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Multi-Agent Malicious Behaviour Detection

Abstract

This research presents a novel technique termed Multi-Agent Malicious Behaviour

Detection. The goal of Multi-Agent Malicious Behaviour Detection is to provide

infrastructure to allow for the detection and observation of malicious multi-agent

systems in computer network environments. This research explores combinations of

machine learning techniques and fuses them with a multi-agent approach to malicious

behaviour detection that effectively blends human expertise from network defenders

with modern artificial intelligence. Detection in this approach focuses on identifying

multiple distributed malicious software agents cooperating to achieve a malicious goal

in a complex dynamic environment. A significant portion of this approach involves

developing Multi-Agent Malicious Behaviour Detection Agents capable of supporting

interaction with malicious multi-agent systems, while providing network defenders

a mechanism for improving detection capability through interaction with the Multi-

Agent Malicious Behaviour Detection system. Success of the approach depends on the

Multi-Agent Malicious Behaviour Detection system’s capability to adapt to evolving

malicious multi-agent system communications, even as the malicious software agents

in network environments vary in their degree of autonomy and intelligence. The

Multi-Agent Malicious Behaviour Detection system aims to take advantage of de-

ii
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tectable behaviours that individual malicious software agents as well as malicious

multi-agent systems are likely to exhibit, including: beaconing, denying, propagat-

ing, ex-filtrating, updating and mimicking. This thesis research involves the design

of this framework, its implementation into a working tool, and its evaluation using

network data generated by an enterprise class network appliance to simulate both a

standard educational network and an educational network containing malware traffic.
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Chapter 1

Introduction

1.1 Overview

In 2010 Google announced that its offshore offices were the victims of a “highly

sophisticated and targeted attack” on their corporate infrastructure [Deibert and Ro-

hozinskli, 2010]. Termed Aurora, the attack manifested as infestations of malicious

software that allowed attackers to steal intellectual property from over 30 other com-

panies that Google later identified [Stamos, 2010]. The attacks typically involved

social engineering that led to the download and installation of malicious software

enabling the attacker to establish a presence on a company’s internal network. Once

inside, the attackers could elevate their privileges, exploit virtual private networks

(VPNs), and steal intellectual property.

The attacks on Google are an example of the type of malicious multi-agent system

that this research is concerned with detecting: cooperative goal-oriented multi-agent

systems with malicious intent. The technique that attackers employed against Google

1
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is similar across a number of reported infections [Deibert and Rohozinskli, 2009,

2010]: the distribution of malicious software agents across multiple victims on diverse

networks enabling a malicious multi-agent system to exploit vulnerable companies

stealing intellectual property. Like any other software agent, each malicious software

agent involved in Aurora attacks had a task to complete, and being distributed across

a network required some amount of autonomy to complete those tasks. It’s not clear

what level of autonomy each instance required to complete its goals - perhaps requir-

ing interactions from operators in a teleautonomous fashion. However, at the very

least the malicious software agents were able to signal other agents in the malicious

multi-agent system, collect information and relay that information out to controlling

entities in the malicious multi-agent system. I define the process of modelling the

behaviours exhibited by malicious multi-agent systems, such as the one responsible

for the attack on Google, Multi-Agent Malicious Behaviour Detection. The purpose

of this thesis is the development of a framework for Multi-Agent Malicious Behaviour

Detection, to aid network defenders (human experts responsible for the protection of

computer networks) in the detection, mitigation, and study of malicious multi-agent

systems. This thesis research involves the design of this framework and its implemen-

tation into a working tool. The framework and system are evaluated using network

data generated by an enterprise class network appliance to simulate both a standard

educational network and an educational network containing malware traffic.

In particular, my framework supports the following activities:

• reads network traffic in real-time, extracting features of interest,

• supports the learning of malicious multi-agent system behaviours based on hu-
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man knowledge,

• encourages human-machine interaction to discover novel malicious multi-agent

system behaviour,

• engages in malicious agent communication, thereby revealing more about their

behaviour,

• integrates external detection system output to enhance system knowledge,

• and evaluates machine learning techniques for malicious multi-agent system

detection.

The remainder of this chapter describes the evolution of malicious software agents,

and outlines some of the malicious software developer’s motivations for continuing to

improve malicious software agents and deploy malicious multi-agent systems. Next, I

discuss the challenges associated with work detecting malicious multi-agent systems,

and motivate the need for Multi-Agent Malicious Behaviour Detection. Finally, I

present a hypothesis and research questions.

1.2 Malicious Software Agent Evolution

Malicious software agents have evolved drastically over the past 40 years as the

speed of technological advances continues to outpace our ability to secure those same

technologies from exploitation. Consider recent advances in pacemaker and insulin

pump technologies, which use wireless signals to control the device and may in the fu-

ture allow medical practitioners to monitor and adjust settings on the device through
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wireless communication alone. The benefits of such technological advances are clearly

important. However, current network security techniques are not truly prepared for

the challenge of securing such a wireless device from being exploited or tampered

with [Maisel and Tadayoshi, 2010]. For example, recently an attack was devised

that allows an attacker to deliver fatal doses of insulin to diabetic patients Goodin

[2011]. The potential for a malicious multi-agent system consisting of malicious soft-

ware agents exploiting pacemakers or insulin pumps may sound like science fiction.

However, history has shown that new technologies are often exploited early in their

deployment. The following comprise a brief historical view of some of the major

events that demonstrate the speed with which malware has progressed to date. This

progress in malware, leading to the existence of sophisticated malicious multi-agent

systems, is a primary motivator for Multi-Agent Malicious Behaviour Detection.

