000].

According to Holland and Melhuish [2000], stigmergy is considered to have oc-

curred whenever an earlier change to the environment affects the actions of one or

more agents. This can happen by affecting the agent’s choice of action, or by chang-

ing the location, frequency or strength of the agent’s actions [Hammond et al., 1995].

Stigmergy can therefore be considered a form of stabilization [Kushmerick, 1994, 1996;

Hammond et al., 1995], in that those employing it are modifying the environment to

better suit their needs.

Humans stabilize their environments constantly. We structure the world we in-

habit in order to allow others to expect regularities in their interactions and travels.

In doing so, we often leave very sophisticated messages for one another. When driv-

ing down a modern highway, for example, much of its complexity is interpreted for

drivers ahead of time and displayed on signs as the path is traversed [Agre, 1988].

People travelling through the woods mark places they have been in order to avoid

wandering in circles. In a broader sense, we also stabilize our environments to make

things easier on ourselves [Hammond et al., 1995]: we store things in regular places,

have clearly marked containers, build paved sidewalks, and engage in a host of other

Chapter 2: Related Literature 33

modifications in order to save ourselves the continual effort of life in less structured

surroundings. In the same way, agents can be designed to modify their environment

to better suit themselves and adapt to situations that differ significantly from what

their designers anticipated. Though this is not stigmergy per se, there are intriguing

similarities to it.

Findings such those of Balch and Arkin [1994] imply that implicit communication

can be used as an effective alternative to the more costly explicit type. In studying

the effects of communication, Balch and Arkin [1994] found implicit communication

to be a significant factor in the robots’ performance of a grazing task. This task

involves a robot visiting every location in the environment (analogous to mowing or

consuming grass). In this experiment, robots could simply observe the grazing swath

left by others and avoid covering the same ground, allowing the team to complete

the task faster as a result. They concluded that explicit communication is unneces-

sary for tasks where comparable implicit communication already exists [Balch and

Arkin, 1994]. Consequently, the use of explicit or intentional communication can be

avoided when similar information can be transmitted through modifications to the

environment itself.

This has powerful implications for the design of multi-agent systems. It hints at

the feasibility of creating highly coordinated teams without the use of explicit com-

munication [Kube and Bonabeau, 1998]. By considering the synergies that can be

obtained between agents’ actions on the world and the world’s actions upon agents,

agents can be much simpler in design. This assumes, of course, that the method of im-

plicit communication employed does not place undue burden on the agents expected

Chapter 2: Related Literature 34

to recognize and parse the communication [Anderson and Wurr, 2002]. If the commu-

nication is too subtle or requires complicated sensory systems, then agent complexity

can actually be increased. Ideally, implicit communication will be incidental to task

performance rather than a deliberate and separate action. This has the advantage of

not requiring any additional time and effort in order to communicate.

The potential benefits of using stigmergy as a communication method have led

a number of researchers to explore its applications in single and multi-agent robotic

systems. The next section provides an overview and discussion of work in this area,

particularly with respect to navigation.

2.5 Stigmergy in Robotic Agents

Stigmergy is attractive to robotic agent designers for several reasons. By storing

information in the environment rather than in an internal world model, agent mem-

ory requirements can be minimized. Moreover, maintaining consistency between the

world and a world model is not required - the world serves as its own best model

[Brooks, 1991a]. This makes it highly applicable in dynamic domains where the en-

vironment can change quickly, and in the physical world where a robot’s perceptions

are subject to sensor inaccuracies. In both situations it makes sense not to rely on

an internal world model unless absolutely necessary - such a model may be stale or

inaccurate due to the cumulative effect of sensory error [Werger, 1999].

In addition to minimizing agent memory requirements, the externalized informa-

tion can theoretically be stored at the location that it is most useful [Parunak et al.,

2001]. Indirect or stigmergic communication has the advantage of being passive in

Chapter 2: Related Literature 35

that an agent can naturally integrate it with other sensory information and respond

accordingly. In a behaviour-based agent, the presence of a modification to the envi-

ronment can influence an agent through a behaviour designed to react to its presence

appropriately and automatically. For these agents, the relevance of communicated

information is determined by an agent’s position in the environment, and does not

require a long chain of logical reasoning [Parunak et al., 2001]. Communicated in-

formation is therefore less likely to interfere with or disrupt the activity of agents to

whom the communication is not important. Furthermore, communicated informa-

tion can be more time-extended, if transcribed into a stable medium, than a simple

information transfer between an initiator and one or more recipients.

To date, most work with stigmergy has dealt with its effects on simple homo-

geneous robots collectively performing foraging or sorting tasks (e.g. [Werger and

Mataric, 1999; Holland and Melhuish, 2000; Balch and Arkin, 1994; Parunak et al.,

2001]) based on that of the natural creatures (e.g. ants and termites) that inspire

the model. Social insects such as ants are homogeneous and redundant, which means

that sub-tasks necessary to complete a larger task do not have to be completed by

a single agent: the presence of environmental cues alone eventually ensures that a

complete sequence of actions is executed, even if the sequence is performed by dif-

ferent individuals [Holland and Melhuish, 2000]. However, the potential benefits of

modifying the environment to affect the actions of others can be readily applied to

more complex domains and purposes.

Balch and Arkin [1994] have studied the effect of communication in three different

multi-robot tasks: foraging for objects (gathering and returning them to a home loca-

Chapter 2: Related Literature 36

tion), consuming objects (finding and consuming in place) and grazing (as described

in Section 2.4). Most intriguingly, external communication mechanisms were shown

to improve performance of the first two tasks, but not the latter (already discussed

in Section 2.4).

Werger and Mataric [1999, 1996] use a form of stigmergy in which robot bodies

are substituted for chemical pheromone. In their work a team of robots searches an

area without global positioning and only limited sensors by forming robot chains.

One end of the chain stays in contact with a home position, while the other end

extends outward. Communication is passed down the chain using simple physical

taps. Robots are able to briefly leave the chain and search for items before returning

to the chain. It is possible to use these taps to re-orient the chain toward newly

discovered items of interest. The primary drawback with these robot chains is that

close contact between robot bodies limits parallel action. Most of the team members

are prevented from actually doing useful work by the necessity that they keep their

position in the chain. In addition, the area of exploration is bounded by the maximum

length of the robots’ bodies laid out in a line.

Balch and Arkin [1993] have explored using limited local spatial memory to deal

with the box-canyon problem (this problem was described in Section 2.3) in reactive

schema-based robotic agents. Agents remember parts of the environment that they

have visited by recording this information internally in a 2-dimensional integer array.

Each entry in the array corresponds to a portion of the environment (a cell of arbitrary

size). The value stored in each element records the number of times that a given

location has been visited in the past. The more often a location has been visited

Chapter 2: Related Literature 37

in the past, the greater its repulsive force on the agents. This can be considered to

be “stigmergy in the head”, where the robot’s movements are recorded in internal

memory rather than externally in the environment.

By avoiding previously visited locations, a single robot was found to be better able

to deal with box-canyons and was not as dependent on noise (randomness added to

its movements) to extract itself from local minima. Though navigation was improved,

Balch and Arkin discovered that the robot could become trapped by visited locations

and find no direction in which to move. However, they believed that this problem

could be solved by introducing a decay mechanism to the internal memory, similar

to the natural decay of ant pheromone trails. Finally, since the stigmergy depends

on an agent maintaining a rudimentary world model, this model occasionally became

inconsistent with the world [Balch and Arkin, 1993] causing a divergence between

the agent’s perceived and actual location. This underscores the value of storing this

information in the environment (as opposed to in memory), as doing so ensures that

there can be no discrepancy between the world and the recorded location. At the same

time, it does not increase agent computational complexity and memory requirements.

As an alternative to stigmergy, the use of stigmergy-inspired modelling methods

in conjunction with external communication has also been explored. Vaughan et al.

[2002, 2000b,a], for example, developed a team of physical robots that could locate

a supply of resources within an initially unknown complex environment and return

it to their home base. The robots are physical entities operating in the real world,

but generate and share waypoint coordinates via radio communication, which they

maintain as an internal list of crumbs and places that form trails for the agents to

Chapter 2: Related Literature 38

follow.

In Vaughan’s approach, a waypoint (crumb) is a data structure that records the

place (P) the crumb refers to, a position (L) in the agents’ shared localization space

(i.e. a spatial or topological representation of the agent’s own position in the environ-

ment [Vaughan et al., 2002]) which refers to the coordinates of the goal, an indication

of the distance to goal (d) and the time when the crumb was created (t). Robots

create trails by generating a virtual place record when they experience an event (typi-

cally discovery of a goal object), which records the event type and the robot’s current

estimated location.

Each robot is responsible for broadcasting a temporary trail at a regular interval

that contains a listing of all places (event locations) in the robot’s trail, an indication

of the most recent place visited and a single crumb that represents the agent’s current

location and distance from the most recent place. Robots add to their trails by

integrating trails communicated by other robots into their main trail. In this way,

robots share and benefit from the explorations of their teammates. The robots utilise

the trails so produced by checking the list of crumbs that fall within their sensory

radius and moving towards the crumb with the lowest estimated distance to the goal.

Using this algorithm, the robot moves progressively closer to the location of the event

by following the trail of crumbs with decreasing distance estimates.

Like Balch and Arkin’s work, this is simulated stigmergy - all the disadvantages of

explicit communication are still in place. A reason for the use of simulated stigmergy

here is that marker clutter would be a significant problem, since multiple agents drop

crumbs at regular intervals. Another limitation of this method is that it depends on

Chapter 2: Related Literature 39

agents being able to localize themselves within their environment (via odometry or

another method). The severity of this drawback is clear in that the method was found

to fail after about 28 minutes of operation when the cumulative error between the

robots’ coordinate records and the real world became so great that their respective

trails could not be shared effectively. Another difficulty is that the robots also need

to be capable of accurately measuring the distance to the goal. In a complex and

unknown environment with many twists and turns this can be very difficult, since the

distance is rarely based on simple line of sight. It is quite possible that a goal location

might be only a few feet from an agent in a straight line, but the agent might have

to travel hundreds of feet to get there (because of walls or other obstacles).

Parunak et al. [2001] and Sauter et al. [2002] employ ant-inspired stigmergy in a

software environment that uses synthetic pheromone to coordinate unmanned aircraft

that use potential field-based navigation (potential fields were described in Section

2.1.2). The method described by Parunak et al. [2001] and Sauter et al. [2002] uses

a distributed network of place agents that are used to record and control what they

cite as the three key aspects of ant stigmergy: pheromone diffusion, aggregation and

evaporation. Aggregation refers to the accumulation of agent pheromone to reinforce

paths. Propagation refers to the diffusion of pheromone to nearby locations. Lastly,

evaporation describes the natural decay process by which old or obsolete pheromone

trails are removed from influence naturally.

Each place agent is responsible for a particular region of physical space, divided

into hexagonal pieces and connected to others via wireless network connections. In-

dividual mobile agents are represented by a single walker agent that spawns ghost

Chapter 2: Related Literature 40

agents to traverse the network of place agent nodes in search of targets in the net-

work. Place agents act as physical bodies to allow software ghost agents to pass

through allowing travel across a physical environment. When a ghost agent locates a

target it heads back over the network of place agents to its associated walker agent

leaving deposits of pheromone at each place agent visited. The walker agent for its

part follows the pheromone trail integrating its attraction to the trail of place agent

nodes into its overall movement vectors until reaching the target. As trails become

obsolete due to targets being eliminated or having moved, they dry up as the place

nodes gradually decrease their level of attractiveness over time.

This technique allows agents to move through a battle region dynamically using

potential field-based navigation. However, it requires very extensive infrastructure

to be in place in order to operate. The place agents must first be evenly distributed

throughout a predetermined region, be able to communicate reliably with each other

via a wireless network, and must also have appropriate sensory apparatus to detect

hostile targets that are of interest to the ghost agents that traverse the place network.

These are strong conditions to attempt to place on an unknown environment, let alone

a battlefield, and consequently the approach seems unsuitable for allowing agents to

autonomously navigate such an environment.

Kube and Bonabeau [1998] study ant-inspired coordination in a transportation

task using a team of robots with decentralized control. In their work a robot team

cooperatively performs a box-pushing task without explicit communication, and using

locally sensed information only [Kube and Bonabeau, 1998; Kube and Zhang, 1995].

When robots involved in the task detect a lack of progress (i.e. the box is not moving),

Chapter 2: Related Literature 41

they re-orient their position until box motion is once again observed. Thus, if robots

are pushing from opposite ends and hinder one another’s efforts, they gradually realign

themselves. Directed box-pushing to a position specified by a spotlight is also achieved

without explicit communication. This is accomplished by designing robots to push

the box only when they are in contact with the box and when the goal spotlight

is not detectable. This has the effect of aligning the robots on the side of the box

furthest from the goal, causing them to push it in the desired direction. Though this

work focuses on stagnation recovery behaviours for a team of reactive robots, it is

relevant to this thesis in that the robots sense progress or lack of progress (caused

by the incompatible movements of the other agent) in the environment and adapt

accordingly through performance of the task itself. This emphasizes the feasibility

and validity of using stigmergy to improve agent performance as individuals and a

team.

Rumeliotis et al. [2000] present a somewhat different ant-based approach to nav-

igation that uses landmarks rather than pheromone for navigation. Desert ants nav-

igate using visual landmarks and path integration. Path integration is the process

of keeping an accurate idea of the direction of one’s starting point relative to one’s

current position by updating this global vector as one travels with angles steered and

distances covered [Rumeliotis et al., 2000]. Even for human-beings, path integration

in unfamiliar or confusing areas can be quite difficult and easily subject to error.

Consequently, these agents learn and integrate a series of local vectors between

a number of landmarks to navigate [Rumeliotis et al., 2000]. This allows them to

follow meandering and complex paths to their nest or outward from it by breaking

Chapter 2: Related Literature 42

the journey into discrete vectors between recognized landmarks. Though the agents

are not explicitly creating the trail, they are actively interpreting their environment

to their advantage. Howard et al. [2002] use stigmergy in a similar manner. In their

work, the bodies of a team of mobile robots are used as landmarks to allow robots

to localize themselves based on the relative range, bearing and orientation of other

agents in a dynamic and/or hostile climate. While this shows the potential for using

stigmergy by actively creating landmarks when none exist, the problem with this

approach is the use of the robots themselves. A robot serving as a landmark is not

likely doing useful work in such an environment.

2.5.1 Stigmergy and Teleautonomy

Stigmergy can also be used as a form of teleautonomy [Anderson and Wurr, 2002],

which involves remotely issuing instructions to one or more otherwise autonomous

agents to influence their actions and behaviour. In many cases, teleautonomous con-

trol occurs via a single operator issuing radio signals while otherwise autonomous

agents attempt to integrate fulfillment of these instructions into their ongoing actions

[Anderson and Wurr, 2002]. While this is useful, it would be desirable for reasons

discussed above to have such instructions provided without explicit communication

and to have persistence.

Arkin and Ali [1994] demonstrate a human operator influencing the behaviour

of agents either as another schema or by changing the behavioural settings of indi-

vidual robots remotely. This allowed a human being with a global perspective of

the environment to steer robots out of box-canyons and local minima. A weakness

Chapter 2: Related Literature 43

in their approach was that the human operator always influenced the entire group

and could not restrict influence to only the individuals of interest. A dilemma with

teleautonomous control is that time-extended concentration (as well as the global

perspective) may not feasible.

Using stigmergy as a mechanism for issuing teleautonomous instructions is attrac-

tive for several reasons. Were a human to control a robot dropping markers, these

markers could serve as instructions just as a broadcast network signal could. More-

over, stigmergy is inherently context-specific, influencing only those robots that it is

relevant to (i.e. those agents close enough to observe it) [Arkin and Ali, 1994]. A

group of individuals can be influenced collectively, without targeting the entire group

at the time the command is issued. Using stigmergy as a mechanism for teleautonomy

can also be used to reduce perceptual load on agents by having a human mark out

features of the environment that agents may be ill-equipped to detect. Given that

this can be accomplished with only the infrastructure already in place for stigmergic

communication, the ability to provide stigmergic teleautonomy is a useful advantage

to a stigmergic navigation system.

2.5.2 Summary

Despite its attractiveness, using stigmergy to modify agent behaviour favorably

is not without challenges. Unless, the agents are performing stigmergy in an internal

simulation (as in Vaughan et al. [2002]) they will require a mechanism to mark their

environment directly [Werger and Mataric, 1999]. In the physical world, this might

involve dropping items of a certain type (beacons, shapes), which will be in finite sup-

Chapter 2: Related Literature 44

ply and most likely encumbering in large quantity. On the other hand, marking the

environment directly using chalk or similar mechanism requires precise motor control

and is potentially damaging to the environment. Perception is also an issue. Physical

agents need to have the capacity to accurately recognize stigmergic markings. Conse-

quently, the stigmergic communication should be easily recognizable. One possibility

is to use a trail of pheromone like ants by integrating biological sensors capable of

sensing chemical trails into mechanical robots [Kuwana et al., 1999].

Even so, stigmergic communication can begin to clutter the environment if not

pruned regularly or made indiscriminately. Consequently, it is imperative that alter-

ations to the environment be made judiciously. If the information being imparted is

time sensitive, the indirect communication will eventually be obsolete. In these situ-

ations, a mechanism may be required to automatically clean up out-dated or obsolete

communications (as with ant pheromone trails), lest it negatively affect agent per-

formance. Furthermore, agents need to be able to decide between various attractors

reliably, or they might oscillate between the multiple stimuli. If so, they may need to

be able to differentiate markers to allow them to follow a gradient towards a goal or

at least recognize markings that have already been visited.

