
Agent-Based Control In A Global-Vision Robotic Soccer Team

John Anderson and Jacky Baltes
Autonomous Agents Laboratory
Department of Computer Science

University of Manitoba
Winnipeg, Manitoba, R3T 2N2, Canada

andersj,jacky@cs.umanitoba.ca

Abstract
Robotic soccer is a highly complex domain that has be-

come a significant challenge problem in both mobile robotics
and artificial intelligence. Two well-known annual competitions,
ROBOCUPand FIRA, allow teams to compete in a number of dif-
ferent leagues distinguished by robot size and hardware restric-
tions. Because the domain is based on teamwork in a real-time en-
vironment, we have found agent-based control of individual robots
to be a very convenient approach to designing a robotic soccer
team. While we have worked with both local vision and global vi-
sion robots in the past, our most recent work has been with global
vision. This paper describes the nature of this robotic domain, its
suitability to agent-based methodologies, some of our particular
motivations, and our use of agent-based control to deal with the
difficult problems it encompasses.

1. Introduction
Robotic soccer is a highly complex domain that has

become a significant challenge problem in both mobile
robotics and artificial intelligence. This challenge prob-
lem has been a tremendously useful to researchers in mo-
bile robotics in terms of providing a common ground for re-
search in vision, control, and individual and team behaviour,
among many other areas. Moreover, the use of a standard
domain also affords the opportunity for competition in or-
der to judge the suitability of various proposed solutions.
The two major competition organizations, ROBOCUP and
FIRA, both divide teams into leagues based on the size and
structure (e.g. legged vs. wheeled) of the robots themselves,
and whether vision is provided globally or locally. While we
have had local vision teams in the past [5], the majority of
our experience lies in the small-sized (F180) league, which
typically uses global vision.

Like other researchers, our attraction to this domain
stems from a desire to do grounded research in problems
that are nicely exemplified in robotic soccer - primarily
sensing, control, planning, and teamwork, in addition to
the logistics of getting solutions to all of these problems
operating in concert. From the standpoint of competing in

robotic soccer competitions, however, our motivations dif-
fer from some others in two important ways. First, as arti-
ficial intelligence researchers, we primarily want to empha-
size sophistication in the AI components of our work. We
do this in part by avoiding the use of specialized hardware
for the robotic soccer domains. A typical small-sized team
has robots that have omni-directional drives, dribble bars
and powerful kicking mechanisms. While such additions
can result in a very powerful team, a significant amount
of that power comes from those hardware additions them-
selves, and this is less interesting from an AI standpoint than
a team that functions through strong intellect. Further, the
solutions we develop that do not employ specialized hard-
ware can always benefit through the addition of such hard-
ware later on, while the reverse may not be the case. We
thus limit ourselves to basic mobile platforms without drib-
ble bars or kickers. Our robots must pass the ball in a more
traditional fashion, being unable to kick it the entire length
of the field in one shot, while the lack of a dribble bar means
that the robots must rely more on being at the right place at
the right time, and on the skills of teammates to move the
ball.

Second, we have a strong motivation to use this environ-
ment as part of an educational process [10]. Our teams are
programmed to a large degree by students learning about
robotics, and we try each year to improve what we do as an
educational resource for future students. This further em-
phasizes a focus on AI over specialized hardware, but also
places important economic constraints on hardware: we
have to be able to afford enough to supply a significant-sized
group of students. A typical Small-size team has robots
that cost approximately US$3,000. Added to this is the
cost of high quality video cameras, and other expenses that
typically drive the cost for a team to around US$20,000–
US$30,000.

There are also additional motivations that the physical
grounding and competitive nature of robotic soccer place on
the design of a team: the hardware must be portable enough
to travel to competitions (preferably distributed throughout

1

checked luggage of team members in order to reduce cost),
must be modular enough that it can be dismantled and set
up on the other side of the world in a reasonable amount
of time, and should be both robust enough to survive typi-
cal transportation situations as well as common enough that
replacement parts could be obtained almost anywhere.

This paper describes our robotic soccer team, the Little
Black Devils , and in particular the agent-based control of
robots that is central to our approach. The Little Black Dev-
ils (named after the Royal Winnipeg Rifles) are notable for
a number of reasons, including their affordability (the entire
team cost less than US$1000 in total), their reliance on in-
frared rather than radio communication, and their emphasis
on artificial intelligence over specialized hardware.