1.2.1 Early Malicious Software Agents

The Creeper virus is one of the earliest known examples of a primitive malicious

software agent that demonstrated the ability to copy itself from an infected host sys-

tem to other remote systems via the Advanced Research Projects Agency Network

(ARPANET) in 1971 [Chen and Robert, 2005]. Other malicious software agents fol-

lowed, many of which shared the self-replicating characteristic which originated the

term computer virus. Examples include: ANIMAL [Dewdney, 1988], intended to be

non-malicious malware that copied itself throughout file systems on multi-user UNI-

VACs machines and copied onto tapes shared to other machines; Elk Cloner [Spafford,

1990], a virus capable of infecting the boot sector of Apple II machines in 1982; and
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Figure 1.1: Machines vulnerable to primitive malicious software agents. Left: IBM
Mainframe. Top: UNIVAC. Bottom: Apple II. Right: DEC VAX.

Christmas Tree EXEC [Chen, 2003], responsible for disrupting mainframe operation

in 1987.

One well known malicious software agent in computer security circles is the Morris

Worm [Chen, 2003]. In computer security, a worm refers to a self replicating malware

computer program that spreads from a host machine to other machines. In 1988 the

Morris Worm was capable of infecting DEC VAX machines running 4BSD as well as

Sun 3 systems. The Morris Worm was also the first worm written that resulted in

the author being convicted under the 1986 Computer Fraud and Abuse Act. Some

estimates claim it resulted in 10% of machines connected to ARPNET rendered use-

less. Once installed the worm replicates on a host machine consuming all available

resources [Spafford, 1988]. Figure 1.1 illustrates some early machines that have all

been victims of early malicious software agents. Even early forms of malware share

some characteristics of malicious multi-agent systems. From early on the motivation

for self-replication has influenced malicious software agent development. While ar-
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guably the Creeper virus was not in any way aware of other virus instances, it shares

the same distributed characteristic as modern malicious multi-agent systems.

1.2.2 Trends in Malicious Multi-Agent Systems

The popularity of the Internet continues to grow and is gradually becoming ubiq-

uitous within Canadian society. According to Statistics Canada 73% of Canadians

aged 16 or over accessed the Internet for personal reasons in 2007, up from 68% in

2005 [Canada, 2009]. Increasing Internet usage has enlarged the attack surface for

malicious software agents. In the early 1970’s damage caused by malicious software

agents was limited by the types of networks that existed and their relative specialty.

In the last 15 years there have been several instances of malicious multi-agent systems

causing significant financial losses to a number of diverse unrelated institutions. Con-

sider the following two examples of malicious multi-agent systems causing significant

financial losses.

The ILOVEYOU worm, an example of a malicious software agent which appeared

in May 2000, was delivered as an email attachment to several in-boxes around the

world [Chen and Robert, 2005]. The worm propagated by attaching a malicious visual

basic script to email destined to users who’s email addresses resided in the originating

hosts email address book. The rule of thumb at the time was to ignore attachments

from unfamiliar email addresses. The worm deceived recipients by using the infected

hosts contact list to choose targets. The familiar email addresses misled many users to

open the attachment. The attachment also appeared harmless, it was named LOVE-

LETTER-FOR-YOU.TXT.vbs with a subject line of ILOVEYOU. The attachment
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name would appear to be a text file, since a feature of many flavors of Microsoft

Windows hides the file extension, .vbs. The worm propagated so successfully that it

eventually infected over 50 million hosts by 13 May 2000. It also caused an estimated

$7.0 billion in damages [Chen and Robert, 2005].

Conficker is a widespread worm that is estimated to have infected over 7 mil-

lion machines worldwide in 2009 and is one of the most complex examples of mali-

cious multi-agent systems to date. Conficker is an example of an evolving malicious

multi-agent system actively maintained by a group of unknown authors who contin-

ually update the worm improving its spreading efficiency and incorporating defence

mechanisms to ensure its continued propagation. There are a total five variations

of Conficker, named A, B, C, D and E [Leder and Tilmann, 2009]. The major cost

associated with Conficker is securing networks from its propagation and removing ex-

isting infestations of the the worm. Other economic effects of the infestation include

the costs related to spam generated by variation E of the worm, significant increases

in network congestion and the impact of scare-ware installed in variation E [Porras

et al., 2009].

Whereas malicious software agents five to ten years ago focused on mischief and

disruption of services, more recent activity, including large scale malicious multi-agent

systems, often referred to as botnets, seem to be purposed for financial gain [Wang

et al., 2010; Bacher et al., 2008; Rieck et al., 2010]. The next section addresses various

motivations for the evolution of malicious multi-agent systems.
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1.3 Motivations

There are several motivations for malware designers to continue to create more

complex malicious multi-agent systems. The motivations range from profit, to mis-

chief, to social activism.

1.3.1 Criminal Enterprise

The Internet hosts a multi-billion dollar consumer environment. In 2006 Statistics

Canada [Canada, 2009] released figures indicating that Internet sales totalled $62.7

billion, a figure that has been rising drastically since 2000. Online transactions have

been targeted by criminal enterprise for some time now [Franklin and Paxson, 2007].

The actual mechanics of online fraud have included web site phishing [Lauinger et al.,

2010], username and password harvesting [Rieck et al., 2010; Stone-Gross et al., 2009],

credit card stealing [Stone-Gross et al., 2009], and email spamming [Lauinger et al.,

2010].

One interesting example of criminal activities highlighted by Peng et al. [2009] is

the prevalence of click bots. Click bots are malicious software agents that run on the

victim machine with the sole purpose of clicking online advertisements to either in-

crease revenue for syndicators or force competing advertisers to pay high advertising

fees for fake advertisement clicks, since some online advertisement structures include

pay per click payments. Criminals can take advantage of malicious multi-agent sys-

tems to deploy large numbers of click bots as malicious software agents to influence

revenues for online advertisers, publishers and syndicators. More sophisticated click

bots are likely to remain active longer, increasing the opportunity for profit.