2.6 Using Games for AI Research

As mentioned in Chapter 1, the test-bed for the experiments conducted in this

thesis is a simulation-based computer game. While the nature of the specific environ-

ment will be discussed in Section 4.2, it is worthwhile mentioning the contributions

such environments have made to AI and why such environments are employed by AI

Chapter 2: Related Literature 45

researchers.

First, there are a number of reasons that researchers opt to use simulation in

general as opposed to physical experimentation. Constructing physical robots and

experimenting in the real world is expensive and presents challenges unrelated to

many core AI issues that are of interest [Etzioni, 1993]. This includes, for example,

sensory issues and the mechanical construction and maintenance of robots. Using

computer simulations allows tangential issues of vision processing and mechanical

complications to be avoided, allowing more time to be spent focusing on the issues

of interest. Furthermore, the resulting agents are typically expensive and not readily

expendable.

By contrast, although computer simulated environments can also require extensive

investment of time and effort to construct [Lewis and Jacobson, 2002], they can be

used by countless researchers and be reconfigured as necessary to explore a myriad of

issues once completed [Etzioni, 1993]. Moreover, software simulation affords a higher

degree of experimental control. Experiments can be run repeatedly with identical

settings, under more stringent conditions, or in domains that would be dangerous

to equipment. Of course, simulated research does not eliminate the necessity for

experimentation in the real world [Brooks, 1991a]. The desirability of both is shown

in the RoboCup robotic soccer challenges, which occur in both simulated and real

world environments [Tambe et al., 1999; Kitano, 2000].

To avoid the time and expense of developing computer simulators, a growing

number of researchers are now leveraging computer games to study AI issues and as

an alternative to the more expensive computer generated forces simulators [Lewis and

Chapter 2: Related Literature 46

Jacobson, 2002; Laird, 2000, 2001; Laird and Lent, 2001; Laird, 2000]. Computer game

engines are attractive in that they do not require expensive hardware and specialized

graphics software, yet handle I/O, 2D/3D rendering, network connectivity, sound and

reasonably approximate real world physics. This makes good simulation environments

accessible to a wider number of researchers that are unable to afford the expensive

hardware and software of a high-end simulation environment. This is especially true

in recent years, as games have become more elaborate and better approximate the real

world. The practicality of using computer games has increased as many game makers

have begun providing better software interfaces to their products [Lewis and Jacobson,

2002]. The efficacy and legitimacy of using computer games for AI research is evident

by the increasing number of researchers using games such as Unreal Tournament,

Quake and Half-Life as simulators [Lewis and Jacobson, 2002; Laird, 2001; Bylund

and Espinoza, 2002; Jacobson and Hwang, 2002; Kaminka et al., 2002; Piekarski and

Thomas, 2002].

Laird [2001, 2000]; Laird and Lent [2001] cite several additional advantages to

using computer games as an AI test-bed.

1. Computer game manufacturers and game players are placing increased empha-

sis on more human-like behaviour and intelligence from computer-controlled

players.

2. Advanced AI is generally considered to become the new distinguishing technol-

ogy of computer games.

3. Continual advancement in available game hardware is likely to make it feasible

for more processing power to be devoted to AI processing in game play.

Chapter 2: Related Literature 47

A simultaneous advantage to game developers and players is that research ad-

vances contribute to making computer games better as well. In many games today,

computer-controlled players (or bots) provide ample challenge due to their accuracy

and reaction time as opposed to complex tactics or strategy. For example, agents

might be allowed to see through walls or be given a complete map of the environment

a priori. While game players tolerate this, anecdotal evidence suggests that many

would prefer to play against opponents that are subject to the same limitations as the

player [Laird, 2001], as evidenced by the enormous popularity of online game play.

The quality of the AI used to control the characters that populate these worlds is

an important aspect of the enjoyment the user derives from the experience. As game

development companies strive to make their games standout, the amount of research

funding available for computer game AI will undoubtedly grow [Laird, 2002].

By using computer games as a research test-bed, researchers are freed to focus on

AI issues rather than expending effort creating these simulated environments [Laird,

2002]. At the same time, computer games can benefit from advances in AI research

applied directly in a computer game environment, allowing the entities that populate

them to operate more effectively, without “cheating”.

2.7 Summary

This chapter has provided the reader with an overview of the issues and chal-

lenges of embodied multi-agent navigation, and the need for communication in this

task. Further, it has demonstrated the previous use of stigmergy as a useful form

of communication. The next chapter describes an approach to navigation that uses

Chapter 2: Related Literature 48

stigmergy to solve some of these issues.

Chapter 3

Stigmergic Navigation

The reasonable man adapts himself to the world: the unreasonable one
persists in trying to adapt the world to himself. Therefore all progress
depends on the unreasonable man.

– George Bernard Shaw - 1856-1950

Chapter 2 has outlined the advantages (and drawbacks) of local navigation and

has described the promise shown by stigmergic techniques in assisting agents in their

navigational tasks. Accordingly, this chapter outlines methods to improve local nav-

igation performance in a complex environment using simple stigmergic markers that

agents deploy as they travel. Stigmergic markers allow agents to encode information

gained by their explorations into the environment and share that information with

their teammates (and even themselves). The approaches described herein are ap-

plied and tested in an environment that is more complex than many used in previous

work (e.g. [Balch and Arkin, 1994, 1993; Werger and Mataric, 1999, 1996]). More-

over, my techniques implement stigmergy directly, rather than simulating stigmergy

in the internal representations of agents as has been done in previous approaches

49

Chapter 3: Stigmergic Navigation 50

(e.g. [Vaughan et al., 2002, 2000b,a; Parunak et al., 2001; Sauter et al., 2002]). I also

present an approach to stigmergic trail-making that minimizes clutter.

3.1 Overview of Approach

My methodology for achieving the research goals involves designing agents to iden-

tify locations deemed heuristically useful, marking these locations using stigmergic

markers, and exploiting that information appropriately. Hereafter, I refer to the pro-

cess of using these markers to make more purposeful reactive navigation decisions in

an unknown environment as stigmergic navigation.

As part of this work, I have employed stigmergic navigation techniques to solve a

number of the problems faced by agents using local navigation including:

1. allowing agents to handle local maxima situations or box-canyons (described in

Section 2.3) more quickly.

2. allowing agents to avoid and escape local minima.

3. after a goal is first discovered, allowing agents to share knowledge about the

goal’s location, so that they and their teammates locate it more quickly, reliably

and with greater frequency without constructing or maintaining a world map.

The experiments illustrating these situations appear in Chapter 5. The remainder

of this chapter describes the methodology employed and agents used to solve these

problems.

Chapter 3: Stigmergic Navigation 51

3.2 Stigmergic Markers

For stigmergy to be possible, agents need to be capable of marking their environ-

ment in a manner recognizable to others. A convenient mechanism for accomplishing

this (and the one used here) is to simply place recognizable markers (i.e. physical

objects) on the ground at particular locations. Dropping a marker on the ground

is relatively fast and simple, and does not permanently damage or alter the envi-

ronment. Such a simple marking is also more readily recognized and parsed than

a more complex one. Although there is no limit to the volume of information that

can be shared via stigmergy, it is generally better if these objects are uncomplicated,

small (physically), inexpensive and expendable. Consequently, the methods described

herein strive to keep markers as rudimentary as possible.

There are a two categories of stigmergic markers used in my thesis research. The

first of these are homogeneous markers - very basic markers that can serve either as

a source of attraction or repulsion to any agents that regard them. In this form, the

presence and location of a marker alone is significant. These markers can be employed

to identify areas of the environment that agents should avoid, such as local maxima.

They can also be used to signify actions that an agent should take at particular

locations, such as leaping over a local minima. Alternatively, they can be used to

draw agents towards areas that are more beneficial to the agents’ explorations. While

they have several applications, the problem with markers this basic is that agents have

no ready mechanism for mediating between markers of this type when more than one

is visible, other than by choosing the closest. This can potentially cause agents to

oscillate between attractive and repellent markers and hinder their performance as a

Chapter 3: Stigmergic Navigation 52

result, in much the same way multiple goals would.

To supplement these simple markers, I introduce a second type - heterogeneous

markers. Heterogeneous markers, in addition to imparting information by their loca-

tion, also encode an attractive value that is perceptible by an observing agent. These

markers can then be dropped in value order to encode a sequence of markers, for

example. The use of multiple encoding values allows a perceiving agent to decide

between markers to follow when it encounters more than one. Even if there is no

easy method of deciding upon the relative importance of markers, heterogeneity can

be used to allow agents to record markers they have visited, since agents can identify

them uniquely. This allows agents to disregard visited markers in the future to avoid

cyclic behaviour. Using heterogeneous markers allows agents to make more purpose-

ful navigation decisions when caught in an area of the environment where no other

stimulus is present. Indeed, Parunak and Brueckner [2000] point out that when me-

chanics of the environment are in place to take advantage of the increased vocabulary

available with multiple marker types, multiple markers can increase performance in

coordinating agents.

3.3 Agent and Environment Structure

Behaviour-based agents using the schema-based approach to agent control were

chosen as the most appropriate for exploring the effect of stigmergy on local navigation

performance because the intelligence of behaviour-based agents emerges from the

complex interactions between their behaviors and world [Arkin and Balch, 1997]. A

hybrid agent design was not chosen in part to illustrate what was possible with this

Chapter 3: Stigmergic Navigation 53

much more parsimonious agent design.

In addition, a complex environment was required to reproduce the local navigation

problems that stigmergic navigation is intended to surmount. In this regard, a 3D

indoor environment was chosen as most building interiors contain numerous open

areas (e.g. rooms), doorways, hallways, blind alleys and obstacles.

Stigmergic navigation involves selecting appropriate marker types, conditions for

dropping markers, and conditions for following markers. The following sections deal

with describing the combinations of these elements used to solve the particular nav-

igation problems outlined in Section 3.1. Each section begins with a brief problem

summary before outlining a proposed solution.

3.4 Box-canyons

A complex environment such as an office building or similar structure consists of a

number of open areas connected by relatively narrow doorways or corridors that form

an interconnected network of box-canyons. As described in Section 2.3, box-canyons

can easily confound local navigation methods, since they limit an agent’s perceptual

range and provide the agent no clues about what direction to take to best achieve its

goals. In these situations, the faster the agent moves on to another area to explore,

the better.

Two types of markers can be used to allow agents to extract themselves more

readily from these perceptually uninteresting areas. The first type are heterogeneous

markers that agents are periodically attracted to and that agents can use to mark out

narrow regions of the environment or bottlenecks. The second type are homogeneous

Chapter 3: Stigmergic Navigation 54

markers that repel agents that observe them and that agents can use to identify

and mark out and avoid local maxima. The use of each of these is described in the

following subsections.

3.4.1 Marking Bottlenecks

By placing heterogeneous markers in constricted areas of their environment, agents

can supply each other with an attractive stimulus in the absence of pre-existing

“naturally-occurring” stimuli. Accordingly, I employ the heuristic of placing attrac-

tive markers at narrow (or enclosed) positions in the environment such as doorways

and within hallways, since they represent bottlenecks. Within the open area of an

empty room, any one coordinate position in the enclosure is no more critical than

another in terms of choosing a path from the agent’s current location to a location

in another room. While locations lying on a straight-line path in the direction of the

doorway from the current room to the target room can be considered “better”, any

other path through any other series of points in the room is still adequate to ulti-

mately get the agent to the goal. The exception to this is the position corresponding

to the doorway itself, which must ultimately be part of the path. Any path from a

given room to another must pass through some number of doorways and/or hallways.

This technique first depends on the use of heterogeneous markers with unique IDs,

and designing agents to be able to perceive these IDs so that they can record markers

that they have visited in a short-term memory. As will be seen, once markers are

uniquely distinguishable and agents thereby able to recognize and remember markers

they have visited recently, improved exploration becomes possible. Precisely how the

Chapter 3: Stigmergic Navigation 55

marker IDs are signalled is not important – in the real world, the markers might be

transponders that emit a unique numeric ID, or might be numbers written on the

ground in chalk. Perceiving the latter would be a vision-processing challenge outside

the scope of this thesis.

To achieve a balance between exploring an area and moving to a new area, agents

must be compelled to follow markers only periodically, rather than continuously. In

my approach, an agent is only attracted to markers when it has not followed a marker

trail for a given period of time. In this state, the agent is considered to have marker-

affinity and will move toward any marker that it sees. As soon as it is successful in

reaching a marker, it enters into a marker-following state. In this state the agent

continues to be attracted to markers that it has not visited earlier (as long as it

detects it is in a doorway or hallway), but is not attracted to markers it has already

visited. It is a given that the first marker it reaches will be in a doorway or hallway,

as markers are only dropped in these locations. If the agent has entered a hallway

rather than doorway, it will be most likely faced with a trail of markers leading down

the corridor.

By recording and ignoring markers that have been visited while in marker following

mode, the agent is drawn along by the trail of unvisited markers until it enters another

open area. As soon as the agent detects that it is no longer in a narrow space

(doorway or hallway) it transitions to a marker-neutral state during which it is no

longer attracted to markers. Each computational cycle, any markers that have not

been visited within a certain period of time are purged from the agent’s list of visited

markers. This is necessary to allow the agent to potentially traverse a previously

Chapter 3: Stigmergic Navigation 56

travelled marker trail at some future time. This purging also serves to keep the

agent’s memory requirements very minimal. The marker-neutral state persists for a

predetermined period of time, before the agent once again becomes marker-affinitive.

In essence, these bottleneck markers act to draw agents through tight spaces

that are difficult for agents using local navigation to find and move through. If the

room has only one entrance/exit, this allows the agent to escape it more quickly and

continue its explorations via the trail it followed to get in or another trail laid by

other agents. Conversely, if the room has several unexplored portals leading to new

regions of the map, the agent has the opportunity to discover these alternate exits

during the period in which it is not attracted to markers, causing it to mark them

for other agents as well as itself.

In this case, I am essentially providing agents with the features that distinguish

hallways and doorways, and similar knowledge could be provided for any other type

of bottleneck. A useful future extension, however, would be to mark such structures

by looking at the information gain that would be provided by a marker in a given

area. This is similar to the work of Burgard et al. [2000] described in Section 2.3, in

which agents move to locations from which the most unexplored area can be viewed.

3.4.2 Marking Local Maxima

In addition to using markers to draw agents through constricted spaces in the

environment, agents can be assisted in identifying and avoiding local maxima by

placing attractive/repellent homogeneous markers at these locations as a warning to

others. By marking local maxima with these markers, agents will be pushed through

Chapter 3: Stigmergic Navigation 57

uninteresting areas and on their way, rather than remaining in a local maxima. Unlike

paths to exits and down hallways, local maxima are not as stable in the long term:

the locations of goals can change, making local maxima out of other areas in the

environment that were previously benign. So a type of homogeneous markers known

as local maxima markers is defined, with the additional property of disappearing after

a period of time, to allow for these local maxima areas to be re-opened to exploration.

In order to minimize clutter and maximize their effectiveness, agents mark out a

local maxima under fairly constrained circumstances. For a local maxima marker to

be dropped, the following must hold:

1. no goal can be visible from the agent’s current position;

2. no local maxima markers can be visible from the agent’s current position within

a certain range;

3. the agent must be sufficiently distant from walls and other obstructions in all

directions (i.e. in an open area);

The first constraint captures the essence of what these local maxima markers are

intended to signify. The second constraint is necessary to minimize unnecessary clut-

ter and likewise allow the agent sufficient freedom of movement. The third constraint

is intended to ensure local maxima markers are placed in locations where they will

be most visible. It is also intended to force agents to stay near the edges of areas

that are local maxima (when they are being repelled by these markers). By keeping

agents near the edges of a local maximum, they are more likely to happen upon its

exits. When they are first attracted to these markers, this also has the advantage of

Chapter 3: Stigmergic Navigation 58

drawing them into the open, away from obstacles, and where they are able to see a

large portion of their environment.

This method of marking can be likened to the use of spatial grid maps by Balch

and Arkin [1994]. Unlike their method, however, the agents in this thesis are storing

information about visited locations in the environment, rather than in an internal data

structure. In addition, this information is less fine-grained, making it less verbose,

and can be generated and used by multiple agents simultaneously.

3.5 Stigmergic trail-making

While easing the passage of agents through narrow areas and local maxima is

helpful to speed up navigation, neither of these assist directly in finding a goal. In

order to assist others in findings a discovered goal, agents must be given the ability

to mark and interpret a purposeful trail. Stigmergic trail-making is the process of

constructing such a trail via a chain of markers. These marker trails are cooperatively

constructed by any number of agents over time as they explore. This allows the agents

to repeatedly locate a discovered goal without internal world modelling, internal maps,

or internal path planning.

The process of stigmergic trail-making is best illustrated by way of an example.

Consider the situation in Figure 3.1. A primitive stigmergic trail is created when

an agent perceives a goal and drops a marker on the ground at its current location

(Figure 3.1a). The marker dropped by the agent is assigned a perceptible numeric

value that represents its position in the trail (in this case, 1). The dropped marker

identifies a vantage point from which the goal should be visible to an agent standing

Chapter 3: Stigmergic Navigation 59

at the marker’s location. By itself, a trail this rudimentary is of limited utility: to

make the trail more sophisticated, it is necessary to extend the trail. As Figure 3.1

illustrates, this occurs when another agent (or even the same agent at a later point in

time) sees an end-point of the trail and drops a second marker (see Figure 3.1b). The

second marker dropped is assigned a value one higher than the marker that the agent

has observed (in this case, 2). As the process repeats, the trail gradually lengthens

(see Figure 3.1c, d).