2. Overview of Approach
We satisfy the motivations outlined in the previous sec-

tion through the use of the Lego Mindstorms RCX as the
computational platform for the robots themselves. These
are readily available, inexpensive, easily replaced, and rea-
sonably robust. While these do not have a high computa-
tional ability, the fact that this is a global vision team means
that little on-board computation is required. Agent control
programs as well as vision software run on external ma-
chines, and the decisions of those agents are relayed to the
robots themselves. Local computation is restricted to the
lowest level control (i.e. turning motors on and off to orient
and move the robot), and is handled by a customized version
of BrickOS (an open-source alternative operating system for
the Lego Mindstorms RCX).

A high-level view of the entire system implementing the
Little Black Devils is depicted in Figure 1. At the heart of
the system is a set of agents which control the robots on
the field, and which will be described in Section 3. The re-
mainder of the system consists of the robots themselves, and
facilities for providing visual information about the world to
the agents and allowing the agents to affect the environment
through the robots on the field.

To provide vision for the agents, a single video source
(we use a standard consumer-grade camcorder) serves as in-
put to a computer with a video capture device (e.g. tv tuner
card). This machine runs our vision server software, known
as DORAEMON [1]. DORAEMON includes real-time cam-
era calibration, color calibration, and object tracking com-
ponents. More significantly, DORAEMON also has the abil-
ity to calibrate the geometry of the scene from any view,
meaning that it is not necessary to have the camera mounted
directly overhead relative to the playing field, nor is it nec-
essary to add a wide-angle lens to the camera. We currently
use coloured markers on top of the robots, but we have re-
cently developed a pattern-recognition process that allows
the system to track objects without such markers by recog-
nizing the images of the robots themselves [7]. We are cur-

rently working on improving the accuracy of that process in
order to be able to rely on it in future competitions.

DORAEMON transmits the position, orientation and ve-
locity of all objects that were found over Ethernet, which is
the basis for providing visual information to the agents. The
messages are transmitted in ASCII via UDP broadcast in a
single package, an example of which is shown in Figure 2.

The first line of the message contains the number of ob-
jects being tracked, the frame number, and the time differ-
ence between this message and the previous one, allowing
an agent receiving this package to determine if frames were
dropped. This is followed by a line of information about the
coordinates of the camera in terms of this coordinate sys-
tem, which is intended for use in distributed or stereoscopic
applications. Following that is a line for each object being
tracked, consisting of the type (0=robot, 1=ball) and name
of the object, whether the object was recognized in the im-
age or was predicted based on previous motion, the X, Y,
and Z coordinates of the object (in mm), the orientation of
the object in radians, and the velocity of the object in X and
Y directions. The camera and computational hardware cur-
rently provide approximately 30 frames per second of data
in this format, allowing the agents to formulate a picture of
the world they affect.

The agents themselves run on a network of Linux-based
workstations. The ideal situation is one machine per agent,
but multiple agents per machine can be used (with corre-
sponding loss of computational resources per agent). One of
the nice features of dealing with independent agents rather
than a single global controller in a competitive situation is
that as many machines as are available at the time can be
used to host the agents, and there is a natural distribution
of resources (as opposed to trying to partition a global con-
troller into distributed processes). In fact, since the other
two software components (the video and command servers)
are also running on Linux machines on the same network,
it is also possible to run agents on these machines as well if
a situation arose where machines were limited. Each agent
hosted on these machines picks up the network packets from
the vision server, and independently (and asynchronously)
communicate its decisions for the actions of the particular
robot it controls.

The robots themselves are built using standard Lego
pieces around a Lego Mindstorms RCX brick, and are
marked with coloured disks to allow easier recognition by
the vision server (see Figure 3). This brick controls two
motors that allow a robot to change its orientation and move
forward and backward. We employed two different robots,
shown in Figure 3: a wheeled robot most commonly used as
a striker, and a treaded robot most commonly used as a goal-
keeper. The RCX brick receives information via infrared
broadcast. Because the infrared is broadcast to all robots,
current instructions for all robots are relayed together. This