Chapter 1: Introduction 9

1.3.2 Espionage

Online espionage is difficult to quantify. However, its existence has been docu-

mented in some cases [Deibert and Rohozinskli, 2009, 2010]. In particular corporate

espionage involves hiring a company or contracting an individual to exploit technol-

ogy in order to gain access to information that will give one company a competitive

edge against competitors. This could include information about upcoming products,

marketing strategies, planned acquisitions, etc. In private industry, if one company

can learn the closely held secrets of another company it can profit by exploiting that

information.

Espionage relies on malicious software agents capable of mimicking common net-

work traffic to avoid detection and ex-filtrating data to exploit competitors (Section

1.5.4).

1.3.3 Social Activists

The Internet acts as a mass media distribution network. As such, any group

looking to spread its point of view whether it be religious, political, philosophical

or malicious can reach millions across the world using the Internet. Web forums,

blogs and social networking sites are all examples of technologies that allow people

to share their ideas. The malicious activist exploits such technologies in an attempt

to spread their message to people who are not actively looking for it, or to suppress

the information of rival groups [McCaughey and Ayers, 2003]. For example, a group

of environmental activists might try to deface an oil company’s web page, portraying

the oil company in a bad light. Equally, political parties may try to force a rival
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party’s web pages offline through a number of techniques.

Malicious multi-agent systems are an effective tool for social activists. As mali-

cious multi-agent systems propagate, they enlist more and more malicious software

agents that can potentially participate in a distributed denial of service (DDoS).

Propagate and deny (Section 1.5.4) are both key to achieving the goals of the social

activist.

1.3.4 Mischief

Finally, there are those individuals or groups who enjoy exploiting technology for

the challenge of it and in general either want to cause mischief, or accept that a side

effect of their tinkering involves mischief [Alhabeeb et al., 2010].

1.4 Malicious Multi-Agent Systems

Malicious software agents continue to evolve today, making identifying and track-

ing malicious multi-agent systems a challenging problem. Consider an intelligent

malicious software agent operating in the context of a malicious multi-agent system.

Assuming that the malicious software agent is designed to be both subtle and covert,

it will surely disguise itself by mimicking one of several protocols commonly seen

on a target network. For example, on observing SETI@home traffic on a network,

a malicious software agent might choose to disguise its communications to look like

SETI@home packets. Even if the malicious software agent is not intelligent enough to

both recognize SETI@home traffic and disguise itself as that, a malicious multi-agent

system (perhaps including human operators) could use malicious software agents to
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snoop a network and, recognizing the SETI@home traffic, modify their communica-

tions to appear similar. It would then be difficult for a network defender to distinguish

between the malicious software agent’s mimicked SETI@home and the legitimate

SETI@home. SETI@home is just one example of a protocol that can hide malicious

multi-agent system communications. DNS, HTTP, email attachments, all of which

can be potential containers for malicious multi-agent system communications.

Further, suppose a network defender knows that some malicious multi-agent sys-

tem communications exist in SETI@home traffic. There are limited options avail-

able for preventing the individual malicious software agent communications from

leaking information out of the network. First, the network defender might decide

that SETI@home traffic should be blocked entirely from the protected network. An

intelligent malicious multi-agent system would likely recognize a drop in perceived

SETI@home traffic from some of the malicious software agents and adjust the ma-

licious multi-agent system’s communications to some other common protocol on the

target network. Effectively the network defender might suppress a few of the mali-

cious software agents from communicating for a short time, but risks upsetting the

network clients. There are a finite number of legitimate protocols a network defender

can block before impacting the clients to a degree that they no longer find the host

network valuable. Second, the network defender might try to distinguish between ma-

licious SETI@home and benign SETI@home. Such a task requires significant manual

effort. The network defender must learn how to recognize the SETI@home protocol

and know enough about the protocol to understand what information the packets

contain. Then the network defender must be able to identify features in the proto-
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col that differentiate between the benign SETI@home and the malicious multi-agent

system communications mimicking SETI@home. Third, the network defender could

wait until there is an update or patch available for their systems that will recognize

the malicious software agents without the intense manual labour required on the part

of the network defender. Assuming an update or patch is made available, there is still

the time between the infection and the update/patch where the malicious software

agent is able to leak information from or cause damage to the target network, and

being part of a larger malicious multi-agent system, the malicious multi-agent system

could recognize the loss of communications from individual malicious software agents

and adapt the malicious software agents that are still successfully communicating.

The more difficult scenario arises when the network defender does not know the

network has been infected. Suppose a malicious multi-agent system has established

itself on a target network, with several malicious software agents distributed across a

number of machines. On instruction from controlling agents in the malicious multi-

agent system the malicious software agents have disguised themselves by mimicking

one of tens or hundreds of different protocols in the network and are leaking infor-

mation from the network to the greater malicious multi-agent system. The network

defender can monitor the network with a variety of commercially available security

products, but they are reactive in nature. In order to find malware, the protocols

have to have been previously identified and distinguishable from the benign varia-

tions of common network protocols. The network defender is tasked with identifying

malicious multi-agent system communications while there is no certainty that any

malicious software agents are present. The problem is comparable to searching for a
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needle in a haystack, when it is not clear that there is a needle to be found.

Detecting malicious multi-agent system communications is somewhat analogous

to medical diagnostics [Zelonis, 2004]. At any point in time the human body is as-

saulted by a number of different potential viral infections, miniature biological multi-

agent systems. These miniature biological multi-agent systems aren’t recognized until

symptoms are present. When symptoms are present, a medical professional may be

tasked to diagnose the causes of the various symptoms. In some cases an infection is

identified, or at least a set of likely causes are identified and treated. However, the

most insidious infections are those that do not present early symptoms or present

symptoms that do not distinguish the infection from a variety of other common infec-

tions. For example, consider a deadly biological virus that masks itself as a common

cold. The impact of such a virus would be dramatic, and threatening to the human

host, as it would evade standard diagnosis techniques.