To minimize clutter, agents drop markers only under fairly constrained conditions.

When the agent perceives the goal (or a marker already on the trail), it checks for

the presence of any stigmergic markers already serving as attractors to this target. If

no markers are visible, the agent drops a marker as described above. Note that this

does not preclude the construction of multiple trails during this process, only that

when such trails are made they will not be in obvious sight of the one another. This

is illustrated in Figure 3.1e, where an agent sees the end of a trail, by perceiving a

3 marker but no 4, and so extends the trail in another direction. Note that under

conditions such as this, extending the trail in different directions is very helpful -

agents coming from different directions or from different sides of obstacles can find a

useful path to a goal.

In general, an agent only extends the trail when it perceives what appears to be

its end. If the agent perceives other markers from its location, it only drops a marker

if the goal or a higher valued marker is not also visible. If such a marker is visible, the

agent knows it is not at the end of a trial and does not drop a marker. In keeping with

attempting to limit marker clutter, an agent does not extend a trail when it perceives

Chapter 3: Stigmergic Navigation 60

Figure 3.1: Stigmergic trail making

Chapter 3: Stigmergic Navigation 61

that it is not at the trail’s end. Such a situation is depicted in Figure 3.1f: the agent

perceives marker 3 and two marker 4’s; it knows that 3 is not the end of the trail

(because it perceives a 4 marker), and that its vantage point is not far enough away

to warrant dropping another marker (since existing markers already supply pertinent

navigation information from the agent’s current location, or the 4 marker would not

be present).

The conditions above allow an agent to simply follow a trail without dropping

new markers when there is enough navigation information available to do so. Thus, a

branching situation such as that shown in Figure 3.1e will only occur when an agent’s

perceptions indicate it is at the end of the trail when it in fact is not. In such a

setting, there is not enough navigation information to perceive otherwise given the

agent’s current location, and so branching the trail at that point is a logical action,

even though the agent knows nothing about the other branch.

Agents utilize the trail to locate the goal at the other end by following the trail

of markers, always moving toward the lowest numbered marker visible. Since the

markers are dropped based on visibility, the agents are able to consistently follow one

marker to the next without interruption to locate the goal. This also helps minimize

the length of a path followed by an agent - if an agent perceives a 3 and a 4 marker,

for example, the agent will not bother moving to the 4, since the 3 is already closer

to the goal.

The two important features to emphasize in this approach are a) that this trail-

building occurs collaboratively; and b) that it occurs while agents follow existing

trails and otherwise navigate through the environment. In the case of several goals

Chapter 3: Stigmergic Navigation 62

in reasonably close proximity, the trails may connect. This may cause an agent to

perceive more than one lowest valued marker: in this case an agent will be attracted

to the marker in closest proximity at any time, so may start following toward one

goal and end up at another. Either way, however, the agent reaches a goal, which is

the point of the process.

3.5.1 Marking Local Minima

Another application of stigmergic markers is to allow agents to deal with local

minima, such as low lying obstacles that can prevent an agent from moving in a

straight line to a visible attractor. In order to deal with this particular situation, I

introduce another homogeneous marker type - local minima markers. Rather than

attracting or repelling agents, these markers are unique in that they prescribe an

action to undertake in response to a specific situation at a particular place in the

environment.

In the experiments described in Chapter 5, these markers compel agents to jump

when sufficiently close to them. In so doing, an agent moving toward an attractor is

able to leap over a low lying obstacle and continue on its way, rather than being stuck

at the low-lying barrier. In order for this prescribed action to be a useful one, agents

only drop these local minima markers when they perceive an attractor and a low-lying

barrier in their path to it and when they are sufficiently close to the barrier itself. If

the barrier is too high to be jumped over, the agent does not drop a marker of this

type. Using markers in this manner can allow agents to handle certain types of local

minima more readily, rather than relying strictly on noise added to their movements

Chapter 3: Stigmergic Navigation 63

(as discussed in Section 2.3).

As with local maxima markers, these markers are designed to disappear after a

certain interval. This was deemed necessary to since the location of local minima can

change.

These markers are somewhat more specialized than the other markers types pre-

sented in this chapter. This is a natural consequence of their encoding a particular

action to take (since it is relevant to only a fairly constrained situation). Though

not investigated here, it is also possible make these markers repellent instead, and

place them at locations identified by other agents as local minima. However, as will

be discussed in Section 5.3.5, jumping is a somewhat more profitable option in the

experiments executed in this thesis.

3.6 Stigmergic Navigation

Section 3.4 and 3.5 above each describe two methodologies for dropping and re-

sponding to markers. In each section, the two methodologies are complementary

halves of stigmergic navigation. Bottleneck and local maxima markers serve to pro-

mote exploration and allow agents to more quickly locate an unknown goal somewhere

in the agents’ environment. Stigmergic trail and local minima markers on the other

hand, facilitate subsequent trips to a goal once it has been discovered. A number

of experiments, detailed in Chapter 5 were executed to measure the efficacy of the

various marker types and marker dropping and following rules discussed in this sec-

tion, together and in combination. This includes the combined application of the four

basic marker types and uses reviewed here.

Chapter 3: Stigmergic Navigation 64

3.7 Comparison with other work

Before describing implementation details, it is worthwhile to compare the approach

used here to others in the literature. The work of Vaughan et al. [2002, 2000b] with

Localization-Space Trails (LOST) described in Section 2.5 bears some similarity to

the approach outlined in this thesis. Like the approach described here, their work was

shown to allow robots using odometry-based localization to reliably move between a

starting position and goal location. Their method was observed to converge to the

best route discovered by the team and handle the failure of individual robots (a

common benefit of multi-agent systems and stigmergy). As with the routes found

using the method described in Section 3.5, the routes determined by LOST were also

not necessarily optimal [Vaughan et al., 2002].

Unlike the methods described in this chapter, rather than marking the environ-

ment directly via physical markings or modifications external to the agent, their

work only simulates stigmergy. Agents maintain crumb trails in individual memory

and communicate these explicitly by describing them in terms of common reference

features. Simulating stigmergy simplifies marking the environment and cleaning up

obsolete markers. This means that agents do not need to carry a supply of objects

to mark the environment or employ another means of laying a physical crumb trail.

Similarly, removing outdated or unhelpful markers is simply a matter of deleting them

from the appropriate memory location. This allows them to clean up old crumbs at

a physical distance from the location it references.

Though simulating stigmergy sidesteps the difficulties associated with marking

the environment, it sacrifices some of the advantages as well. Most significantly, the

Chapter 3: Stigmergic Navigation 65

method requires explicit communication to work. Agents therefore require communi-

cation hardware and a reliable network to share crumb trails. The method is therefore

vulnerable to interruptions in communication (in addition to cumulative odometry

errors), such as distance or interposing barriers or hostile signal jamming (in some

potential domains). This makes the approach unsuitable for many domains in which

stigmergy may be attractive, but where direct communication might be intermit-

tent or blocked. Furthermore, the crumb trails are maintained in internal memory,

increasing agent memory requirements. Finally, the processing demands of this tech-

nique are increased as well. Agents must refer to crumbs via reference features and

construct messages in this format.

In my approach, by contrast, agents mark the environment directly, communicate

with one another indirectly and are influenced or react to markers as they observe

them. By storing information externally and close to the locations where they are

pertinent, the information’s relevance is improved. This is analogous to the concepts

of temporal and spatial locality of reference related to high level programming lan-

guage compiler optimization. Temporal locality of reference refers to the idea that if

data is referenced or used at a certain point in a program’s execution, there is a high

probability that it will be used again in the near future. Spatial locality, recognizes

that if data is used at some point in a program, there is a high likelihood that data

stored physically nearby will also be needed or used by the executing program. Rec-

ognizing this, program caching can be improved (via an increased number of cache

hits) by caching memory with these two ideas in mind. Similarly, information about

an agent’s world is most usefully stored physically close to the locations in which it is

Chapter 3: Stigmergic Navigation 66

likely to be relevant. The result is that the agents do not require explicit communica-

tion hardware, nor the more extensive processing necessary to maintain and process

internal memory structures. Though the experiments in this thesis are done in a soft-

ware environment, the methods described are equally applicable to real world domain

(difficulties related to perceptual and environmental modification notwithstanding).

Though the methods of Vaughan et al. allow robotic agents to more quickly and

reliably navigate between start and goal locations than robots that do not use it,

it does nothing to reduce the time it takes for the goal to be initially discovered.

In contrast, my method to promote exploration, described in Section 3.4.1, seeks to

allow the team to discover an unknown goal for the first time faster than otherwise.

This is especially advantageous in applications where quickly locating a particular

unknown goal is critical (such as rescue scenarios).

The work of Sauter et al. [2002] described in Section 2.5 also uses a simulated form

of stigmergy to aid agents in locating and navigating to targets on a battle field. As

with LOST, their technique is dependent on a wireless network and requires advance

preparation of the environment to function. It is another example of simulated stig-

mergy, where environmental changes are stored in nodes in the network, rather than

by physically marking the environment. Their technique essentially allows agents

to perceive mobile targets at a distance through the wireless connections that are

distributed throughout the environment allowing them to perceive more of the envi-

ronment than lies in their immediate perceptions. This is similar to the marker trails

as outlined here, which allow agents to detect a goal at a distance by indirection via

the markers.

Chapter 3: Stigmergic Navigation 67

Beyond the infrastructure necessary for communication, the work of Sauter et al.

[2002] also requires special place agents that must be evenly distributed through-

out the environment ahead of any navigating agents. This additional factor makes

this approach unworkable for most real world environments, as the problem of even

distribution is not much less significant than that of navigation itself.

The simulated stigmergy employed in Vaughan et al. [2002], Parunak et al. [2001]

and Sauter et al. [2002] have an advantage in that they can more easily control the

evaporation and natural clean up of pheromone trails that occur with real world ant

trails. Although outside the scope of this thesis, it is worth noting that others are

working on physical stigmergic mechanisms that allow for physical fading [Kuwana

et al., 1999].

The next chapter (Chapter 4) describes and outlines the design and implementa-

tion of both the agents and environment that were used to study the efficacy of the

methods of stigmergic navigation covered in this chapter.

Chapter 4

Implementation

This chapter describes the methods I have chosen to implement the strategies

described in Chapter 3, including agent structure, environment structure, perception,

action selection, action execution and stigmergic marking mechanisms.

4.1 Agent Structure

Agents in this thesis were implemented using a schema-based control approach

described previously in Section 2.1.2. This approach combines motor schemas with

associated gain values into groups that are tailored to deal with a variety of different

agent states. The appropriate collection of motor schemas is activated as the current

situation demands in order to allow the agent to respond suitably.

Perceptual schemas are the mechanism that agents use to sense their internal state

and external environment in a particular context. For example, the percept-marker

perceptual schema (as described in appendix A) is responsible for using an agent’s

68

Chapter 4: Implementation 69

sensory apparatus to detect when a marker is visible and provide interested motor

schemas with information about the marker, such as its location.

Motor schemas are responsible for manipulating the agent’s effectors to accomplish

certain well-defined tasks, such as dropping a marker, moving toward a visible attrac-

tor, and similar tasks. For motor schemas responsible for moving the agent toward

a particular location, this involves re-orienting the agent so that it faces the motor

schema’s target and then moving the agent toward it. In my agent implementation,

this consists of outputting a vector that indicates the desired direction that the motor

schema would like the agent to move along with a desired velocity. The simulation

environment will handle dealing with the physical changes in the environment that

this requests.

As several motor schemas can be active at any given moment, the vectors that

are output by each active motor schema are combined into a single merged vector

and velocity that the agent follows. The influence of each motor schema on the final

movement vector and velocity depends on its gain value within the currently active

assemblage.

As mentioned in Section 2.1.2, motor schemas are grouped into collections known

as assemblages that are tailored to handle the most important aspects of an agent’s

current situation. For example, a drop-marker assemblage could consist of motor

schemas most relevant to a placing a marker of some type on the ground. Motor

schemas that are inappropriate in a particular state are either not present or have a

lower gain value reflecting their reduced importance.

Assemblages also have associated perceptual schemas that trigger their activa-

Chapter 4: Implementation 70

tion or deactivation. For example, the drop-marker assemblage mentioned above is

activated when the percept-drop-marker perceptual schema returns a value of true.

Conversely, the drop-marker assemblage is deactivated when the percept-drop-marker

perceptual schema returns a value of false. Each agent also has a default assemblage

that is invoked when no other assemblage is active, based on the current world state.

Appendix A provides a listing and descriptions of the assemblages and motor and

perceptual schemas used in various experimental scenarios.

4.2 Half-Life Environment

The simulated world of the computer game Half-Life was chosen as the test-bed

for this research. Half-Life is a 3-dimensional first-person computer game with rich

graphics and a game engine that approximates the physics of the real world sufficiently

well. Half-Life games are played out on a multitude of maps all with different layouts

of rooms, hallways and goals items, making it possible to experiment with a number

of different map configurations easily.

The size of the world defined by a Half-Life map is 8191 units in height, width,

and depth. Space in this environment is measured in terms of an abstract unit that

is 1/8191th of the length of a dimension. There is thus no direct relationship to any

measurement in the real world. However, an agent in Half-Life is intended to be

roughly human-sized, and is defined by a bounding rectangle 72 units high, 32 units

wide, and 32 units deep. Common-sense approximation to the real-world equivalent

of a unit would thus be about an inch, assuming a human was six feet tall. In referring

to the environment, however, I will be using the same unit term used in Half-Life in

Chapter 4: Implementation 71

order to be consistent with other research using this domain. A particular location

in the environment is described by a vector (x,y,z) made up of decimal numbers.

The makers of the game have previously released source code and instructions

for compiling a module that can be linked into the game to create modifications to

the original game. This software development kit made it possible to design and

implement schema-based agents to participate in the experiments as described in

Chapter 5. An added benefit of using this software environment was that it was

possible for a human player to enter the game alongside the agents and interact

directly with them as another game player. This was useful in observing agent actions

and performance and in experimenting with teleautonomous control using stigmergy.

4.3 Agent Implementation

Agents were implemented using Visual C++ 6.0, Service Pack 4, using version

2.2 of the Half-Life standard software development kit (SDK) provided by Sierra.

Half-Life development/modification requires a copy of the original game to provide

core game functionality. Half-Life runs on Windows 9x, NT, 2000, XP and requires a

Pentium 133 or better with 24MB of RAM. The SDK consists of a collection of C++

source code files that can be modified or extended as desired to create new versions

of the game in a compiled DLL that is linked in as desired. This SDK is intended

to allow programmers to modify the game and create entirely new scenarios. It is

possible to develop entirely different games or slight modifications while making use

of the same underlying game engine. A number of agents, colloquially known as bots,

of varying levels of sophistication have been developed to allow human opponents to

Chapter 4: Implementation 72

play against automated competitors.

In order to implement the agents used in this thesis, I designed and implemented

an agent architectural framework in C++ and using an object-oriented design to

match that of the game engine itself. The resulting framework allows for dynamic

reconfiguration of agent assemblages, schemas and associated gain values. The sup-

porting class framework allows for new motor and perceptual schemas to be developed

quickly and easily and leveraging existing code as much as possible. The currently

implemented motor and perceptual schemas are able to instantiate and make use of

each other to build up more complex behaviours. As such, this will serve as a future

test-bed for working with behaviour-based agents in complex domains.

Each agent is comprised of a class that represents the agent’s internal state and

a controller class that initializes its assemblages and executes them. Motor and per-

ceptual schema base classes capture and abstract functionality common to all motor

and perceptual schemas. Specialized classes are instantiated for motor or perceptual

schemas of a particular type and encapsulate the processing associated with their par-

ticular areas. Schema and assemblage classes are generated by factory classes that

control their lifetime and clean up memory when they are no longer required. These

factory classes ensure that only one instance of a perceptual schema is instantiated

and used by any number of motor schemas for a particular agent.

4.4 Action Selection Process

Agents are physically stored as a file containing a list of assemblages, each of which

has an associated file of motor schemas and activation or deactivation conditions. In

Chapter 4: Implementation 73

Half-Life, an entity’s reactions to its current situation is carried out via a game engine

method called (somewhat grandly) its think function. The Half-Life game engine calls

this method for each entity (computer controlled players, devices, etc.) approximately

30-40 times/second, though the precise count can vary depending on system load.

Each update to the state of the environment is referred to as a frame (or time frame),

during which the game engine performs entity maintenance prior to rendering the

next graphical representation of the environment. This includes calling each agent’s

think method, where logic is executed that determines the entity’s reactions to its

current situation. Each agent’s think method is typically invoked once during each

frame update.

To integrate agent control into the Half-Life environment, it was necessary to

create a C++ class that inherits the think method from the appropriate base class and

then insert the appropriate agent control logic. It is during execution of this method

that the agent senses its environment, determines its internal state and decides on

and/or updates its actions accordingly. The agent control logic is run server-side in

either dedicated server mode, where the game engine runs without the overhead of

graphics, or application mode where a human player can host and also join the game

itself. In this way, each agent can perceive and act in turn based on what it detects

about itself and its immediate surroundings.

Each time frame, the agent’s think function is activated and each behaviour re-

gards the environment from its own unique perspective. For example, the avoid-

static-obstacle motor schema (through usage of the appropriate perceptual schema)

views any stationary object (such as a wall) in the agent’s path as an obstacle and

Chapter 4: Implementation 74

reacts accordingly. Similarly, the move-to-marker-bottleneck behaviour is concerned

only with moving to bottleneck markers. Focusing only on particular aspects of the

agent’s environment makes behaviours more modular, and therefore simpler to im-

plement and manage.