2

Figure 1: System Overview

9 1073821804 0.00139797
-76.3836 -1820.48 2356.39
1 ball NoFnd 971.056 840.711 35 0 -2.31625 58.1464
0 b0 Found 1185.59 309.187 100 0.0596532 499.282 285.083
0 b1 Found 1158.59 308.198 100 0.0596532 499.282 285.083
0 b2 Found 1086.95 309.187 100 0.0596532 499.282 285.083
0 b3 Found 1185.59 309.187 100 0.0596532 499.282 285.083
0 y0 Found 989.95 304.588 100 -0.10185 413.528 -1.08564
0 y1 NoFound 1189.95 304.588 100 -0.10185 413.528 -1.08564
0 y2 Found 1189.95 304.588 100 -0.10185 413.528 -1.08564
0 y3 Found 1189.95 304.588 100 -0.10185 413.528 -1.08564

Figure 2: Sample output message from DORAEMON.

requires the use of a command server running on a Linux
system. This command server groups the commands to in-
dividual robots into a data packet that describes commands
to all robots (possiblyno-opcommands if an agent has not
made a decision for any action since the last command mes-
sage was issued) and then broadcasts that packet using in-
frared transmission hardware.

The infrared transmission used by the RCX allows for
2400 baud, a very limited rate of communication. In or-
der to allow the maximum number of messages to be sent
per unit time (which directly affects how often a robot can
change its activities), it is therefore important to limit the
volume of information that is sent to the robots themselves.
We use a ten-byte packet (a stop and start byte and eight
bytes of data). This is intended to allow for a one-byte com-

mand to each of eight players on the field (allowing us to
play four-on-four games with both teams using the same IR
communication hardware). While it is possible to control
only four robots and use two bytes each, there is a signifi-
cant amount of information at this scale that can be encoded
into a single byte. For example, out of eight bits, four can
be used for orientation, allowing 16 different turning val-
ues, and a similar set of values for foward/backward motion
from the other four bits.

The only non-standard hardware we employ is a cus-
tom set of infrared broadcasting hardware. While using
infrared to communicate with robots is advantageous in a
competitive setting because of the significant interference
that the presence of teams generates, some difficulties had
to be overcome. The infrared towers that are provided by

3

Figure 3: Team in play.

Lego are meant for limited distances in normal indoor en-
vironments. The playing fields involved in competition are
larger, and the intense lighting interferes with the infrared
transmission as well. While it is possible to use a number
of Lego IR towers, difficulties arise in that delays between
towers cause inconsistency in information (and interference
between signals). These problems required the development
of an infrared tower that mimics the behaviour of that pro-
vided by Lego, but had many more (32 as opposed to 1)
infrared transmitters.

This completes an overview of the set of components re-
quired to run the Little Black Devils. As can be seen, this
is a sophisticated set of hardware and software elements,
and each part must interact with all the others in an appro-
priate manner for the system to operate. It is also a problem
where there is a range of granularity that must be dealt with,
from fine-grained motor control to high level path planning
and team-level interaction. This is the major reason why
agent-based control is so useful here, and in many other ar-
eas where robots operate: agent-based software controllers
can deal with higher-level functionality, possibly on exter-
nal systems that are more powerful than what a mobile robot
could move (or would be affordable for a mobile robot),
while lower-level functionality can be handled on the robots
themselves.

Having seen that the agents themselves are central to this
methodology, we now turn to examining the functionality
of the agents in our approach.

3. Agent-Based Control
The agents we use to control the robots in the Little Black

Devils are entirely custom-coded in C++: that is, we cur-
rently use no agent-based toolkits, and all facilities are writ-
ten from scratch except for obvious components like device
drivers, gui libraries and the like.

Part of the rationale for avoiding the use of agent toolkits
is to avoid being tied year to year to a particular technologi-
cal viewpoint, and part also lies in the educational approach.
We want students to learn about how robot control oper-
ates and also how agents operate: they thus code everything
from low-level robot control code to basic agent facilities,
in addition to higher-level functionality.

The functionality of our agents is divided into three lev-
els based on the level of abstraction from basic motion: (1)
at the lowest level, agents must be able to follow specified
paths (to get behind a ball, move toward a goal, block an-
other player, and so on); (2) in order to follow these paths,
agents must be able to generate them in response to partic-
ular goals, i.e. perform path planning; (3) finally, agents
must have individual and team-oriented strategies that cre-
ate goals for the agent (places the agent desires to be and
courses of action the agent desires to take). The following
subsections describe each of these levels in turn.