Just as diseases may interact and present different symptoms than they would

separately, the act of diagnosis in a multi-agent software setting is similarly compli-

cated. However, an important distinguishing factor between medical diagnosis and

Multi-Agent Malicious Behaviour Detection is that in the case of intelligent covert

malicious software agents, the impact might not present itself in the network in the

same way a biological virus presents in a human host. If, for example, a malicious

multi-agent system is tasked with stealing banking information, the real world impact

might be identified when a victim’s credit card statement reveals fraudulent charges.

Tying those charges back to an individual malicious software agent or a larger mali-

cious multi-agent system on an online market place would be difficult and there is no
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incentive for the malicious multi-agent system to overtly damage the target network

as long as the malicious software agents are recovering valuable information.

1.5 Detecting Malicious Multi-Agent Systems

As previously discussed, malicious multi-agent systems are evolving, and detect-

ing them is difficult. However, various areas of artificial intelligence are advancing

faster than ever before, as technology in general continues to improve exponentially.

Techniques that were impossible, due to technical limitations, are now becoming rea-

sonable and these advancements require that researchers in areas such as computer

security constantly revisit domains such as artificial intelligence for potential problem

solutions.

1.5.1 Machine Learning

Ensuring that the machine learning and computer security keep pace with each

other is important in advancing both disciplines, and necessary if network defenders

are to keep up with evolving malicious multi-agent systems. Each year machine learn-

ing algorithms are enhanced and validated against a variety of problem sets, such as

DNA classification and object recognition in computer vision [Leistner et al., 2010;

Jensen and Bateman, 2011; Kamath et al., 2011]. While useful in these particular

problems, the application of such techniques to new and distinct problem areas is

a way to further validate these techniques, and advance machine learning by noting

where the techniques can be improved. In my thesis research, the novelty of us-

ing machine learning to detect, discover, and mitigate malicious multi-agent systems
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is realized by incorporating recently published machine learning techniques into a

Multi-Agent Malicious Behaviour Detection system that supports network defenders

in detecting modern malicious multi-agent systems. It is also likely that good po-

tential online machine learning algorithms would have previously been discounted for

use in security applications because of the speed of networks relative to resources

available to these algorithms. However, as processors and memory scale up, these

previous techniques may become more suitable. Chapter 6 compares a number of

these approaches, and illustrates several are suitable choices for this framework.

One of the difficult and novel aspects of this research is building a Multi-Agent

Malicious Behaviour Detection framework that can leverage modern machine learn-

ing techniques and apply them to the problem of malicious multi-agent system de-

tection. Constructing such a framework is difficult, as it requires the capability to

frame malicious multi-agent system detection into a context where machine learning

is applicable. While this work is not intended to make substantial contributions to

machine learning directly, it is expected that each problem that shows a significant

gain from using the latest machine learning techniques has the effect of motivating

further research in machine learning.

In addition to treating groups of malicious software agent as malicious multi-agent

system, the framework I present is itself a Multi-Agent approach. The following

section elaborates on the multi-agent perspective as a solution.
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1.5.2 Multi-Agent Approach

Multi-Agent Malicious Behaviour Detection is a multi-agent approach to detect-

ing, discovering, and mitigating malicious multi-agent systems. Increases in the num-

ber of cores on modern multi-core processors have made multi-agent approaches more

feasible in the computer security domain. Multi-agent systems have been deployed

for malware detection before, and I will present a number of them in Chapter 3, in

order to contrast my approach. Increasingly, multi-agent approaches are more effec-

tive as resources on machines are becoming easier to share between multiple agents.

The novelty here is the division of effort among the Multi-Agent Malicious Behaviour

Detection Agents, and the usage of techniques that were previously not readily avail-

able. For example, I take advantage of advances in the RabbitMQ AMQP system for

reliable communication between Multi-Agent Malicious Behaviour Detection Agents,

further discussed in Section 5.4.1. Additionally, deep packet inspection has been made

available to high level programming languages through projects such as Sharp Pcap.

There are many disparate components that make up the Multi-Agent Malicious Be-

haviour Detection framework presented as part of this research, and the truly difficult

and novel aspect of this work is bringing them all together to confront the advances

in malicious multi-agent systems. As discussed in Section 1.4, intelligent malware is

making the problem of detecting malicious multi-agent systems ever more difficult.

Here the goal is to ensure that a framework exists enabling multi-agent systems to

evolve to cope with the challenge that malicious multi-agent systems pose.
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1.5.3 Human-Machine Interaction

The holy grail of computer security is a fully autonomous system capable of keep-

ing pace with evolving malicious multi-agent systems and ensuring a near perfect

detection and mitigation capability. However, as I will discuss in the next two chap-

ters, the state of the art in computer security is still far from that goal. Much of

computer security is still a manual process. This work provides novel insight into the

division of labour between autonomous systems and human network defenders. As

part of my framework, network defenders will describe potentially malicious multi-

agent system behaviour using a human-readable format. The autonomous parts of the

Multi-Agent Malicious Behaviour Detection system derive hypotheses from complex

network features, which are difficult for network defenders to understand. The hy-

potheses regarding malicious multi-agent system communications are then grounded

to the human-readable knowledge to improve human-machine interactions. Tying

the Multi-Agent Malicious Behaviour Detection system’s representation of traffic to

something a network defender can understand is important for improving human

machine interaction.

Given that the human network defender and autonomous parts of the Multi-

Agent Malicious Behaviour Detection system do not share identical representations

of traffic, the system will make hypothesis about traffic that do not precisely match

what the human network defender has tasked the system to look for. The system will

provide some measure of confidence, and the human network defender can use that

confidence measure to decide whether a hypothesis is worth following up on. The

ability to possibly exceed the specifications of humans by looking for behaviour that
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looks something like what it has been tasked to search for means that the system can

possibly discover novel malicious multi-agent behaviour.