In my implementation, agents first perceive the world through activation and

deactivation perceptual schemas associated with the currently active assemblage to

determine if the assemblage is still appropriate. If it is not, the assemblage is deacti-

vated and an assemblage appropriate to the agent’s current situation is activated in

its place from the collection of assemblages. If conditions do not activate a suitable

assemblage, a default assemblage takes over instead.

Once an appropriate assemblage has been activated, a think method is called for

each motor schema that makes up the assemblage in turn. These motor schemas

themselves query appropriate perceptual schemas in deciding what action or move-

ment vector the agent should take. Once each motor schema’s think method has

been called, their recommended vectors are combined into a final movement vector

and velocity. The influence of each schema varies based on the gain value associated

with the motor schema within the active assemblage.

For purposes of efficiency, only one instance of a perceptual schema is instantiated

for the agent as a whole. The single instance is shared by any motor schemas or

assemblages that use it. Consequently, even though several motor schemas might call

a particular perceptual schema, the body of its perception routine is only executed

once each iteration of an agent’s think method.

Chapter 4: Implementation 75

4.5 Perception Mechanisms

To be as realistic as possible, agents were only allowed to react to and use infor-

mation that was visible to them (within their field of view). When developing agents

for half-life, two common perception methods are usually employed. Entities (agents,

markers, goals) are perceived by iterating over a global entity list maintained by the

game engine, looking for entities of a desired type. For each entity of the relevant

type, checks are made to ensure that the entity is visible to the agent from its current

location in the environment. This is done by using game engine primitives to draw

vectors from the agent’s eye position in the 3D environment to the origin of the tar-

get entity. The value returned by the trace function is then examined to determine if

the line encountered any obstructions before reaching the target. If no obstructions

were hit, the agent’s line of sight to the entity is clear. A check can also be made

to determine whether the entity lies in the agent’s current field of view using a game

engine primitive designed for this purpose. If the agent has a clear line of sight and

the entity lies in the agent’s field of view the entity is considered visible.

Obstacle detection, on the other hand, is sonar-like and works by using game

engine functions to draw lines forward from the agent’s hips, shoulders and eyes,

40 units ahead and checking for impacts. If any trace forward of the agent hits an

obstruction, then an obstacle is detected. It is also possible to determine whether the

obstruction struck is another agent that can be moved by impact or a solid object

such as a wall. The agent can also detect if the object can be jumped or ducked under

by examining the various trace results. If, for example, the shoulder and head traces

do not hit anything, but traces at hip or knee level hit something, then the object

Chapter 4: Implementation 76

can potentially be jumped over or jumped upon. If, however, the head or shoulder

traces impact an obstacle, but the hip traces do not, then the agent can attempt to

duck under the obstruction instead. Similarly, if the left side traces strike something,

but the right side traces do not, then the agent is near the edge of an obstruction. In

this case, the agent’s best option is to move right to avoid it.

While I have adopted these two common methods used by many other game agent

developers, I supplement these with an additional method of my own. In order to

allow agents to perceive bottlenecks, I developed a technique that operates by sending

out lines 20 units distant, 180 degrees around the agent. For any line that hits an

object, a check is made in the opposite direction for a mirror image hit. If a hit in

that direction also occurs, vectors perpendicular to the two walls so impacted are

examined to determine if they are parallel to each other. This last check avoids

misidentifying a corner as a doorway or hallway. Doorway/hallway detection is the

most processor intensive perceptual schema due to the sheer volume of checks that

must be made to reliably perceive a doorway. In a real world environment, it is likely

that the agent would need to move fairly slow to allow itself time to properly recognize

doorways/hallways in this manner.

4.6 Movement and Action

Agents’ movements and actions are carried out by each agent’s controller object.

Each time the agent’s think method is called, the controller obtains a new desired

yaw, pitch and roll as output by the currently active assemblage. The controller then

compares the desired yaw, pitch and roll with the agent’s current position and moves

Chapter 4: Implementation 77

the agent towards the ideal orientation. To be more physically realistic, I limit the

agent’s yaw change to 20 degrees each execution of an agent’s think method.

Agent actions such as jumping, ducking, and readying a marker for deployment

are also executed by the controller as dictated by the active assemblage. Certain

actions require locking the agent’s appropriate effectors, such as dropping a marker.

Agent actions are divided into 3 basic types, including arm, body and leg actions.

This approach allows agents to perform certain actions such as dropping a marker

and jumping in parallel. It also handles the possibility of two different motor schemas

requesting conflicting actions. When two or more motor schemas request actions that

conflict, the action specified by the motor schema with the highest gain value is

executed.

4.7 Marking the Environment

To allow agents to mark their environment, a pre-existing game weapon type

known as satchels were adapted to serve as the marker types described in Section 3.2

for stigmergic navigation. Satchels are normally explosive packages (in a regular Half-

Life game) that are dropped on the ground and detonated by a player via a second

operation at some later time. To make them suitable for stigmergic navigation, I

modified these satchels so that they never explode and so that multiple satchels can

be deployed simultaneously. Agents were also given an unlimited supply of these

items. Thus, agents mark their environment by dropping satchels on the ground at a

desired location. In order to support multiple marker types simultaneously, I added

additional satchel types that agents are able to selectively deploy. To make these

Chapter 4: Implementation 78

varied marker types visually distinguishable to a human observer, I also adapted each

marker type to use a different graphical representation (or model).

Several motor schemas were created to support stigmergy. These include mo-

tor schemas tailored to drop markers of particular types, including drop-marker-goal,

drop-marker-bottleneck, drop-marker-local-maxima and drop-marker-local-minima. Each

of these motor schemas cause agents to mark the environment by dropping a satchel of

appropriate type under specific conditions. Each motor schema works in conjunction

with a perceptual schema including percept-drop-marker-goal, percept-drop-marker-

bottleneck, percept-drop-marker-local-maxima and percept-drop-marker-local-minima

each of which is responsible for detecting when the agent should drop a marker of

a certain type. The conditions under which these perceptual schemas return a true

value vary depending on how they are used in the experiments to be described in the

next chapter.

Similarly, several motor schemas were also implemented to cause agents to react

appropriately to the presence of the various marker types employed. These include

move-to-marker-goal and move-to-marker-bottleneck, each of which causes agents to

move toward a selected visible marker (if any) by outputting a vector towards the

marker that is combined with the vectors output by any other active motor schemas.

The avoid-marker-local-maxima, on the other hand, alternates between moving the

agent toward and away from a local maxima marker (as outlined in Section 3.4.2).

Lastly, the avoid-marker-local-minima cause agents to jump in the air when coming

within a certain range of these markers to allow agents to leap over low-lying obstacles.

As well, each utilizes a corresponding perceptual schema (e.g. percept-marker-goal),

Chapter 4: Implementation 79

which detects and provides information about the location of markers (of a particular

type) that are visible to the agent. Markers can also be made heterogeneous by

encoding a numeric value detectable by a perceptual schema and used by interested

motor schemas. In contrast, homogeneous markers do not encode information beyond

their presence and corresponding effect on the agents.

For a list of motor and perceptual schemas used in this thesis, please see Appendix

A.

The next chapter describes the results obtained in a number of experiments that

were carried out using the agents, environment and stigmergic markers just described

to study the impact of stigmergy on common local navigation difficulties.

Chapter 5

Experimentation

To demonstrate the efficacy of the stigmergic navigation methods described in

Chapter 3, and explore combinations of these methods, a series of experiments were

conducted that used stigmergic markers to improve multi-agent local navigation.

Each of the techniques described in Chapter 3 was explored alone and in selected

combinations.

The details of individual experimental conditions and results are presented in

separate sections below. Prior to the descriptions of individual experiments, I present

the elements that are common to all experiments: computing facilities employed,

the environment inhabited by agents, and details of experimental controls and result

formats.

80

Chapter 5: Experimentation 81

Figure 5.1: Experimental Environment

1

5.1 Experimental Set-up

Experiments were run on a Pentium III - 933 MHZ computer, running Windows

2000 Pro Service Pack 3 with 512 MB RAM.

1Being a first-person game, the views here are all from the point of view of a human player
observing the environment and the agents that inhabit it. The weapon in the foreground is a game
artifact associated with the human player.

Chapter 5: Experimentation 82

5.2 Scenario

The objective in all experiments was for a team of six agents to find a specific

goal at an unknown location in their environment as quickly and as many times as

possible in a 30 minute period. The 3D environment selected for experimentation

was chosen because its layout and structural features presented elements common to

indoor domains including open areas, doorways and corridors that can trap agents

in local maxima and minima. Figure 5.1 shows a view from within the environment,

which is a standard Half-Life map file entitled crossfire (packaged with the game as

the map file crossfire.bsp).

Figure 5.2 provides a 2-dimensional overhead schematic view of the environment.

As can be seen, this presents a more than sufficient challenge for a reactive navigation

system. Beyond being of a significant size and having many opportunities for agents

to head away from a goal, or in circles, the layout of the environment includes open

areas, box-canyons, stairwells, ramps and elevation changes. Certain portions, such

as other levels of the environment, have been omitted for clarity, but this diagram

provides a sufficiently accurate representation for discussion purposes.

In order to accurately measure the impact of each marking method, all experiments

and trials were executed under the same conditions: the environment, goal location

and agent starting positions were consistent throughout all experimental trials.

Agents began each trial in either Room 6 or Room 7 (as depicted in Figure 5.2).

Two starting rooms were used in all experimental trials, so that agents would not

interfere with each other excessively due to overcrowding at the start of a trial. Since

the two starting positions are positioned symmetrically, opposite each other, navigat-

Chapter 5: Experimentation 83

Figure 5.2: Map of Experimental Environment

Chapter 5: Experimentation 84

ing to the goal from either is presumably no more or less difficult and should have no

effect on results.

The objective for the agents in all trials was to navigate to a device located in a

room on the far side of the environment (Room 3). As can be seen from Figure 5.2,

agents had to navigate over ramps and stairs, and negotiate a number of doorways,

open areas and box-canyons in order to find the goal. After locating and moving to

within 40 units of the goal, a point was added to the running total of goals discovered

in the trial. The discovering agent was then transported back randomly to either

Room 6 or Room 7 to attempt to find the goal again.

Experimental results were gathered over the course of 40 contiguous trials, repre-

senting 20 hours running time for each experiment, in order to capture sufficient data

for later analysis and comparison. In all experiments, the intent was to maximize

the number of times the goal was discovered and minimize the time taken to initially

locate the goal.

5.2.1 Result Recording

Global data was recorded for each trial, including the trial number and trial start

date and time. Individual statistics were also tracked and recorded for each agent,

including the time that the agent first entered into the environment, the agent’s name,

the number of times the agent reached the goal, the number of seconds an agent took

to discover the goal for the first time (goal discovery time minus the starting time

of the trial). In conjunction with this, the number of times this same agent’s think

method was invoked prior to initial goal discovery.

Chapter 5: Experimentation 85

Additional processing overhead associated with some marker types can slow ex-

ecution of the entire environment. As a result, agents using computationally more

intensive behaviours are effectively operating with a reduced amount of time per trial,

because the game time limit expires according to the system clock, regardless of the

speed of game execution. In a physical implementation, if each agent was operating

truly concurrently, this would not be a factor.

In order to compensate for this factor, I also tracked the total number of frames

executed by the game engine in each set of 40 trials. The total frames executed is

roughly comparable to the total number of times an agent’s think method is invoked

(as indicated in Section 4.4). This number was then divided by the total goals reached

in the set of trials to arrive at a frame count index, that represented the average

number of frames executed per goal. This is thus a measure of simulation time

between goals. Consequently, it serves as a more accurate measure than real world

time passed for the purposes of performance comparison between marking methods.

5.3 Experimental Results

Experiments were performed using the following combinations of stigmergic mark-

ers:

1. No Markers, in order to establish a control group with which to compare other

results.

2. Bottleneck Markers, in order to illustrate the potential of this approach for

dealing with box-canyon problems, as described in Section 3.4.1.

Chapter 5: Experimentation 86

3. Local Maxima Markers, as described in Section 3.4.2.

4. Bottleneck and Local Maxima Markers, in order to assess their combined effect.

5. Bottleneck, Local Maxima and Local Minima Markers (as described in Section

3.5.1), in order to assess their combined effect.

6. Stigmergic Trail Markers, as described in Section 3.5.

7. Stigmergic Trail and Bottleneck Markers.

8. Stigmergic Trail, Bottleneck and Local Maxima Markers.

9. Stigmergic Navigation (i.e. the collection of all defined stigmergic mechanisms),

in order to demonstrate the benefit gained using all of the above in combination.

10. Stigmergic Navigation and Teleautonomous Control, in order to illustrate the

potential for a human to teleautonomously control a set of agents using my

navigational mechanisms (as outlined in Section 2.5.1).

As can be seen from Figure 5.2, the location of the goal in room 3 did not present

the possibility of a local minima situation occurring at the goal itself. As a result, local

minima markers were only used in conjunction with the other marking methods rather

than separately. This was because the other marker types form multiple intermediate

goals, potentially creating additional local minima situations and so local minima

markers were thought to be more suited to augmenting the other marker types (at

least under these experimental conditions.).

Each set of experiments is described in separate subsections below, including the

conditions under which agents dropped markers and manner in which agents reacted

Chapter 5: Experimentation 87

to markers, along with an analysis of the observed results. Complete result listings

are also provided in Appendix B.

5.3.1 No Markers

To establish a baseline for comparison with the various marking schemes, a set

of experiments was executed with a team of agents that did not employ stigmergic

markers. Agents instead relied solely on random search to locate their goal.

Results

The team of agents using no markers discovered the goal using random search 161

times in 40 trials for an average of 4.03 goals per trial (with a standard deviation

for goals reached in a trial was 1.67). It took them on average 592.35 seconds (with

a standard deviation of 362.25 seconds) and an average of 57982.88 think method

invocations to initially discover the goal. The agents’ best performance in locating

the goal repeatedly in a single trial was 8. The best time to initial discovery was

89.98 seconds over 8820 think method invocations. The total frame count execution

after 40 trials was 7045454, which averages to 176136.35 frames per trial. The frame

count index was 43760.58, indicating that was the average number of think method

invocations to reach the goal.

5.3.2 Bottleneck Markers

A second set of experiments was executed with agents that employed bottleneck

markers (described in Section 3.2), to lead agents out of box-canyons (described in

Chapter 5: Experimentation 88

Figure 5.3: Agent moves toward a bottleneck marker

Section 2.3). Figure 5.3 shows an agent navigating toward a bottleneck marker.

The percept-drop-marker-bottleneck perceptual schema was configured in this ex-

periment to return a true value whenever the agent was standing in a doorway or a

hallway, unless a marker could already be seen within 60 units (as defined in Section

4.2) of the agent’s current position. The percept-drop-marker-bottleneck perceptual

schema was used to activate the motor-drop-marker-bottleneck motor schema, which

caused the agent to drop a marker on the ground at its current position.

Another perceptual schema, percept-marker-bottleneck, was also configured to

maintain a dynamic list of markers visited by the agent. These visited markers were

Chapter 5: Experimentation 89

purged from the short-term list after 30 seconds had elapsed between the agent’s visit

to the marker. A marker was considered to be visited when the agent was standing

within 40 units of the marker. This was intended to discourage cyclic behaviour and

cause the agent to proceed along a trail of markers more deliberately (as described

in Section 3.2). Otherwise, an agent might move back and forth between markers if

it happened to turn around and see a previously visited marker again.

The motor-move-to-marker-bottleneck motor schema was also configured to cause

the agent to move toward a visible bottleneck marker until it was within 40 units

of the marker. At the point that the first marker was reached, the motor schema

continued to move the agent toward any subsequent markers as long as the agent

detected that it was still in a doorway or hallway. As soon as the agent detected that

it was no longer in a narrow passageway (after reaching a marker), the motor-move-

to-marker-bottleneck motor schema was suspended for a period of 30 seconds (during

which any markers in its list of visited markers are gradually purged).

Results

The agents in this set of experiments located the goal 278 times in 40 test runs

for an average of 6.95 goals per trial, with a standard deviation of 2.59. On average

these agents discovered the goal for the very first time within 463.67 seconds (with a

standard deviation of 241.87 seconds), taking 43917.58 think method invocations to

do so. The minimum time to initially locate the goal in any trial was 211.86 seconds

and 20074 think method invocations. The agents’ most goals reached in a single trial

was 12.

Chapter 5: Experimentation 90

Figure 5.4: Comparison of average goals/trial (the standard deviation for the number
of goals/trial is indicated atop each bar)

As can be seen, marking bottlenecks resulted in improvements in the total goal

count, the average goals/trial, and even the average time to initially locate the goal.

The latter is desirable, of course, when time is a factor, such as searching a building

for survivors after a disaster to get them medical attention quickly. The average time

to locate the goal for the first time by any agent in the group was reduced by 21.72

percent. The average number of think method invocations to discover the goal was

reduced by 24.26 percent.

The average goals discovered per trial was increased by 72.67 percent. Accord-

Chapter 5: Experimentation 91

ingly, the total goals for all trials was increased by the same percentage. Figure 5.4

illustrates these findings in comparison to agents that did not employ markers. In

addition, the team of agents using bottleneck markers located the goal more often in

the majority of trials (as evidenced by the results listed in Section B.2).

On the other hand, the best time to goal discovery across all trials was somewhat

more than that of agents using no markers. This was not unexpected, as the agents

using markers were stabilizing their environment. In so doing, their performance

was made more consistent rather than ranging from good to bad based on chance.

This is indicated in that the standard deviation for initial goal discovery was 241.87,

indicating that the time to initial discovery of a goal using markers was somewhat

more consistent than without markers.