3.1. Path Tracking Control
Our agents follow a behaviour-based [3] approach. At

the lowest level in our agent architecture are behaviours that
allow an agent to follow a given path efficiently. In the
robotic soccer domain, it is advantageous to move to de-
sired positions (e.g., a position to receive a ball, a position
to intercept an opponent) as quickly as possible. We there-
fore limit ourselves to the generation of paths with implicit
maximum speed trajectories instead of the more complex
problem of trajectory generation.

We have tried many different path tracking controllers in
our research, including Balluchi’s sliding mode controller
[4], a fuzzy logic controller [9], Egerstedt’s look ahead con-
troller [11], and a reinforcement learning controller [8]. A
combination of a fuzzy logic controller using Egerstedt’s
lookahead formulation of the path tracking problem has
proven to be the most robust, efficient, and versatile method
for path tracking control.

The algorithm and representation are illustrated in Fig-
ure 4. Given the agent’s current positionP = (x, y, θ), the
agent calculates the closest point on the pathPS. Given its
current velocity and distance to the path, the agent calcu-
lates an approach pointP′, i.e., a point projected ahead of
the robot by looking ahead distanced. The look-ahead dis-
tanced is determined by the velocity as well as the distance
of the agent to the path.

The approach linel, that is the line from the agent to the
approach pointP′ is used as reference and the orientation
error θ̃ of the robot with respect to the approach linel is
calculated. Given the orientation errorθ̃, a steering angle is
computed. Finally, the calculated steering angle is used to
determine the desired velocity of the robot.

This approach to path tracking has proven itself by being
robust and efficient. It is furthermore easy to change the

4

Figure 4: Path Tracking Control

behaviour of the agent to follow a path more closely (e.g.
when moving through a tight spot) or fast and loose (when
in more open spaces) by varying the lookahead distance and
gain on the steering angle control.

3.2. Path Planning
Accurate path planning is both a difficult problem and

a vital part of mobile robotics. While it is possible to go
by orientation and simply move to the goal when one has
the ball, for example, an intelligent agent should be able
to be aware of its surroundings and plan paths to avoid ob-
stacles (opponents), keep close to desirable places (team-
mates), and minimize travel to a goal.

Our agents maintain a global world model of all inter-
esting objects in the vicinity of the robot (a natural conse-
quence of global vision). The world model is limited, how-
ever, in the sense that the vision server broadcasts inherently
noisy data to the agents. The agents interpret this message
and create a world model which includes confidence values
and best estimate of an objects position, orientation, and ve-
locity.

This world model serves as the basis for path planning
through cell decomposition. Cell decomposition methods,
which include Quad-tree decomposition, oct-tree decompo-
sition and binary space partitioning (e.g. [13, 14]), construct
a representation of the environment for path planning by re-
cursively decomposing the known or detectable spatial area
into partitions of regular size. Each approach begins with a
single large cell, and labels that cell as either blocked (i.e.
entirely filled by an obstacle), free (completely open space),
or mixed (at least part of the cell is occupied by an obstacle).
Any cell that is mixed must be recursively broken down by
sub-partitioning it (using four sub-partitions in the quad-tree
approach, eight in the oct-tree approach, and two in binary
space partitioning), resulting in a tree structure. Any cell
that can be labelled as blocked or free at any point forms
a leaf node in that tree structure. As this tree is built, ad-
jacency links must be maintained between branches of the
tree in order to facilitate path planning. Path planning can
then occur by traversing this structure in order to find a low-
cost path from the robot’s current location to its goal.

In our approach we use a new form of binary space par-
titioning which we termFlexible Binary Space Partition-
ing [6]. Instead of consistently partitioning the space into
components of precise sizes (i.e. dividing in half for binary
space partitioning), this approach attempts to make a logical
choice for a partitioning point in any partitioning decision.
An entropy-based measurement is employed to examine the
potential information gain that would be made by choosing
a particular point to further divide the space, and the point
with the largest information gain is chosen. Once the space
is partitioned, path planning ensues based on this decompo-
sition.

In our implementation the internal states of individual
agents can be displayed, and an example of this is shown in
Figure 5. The results of flexible binary space partitioning
are shown in dark and light lines overlaying the field (where
light lines show the components that are actually part of
a final path), along with the computed path from the se-
lected agent’s current location to its desired goal (the white
marker close to the opponents’ goal, showing a desired po-
sition slightly behind the ball and oriented toward the goal.
The ball in this case is underneath the space occupied by the
white marker). In this particular case, all the other agents on
the field have been made opponents rather than teammates,
but are considered as obstacles as far as path planning itself
is concerned. This path then forms the basis for the path
following behaviour described in Section 3.1.