1.5.4 Malicious Multi-Agent Behaviours

To accomplish its goals, any malicious multi-agent system will have to engage in

a collection of activities that have observable effects across a network. Multi-Agent

Malicious Behaviour Detection relies on both being able to detect and participate in

malicious multi-agent system behaviours. Those behaviours will be discussed through-

out this research, and are described here.

Beacon A mechanism used by malicious software agents to announce their presence

to some controlling infrastructure in the malicious multi-agent system. Beacons

typically have some periodicity, but may be sent out at random intervals to

decrease the likelihood of being detected. A repeated beacon increases the

likelihood that the malicious multi-agent system can maintain contact with

individual malicious software agents. While beacons are simple in concept, they

provide the Multi-Agent Malicious Behaviour Detection system with something

to detect, as they are pervasive in malicious multi-agent systems [Dash et al.,

2006].

Deny Denial of service has long been the result of many instances of malware. Exam-

ples include the Morris Worm [Spafford, 1988], the ILOVEYOU Worm [Chen

and Robert, 2005] and Conficker [Porras et al., 2009]. There are numerous

examples where self propagating worms have rendered mail servers useless or

congested network traffic to a degree that legitimate traffic can no longer reach
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its destination. Some viruses and worms have been known to simply attempt

replication within the infected host tying up system resources.

Trojans and viruses have been known to selectively shut down services on the

host machine. For example, there have been cases where a trojan was capable

of shutting off the host anti-virus software. Some variations of Conficker (more

precisely a worm) are able to disrupt the host’s ability to use domain name

resolution services [Leder and Tilmann, 2009].

Web hijacking and phishing sites often prevent the victim from visiting targeted

websites or direct the user to their own websites. In essence they deny the victim

the services that would have been provided by the website the victim intended

to visit [Wurzinger et al., 2009].

With respect to denial of service, Multi-Agent Malicious Behaviour Detection

looks for a specific type of denial of service, the distributed denial of service at-

tack (DDoS). This form of denial of service involves multiple malicious software

agents making connection requests, or some other service request, to the same

server rapidly and repeatedly. The target server becomes overwhelmed with

fake requests from the malicious multi-agent system and is unable to serve le-

gitimate requests. There have been many instances of this occurring throughout

the last decade (see [Lawniczak et al., 2009]).

When malicious software agents deny service to a target host they produce a

significant amount of traffic, that is detectable. The distributed nature of the

attack can aid in tracking the malicious multi-agent system.
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Propagate To be successful, a malicious multi-agent system must propagate to ad-

ditional hosts, distributing malicious software agents throughout the target net-

work. A malicious software agent may contain a mechanism to infect other hosts

on the local network or embed itself into communications between the infected

host and other hosts, as is typical with traditional malware [Chen and Robert,

2005].

The malicious multi-agent system propagation can exhibit itself by a sharp

increase in email traffic or duplicate data being sent frequently within a group

of machines. The importance of propagation is that in order to propagate, data

must be passed from one machine to another, therefore the physical event of

data passage should be detectable.

Ex-filtrate In general malware is known to extract information from the infected

host and ex-filtrate it to controlling infrastructure [Stone-Gross et al., 2009].

The same should be expected from malicious software agents in a malicious

multi-agent system. The information ex-filtrated from hosts could include:

banking information, credit card numbers, passwords, proprietary secrets, or

anything else storable on a machine.

A malicious software agent capable of ex-filtrating data is typically referred

to as a trojan, since trojans allow the attacker to log into the victim machine

through the trojans interface, and allows the attacker to send and receive in-

formation [Rieck et al., 2010]. However, as malicious software agents become

more autonomous, less and less human interaction from an attacker will be re-

quired - until such a time that the malicious multi-agent system expresses an
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interest in a particular type of information and the malicious software agents

are automatically tasked to retrieve the data.

As in propagation, the malicious software agent must send data to achieve ex-

filtration, as well as receive taskings from the malicious multi-agent system. The

interactions between the malicious software agent and the malicious multi-agent

system should be detectable by Multi-Agent Malicious Behaviour Detection.

Update Various existing malicious multi-agent systems are maintained by attackers

by means of downloaded updates or patches sent from controlling infrastruc-

ture. Often updates may be identified by an unusual download of an executable

file [Leder and Tilmann, 2009]. While malicious software agents may be able to

self-replicate, in order to continue to evolve external updates must be sent from

the malicious multi-agent system to the individual malicious software agents.

Updates enable the malicious software agents to improve their ability to avoid

detection, or add novel capabilities. Conficker is a rich example of a malicious

multi-agent system comprised of various versions of malicious software agents

that are routinely upgraded (Section 1.2.2).

Updates are another behaviour that involves communications between malicious

software agents in a malicious multi-agent system. As with propagation, up-

dating should be identifiable by the transfer of data from an external malicious

multi-agent system infrastructure out to various groups of malicious software

agents. However, updates are likely to happen less regularly than propagation

attempts and may be difficult to predict.
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Mimic In order to avoid detection, malicious software agents require the capability to

mimic existing traffic on a network. More sophisticated malicious multi-agent

systems will be capable of achieving a higher degree of detection avoidance.

Simple mimicking techniques include using DNS for beaconing, or delivering ex-

filtrated document in HTTP post messages. If the individual malicious software

agents are sophisticated enough to blend into their network environment by

mimicking the common protocols their detection will be difficult. From the

perspective of Multi-Agent Malicious Behaviour Detection, the mimic behaviour

requires attention to benign protocols and mechanism for identifying abuse of

those protocols.

1.6 Hypothesis and Research Questions

Now that I have described the challenges associated with detecting malicious

multi-agent systems and introduced motivations for the increasing complexity of ma-

licious multi-agent systems, I will provide the principal hypothesis and research ques-

tions that this thesis will address.