The total frame count execution after 40 trials was 6829138, which averages to

170728.45 frames per trial. This is because the agents are accomplishing more per

unit of time, but not as few as you might expect because of the overhead of marker

dropping. This is indicated by the lower frame count index (the average number of

think method invocations to reach the goal) of 24565.24. This is a 43.86 percent

reduction in the average number of think method invocation per goal compared to

agents using no markers.

The standard deviation for goals per trial, at 2.59, was wider than that of agents

not employing markers. The increased variability in goals is perhaps due in part to

the fact that these markers are dropped without the agents knowing where the goal

is located in the environment. As a result, the possibility exists that many (or all)

of the agents might be initially led in a completely incorrect direction, slowing their

Chapter 5: Experimentation 92

time to find the goal. However, since a marker no longer affects an agent once the

agent has visited it (that is, once the agent comes within a few units), the effect of

being misled would be temporary. Regardless, it is equally probable that the marker

would in fact lead the agent in a better direction than a worse one (accounting for

the variability in goals found).

Regardless, with an average of 6.95 goals per trial, a standard deviation of 2.59

indicates that finding less than 4.36 goals (0.33 higher than the average using no

markers) in a trial would be unusual. So, while their effect on finding a single goal

location in the environment still depends somewhat on chance, they can be profitably

used in situations where maximal map coverage in minimal time is desired.

5.3.3 Local Maxima Markers

The next set of trials was executed using a marker type that is used to identify

local maxima as described Section 3.2. Agents were compelled to drop a local maxima

marker at their current position when the following conditions were met:

1. No goal was visible

2. No walls were nearby (within 160 units)

3. No local maxima markers were already present within a certain range (in this

case 500 units).

Agents alternated between moving toward local maxima markers and avoiding

them. When first perceiving a local maxima marker, while in a local maxima marker-

affinitive state, agents moved up to the marker’s position. Once the agent reached

Chapter 5: Experimentation 93

the marker physically within 40 units, an agent transitioned to avoiding local maxima

markers. The local maxima marker avoidance state persisted for 30 seconds, during

which the agent had an opportunity to find an exit from its current area (since it had

nothing interesting in it). To allow for a certain freedom of movement, agents are

only repelled by local maxima markers when they are in within 120 units. This has

the effect of keeping them to the edge of the area they are in and closer to any exits

from it, without trapping them against one particular side. If the agent does not find

an exit, it is eventually drawn back into the open to try again upon becoming local

maxima marker-affinitive again.

As indicated in Section 3.4.2, local maxima markers are designed to disappear

after a set time period. In this case, local maxima markers disappeared after 150

seconds.

Results

The agents in this experiment discovered the goal a total of 224 times in 40 trials,

for an average of 5.6 goals per trial (with a standard deviation of 1.97). These findings

in comparison with previously presented methods are shown in Figure 5.5. The most

goals found in a single trial was 11. The average time taken to discover the goal for

the first time was 533.48 seconds (with a standard deviation of 242.33) over 52135

think method invocations. The best time to reach the goal over all trials was 173.77

seconds over 17029 think method invocations. As an examination of the results listed

in Section B.3 shows, local maxima markers improved performance over using no

markers in the majority of trials.

Chapter 5: Experimentation 94

Figure 5.5: Comparison of average goals/trial (the standard deviation for the number
of goals/trial is indicated atop each bar)

Chapter 5: Experimentation 95

In addition, the time to initially locate the goal was improved on average by 9.94

percent. The average number of think method invocations to discover the goal was

reduced by 10.09 percent. The number of goals discovered in total was improved by

39.13 percent over no markers. This was not as strong an improvement as gained by

marking bottlenecks, which posted a 21.72 and 72.67 percent improvement in time

and goals respectively. However, this is not surprising, since local maxima markers

work more indirectly, by pushing agents away from uninteresting places rather than

actively drawing agents to new regions.

As well, the total frame count for all 40 trials was 7026189 (an average of 175654.73

per trial). This was only slightly less than that of agents using no markers, which is

not unexpected as the computational overhead of detecting whether to drop a local

maxima marker is fairly low, particularly with respect to bottleneck detection. A

frame count index of 31366.92 was improved over agents using no markers, but not

quite as strong as that gained using bottleneck markers.

5.3.4 Bottleneck and Local Maxima Markers

The next set of experiments employed the bottleneck and local maxima markers

described above in combination. Agents dropped and reacted to bottleneck mark-

ers and local maxima markers as described in Section 5.3.2 and Section 5.3.3 re-

spectively. Agents followed the additional restriction of not dropping local maxima

markers within 150 units of bottleneck markers. Agents were configured to value

bottleneck markers more strongly than local maxima markers via a higher gain value,

so that the presence of a local maxima marker would not prevent them from moving

Chapter 5: Experimentation 96

to a simultaneously visible bottleneck marker.

Results

A team of agents employing both bottleneck and local maxima markers in com-

bination located the goal 305 times in 40 trials for an average of 7.63 goals per trial

(with a standard deviation of 3.04). The performance of this combination of markers

is illustrated in Figure 5.6. The highest number of goals in a single trial was 13.

The best time to initial discovery was 244.12 seconds with an average time taken to

discover the goal for the first time at 567.02 seconds (with a standard deviation of

222.61 seconds) or 51697.6 think method invocations.

As can be seen, using both marker types in combination yielded only a 4.28 percent

improvement in initial discovery time over all. However, this is partially attributable

to the additional processor overhead incurred by using both marker types. This

is evidenced by the fact that the average number of think method invocations to

discovery was improved by 10.84 percent. This is slightly improved over that of local

maxima markers alone, but significantly less than that of bottleneck markers used in

isolation. Yet, using both marker types resulted in a higher number of goals being

discovered than using just bottleneck or local maxima markers alone. The average

goals per trial was increased over no markers by 89.44 percent using both marker

types. This is compared to 72.67 percent for bottleneck markers and 39.13 percent

for local maxima markers.

Interestingly, the results listed in Section B.4 show that using both these marker

types resulted in fewer goals in 7 trials. In contrast, using bottleneck markers ex-

Chapter 5: Experimentation 97

Figure 5.6: Comparison of average goals/trial (the standard deviation for the number
of goals/trial is indicated atop each bar)

Chapter 5: Experimentation 98

clusively resulted in a lower number of goals than using no markers in only 3 trials.

That using both marker types resulted in a greater number of goals being discovered

is perhaps because it resulted in a number of significantly higher results in a number

of trials. While this method had results in excess of 10 goals in 10 trials, the bottle-

neck method posted only 6 results higher than 10. Consequently, using both methods

resulted in the better performances outweighing the poorer (relative to bottleneck

markers alone).

This combination of markers resulted in a lower frame count than previous meth-

ods. In 40 trials, the environment state was updated 6598645 for an average of

164966.13 think method invocations per trial. This is approximately 11000 fewer

think method invocations per trial, which indicates that this method still performed

better with a shorter operating period. The frame count index using this marking

method was 21634.9 and better than all marking methods covered above.

5.3.5 Bottleneck, Local Maxima and Local Minima Markers

The next set of trials included bottleneck, local maxima and local minima markers

in combination. Unlike the other types of markers, local minima markers did not

attract or repel agents, but instead compelled them to jump in the air when sufficiently

close to them. This approach can be useful in the experimental environment in

situations where the agent can leap over any low-lying obstacles in its path. In

this environment, such obstacles were the most obviously type of local minima. For

example, the balconies overlooking Area 2 of Figure 5.2, are lined by railings that

can block agents attempting to move toward markers lying in area 2. In particular,

Chapter 5: Experimentation 99

agents coming up the stairs from Area 3 can sometimes see an attractive marker

placed by another agent in Area 2 below them. However, when the agent attempts to

move toward the attractive marker, the railing blocks the agent’s path. In order to

handle this situation, it is possible for an agent to jump over the railing rather than

remaining stuck or even proceeding the long way around the railing.

As indicated in Section 3.5.1, local minima markers are designed to disappear

after a set time period. As with local maxima markers, this time period was set to

150 seconds.

Results

Using bottleneck, local maxima, and local minima markers in combination resulted

in 323 goals in 40 trials for an average of 8.08 goals per trial (with a standard deviation

of 3.03. As Figure 5.7 shows, this was a significant improvement over agents using no

markers. It was also somewhat improved over that of the other marking techniques

described above. The average time taken to initially discover the goal in a trial

was 467.67 seconds (with a standard deviation of 242.47 seconds) in 24814.38 think

method invocations.

The total frame count for these trials was 3774,499 or an average of 94362.48

frames per trial. This is substantially less than that of previous marking methods,

indicating that agents are accomplishing more work in the same time as compared to

other methods, which underscores its effectiveness. This is also evidenced in that the

frame count index in these trials was 11685.76, the lowest thus far by a significant

margin.

Chapter 5: Experimentation 100

Figure 5.7: Comparison of average goals/trial (the standard deviation for the number
of goals/trial is indicated atop each bar)

Chapter 5: Experimentation 101

5.3.6 Stigmergic Trail Markers

In this set of experiments, agents dropped and used goal markers according to the

rules described in Section 3.5, always moving toward the lowest numbered marker

perceptible.

Results

As illustrated by Figure 5.8, stigmergic trail markers increased performance sub-

stantially over agents using no markers and that of all marking techniques described

above. The average goals per trial for a team of agents using these markers resulted

in more than 10 times the number of goals than a team of agent using no markers at

all.

A team of agents using stigmergic trail markers located the goal 1828 times in

40 trials for an average of 45.7 goals per trial, with a standard deviation of 48.14

goals. On average they located the goal for the first time in 462.19 seconds of first

appearing in the environment, with a standard deviation of 229.9 seconds. The most

goals reached in a single trial was 182, and the fastest time to discover the goal was

103.62 seconds or 10213 think method invocations for the agent that discovered the

goal.

The total frame count for these trial was 6984317. Agents therefore located the

goal on average every 174607.93 frames. This results in a frame count index of 3820.74,

substantially lower than any of the marking methods presented so far.

The result was that a trail of markers was gradually built up, working backward

from the goal to the initial starting point after the goal was first discovered. Conse-

Chapter 5: Experimentation 102

Figure 5.8: Comparison of average goals/trial (the standard deviation for the number
of goals/trial is indicated atop each bar)

Chapter 5: Experimentation 103

quently, subsequent agents were eventually able to follow a trail of markers directly to

the goal almost from the moment they appeared at the starting point. The eventual

result was a more or less direct parade of agents heading to the goal. Indeed, this

method exceeded the performance of agents using no markers in all trials and that

of the combination of bottleneck and local maxima markers in 36 out of 40 trials.

As one would expect, the greatest factor affecting performance in these trials was

how quickly the marker trail gets created. Once the marker trail was in place, the

agents were able to follow it repeatedly and consistently until time expired. The

poorer performances only resulted when this trail was not constructed early enough

for the agents to benefit. When the agents failed to locate the goal early enough or

frequently enough, their performance was comparable to using no markers at all. Yet,

once the trail extended far enough back from the goal, the agents rapidly outpaced

all others methods by a wide margin. Undoubtedly, the agents’ poor performances

would have been greatly improved either by increasing the number of searching agents

or the time period (relative to another method operating over the same amount of

time).

Interestingly, the average time to initial goal discovery was also improved by 21.97

percent over agents using no markers. One possible reason for this is that the first

stigmergic trail marker dropped ensured that the agent discovering the goal did not

wander inadvertently back out of the room in which the goal is situated.

I frequently observed the situation where an agent entered the goal room, perceived

the goal and headed back out. This was usually due to the influence of the motor-noise

motor schema, which adds some randomness to an agent’s movements (for reasons

Chapter 5: Experimentation 104

described in Section 2.3). It also occurred when the angle of the agent’s approach

caused the motor-avoid-static-obstacle motor schema to activate and steer the agent

away from the goal and lose sight of it.

However, with stigmergic trails, the agent drops a stigmergic trail marker upon

first seeing the goal, allowing it to recover more quickly. This is because even after

wandering out of the goal room, the agent can still see the trail marker it just dropped

and will be drawn back into the room directly. Without the benefit of the trail marker,

the agent is forced to rely on its chance wanderings to bring it back into the room.

5.3.7 Stigmergic Trail and Bottleneck Markers

The next set of trials used both stigmergic trail markers and bottleneck markers

to observe their combined effect.

Results

Combining stigmergic trail markers with bottleneck markers improved perfor-

mance dramatically over using no markers and even over that of stigmergic trail

markers used alone. This can be seen in Figure 5.9, which compares the average

goals per trial using stigmergic trail and bottleneck marker to all previously described

marking techniques. In addition, an examination of the results listed in Section B.7

shows that this combined approach yielded better results than no markers in 39 of 40

trials. At the same time, it resulted in a higher number of goals than stigmergic trails

alone in 25 of 40 trials. This is also shown in that a total of 2253 goals were reached

across all trials for an average of 56.33 goals per trial. The standard deviation for

Chapter 5: Experimentation 105

Figure 5.9: Comparison of average goals/trial (the standard deviation for the number
of goals/trial is indicated atop each bar)

goals reached per trial was 46.96.

The average time to discover the goal for the first time was 508.15 (with a standard

deviation of 259.44) over an average of 46896 think method invocations. This is a

14.21 percent decrease in time and 19.12 percent decrease in think method invocations

to discover the goal compared to using no markers. Though stigmergic trails alone

posted a higher improvement in time to initially locate the goal, this is partially

due to the increased computational load incurred using both marking methods in

Chapter 5: Experimentation 106

combination. This is shown in that average number of think method invocations

for this method is much closer percentage-wise to that of stigmergic trails than the

average time. It is also evident in that the total frame count for these trials was

6724598 for an average of 168114.95 frames per trial and a frame count index of

2984.73, lower than that of stigmergic trails alone.

Regardless, using both markers in combination resulted in 13 times (1299 percent)

more goals being located on average per game versus no agents not using markers

(compared to 10 times more on average using stigmergic trail markers by themselves).

The improvements gained here over using stigmergic trail markers alone are due to

the bottleneck markers promoting greater coverage of the environment by drawing

agents to different areas periodically. Once the stigmergic trail has lengthened a

certain distance back from the goal, the faster other agents notice the trail the better.

Bottleneck markers help in this regard by drawing agents back and forth from room

to room more regularly than they do when wandering randomly. Thus, once the trail

is sufficiently long, other agents see its end sooner and the complete trail gets built

earlier as a result. Since the trail gets built earlier, the agents have a longer period

of time in which to benefit from it, resulting in a higher performance overall.

5.3.8 Stigmergic Trail, Bottleneck and Local Maxima Mark-

ers

The next set of trials included stigmergic trails, bottleneck and local maxima

markers in combination.

Chapter 5: Experimentation 107

Results

The combination of these 3 marker types resulted in 3817 goals being reached in

total over all 40 trials. This is 22.7 times more goals than a team of agents using no

markers and an average of 95.43 goals per game (with a standard deviation of 66.64

goals). This substantially exceeds the 56.33 average of stigmergic trail and bottleneck

markers in combination, as can be seen in Figure 5.10.

The average time to initially discover the goal in a trial was 525.3 seconds (with

a standard deviation of 291.27 seconds) over an average of 30869.03 think method

invocations. This is an 11.32 percent reduction in average time to locate the goal in

a trial. More significantly, it is a 46.76 percent reduction on average in the number

of think method invocations required to locate the goal. The large difference in these

percentages is primarily due to the additional processor load incurred by using all 3

marking methods in combination.

As shown in Figure 5.10, using these 3 marker types together resulted in a higher

number of goals in 37 out of 40 trials. At the same time, it resulted in a higher number

of goals than using just stigmergic trail and bottleneck markers in combination in 27

out of 40 trials. The frame count index for this marking method was somewhat im-

proved over that of stigmergic trail and bottleneck markers by themselves at 1219.89.

This was based on a total frame count of 4656317 and average frame count per trial

of 116407.93

As with the previous experiment, the improved performance using the three

marker types in combination is due to the stigmergic trail being constructed and

extended faster than otherwise. The addition of the local maxima markers promotes

Chapter 5: Experimentation 108

Figure 5.10: Comparison of average goals/trial (the standard deviation for the number
of goals/trial is indicated atop each bar)

Chapter 5: Experimentation 109

even wider and more frequent coverage of the environment than bottleneck markers

by themselves (as evidenced by the experiment described in Section 5.3.4). Local

maxima markers have the additional effect of drawing agents into the open initially

where they can see a wider portion of their surroundings. This also increases the

likelihood that one or more agents will perceive an end of the trail sooner.

These effects in combination contribute to the stigmergic trail being established

earlier in the trial, allowing the team to benefit from its use for a longer period of

time. This is also evidenced in that this combination of marker types resulted in a

best performance in a single trial: reaching the goal 247 times. This is significantly

higher than any previous marker combinations.

5.3.9 Stigmergic Navigation

This experiment used all four marker types introduced in Section 3.2 in combina-

tion, including bottleneck, local maxima, stigmergic trail markers and local minima

markers.

Results

Using all four marker types in combination resulted in 3856 goals being reached

in 40 trials for an average of 96.4 goals per trial (with a standard deviation of 60.62

goals). This is almost 23 times more goals than agents using no markers. The

average time to locate the goal for the first time in a particular trial was 490.11 (with

a standard deviation of 262.24) in 24814.38 think method invocations. The former is

a 17.26 percent decrease (compared to agents using no markers) in the average time

Chapter 5: Experimentation 110

to initially locate the goal. Even more strongly, the latter is a 57.2 percent decrease

in the average number of think method invocations required to initially locate the

goal (compared to agents using no markers).