In this domain, planning a path and then following that
path without deviation cannot be the basis of a successful
agent on its own. In a fast-moving dynamic domain such as
soccer, an agent must deal with the fact that the path will
often be invalidated as a result of agents moving.

Our path planning uses a local obstacle avoidance
method based on potential fields [3]. While traversing a
path, the agent stays clear of obstacles since virtual forces
emanating from other objects push the robot away from
such obstacles. Thus obstacles that were not seen by the vi-
sion server when a path was planned can still be accounted
for during path following, and the type of obstacle can also
be considered. For example, in Figure 5, the small light cir-
cle to the upper right of the agent performing path planning
shows the desired immediate direction of travel based on a
potential field that takes into account the obstacles around
the agent in addition to the path. In this case, the two robots
near the agent planning the path are opponents, and their
presence is indicating a direction of travel away from where
a purely obstacle-based path would indicate. Assuming the
world stayed in the state it is in in the snapshot, the agent
would move away from those opponents to a safer distance
and would then turn toward the path that was originally in-
tended. Similarly, the presence of opponents would also
cause the agent to stray from the planned path at future
points.

5

Figure 5: Path planning using Flexible Binary Space Partitioning

It is of course also possible that the environment changes
so drastically that the current behaviour (i.e., current goal
and path to achieve this goal) is inappropriate and should
be aborted completely. For example, a team has to switch
quickly from offensive to defensive play because possession
of the ball has changed. This decision is left to the upper,
more knowledge-intensive layers of our architecture instead
of the path planning layer. The nature of these upper-level
individual and team behaviours are described in the follow-
ing subsection.

3.3. Individual and Team Behaviour
Given agents that have the ability to plan paths and ex-

ecute them in the presence of noise and dynamic obstacles,
we have the basis for performing interesting individual and
team behaviour. The most abstract level of our agents de-
fines what individuals are interested in and how they operate
as a team.

This layer implements the behaviour manager. Each pos-
sible high-level behaviour of an agent (e.g., intercept ball,
intercept opponent, shoot on goal, move to rebound posi-
tion) has an applicability and a reward function associated
with it. The applicability function is a heuristic estimate of
how well the current world model matches the behaviour.
In other words, it can be interpreted as an estimate of how
likely it is that the behaviour will succeed in the current
world model. The reward function is an estimate of how
much the robot’s position would be improved if the be-
haviour succeeds. For example, blocking a shot on goal has
a reward of +0.80, whereas scoring a goal for our team has
a reward of +1.00. So our team is inherently biased towards
a more aggressive strategy.

There are also additional perceptual behaviours. For ex-
ample, there is a general perception strategy that calculates
an offensive and defensive strategy estimate given the global

6

view of the field. This estimate is based on the position of
the ball, the number of opponent agents in the agent’s own
half of the field, the open area of our goal and the open
area of the opponents goal. The output of the perception
behaviours are evaluated by the task manager first and are
available to the applicability and reward functions of the
task-specific behaviours.

The behaviour manager is also responsible for selecting
the strategy with the highest weighted average of applica-
bility and reward. The selected behaviour will then be acti-
vated.

The behaviour manager calculates the applicability and
reward for all behaviours. Large changes in the environment
may then lead to the behaviour manager selecting a different
behaviour with a different associated goal and path plan.
Furthermore, the behaviour manager may also terminate a
behaviour which is not making progress. The switching of
behaviours is constrained by a hysteresis function, which
limits the behaviour manager from switching behaviours too
often or too quickly. This way, the agent deals with large
changes in the highly dynamic domain of robot soccer.

As an example of team-level behaviours for a particu-
lar agent, consider the striker agent (the wheeled agents in
Figure 3). Since the two-wheeled body does not permit the
strikers to move sideways, striker agents implement a “cy-
cling” behaviour. One striker moves in for a shot on goal,
while another striker moves into a position to wait for a re-
bound or to shoot at the goal next. Since we want to avoid
having both strikers try to shoot at the goal at once, they
need to communicate their intention. This communication
is currently implicit in the set of behaviours.