1.6.1 Hypothesis

There is a trend demonstrated by the discussion so far that malicious software

agents are evolving increasingly sophisticated techniques to evade network defenders.

While individual malicious software agents might be of limited intelligence, the inter-

action of a collection of malicious software agents as a malicious multi-agent system

(perhaps supported by human operators) presents a difficult problem for computer
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security. The problem is comparable to work in competetive multi-agent systems in

the field of artificial intelligence, and treating malicious software agents as artificially

intelligent autonomous agents, like those commonly studied in the field of artificial

intelligence, is worthwhile. Further, treating groups of interacting malicious software

agents as a malicious multi-agent system is justified.

1.6.2 Research Question 1

How can advances in artificial intelligence, such as machine learning and multi-

agent systems, be applied to computer security to increase the success of detecting

and mitigating malicious multi-agent systems?

1.6.3 Research Question 2

Given that malicious multi-agent systems are expected to evolve, including chang-

ing their communications to adapt to target networks, how can advances in artificial

intelligence, such as machine learning and multi-agent systems, be used to improve

discovery of novel and/or evolving malicious multi-agent systems?

1.6.4 Research Question 3

Given that the complexity of computer network security requires some level of

human expertise, how can a methodology involving a collection of semi-autonomous

Multi-Agent Malicious Behaviour Detection Agents improve the capability of net-

work defenders to detect and monitor sophisticated malicious multi-agent systems?

How can such a system limit the cognitive load on the network defenders while still
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providing increasing value in malicious multi-agent system detection capability?

1.6.5 Research Question 4

What methods exist to ensure that as research in multi-agent systems and ma-

chine learning progress, those benefits are realized in computer network security and

employed against malicious multi-agent system detection?

1.6.6 Discussion

The hypothesis follows from earlier sections in this Chapter and the rest of this

research will reinforce the validity of the hypothesis. The motivations and justifi-

cations for each research question follow from the discussion to this point, and will

be addressed throughout the rest of this thesis. To elaborate on reasearch ques-

tion 4, given the evolving nature of this problem any proposed solution that cannot

be readily adapted to take advantage of new techniques for detection will quickly

become obsolete. This research emphasizes the importance of designing and imple-

menting a Multi-Agent Malicious Behaviour Detection framework that is extensible

such that any improvements in machine learning and multi-agent systems can be

readily adopted in the Multi-Agent Malicious Behaviour Detection framework. Ad-

ditionally, providing mechanisms to abstract details of specific processes away in a

modular format so that further research into computer security can be introduced

into the system without significant effort is important to ensure the research here

continues to be relevant for some time after this work is published.
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1.7 Summary

The research presented here deals with the detection of malicious multi-agent sys-

tems and presents a novel framework that furthers research in multi-agent systems,

computer network security and human machine interaction while taking advantage

of advances in machine learning techniques. Multi-Agent Malicious Behaviour De-

tection blends real-time detection with human level analytics from network defenders

to further improve detection capability. Multi-Agent Malicious Behaviour Detection

takes advantage of existing behaviours defined by network defenders using various

analytics, like observing malicious multi-agent systems or direct interaction with ma-

licious software agents. Multi-Agent Malicious Behaviour Detection consists of a

custom multi-agent system leveraging machine learning techniques to recognize sets

of additional behaviours shared by a variety of malicious multi-agent system agents.

The shared behaviours are further used to detect previously unknown instances of

malicious multi-agent systems as well as individual malicious software agents. The

detectable behaviours I will consider are: beacon, deny, propagate, ex-filtrate, update,

mimic.

The next chapter will discuss further background in network security, describing

the range of computer network attacks and introducing terminology used throughout

the rest of this thesis. Chapter 2 is important for those who are new to computer

network security, or are seeking a refresh on the topic. Chapter 3 describes a variety

of technologies and methods currently deployed for detecting malicious behaviours

and reviews other similar work in the field of both artificial intelligence and com-

puter security. Chapter 3 includes discussion on machine learning and multi-agent
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systems as well. Chapter 4 presents the Multi-Agent Malicious Behaviour Detection

Architecture. Chapter 5 describes the design and implementation of the Multi-Agent

Malicious Behaviour Detection Architecture. Chapter 6 describes the experiments

performed to evaluate the architecture implemented in Chapter 5 and discusses their

results. Finally, Chapter 7 provides an analysis of the results and the conclusions that

can be drawn from this research, along with some indication of useful future work in

this area.



Chapter 2

Background

2.1 Overview

Computer Security is a rich field that can be overwhelming if the proper back-

ground is not provided. This chapter seeks to provide additional background to help

improve the overall understanding specifically of computer network security. While

those already well versed in computer network security may choose to skip this chap-

ter, I encourage readers who are new to the area to take the time to go over the next

few pages where I introduce some terminology, types of detection systems, traditional

technologies commonly deployed and finally end with a description of two detection

methods. Chapter 3 expands on computer security research and will introduce arti-

ficial intelligence, machine learning and multi-agent systems.

27
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2.2 Terminology

This section presents some common terminology used in computer security. Some

terminology varies slightly in usage throughout the many sub-domains in computer

security. Here I present each item within the context of this thesis.

2.2.1 Intrusion Types

There are many different types of system intrusions. Most, however, fall under

one of six broad categories: worms [Moore et al., 2003], viruses [Chen and Robert,

2005], trojans [Livadas et al., 2006], scans [Whyte et al., 2006], botnets [Gu et al.,

2008b] and zero-day exploits Crandall et al. [2005]. In the context of this research

a malicious multi-agent system could involve any of these techniques. Here I give a

brief explanation of each of these.