While this was a substantial improvement over agents that did not use markers, it

is quite similar to the results obtained using bottleneck, local maxima and stigmergic

trail markers without local minima markers. This is shown in Figure 5.11, where the

bars identifying the average goals per trial between the two latter two methods are

nearly the same.

There are several likely reasons that local minima markers did not result in a sub-

stantial improvement. To begin with, the situation that the local minima markers are

intended to handle appears in only a small portion of the environment. Consequently,

the opportunities for them to have a positive affect on the agents’ performance is lim-

ited. Moreover, the agents themselves are fairly well-equipped to deal with local

minima via introduction of noise into their movements as part of their behaviour-

based design. Finally, the other marker types can themselves reduce the frequency of

local minima in this experiment.

Observations of the agents in a number of experiments showed that the stigmergic

trail leading to the goal was typically built along a path that bypassed the upper

balcony where local minima are known to appear. Instead, the trail typically takes

the agents across Area 5 (see Figure 5.2) to either Ramp 3 or 4, down the channel

near the center of the map, down the tunnel connecting it to Area 2 before proceeding

down the last hallway before the goal. As a result, the occasional positive impact of

the local minima markers did not have a substantial effect on overall performance.

Chapter 5: Experimentation 111

Figure 5.11: Comparison of average goals/trial (the standard deviation for the number
of goals/trial is indicated atop each bar)

Chapter 5: Experimentation 112

Interestingly, the total frame count using all four marker types, at 4285980 (an

average of 107149.5 per trial), was not the lowest frame count overall. Rather the

lowest frame count of all marking methods was that using bottleneck, local maxima

and local minima markers in combination. The reason for this seeming contradiction

is that once stigmergic trails are in place and visible to the agents, they forgo the

other marker types in favor of the stigmergic trail markers. As a result, agents do not

expend as much computational resources during this time. The frame count index

bears out the superior performance of stigmergic navigation in that it had the lowest

frame count index of all methods at 1111.51.

5.3.10 Stigmergic Navigation and Teleautonomous Control

This last experiment involved having a human assist the team of agents in locating

the goal by dropping local maxima and bottleneck markers. The agents themselves

employed all four markers types, but the human-controlled player was limited to

merely guiding the agents via local maxima and bottleneck markers.

The expectation was that a human would be able to place these markers more

quickly and intelligently, to lead the agents more quickly to the goal. This is turn

was expected to allow the agents to construct a stigmergic trail more quickly and

perform somewhat better as a result. The finding that a human could do better at

controlling the agents than the agents themselves could would hardly be surprising.

However, this is intended as a demonstration in principle that stigmergic markers can

be successfully used as a means for implementing teleautonomous control.

Unlike previous experiments, only a small number of trials were executed to ex-

Chapter 5: Experimentation 113

plore the potential impact that human level intelligence in laying these basic marker

types might have. Also, requiring a human to endure 20 hours of trials, in accordance

with previous experiments was deemed to be impractical and unnecessary to achieve

its purpose.

Results

In four trials, a team of agents assisted by a human-controlled agent located the

goal 735 times for an average of 183.75 goals per trial (with a standard deviation

of 9.77 goals). The average time to initially locate the goal in a particular trial

was 118.05 seconds (with a standard deviation of 17.54 seconds) over 5125.75 think

method invocations.

Though executed over a smaller number of trials, these results indicate that the

agents benefited significantly from teleautonomous guidance (as shown in Figure

5.12). The number of goals reached on average was approximately double that of

the best performing marking techniques described herein. The time required to ini-

tially locate the goal was even more improved. What was interesting about these

results was that performance was not improved even more. Presumably, a human

would help much more, which would seem to indicate that these techniques are quite

powerful even when employed by reactive agents.

This demonstrates that stigmergy has strong potential as a means to influence

and guide a team of agents so that they achieve their goals quicker and with greater

ease.

Chapter 5: Experimentation 114

Figure 5.12: Comparison of average goals/trial (the standard deviation for the number
of goals/trial is indicated atop each bar)

Chapter 5: Experimentation 115

5.4 Discussion

The table below summarizes some of the performance results presented in the

previous sections. As can be seen, the various marker types that I have used have

resulted in substantial improvements in performance in most cases.

Bottleneck and local maxima markers increased the average number of goals found

per trial significantly. The combination of bottleneck and local maxima markers even

more so. Stigmergic trail markers resulted in a very substantial improvement over

agents using no markers, or even the improved performance gained using the first two

marker types. The best performances, however, occurred when bottleneck and local

maxima markers were combined with stigmergic trail markers. This was because the

bottleneck and local maxima markers encouraged agents to travel from area to area

more frequently, causing agents to perceive and therefore extend the stigmergic trails

more quickly. This allowed the team of agents to benefit from the trail for longer

periods of time in each trial, leading to improved performance.

The application of local minima markers, while nowhere near as significant, was

notable in that rather than attracting or repelling agents, it specified an action to take

at a certain location. This represents a step in the direction of encoding programs into

the environment and merits further study. As well, its low impact on performance

was deemed to be partially a factor of the agents’ ability to deal with local minima

and that agents tended to follow a path that bypassed them. In future work, it

will be worthwhile to apply the same marker types in an environment that presents

more difficult and frequent local minima, as the impact of local minima is largely

domain-dependent.

Chapter 5: Experimentation 116

Table 5.1: Summary of Results

Marking Method Average Time Average Think Total Goals
None 592.35 579822.88 161
BTl 463.67 43917.58 278
LocMax 533.48 52135.00 224
BTl/LocMax 567.02 51697.60 305
BTl/LocMax/LocMin 467.67 24068.98 323
StgTrl 462.19 45043.30 1828
StigTrl/BTl 508.15 46896.00 2253
StigTrl/BTl/LocMax 525.3 30869.03 3817
StigNav 490.11 24814.38 3856
StigTele 118.06 5125.75 183.75

None=No Markers, BTl=Bottleneck Markers, LocMax=Local Maxima Markers,

LocMin=Local Minima Markers, StigTrl=Stigmergic Trails, StigNav=Stigmergic

Navigation, StigTele=Stigmergic Navigation and Teleautonomous Control

Chapter 6

Conclusion

In this thesis I have presented techniques that use stigmergy to improve the re-

active (or local) navigation performance of a team of agents navigating an unknown

complex environment. In a series of experiments, I have demonstrated the efficacy

of these methods. By marking bottlenecks and local maxima, agents were able to

more frequently discover an unknown goal. At the same time, through stigmergic

trail-making, agents were able to greatly increase the frequency and ease with which

they could subsequently locate a previously discovered goal. All these methods are

noteworthy in that the team of agents cooperatively marks their environment and

shares knowledge of their explorations with each other to the betterment of the entire

group, resulting in significantly better global and individual performance.

117

Chapter 6: Conclusion 118

6.1 Findings and Analysis

The results of the experiments in Chapter 5 have answered the research questions

outlined in Section 1.4. Agents improved their performance in locating an unknown

goal by marking bottlenecks and local maxima to promote exploration. Agents were

also able to cooperatively construct a minimal trail of markers leading to a discovered

goal. They were likewise able to avoid a certain type of local minima using markers

that instruct agents to jump when approaching them. All methods outlined in Chap-

ter 5 were successful to varying degrees in getting agents to their goal faster and with

increasing ease.

The heuristic of marking bottlenecks was shown to be useful in solving the box-

canyon problem (as evidenced by my experimental results), yielding significant gains

in terms of both time to initial goal discovery and the total number of times the team

was able to rediscover their goal. Since it is difficult (if not impossible) for an agent

to detect the existence of a doorway at a distance, the markers allow the agents to

place a more easily detectable object at the location of interest. This simplifies the

sensory load on other agents. In a real world scenario, it is likely that a robot would

have to actually be at the doorway already in order to detect it (without a map and

accurate localization) and so it would have to discover it itself. Using markers, the

agent can “see” the doorway at a distance and utilise that information more readily.

Agents must balance exploration with marker following, otherwise they simply

follow the trail blazed by a teammate doing nothing new. Thus, choosing when to

follow markers is important. I employed the simple mechanism of having agents ignore

markers for a period of time after reaching one. This allowed them to wander around

Chapter 6: Conclusion 119

the area that they presumably entered upon reaching the doorway for a while and

perhaps find another different doorway.

As future work, it seems feasible to use this technique to systematically explore

an environment. By giving markers unique identifiers, agents could potentially pass

marker trails to each other when encountering each other. In essence, after an agent

finds a goal and encounters another agent, it could give another agent instructions

on how to reach the goal by following a particular sequence of markers

Experimental results also indicated that agents can benefit from marking local

maxima and using them to more quickly navigate through perceptually uninteresting

areas. While the results were not as good as those gained marking bottlenecks, this

still yielded moderate improvements over random search by promoting wider coverage

of the environment in shorter periods of time.

Of course, randomly placed stimuli are certainly no better than no stimuli at all.

In fact, randomly placed stimuli can worsen performance by inhibiting exploration.

For example, an agent might remain in a room where an attractor is present even

though the room is otherwise unimportant. Consequently, markers must be deployed

intelligently and minimally to avoid unnecessary clutter.

The use of local minima markers allowed agents to avoid certain local minima

by jumping over them. The results yielded using this marking method, were not a

dramatic and not as general as the other marking methods. Though somewhat more

specialized than the other marking methods I have presented, this method is notable

in that it encodes an instruction rather than attracting or repelling agents.

The most dramatic improvements were gained using stigmergic trail markers. This

Chapter 6: Conclusion 120

method allowed agents to cooperatively construct a minimal trail of markers that al-

lowed the entire team to share their explorations and proceed to their goal more

quickly on subsequent trips. This was accomplished without agents using world mod-

elling or path planning or needing to localize themselves in their environment.

My method of stigmergic trail-making encoded a simple numeric value indicative

of the marker’s place in the trail. This has the advantage of not requiring the agents

to estimate distances, but simply add one to the ID of an observed marker or set the

marker value to 1 if observing the goal directly. Another method would be to encode

the distance to goal by numbering the marker with a value indicating distance to goal

equal to distance to goal or marker observed plus the value of the observed marker.

Of course, this would require that agents have some means to estimate or measure

their distance from an observed marker or goal.

As a result of combining the various marker types, agents were able to outstrip the

performance of agents that did not use stigmergy by a broad margin. Bottleneck and

local maxima markers allowed agents to locate the goal faster. This allowed agents

to construct a stigmergic trail sooner. As a result, the agents were able to repeatedly

locate the goal almost 23 times more frequently than without markers. Moreover,

this rises to 39.39 times that of no markers, when factoring in the reduced number of

frames executed per trial as a result of the extra overhead of the stigmergic methods.

6.2 Challenges

Deciding when to drop and when to follow markers is critical to the effectiveness of

stigmergic navigation. If agents drop markers indiscriminately, they introduce noise

Chapter 6: Conclusion 121

and distraction that can in fact hinder rather than help agent performance. Simi-

larly, when to follow markers is important too. Agents need to balance exploitation

of markers with performance of other tasks or cyclic behaviour may result. Even

more important is the ability to distinguish between markers so that agents can make

informed decisions about which markers to follow. Agents need an intelligent mecha-

nism for deciding which markers to follow and which to ignore. This includes avoiding

or ignoring markers already visited and preferring markers never visited over those

that have been.

While my stigmergic techniques have yielded substantial gains, implementing

these techniques in the real world, presents a number of challenges easily avoided

in simulation. To apply these techniques in the real world agents will need carry a

physical supply of marker types or employ another method of marking the environ-

ment directly. The former method would mean agents would have a finite supply

of markers and need to be especially discriminating in deploying them. The latter

will require agents possess the necessary motor control to mark the environment in

recognizable ways.

Marker fading has also not been dealt with in this thesis. I have attempted to show

the advantages to be gained by being discriminate in choosing when to mark in order

to avoid marker clutter. However, several of the marker types fade in simulation to

achieve the results here (these are noted where the marking technique is explained).

This fading would have to be physically made possible in the markers chosen in the

real world. As noted in Section 2.5, research is ongoing into the use of chemical

pheromones for these purposes [Kuwana et al., 1999]. Nonetheless, the techniques

Chapter 6: Conclusion 122

and principles that I have outlined should be equally applicable to physical robots as

they are to simulated agents.

6.3 Future Work

In the future, it will be useful to explore how changing the environment or the

number of agents affects performance. With respect to bottleneck markers, it would

be interesting to observe how performance of these markers varies with the number of

bottlenecks present in the environment or on the path to the goal. Similarly, it would

be advantageous to study the performance of local minima markers in an environment

that forces agents to negotiate them to get to the goal (rather than bypassing them,

as frequently occurred in these experiments). It would be especially interesting to

observe the effect on the average goals obtained per trial using stigmergic trails by

varying the number of agents participating. Adding additional agents would increase

the likelihood that the goal would be discovered sooner. This in turn would cause the

stigmergic trail to be constructed sooner, allowing the agents to benefit from it for a

longer period of time (similar to the effect gained using bottleneck and local maxima

markers to augment stigmergic trail markers).

Another factor worth examining is varying the length of time agents spend ignoring

bottleneck markers after traversing them to a new area. It seems probable that the

time agents should spend ignoring these markers is a factor of the size of the area that

they enter into after traversing a trail of bottleneck markers. If they enter a small

room, they will need little time to explore it, before they should exit. The 30 second

interval that I used in my experiments was arrived at through preliminary trials, but

Chapter 6: Conclusion 123

can undoubtedly be improved on and is situation dependent. Similarly, varying the

length of time that agents retain visited markers in memory may prove interesting as

well. Among other effects, varying this length affects the amount of items in the list

and by extension an agent’s memory requirements.

In regards to local maxima and local minima markers, it is also worth investigating

the impact of varying the interval after which these markers disappear. Doing so will

likely provide insights into what factors contribute to a marker’s ongoing relevance.

Indeed, this could also be combined with a reinforcement mechanism (similar to ant

pheromone trails), to cause markers that are continuing to be useful to remain in

place longer. As well, it would be useful to explore ways in which the local minima

markers that I implemented can be extended or generalized to handle local minima

situations more generally, rather than being limited to leaping over low-lying local

minima.

In addition to investigating extensions to the marker types that I have presented,

there is much potential for future work using far more advanced techniques. Getting

agents to learn when to place and follow stigmergic markers is one such example.

Rather than limiting agents to dropping and reacting to markers according to preset

rules, it would be interesting to get agents to learn when and where to place markers

themselves and to be more discriminating in exploiting them. One approach to ac-

complish this could include categorizing certain environmental features into exemplar

states to allow agents to generalize and learn the characteristics of desirable locations

and update them dynamically. In so doing, agents can then use stigmergic markers to

identify valuable locations more generally as they travel and indicate this via a marker

Chapter 6: Conclusion 124

along with its goodness rating (to allow observing agents to prefer one location over

another).

Another application of stigmergic markers that warrants exploration is using

markers to assist agents in localizing themselves cooperatively in conjunction with

path planning navigation methods. This could be accomplished by having agents dy-

namically create landmarks in environments that lack easily identifiable signposts by

dropping markers. Each marker dropped would encode the agent’s beliefs about the

coordinates of the location that the agent is marking along with a confidence factor.

This would allow other navigating agents to use the marker as a potential landmark

and as a means to relocalize themselves.

As well, it will be worthwhile experimenting with a variety of marker types that

signify actions like the local minima markers I have presented here. It seems likely

that these additional marker types can be used to sequence the movements and actions

of agents as they traverse their environment. For example, other agents (or a human

being) can place different symbols that indicate the order in which they should be

traversed to get somewhere in the world. By doing so, it seems feasible that the

agents themselves can be kept relatively simple and still perform complex actions.

This may be particularly useful when applied in conjunction with teleautonomy. The

superior perceptual ability and intelligence of a human can be used to assist agents

in performing complicated tasks or in recognizing objects that agents have trouble

recognizing themselves.

Most notably indirect communication markers can be used to inform agents of

positions where they can attempt to perform certain tasks/actions that require that

Chapter 6: Conclusion 125

they be in particular positions within an environment. For example, going through

a doorway requires that the agent be in front of the doorway. Similarly, climbing a

ladder requires that an agent first stand before the ladder, just as using an elevator

requires that the agent be inside the elevator. At its logical extreme, it becomes

possible to encode entire programs of actions into the world itself. The interesting

challenge becomes deciding what types of markers to leave and where to leave them

so that they are maximally useful and minimally obtrusive.

There are also future applications of the use of stigmergic markers, such as their

application to assist in the teleautonomous control of agents. Finally, there are a

large number of potential studies in multi-agent systems that could proceed from this

work: I have fixed the number of agents, but were that to be made variable, a number

of interesting things could be explored. Density of marking, and the effect of clutter

as we increase the number of individuals, for example, or the interference between

agents as they attempt to mark the environment from their own potentially unique

perspectives.

6.4 Conclusion

Stigmergy shows great promise in solving many of the navigation challenges faced

by reactively navigating agents, leveraging their innate sensory abilities. By mod-

ifying their surroundings, agents have been shown to be able to navigate unknown

and complex environments without the need to construct, maintain and store world

maps. Just one of the additional possibilities to be leveraged from storing discovered

knowledge of the world in the environment through stigmergy was shown, through the

Chapter 6: Conclusion 126

use of teleautonomous robotic control using my techniques. This application allowed

a human to control a team of agents without having to specify specific agents nor

engage in explicit communication.