Two behaviours are responsible for the cycling be-
haviour. The SHOOT-ON-GOAL behaviour calculates the
open area of the goal as well as the distance of the agent
to the ball. If there is no other agent that is in a bet-
ter shooting position, the SHOOT-ON-GOAL behaviour re-
turns a high applicability, otherwise a lower one. Similarly,
the POSITION-FOR-REBOUND behaviour also estimates the
probability of a successful goal shot, but also expects an
agent that is in a better shooting position. In this case,
it returns a high applicability value. After the first striker
shoots at the goal, the world state will change and the striker
waiting for the rebound will then start its attack run, since
no other agent will be in a better position and SHOOT-ON-
GOAL will have a higher applicability then POSITION-FOR-
REBOUND.

This scheme is augmented by: (a) the use of a hystere-
sis function as described above, in order to avoid oscillat-
ing between switching from goal shot to rebound, and (b) a
time horizon scheme. The striker agent has only a limited
time to show progress. If the goal shooter does not make
progress towards the goal shot (because for example, it is
being blocked by an opposing robot), the rebound striker

will attempt a goal shot. Once the rebound striker is closer
to the ball than the goal shot striker, their roles will change
and the goal shot striker will become the rebound striker and
will attempt to move toward the rebound position.

We augment this scheme with explicit communication
between the agents. Explicit communication can easily be
added to the behaviour manager by extending the current set
of applicability and reward functions for our agents. For ex-
ample, the applicability of POSITION-FOR-REBOUND may
be further increased if a message from the other agent was
received that explicitly states that the other agent is exe-
cuting the SHOOT-ON-GOAL behaviour. This is similar to
players shouting messages to one other (e.g., “I’ve got the
ball”).

We attempt to be realistic and have this communication
be at the software agent level: that is, the agent program for
a striker robot can send a message to the agent program for
another striker robot, asking what it is doing or intends to
do. This agent communication is implemented with stan-
dard text-based transmission over the network. It is also
possible for indirect communication to occur, in that a robot
could move or signal on a field that provides visual infor-
mation for the control program of another agent to pick up.
Since the robots have no appendages or any sensing other
than vision, this would have to be in the form of a movement
pattern, which would result in extremely slow communica-
tion, but would be possible.

4. Conclusion
This paper has described the agent-based controllers

used in the Little Black Devils, an F180 league robotic soc-
cer team. Agent-based control is an important part of ful-
filling our two motivations: to explore artificial intelligent
techniques to solve problems in this domain as opposed to
relying on specialized hardware, and to provide an educa-
tional environment for students. The agent control programs
are heterogeneous, as the robots themselves are heteroge-
neous.

We believe this is a good example of the kind of problem
where agents and robots operate well together. Most robots
(save the most expensive available) manage only very lim-
ited computational resources locally, but potentially have
access to significant networked computer resources. This
situation will become more prevalent in future, and swarms
of very small robots become more widely affordable, while
at the same time, applications for internet-based control of
robots become more broad (e.g. [12]). In such situations,
agents are an ideal mechanism for handling high-level indi-
vidual and team control from low-level robotic control.

As stated in Section 1, we also have a strong motiva-
tion from the standpoint of educating students. Here agents
also excel as a tool for making this manageable from a stu-
dent standpoint, by providing a level of abstraction and al-

7

lowing the students to separate things they need to be con-
cerned with in terms of low-level robotic control and the the
higher-level intelligent facilities that make use of such con-
trol. The facilities outlined in Section 2 form the basis of
our approach to the design of a new ROBOCUP league suit-
able for undergraduates, the ULeague [2]. This has been
incorporated into the design of the new E-League that will
be run at the 2004 ROBOCUP competition.

Our own students are strongly encouraged to use the
agent-based approach in their work in robot control for soc-
cer. In a course setting, we begin by having students install
firmware (customized BrickOS) for the RCX, and then de-
sign an encoding pattern that their robot will use for the in-
terpretation of commands sent by the command controller.
The students then do an assignment that provides the rudi-
ments of agent-based control by writing an interface that
allows the students to control the robots manually through a
graphical user interface for robot control and a visualization
of the data from the vision server. At this point, the students
can fill the roll of the agent based controller by guiding the
agent by hand, and get a feel for the kinds of problems that a
controller for such a robot encounters. From here, students
gradually design an agent controller through a series of as-
signments that allow them to a) follow a static path allowing
a basic race track; b) plan paths to goals and re-plan based
on changes in the environment through moving obstacles;
and c) define the skills for a striker and goaltender agent
that make use of the facilities provided by a) and b). Note
that this follows the same progression for a soccer agent laid
out in Section 3.