Worm The primary characteristic of a worm is its ability to self propagate, typically

from one machine to another [Moore et al., 2003]. The worm executable will

transfer itself from one victim to another across the network by exploiting some

vulnerability in the target machine. A typical side effect of worm activity is

a disruption of service due to network congestion as the worm attempts to

spread to as many machines as it can reach. In the worst case, all machines

are vulnerable and the worm will propagate exponentially. Legitimate traffic

is either severely delayed or dropped as the network becomes saturated with

malicious worm traffic. A worm may also contain a malicious payload, acting

as a transportation mechanism for a virus or a trojan.
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An example of a fairly straightforward worm is Slammer [Moore et al., 2003].

According to Moore et al. [2003], Slammer was able to spread to 90% of vulner-

able machines in roughly 10 minutes, illustrating a simple but effective propa-

gation method. The worm exploits a buffer overflow vulnerability in Microsoft

SQL products. Because the vulnerability could be easily tested remotely with a

single payload smaller than 400 bytes, Slammer’s propagation quickly saturated

network links. The worm pseudo-randomly chooses IP addresses and sends the

exploitation payload to as many IP addresses it can generate before being de-

tected. Aside from delivering the payload to exploit the target machine and

propagating, there does not appear to be any other functionality in Slammer.

Virus A virus embeds, or infects a file on the host machine [Chen and Robert, 2005].

Its primary method for propagation involves infecting other files. As users

distribute infected files to other machines, through peer to peer networking,

portable digital media distribution, email attachments and embedded links, or

traditional file sharing the virus spreads. Since the Virus embeds itself into

otherwise non-malicious files, its spread is dependent on files being copied to

other computers or by infecting files on network shares [Chen and Robert, 2005].

Trojan A trojan, sometimes referred to as a backdoor, is an application that allows

a user to have access to a remote machine, typically without the victim knowing

and often by covert means [Livadas et al., 2006]. Once installed, many trojans

listen for connections to the victim machine on predefined ports and when a

connection arrives, the attacker can use the connection to perform a number of

tasks on the victim machine. Often trojans are referred to as remote adminis-
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tration tools, boasting legitimate functionality. However, their functionality is

routinely abused and many popular trojans are considered malware. A trojan is

typically installed by another program, often referred to as a dropper. A trojan

may be the malicious payload in a worm, attached to an email in a content de-

livery attack (see Section 2.2.2), or downloaded when a user follows a malicious

URL.

Subseven [Livadas et al., 2006] is a well known trojan that has been active since

1999. Although marketed as a remote administration tool, Subseven has been

used widely as a trojan for mischief and criminal purposes. Subseven typically

opens port 27374 and communicates using an IRC channel or ICQ, allowing

a controller to connect and manipulate the infected machine. It provides the

controller with various functionality such as the ability to control the mouse,

webcam and microphone. It allows the controller to take screen shots, sniff

traffic, read/write files, and log keystrokes. Finally, Subseven can instruct the

machine to participate in a DDoS attack [Poulsen, 2001], a deny behaviour as

discussed in Section 1.5.4.

Scan Although not an attack per se, a network scan often occurs before a specific

attack [Whyte et al., 2006]. The attacking host will send the victim host some

number of connection requests to a variety of ports on the victim machine.

The attacker uses the responses to the connection requests to determine if a

particular service is running on the victim. Once a list of ports with services

is identified, further scans are used to determine if the discovered services are

vulnerable to attack. For example, an attacker might start by sending a syn
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packet to port 80 and get a syn ack response from the victim. The attacker

may then send another syn packet and try to establish a full connection with

the server by completing the TCP three way handshake. Once the connection

is established the victim will likely return a banner indicating the version of

the server as well as other key information that the attacker can then use to

determine if the victim is vulnerable to attack. Scans are often performed in

bulk, where an attacker might scan an entire network in search of vulnerable

servers. Much research has been performed in order to identify such scans,

assuming that a scan is an indicator of a imminent attack [Whyte et al., 2006].

Botnet A botnet is an example of a malicious multi-agent system (see Section 3.4)

and is the topic of a significant body of computer security research [Gu et al.,

2008b]. Botnet victims are organized into a network of similarly compromised

machines ready to accept commands from a botmaster. Traditionally botnets

are organized in a hierarchy, with bot machines at the bottom, capable of ac-

cepting commands from a layer of controllers that are ultimately controlled by a

botmaster. The botmaster directs the actions of the bots by sending commands

to them through controller hosts. Often the hosts communicate through an IRC

channel, or by way of HTTP [Gu et al., 2008b]. There are also P2P botnets,

such as the Storm [Grizzard et al., 2007; Holz et al., 2008] and Nugache [Dittrich

and Dietrich, 2008] botnets, which communicate with peers to get lists of com-

mands [Kang et al., 2009]. Machines become part of a botnet post infection by

a number of available means, such as social engineering [Lauinger et al., 2010],

content delivery [Chen, 2003], application vulnerabilities [Andersson et al., 2004;
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Jimenez et al., 2009; Clarke, 2009], operating system vulnerabilities [Jimenez

et al., 2009; Clarke, 2009] and password guessing [Holdings, 2010; Zatko, 2009].

Currently, identifying botnets often focuses on detecting hosts involved in de-

nial [Lawniczak et al., 2009], ex-filtration [Rieck et al., 2010] or propagation

using a variety of techniques. Each of these corresponds to the behaviours

described in Section 1.5.4.

Zero-Day Exploit A zero-day exploit is a vulnerability in an application that can

be exploited by malware developers to attack a host machine that is unknown

to the application developer. Once the application developer is aware of the

vulnerability, the zero-day exploit is no longer a zero-day, as the application

developer now has a chance to fix the vulnerability in the target application.

Zero-day exploits are dangerous as they are unlikely to be identified by most

anti-virus or intrusion detection systems [Crandall et al., 2005].

2.2.2 Attack Vectors

There are a number of different methods used to exploit information technology.

The following subsections describe some of the most common.