The techniques that I have outlined in this thesis only begin to scratch the surface

in terms of he potential applications of stigmergy in robotic agents. All of the tech-

niques used in this thesis save for the local minima technique were reasonably general

and reasonably easily transferable to other domains, and I have outlined a number of

future directions for this work. While stigmergic techniques, in nature and otherwise,

are not new, I believe that both they and the central concept they embody - storing

knowledge in a distributed fashion throughout the world as opposed to inside an agent

- are both currently very under-appreciated in artificial intelligence. In the future,

however, I believe that the concept of storing knowledge in the world, and techniques

such as stigmergic navigation which embody this concept, will be seen much more

extensively and viewed as powerful tools.

Bibliography

Philip E. Agre. The Dynamic Structure of Everyday Life. PhD thesis, MIT, Cam-

bridge, Mass, 1988.

John Anderson and Alfred Wurr. Dimensions of teleautonomy in mobile agents. In

Proceedings of the IASTED International Conference on Artificial Intelligence and

Soft Computing, pages 1–6, July 2002. Banff, AB.

Ronald C. Arkin. Behavior-based Robotics. MIT Press, Cambridge, 1998.

Ronald C. Arkin and K. Ali. Integration of reactive and telerobotic control in multi-

agent robotic soccer systems. In Proceedings of the 3rd International Conference

on the Simulation of Adaptive Behaviour, 1994. Brighton.

Ronald C. Arkin and Tucker Balch. Aura: Principles and practice in review. Journal

of Experimental and Theoretical Artificial Intelligence, 9(2-3):175–189, 1997.

Ronald C. Arkin and Tucker Balch. Cooperative multiagent robotic systems. In

R.P. Bonasso and R. Murphy, editors, Artificial Intelligence and Mobile Robots.

MIT/AAAI Press, 1998. Cambridge, MA.

Tucker Balch and Ronald C. Arkin. Avoiding the past: A simple but effective strategy

127

Bibliography 128

for reactive navigation. In Proceedings of the 1993 IEEE International Conference

on Robotics and Automation, volume 1, pages 678–685, May 1993. Atlanta, Georgia.

Tucker Balch and Ronald C. Arkin. Communication in reactive multiagent robotic

systems. Autonomous Robots, 1(1):27–52, 1994.

Tucker Balch and Ronald C. Arkin. Motor schema-based formation control for multi-

agent robot teams. In Proceedings of 1995 International Conference on Multiagent

Systems, pages 10–16, 1995.

Tucker Balch and Ronald C. Arkin. Clay: Integrating motor schemas and reinforce-

ment learning. GIT 11, College of Computing, University of Southern California,

Los Angeles, March 1997.

Tucker Balch and Ronald C. Arkin. Behavior-based formation control for multi-robot

teams. IEEE Trans. On Robotics and Automation, 14(6), December 1998.

Jacky Baltes and John Anderson. Flexible binary space partitioning for robotic rescue.

Submitted to IEEE IROS - Intelligent Robots and Systems, 2003.

R. Peter Bonasso, R. James Firby, Erann Gat, David Kortenkamp, David P. Miller,

and Marc. G. Slack. Experiences with an architecture for intelligent, reactive agents.

Journal of Experimental and Theoretical Artificial Intelligence, 9(1):237–256, 1997.

Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal

of Robotics and Automation, RA2(1):14–23, April 1986.

Rodney A. Brooks. Elephants don’t play chess. Robotics and Autonomous Systems,

6(1&2):3–15, June 1990.

Bibliography 129

Rodney A. Brooks. Intelligence without reason. In Proc. of the 1991 Int. Joint Conf.

on Artificial Intelligence, pages 569–595, 1991a.

Rodney A. Brooks. The role of learning in autonomous robots. In Fourth Annual

Workshop on Computational Learning Theory, pages 5–10, 1991b.

S. Buck, T. Schmitt, and M. Beetz. Reliable multi robot coordination using mini-

mal communication and neural prediction. In M. Beetz, J. Hertzberg, M. Ghallab,

and M. Pollack, editors, Advances in Plan-based Control of Autonomous Robots. Se-

lected Contributions of the Dagstuhl Seminar Plan-based Control of Robotic Agents.

Springer Verlag, 2002.

W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi-

robot exploration. In Proc. of IEEE International Conference on Robotics and

Automation (ICRA), 2000.

Markus Bylund and Fredrik Espinoza. Testing and demonstrating context-aware

services with quake iii arena. Communications of the ACM, 45(1):46–48, January

2002.

M. DesJardins, E. Durfee, C. Ortiz, and M. Wolverton. Survey of research in dis-

tributed continual planning. AI Magazine, 1999.

E. Durfee. Distributed continual planning for unmanned ground vehicle teams. AI

Magazine, pages 55–61, 1999.

Oren Etzioni. Intelligence without robots: a reply to brooks. AI Magazine, 14(4):

7–13, December 1993.

Bibliography 130

J. Fredslund and M. Mataric. A general algorithm for robot formations using local

sensing and minimal communication. IEEE Transactions on Robotics and Automa-

tion, 18(5):837–846, 2002.

Daniel D. Fu, Kristian J. Hammond, and Michael J. Swain. Navigation for every-

day life. Technical Report TR-96-03, University of Chicago, Computer Science

Department, 1100 East 58th Street, Chicago, Illinois 60637, February 1996.

E. Gat. On three-layer architectures. In R. Murphy D. Kortenkamp, R.P. Bonnasso,

editor, Artificial Intelligence and Mobile Robots. AAAI Press, 1997.

Timothy Groner and John Anderson. Efficient multi-robot localization and navigation

through passive cooperation. In Proceedings of the 2001 International Conference

on Artificial Intelligence, pages 84–89, June 2001. Las Vegas, Nevada.

K.J. Hammond, T.M. Converse, and J.W. Grass. The stabilization of environments.

Artificial Intelligence, 72(1-2):305–327, 1995.

O. Holland and C. Melhuish. Stigmergy, self-organisation, and sorting in collective

robotics. Artificial Life, 5(2), 2000.

B. Holldobler and E.O. Wilson. The Ants. Harvard University Press, 1990.

Andrew Howard, Maja J Mataric, and Gaurav S Sukhatme. Localization for mobile

robot teams using maximum likelihood estimation. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 434–459, 2002.

Jeffrey Jacobson and Zimmy Hwang. Unreal tournament for immersive interactive

theater. Communications of the ACM, 45(1):39–42, January 2002.

Bibliography 131

Gal A. Kaminka, Manuela M. Veloso, Steve Schaffer, Chris Sollito, Rogelio Adobatti,

Andrew N. Marshall, Andrew Scholer, and Sheila Tejada. Game bots: A flexible

test bed for multiagent team research. Communications of the ACM, 45(1):43–45,

January 2002.

H. Kitano. Robocup rescue: A grand challenge for multiagent systems. In Proceedings

of the 4th International Conference on Multi-Agent Systems, pages 5–12, 2000.

C. Ronald Kube and Eric Bonabeau. Cooperative transport by ants and robots.

Preprint submitted to Robotics and Autonomous Systems, October 30 1998.

C.R. Kube and H. Zhang. Stagnation recovery behaviors for collective robots. In

Proceedings of 1994 IEEE/RSJ/GI International Conference on Intelligent Robots

and Systems, pages 1883–1890. IEEE Computer Society Press, 1995. Los Alamitos,

CA.

Nicholas Kushmerick. Ask not what’s inside your head but what your head’s inside

of, 1994. URL citeseer.nj.nec.com/113548.html.

Nicholas Kushmerick. Cognitivism and situated action: Two views on intelligent

agency. Computer and Artificial Intelligence, 15(5), 1996.

Y. Kuwana, S. Nagasawa, I. Shimoyama, and R. Kanzaki. Synthesis of silkworm

moth’s pheromone-oriented behavior by a mobile robot with moth’s antennae as

pheromone sensors. Biosensors and Bioelectronics, 14:195–202, 1999.

John Laird. An exploration into computer games and computer generated forces.

Bibliography 132

In 9th Conference on Computer Generated Forces and Behavioral Representation,

2000.

John Laird. Using a computer game to develop advanced ai. Computer, 34(7):70–75,

July 2001.

John Laird. Research in human-level ai using computer games. Communications of

the ACM, 45(1):32–35, January 2002.

John Laird and M. Van Lent. Human-level ai’s killer application: Interactive com-

puter games. AI Magazine, pages 15–25, Summer 2001.

Michael Lewis and Jeffrey Jacobson. Games engines in scientific research. Commu-

nications of the ACM, 45(1):27–31, January 2002.

M. J. Mataric. Behavior-based control: Examples from navigation, learning and group

behavior. Journal of Experimental and Theoretical Artificial Intelligence, 9(2-3):

323–336, 1997.

K. Moorman and A. Ram. A case-based approach to reactive control for autonomous

robots. In AAAI Fall Symposium on AI for Real-World Autonomous Mobile Robots,

1992. Cambridge, MA.

U. Nehmzow, D. Gelder, and T. Duckett. Automatic selection of landmarks for

mobile robot navigation. Technical Report UMCS-00-7-1, Department of Computer

Science, University of Manchester, 2000.

H. S. Nwana, L. C. Lee, and N. R. Jennings. Coordination in software agent systems.

The British Telecom Technical Journal, 14(4):79–88, 1996.

Bibliography 133

H. V. D. Parunak and S. Brueckner. Ant-like missionaries and cannibals: Synthetic

pheromones for distributed motion control. In Fourth International Conference on

Autonomous Agents, pages 467–474, June 2000. Barcelona, Spain.

H. V. D. Parunak, S. Brueckner, J.A. Sauter, and J. Posdamer. Mechanisms and mil-

itary applications for synthetic pheromones. In Workshop on Autonomy Oriented

Computation, May 29 2001. Montreal, Canada.

Andres Perez-Uribe and Beat Hirsbrunner. Learning and foraging in robot-bees.

In SAB2000 Proceedings Supplement Book, pages pp. 185–194, Honolulu, 2000.

International Society for Adaptive Behavior.

Wayne Piekarski and Bruce Thomas. Arquake: The outdoor augmented reality gam-

ing system. Communications of the ACM, 45(1):36–38, January 2002.

P. Pirjanian. Behavior coordination mechanisms: State-of-the-art. Technical Report

IRIS-99-375, Institute for Robotics and Intelligent Systems, University of Southern

California, Los Angeles, 1999.

D. Reece and M. Kraus. Tactical movement planning for individual combatants.

In Proceedings of 9th Conference on Computer Generated Forces and Behavioral

Representation, 2000.

M. Resnick. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel

Microworlds. MIT Press, Cambridge, MA, 1998.

S. Rumeliotis, P. Pirjanian, and M.J. Mataric. Ant-inspired navigation in unknown

Bibliography 134

environments. In Proceedings of the 4th International Conference on Autonomous

Agents, pages 25–26, June 7 2000. Barcelona, Spain.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

1995.

John A. Sauter, Robert Matthews, H. Van Dyke Parunak, and Sven Brueckner. Evolv-

ing adaptive pheromone path planning mechanisms. In Proceedings of the First

International Joint Conference on Autonomous Agents and Multi-Agent Systems,

pages 434–440. ACM Press, July 2002. ISBN 1-58113-480-0. Bologna, Italy.

Antonio Sgorbissa and Ronald C. Arkin. Local navigation strategies for a team of

robots. Technical report, Georgia Tech Robotics Laboratory, 2001.

P. Stone and M. Veloso. Task decomposition, dynamic role assignment and low-

bandwidth communication for real-time strategic teamwork. Artificial Intelligence,

110(2):241–273, June 1999.

M. Tambe, J. Adibi, Y. Al-Onaizan, G.A. Kaminka, and I. Muslea. Building agent

teams using an explicit teamwork model and learning. Artificial Intelligence, 110

(2):215–239, June 1999.

John K. Tsotsos. Behaviorist intelligence and the scaling problem. Artificial Intelli-

gence, pages 135–160, 1995.

R. Vaughan, K. Stoy, G. Sukhatme, and M. Mataric. Blazing a trail: insect-inspired

resource transportation by a robot team. In Proceedings of the International Sym-

posium on Distributed Autonomous Robot Systems, 2000a. Knoxville, TN, USA.

Bibliography 135

R. Vaughan, K. Stoy, G. Sukhatme, and M. Mataric. Whistling in the dark: Coop-

erative trail following in uncertain localization space. In Proc. of the Fourth Int.

Conf. on Autonomous Agents, 2000b.

R. Vaughan, K. Stoy, G. Sukhatme, and M. Mataric. Lost: Localization-space trails

for robot teams. IEEE Transactions on Robotics and Automation, 18(5):796–812,

2002.

M. Veloso and P. Stone. Individual and collaborative behaviors in a team of homo-

geneous robotic soccer agents. In Proceedings of the 3rd International Conference

on Multi-agent Systems, pages 309–316, 1998.

Jim Van Verth, Victor Brueggeman, Jon Owen, and Peter McMurry. Formation-based

pathfinding with real-world vehicles. In Game Developers Conference Proceedings,

2000.

G. Weiss. Multiagent Systems. MIT Press, 1999.

Barry Brian Werger. Cooperation without deliberation: A minimal behavior-based

approach to multi-robot teams. Artificial Intelligence, 110:293–320, 1999.

Barry Brian Werger and M. Mataric. Exploiting embodiment in multi-robot teams.

Technical Report IRIS-99-378, University of Southern California, Institute for

Robotics and Intelligent Systems, 1999.

Barry Brian Werger and Maja Mataric. Robotic food chains: Externalization of state

and program for minimal-agent foraging. In Proceedings of the 4th International

Bibliography 136

Conference on Simulation of Adaptive Behavior: From Animals to Animats 4, pages

625–634. MIT Press, 1996.

Appendix A

Schemas and Assemblages

This appendix describes some commonly used motor schemas, perceptual schemas

and assemblages that are formed by combining them in order to handle particular

states. The gain values and motor schemas used by each assemblage vary somewhat

depending on the experimental scenario, but some common examples are provided.

In addition, the gain values associated with motor schemas are not necessarily ideal,

but were found to work reasonably well. Little time was spent trying to fine tuning

gain values, as my focus was on improving performance via stigmergy.

A.1 Motor Schemas

motor-avoid-marker-local-maxima causes the agent to move away from the nearest

perceptible local maxima marker.

motor-avoid-marker-local-minima causes the agent to move toward the nearest per-

ceptible local minima marker.

137

Appendix A: Schemas and Assemblages 138

motor-avoid-mobile-obstacle causes the agent to turn away from a mobile obstacle

such as another agent.

motor-avoid-static-obstacle causes the agent to turn 180 degrees in the opposite di-

rection of a perceived static obstacle such as a wall or other barrier.

motor-drop-marker-bottleneck causes the agent to drop a bottleneck marker on the

ground at its current location.

motor-drop-marker-goal causes the agent to drop a stigmergic trail marker on the

ground at its current location.

motor-drop-marker-local-maxima causes the agent to drop a local maxima marker on

the ground at its current location.

motor-drop-marker-local-minima causes the agent to drop a local minima marker on

the ground at its current location.

motor-move-to-hev-charger causes the agent to move towards a visible HEV armour

charging unit (if the agent’s armour level is not at maximum).

motor-move-to-ladder causes the agent to move towards a perceptible ladder.

motor-move-to-marker-bottleneck causes the agent to move towards the nearest per-

ceptible bottleneck marker.

motor-move-to-marker-goal causes the agent to move toward the lowest valued per-

ceptible stigmergic trail marker.

Appendix A: Schemas and Assemblages 139

motor-move-parallel-wall causes the agent to move in a direction parallel to a nearby

wall.

motor-noise causes the agent to move in a random direction.

motor-on-ladder causes the agent to move up or down on a ladder.

motor-ready-marker causes the agent to select and ready a marker for deployment.

motor-stuck causes the agent to jump, duck and move randomly in order to extract

itself when it gets stuck (unchanged position for extended period).

motor-swim causes the agent to move upward to the surface of the water when the

agent is in water.

A.2 Perceptual Schemas

percept-bottleneck returns a true value when the agent is standing in a doorway or

hallway.

percept-dock-hev returns a true value when conditions are right for the agent to switch

to a set of motor schemas appropriate to docking with a HEV (Hazardous

Environment) suit wall charger. This is a suit that is used to protect the agent

from hazardous chemicals in some areas of half-life environments, and requires

an energy recharge after any chemical exposure. Returns true when the agent

has less than full health and is within (configurable) range of a visible HEV wall

charger.

Appendix A: Schemas and Assemblages 140

percept-drop-marker-bottleneck returns a true value when conditions are such that

the agent should drop a bottleneck marker at its current location.

percept-drop-marker-goal returns a true value when conditions are such that the agent

should drop a stigmergic trail marker at its current location.

percept-drop-marker-local-maxima returns a true value when conditions are such that

the agent should drop a marker at its current location.

percept-drop-marker-local-minima returns a true value when conditions are such that

the agent should drop a local minima marker at its current location.

percept-hev-charger returns a true value when a HEV suit wall charger is within

sensory range.

percept-in-water returns true when the agent is immersed in water (water coverage

is also a part of many Half-Life environments, and the agent can remain in

water only for a limited length of time without damage). Can be queried for

information about how deep in the water the agent is (i.e. knee high, submerged)

percept-ladder returns true when a ladder is visible to the agent. Can be queried for

distance and relative vectors to ladder

percept-marker-bottleneck returns a true value when one or more bottleneck markers

lies in the agent’s perceptual range and provides a list of distances and vectors

to them.

percept-marker-goal returns a true value when one or more stigmergic trail markers

lie in the agent’s perceptual range and provides a list of distances and vectors

Appendix A: Schemas and Assemblages 141

to them.

percept-marker-local-maxima returns true when one or more stigmergic marker(s) lies

in the agent’s perceptual range and a list of distances and vectors to them.

percept-marker-local-minima returns a true value when one or more local minima

markers lies in the agent’s field of view and provides a list of distances and

vectors to them.

percept-mobile-obstacle returns true when a mobile obstacle, such as another agent,

lies in the agent’s path.

percept-on-ladder returns true when the agent is currently climbing a ladder.

percept-static-obstacle returns true when an obstacle lies in the agent’s path. Like-

wise, provides additional information about the outline of the obstruction. This

allows the agent to determine whether ducking or jumping or turning away is

the best action to take to avoid it.

percept-stuck returns true when the agent has not moved from it’s last recorded

position in a number of time units.