In terms of future work with the agent model, we are not
only improving the various aspects of our software agents,
but are working on a paper describing the educational pro-
cess involved in using agents to teach students how to con-
trol robots in a classroom setting. We hope that this may
evolve into a textbook suitable for use in an advanced under-
graduate class (we have used this approach with both grad-
uate and undergraduate students).

There are also ways in which the agents used here can
be extended. For example, agents are currently not mobile:
they are started on a particular machine and remain on that
machine until they are deactivated. While mobility in a soft-
ware sense is a common part of agent technology, it is not
strongly needed in this particular application: A machine’s
load does not drastically change from point to point during
a soccer game. If machines were also used for other pur-
poses, or if a machine going down during the game would
not already be a fairly catastrophic event, having agent code
be able to migrate from machine to machine might be more
useful.

We expect to continue to employ the agent approach de-
scribed here in future, both from an educational standpoint
and as a basic design mechanism for robotic soccer teams.

5. References
[1] John Anderson and Jacky Baltes.The Doraemon

User’s Guide. Department of Computer Science, Uni-
versity of Manitoba, Winnipeg, Canada, August 2002.
http://robocup-video.sourceforge.net.

[2] John Anderson, Jacky Baltes, David Livingston, and
Elizabeth Sklar. Toward an undergraduate league for
robocup. InProceedings of the RoboCup Symposium,
2003.

[3] Ronald C. Arkin. Behavior-Based Robotics. Cam-
bridge: MIT Press, Cambridge, MA, 1998.

[4] A. Balluchi, A. Bicchi, A. Balestrino, and G. Casalino.
Path tracking control for dubin’s car. InProceedings
of the IEEE International Conference on Robotics and
Automation, Minneapolis, MN, April 1996.

[5] Jacky Baltes. 4 stooges. In A. Birk, S. Coradeschi, and
S. Tadokoro, editors,RoboCup 2001: Robot Soccer
World Cup V, pages 559–562. Springer-Verlag, Berlin,
2002.

[6] Jacky Baltes and John Anderson. Flexible binary
space partitioning for robotic rescue. InProceedings
of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), Las Vegas, October
2003.

[7] Jacky Baltes and John Anderson. Identifying robots
through behavioral analysis. InProceedings of the
Second International Conference on Computational
Intelligence, Robotics, and Autonomous Systems, Sin-
gapore, 2003.

[8] Jacky Baltes and Yuming Lin. Path-tracking con-
trol of non-holonomic car-like robots using reinforce-
ment learning. In Manuela Veloso, Enrico Pagello,
and Hiroaki Kitano, editors,RoboCup-99: Robot Soc-
cer World Cup III, pages 162–173, New York, 2000.
Springer-Verlag.

[9] Jacky Baltes and Robin Otte. A fuzzy logic con-
troller for car-like mobile robots. InProceedings of the
IEEE International Symposium on Computational In-
telligence in Robotics and Automation, Monterey, CA,
November 1999.

[10] Jacky Baltes, Elizabeth Sklar, and John Anderson.
Teaching with robocup. InProceedings of the 2004
AAAI Spring Symposium on Accessible Hands-on AI
and Robotics, Stanford University, Stanford, CA,
March 2004.

[11] M. Egerstedt, X. Hu, and A. Stotsky. Control of a
car-like robot using a dynamic model. InProceedings
of the IEEE Conference on Robotics and Automation,
pages 3273–3278, Leuven, Belgium, 1998.

8

[12] K. Goldberg, editor.The Robot in the Garden: Teler-
obotics and Telepistemology in the Age of the Internet.
MIT Press Cambridge, MA, 2000.

[13] C. Saona-Vazquez, I. Navazo, and P. Brunet. The visi-
bility octree: A data structure for 3d navigation.Com-
puter & Graphics, 23(8):635–644, 1999.

[14] Alexander Zelinsky. A mobile robot navigation explo-
ration algorithm. IEEE Transactions of Robotics and
Automation, 8(6):707–717, 1992.

9