A.3 Assemblages

wander is the default assemblage that is used when no other assemblage’s are appro-

priate and is deactivated when any other assemblage’s activation conditions are

met. The behaviors making up this assemblage, and their respective gains, are:

Appendix A: Schemas and Assemblages 142

1. motor-avoid-static-obstacle with a gain value of 8.8

2. motor-avoid-mobile-obstacle with a gain value of 6.23

3. motor-avoid-marker-local-maxima with a gain value of 40

4. motor-avoid-marker-local-minima with a gain value of 40

5. motor-move-to-hev-charger with a gain value of 28

6. motor-move-to-ladder with a gain value of 10.5

7. motor-move-to-marker-bottleneck with a gain value of 80

8. motor-move-parallel-wall with a gain value of 28

9. motor-noise with a gain value of 6.35

10. motor-stuck with a gain value of 40

11. motor-ready-marker with a gain value of 1

dock-with-hev-charger is used to allow the agent to move right up to a wall charger

for the HEV suit (explained above). To this end, motor schemas such as avoid

static obstacle are not included as they would prevent the agent from closing

the distance to the wall unit.

This assemblage is activated when the agent’s armour level is less than full

power and it moves within 40 units of a HEV charger. The behaviors making

up this assemblage, and their respective gains, are:

1. motor-move-to-hev-charger with a gain value of 10

2. motor-use-hev-charger with a gain value of 10

Appendix A: Schemas and Assemblages 143

drop-marker-local-maxima is activated to allow the agent to drop a local maxima

marker on the ground at it’s current location. It is activated when percept-

drop-marker-local-maxima returns a true value. It is deactivated when percept-

drop-marker-local-maxima returns a false value. The behaviors making up this

assemblage, and their respective gains, are:

1. motor-drop-marker-local-maxima with a gain value of 1

drop-marker-local-minima is activated to allow the agent to drop a local minima

marker on the ground at it’s current location. It is activated when percept-

drop-marker-local-minima returns a true value. It is deactivated when percept-

drop-marker-local-minima returns a false value. The behaviors making up this

assemblage, and their respective gains, are:

1. motor-drop-marker-local-minima with a gain value of 1

drop-marker-bottleneck is activated to allow the agent to drop a local maxima marker

on the ground at it’s current location. It is activated when percept-drop-marker-

bottleneck returns a true value. It is deactivated when percept-drop-marker-

bottleneck returns a false value. The behaviors making up this assemblage, and

their respective gains, are:

1. motor-drop-marker-bottleneck with a gain value of 1

drop-marker-goal is activated to allow the agent to drop a stigmergic trail marker on

the ground at it’s current location. It is activated when percept-drop-marker-

goal returns a true value. It is deactivated when percept-drop-marker-goal

Appendix A: Schemas and Assemblages 144

returns a false value. The behaviors making up this assemblage, and their

respective gains, are:

1. motor-drop-marker-goal with a gain value of 1

move-to-hev-charger causes the agent to move toward the nearest visible wall armour

charging unit. This is a device in the Half-Life game that allows a player to

increase the protection offered by a protective Hazardous Environment (HEV)

suit. It is activated when percept-hev-charger returns a true value and deacti-

vated when it returns a false value. The behaviors making up this assemblage,

and their respective gains, are:

1. motor-avoid-mobile-obstacle with a gain value of 5.1

2. motor-avoid-static-obstacle with a gain value of 5.8

3. motor-move-to-hev-charger with a gain value of 40

4. motor-move-parallel-wall with a gain value of 28

5. motor-noise with a gain value of 2.5

6. motor-ready-marker with a gain value of 1

7. motor-stuck with a gain value of 40

move-to-marker-bottleneck once the agent has entered a bottleneck such as a doorway

or hallway this assemblage is activated. It causes the agent to move toward the

nearest visible bottleneck marker visible that it has not visited in the past 30

seconds. The noise motor schema in this assemblage is lowered significantly,

so that it does not unduly interfere with the agent’s marker following. It is

Appendix A: Schemas and Assemblages 145

activated when percept-bottleneck returns a true value. It is deactivated when

percept-bottleneck returns a false value or percept-marker-goal returns a true

value. The behaviors making up this assemblage, and their respective gains,

are:

1. motor-avoid-static-obstacle with a gain value of 0.2

2. motor-move-to-marker-bottleneck with a gain value of 30

3. motor-move-parallel-wall with a gain value of 28

4. motor-noise with a gain value of 0.1

5. motor-ready-marker with a gain value of 1

move-to-marker-goal causes the agent to move toward the lowest numbered stigmer-

gic trail marker visible. It is activated when percept-move-to-marker-goal re-

turns a true value. It is deactivated when percept-move-to-marker-goal returns

a false value, percept-hev-charger is false, percept-drop-marker-goal is true or

percept-stuck is true. The behaviors making up this assemblage, and their

respective gains, are:

1. motor-avoid-static-obstacle with a gain value of 0.2

2. motor-move-parallel-wall with a gain value of 28

3. motor-move-to-marker-goal with a gain value of 40

4. motor-noise with a gain value of 5.0

5. motor-ready-marker with a gain value of 1

Appendix A: Schemas and Assemblages 146

on-ladder activates a set of motor schemas suited to ladder climbing. It is activated

when percept-on-ladder returns true. It is deactivated when percept-on-ladder

returns false or percept-enemy returns true. The behaviors making up this

assemblage, and their respective gains, are:

1. motor-on-ladder with a gain value of 11

2. motor-move-to-ladder with a gain value of 11 (to cause the agent to face

the ladder).

Appendix B

Result listings

This appendix provides complete result listings for the various experiments de-

tailed in Chapter 5. The results shown are for a team of 6 agents across 40 games.

Each table lists the game number, average initial discovery time, average initial dis-

covery think count and total goals for the team.

147

Appendix B: Result listings 148

B.1 No Markers

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

1 991.563 96243 4
2 586.75 57444 6
3 333.241 32066 4
4 433.809 42499 7
5 1124.45 110100 4
6 280.008 27441 8
7 337.906 33115 4
8 280.25 27463 2
9 769.896 75430 6
10 1462.81 143375 3
11 184.595 18109 5
12 1506.4 146478 1
13 431.532 42323 4
14 359.744 35276 5
15 388.314 38095 7
16 522.459 51244 2
17 595.972 58430 4
18 453.628 44485 2
19 349.166 34221 4
20 479.968 47049 3
21 340.629 33396 6
22 161.092 15789 2
23 973.19 95380 1
24 398.366 39025 6
25 598.527 58609 5
26 701.211 68875 3
27 502.553 49237 5
28 257.023 25189 4
29 89.9881 8820 5
30 185.905 18203 4
31 1262.74 123758 4
32 449.84 44084 4

Appendix B: Result listings 149

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

33 540.621 53008 5
34 549.287 53832 4
35 809.507 79335 3
36 715.278 70053 5
37 789.132 77314 2
38 417.749 40925 3
39 634.86 62192 4
40 1443.99 141405 1

Average 592.35 57982.88 4.03

Appendix B: Result listings 150

B.2 Bottleneck Markers

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

1 252.141 23512 4
2 485.531 45830 7
3 428.773 40165 8
4 357.973 33941 12
5 776.731 73541 8
6 281.066 26760 11
7 430.796 40944 10
8 352.702 33439 8
9 218.235 20512 9
10 661.046 62994 5
11 238.459 22627 11
12 264.394 25106 5
13 1504.37 142995 1
14 226.658 21382 10
15 462.33 43520 7
16 337.729 32008 9
17 211.96 20074 9
18 577.529 54712 4
19 434.583 41310 9
20 926.219 87985 6
21 507.603 48120 3
22 752 71440 4
23 239.444 22610 8
24 322.896 30408 5
25 630.169 59802 5
26 729.311 69236 4
27 454.236 43017 6
28 548.53 51968 5
29 428.901 40583 11
30 535.02 50655 7
31 404.147 38408 5
32 354.812 33640 6

Appendix B: Result listings 151

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

33 259.974 24480 4
34 531.228 50172 9
35 343.135 32616 6
36 641.15 60585 5
37 386.691 36575 8
38 408.606 38935 11
39 223.552 21065 7
40 416.172 39031 6

Average 463.67 43917.58 6.95

Appendix B: Result listings 152

B.3 Local Maxima Markers

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

1 578.52 56630 6
2 643.574 63023 7
3 356.849 34855 8
4 173.77 17029 5
5 672.988 65924 5
6 488.203 47836 3
7 385.248 37788 4
8 599.497 58800 7
9 1347.43 132098 2
10 666.292 65319 6
11 465.756 45610 5
12 219.1 21478 5
13 725.213 71101 5
14 454.213 44482 6
15 712.997 69909 3
16 722.707 70880 4
17 312.553 30640 9
18 909.886 89204 4
19 517.305 50685 7
20 645.893 63236 7
21 368.118 36057 5
22 320.929 31465 11
23 424.08 41524 5
24 472.605 46301 7
25 379.555 37159 4
26 470.17 43947 6
27 1056.63 102687 3
28 822.14 79935 7
29 582.036 56687 8
30 251.944 24497 8
31 367.367 35703 3
32 337.261 32883 7

Appendix B: Result listings 153

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

33 454.978 44248 9
34 319.508 31116 5
35 671.454 65726 5
36 661.962 64760 4
37 182.661 17876 3
38 279.578 27337 4
39 804.777 78760 7
40 513.618 50205 5

Average 533.48 52135 5.6

Appendix B: Result listings 154

B.4 Bottleneck and Local Maxima Markers

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

1 720.835 63630 8
2 665.43 61179 8
3 491.406 43934 9
4 703.671 63003 4
5 887.163 80624 4
6 545.852 49801 5
7 777.533 72185 11
8 697.132 61399 10
9 747.33 66626 5
10 865.641 78422 4
11 688.074 62474 6
12 395.732 35386 9
13 437.298 40682 8
14 1113.75 102671 3
15 688.129 63634 3
16 200.713 18510 13
17 867.346 80240 8
18 295.113 26937 13
19 372.25 34275 11
20 329.988 29777 6
21 590.833 55143 8
22 244.124 22167 10
23 683.236 62584 5
24 621.11 57038 6
25 435.615 39519 12
26 762.396 70378 7
27 425.223 38018 11
28 542.289 49769 6
29 258.061 23190 9
30 552.199 51293 7
31 294.935 26942 7
32 842.54 77575 3

Appendix B: Result listings 155

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

33 337.559 30678 11
34 248.504 22137 11
35 629.249 57485 4
36 807.117 73480 4
37 507.022 45994 7
38 290.913 26425 11
39 763.275 70346 5
40 354.256 32354 13

Average 567.02 51697.60 7.63

Appendix B: Result listings 156

B.5 Bottleneck, Local Maxima and Local Minima

Markers

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

1 187.931 9505 10
2 467.342 24704 10
3 335.334 17300 9
4 352.056 18441 12
5 597.99 30374 9
6 225.294 11539 8
7 624.138 32310 8
8 927.765 48333 6
9 990.101 50033 6
10 371.374 18877 9
11 249.698 13224 11
12 746.368 37921 8
13 231.09 11825 12
14 1183.84 60224 3
15 875.051 45432 5
16 404.241 20731 9
17 344.696 17476 8
18 434.355 21415 10
19 390.02 20040 6
20 341.621 18025 5
21 629.317 32037 4
22 294.774 15477 14
23 824.205 43116 4
24 705.645 36975 8
25 675.952 34878 3
26 255.259 13322 6
27 388.949 20093 9
28 382.781 19863 6
29 309.956 15915 13
30 177.005 9052 10
31 233.778 11635 5
32 628.235 31898 8

Appendix B: Result listings 157

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

33 440.063 22246 5
34 215.53 10998 10
35 355.021 19033 14
36 414.716 21805 11
37 386.776 19534 13
38 204.805 10628 4
39 455.003 24173 6
40 448.739 22352 6

Average 467.67 24068.98 8.08

Appendix B: Result listings 158

B.6 Stigmergic Trail Markers

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

1 335.324 32385 106
2 654.179 64097 14
3 999.759 98396 5
4 422.866 41608 15
5 470.282 46435 7
6 491.609 48416 30
7 710.185 70048 13
8 380.794 37545 17
9 651.008 64172 20
10 312.768 30872 17
11 168.434 16600 157
12 529.195 52336 31
13 367.235 35883 8
14 485.66 47468 58
15 312.106 30528 15
16 191.854 18033 182
17 928.17 91536 9
18 529.321 49551 117
19 618.697 52711 59
20 734.083 70840 10
21 643.355 63445 70
22 260.158 25629 101
23 382.96 37768 12
24 776.634 76510 23
25 434.205 42846 92
26 250.281 24679 150
27 829.705 81734 14
28 630.568 62138 6
29 562.766 55473 134
30 263.584 25989 38
31 793.263 78235 4
32 280.249 27638 29

Appendix B: Result listings 159

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

33 509.771 50200 37
34 103.642 10213 7
35 163.183 16047 10
36 152.12 14998 30
37 280.304 27657 55
38 489.886 48342 78
39 183.73 17206 40
40 203.603 15525 8

Average 462.19 45043.30 45.70

Appendix B: Result listings 160

B.7 Bottleneck and Stigmergic Trail Markers

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

1 320.083 29402 142
2 193.157 17783 95
3 818.246 75924 28
4 567.292 52519 85
5 198.762 18535 88
6 574.408 54200 14
7 971.863 91717 7
8 257.479 24111 89
9 294.024 27314 128
10 240.653 21994 22
11 853.443 79260 13
12 1224.31 114380 2
13 728.335 67840 90
14 757.589 70246 21
15 857.744 79014 2
16 293.563 27171 74
17 490.089 44938 50
18 738.954 63628 8
19 547.559 46988 9
20 350.21 32035 7
21 246.345 22511 81
22 249.077 22757 116
23 901.377 83349 55
24 325.358 30286 56
25 215.88 20084 115
26 367.874 34154 21
27 587.285 54583 9
28 580.16 53929 76
29 448.181 41529 60
30 388.204 36232 81
31 163.611 14996 154
32 374.499 35114 113

Appendix B: Result listings 161

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

33 399.361 36706 151
34 784.355 74128 5
35 583.6 54427 83
36 326.341 29436 8
37 876.717 81297 14
38 359.007 33613 59
39 352.299 31196 11
40 518.877 46514 11

Average 508.15 46896.00 56.33

Appendix B: Result listings 162

B.8 Bottleneck, Local Maxima and Stigmergic Trail

Markers

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

1 529.241 30005 78
2 637.177 38908 109
3 322.534 18690 16
4 873.366 50176 10
5 670.233 38469 87
6 1275.38 75181 5
7 371.875 21191 57
8 255.447 14784 227
9 247.075 15021 247
10 439.562 25622 90
11 671.233 35507 124
12 596.151 35312 119
13 718.543 41069 62
14 503.554 29711 153
15 249.449 14000 201
16 155.975 9080 240
17 546.458 29160 63
18 795.105 45663 11
19 475.623 28024 43
20 486.242 28413 106
21 1308.86 75247 3
22 129.957 6949 124
23 428.747 25149 102
24 439.874 27089 86
25 377.243 24807 172
26 394.333 24774 133
27 706.276 42726 74
28 299 17166 67
29 362.31 21155 64
30 423.539 25670 44
31 217.554 13049 74
32 593.133 36847 137

Appendix B: Result listings 163

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

33 592.072 35092 10
34 1196.36 72049 3
35 588.54 33869 43
36 331.597 21697 204
37 283.037 16694 127
38 407.025 24367 126
39 1002.31 60090 44
40 109.899 6289 132

Average 525.30 30869.03 95.43

Appendix B: Result listings 164

B.9 Stigmergic Navigation

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

1 327.56 16685 10
2 778.84 39508 169
3 559.765 28189 113
4 579.417 28553 23
5 418.394 21199 7
6 379.185 19390 190
7 558.487 27975 72
8 234.027 11633 134
9 312.51 15332 90
10 936.121 43503 71
11 331.667 16931 223
12 936.657 47345 15
13 800.732 40948 117
14 882.88 45056 3
15 478.128 24051 51
16 550.241 27979 107
17 548.239 28638 77
18 491.877 25036 171
19 561.107 29146 55
20 325.248 16511 118
21 1073.44 54356 64
22 153.931 7778 32
23 365.526 18471 115
24 305.89 15496 193
25 270.89 13676 37
26 159.5 8100 132
27 235.197 12011 204
28 693.66 34918 33
29 778.87 39960 20
30 367.819 19034 112
31 1062.11 55104 54
32 362.28 17868 127

Appendix B: Result listings 165

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

33 785.981 39842 60
34 294.994 14868 133
35 281.976 14601 161
36 604.419 30610 35
37 173.319 9607 135
38 189.132 9654 99
39 286.19 14319 179
40 168.112 8694 115

Average 490.11 24814.38 96.4

B.10 Stigmergic Navigation and Teleautonomous

Control

Game No. Average Average Discovery Total
Discovery Time Think Count Goals

1 100.077 4317 93
2 170.85 6614 199
3 99.5019 4728 240
4 101.792 4844 203

Average 118.06 5125.75 183.75