Social Engineering Social engineering aims at gaining access to networks through

taking advantage of people who already have access. Social engineering is de-

scribed in a number of research papers as a an attack vector, such as Chen

and Robert [2005], Dittrich and Dietrich [2008], Holz et al. [2008], Rieck et al.

[2010], Wurzinger et al. [2009], Stamos [2010] and Deibert and Rohozinskli
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[2009]. For example, an attacker can call a victim pretending to be a repre-

sentative of the victims network technical support team. The attacker would

then ask the victim a variety of questions and try to get the victim to reveal

passwords, or network information that could facilitate the attackers approach

on the network. Social engineering also generally includes such techniques as

dumpster diving (where the attacker tries to find information about the victim

network by searching through the trash bins near the physical network loca-

tion) and email fraud. Email fraud, when not used in the context of content

delivery, also aims at trying to convince the victim to reply with a password

or reveal additional information. Computer security techniques for preventing

social engineering attacks rely heavily on informing the end users about the risk

of sharing information with outsiders.

Included in social engineering attempts are automated methods for eliciting

users to following links. The links can be sent via spam emails, randomly posted

in chat channels, or presented to users in phishing attacks. Phishing attacks

are especially effective, as the malicious user will often present the victim with

a convincing looking web-page or a pop up similar to a web-page they frequent.

The fake website will try to convince the user to either follow a link or give out

personal information. Lauinger et al. [2010] also describe a man in the middle

attack, where a bot forwards messages from one person to another in a chat

room, and once the users appear to have a genuine conversation the bot looks

for opportunities to insert malicious links that one of the participants in the

conversation are likely to click on.
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Content Delivery Content delivery typically involves an attacker sending emails

out to targets with an attachment containing either a virus, a trojan, a worm or

some combination of those. The attacker may be expressly targeting a particular

user by trying to send a trojan exploitable at a later time, or a worm might

attach a copy of itself to an email and send the copy to people residing in the

victims email contacts, like in the case of the ILOVEYOU worm [Chen, 2003].

As users become more educated about the dangers of opening attachments,

social engineering becomes more key to the success of a content delivery attack.

To that end, attackers will often try to fake legitimate looking email addresses

with convincing content, or send emails from accounts that exist in the target’s

contacts list.

Application Vulnerability A number of applications are vulnerable to exploitation

due to various reasons. Often a remote machine’s interactions with a vulnerable

machine can allow the attacker to obtain privileged access to the victim machine.

For example, in 2000 a vulnerability in wuftp allowed users logging into the ftp

server anonymously to supply a malformed password. This in turn was used to

cause an overflow in the password buffer and allowed the attacker to exploit the

buffer by inserting malicious code for spawning a root shell [Andersson et al.,

2004]. Vulnerabilities such as these crop up on a regular basis, some of the

most popular ones being SQL injection attacks against web servers and various

exploits targeting Adobe PDF and Microsoft document formats [Jimenez et al.,

2009; Clarke, 2009]. Many of the vulnerabilities appear in features intended

to improve the service or product, but in fact also increase the victims’ attack
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surface by introducing insecure code.

Operating System Vulnerability Operating system vulnerabilities used to be very

common. The core programming of the operating system itself would contain

exploitable errors in code. Many operating systems have implemented enhanced

security in an attempt to reduce the number of vulnerabilities; for example de-

vice driver signing, non writable memory locations, chroot jails, etc. Given

that operating systems, by their nature, involve a very large amount of code

and functionality, with the additional requirement of inter-operating with third

party applications, ensuring an operating system cannot be exploited is a com-

plex problem [Jimenez et al., 2009; Clarke, 2009].

Password Guessing Password guessing is a brute force approach that attempts

to raise the attacker privileges by simply guessing an account password over

and over again. Traditional password guessing relies on dictionary attacks,

where the password guesser will try every word in a predefined dictionary, often

starting with common passwords and then moving on to uncommon passwords.

Password guessers have taken advantage of a number of user weaknesses in pass-

words, such as common words, adding numbers to the end of common words,

years of birth, etc. Once a set of common passwords, and passwords derived

from common passwords is exhausted, many password guessers will begin a

complete search of all possible combinations of either alphabetic, alphanumeric

or alphanumeric with additional symbols. Exhausting the space of all possible

passwords is a purely brute force approach, but given enough time this approach

will always succeed. Many operating systems and other applications requiring
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password access allow administrators to set a fixed number of password attempts

before they lock a user account out of the system. This feature has limited the

usefulness of password guessing attacks in real-time. However, there still exist

applications that allow offline password guessing that work against password

files, e.g. lophtcrack [Holdings, 2010; Zatko, 2009].

2.3 Detecting Malicious Software

In general there are two broad approaches for deciding where detection of malicious

software should take place, depending on the physical and logical location of the

detecting software agent, referred to here as a detection agent. It can be done in a

distributed manner, with detection agents on each host responsible for monitoring

the target hosts’ behaviour, or the detection agent can be positioned somewhere in

the network where it is responsible for intercepting and monitoring traffic destined for

several different hosts. These two approaches are termed host-based or network-based

intrusion detection [Kabiri and Ghorbani, 2005]. Both approaches have advantages

and disadvantages, and these are discussed below. Additionally, detection of malware

can occur in-line, offline, or passively. The choice of which method to use can impact

the security of the network by limiting either the variety of methods used for detection

or the speed/type of response to a detection event.

2.3.1 Network-Based Detection

The role of the network detection agent is to observe the traffic at one or more

layers of the TCP/IP model (application, transport, Internet or link). A network
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detection agent could operate at any layer of a network-based off the OSI model.

However for simplicity my work will only consider the TCP/IP model. The net-

work detection agent collects some subset of the data it is able to observe, and in

the simplest case, classifies it as either good or bad. The network detection agent

may be responsible for one or more follow-up actions, such as logging a represen-

tation of all traffic, logging bad traffic in the form of alerts, collecting traffic for

post analysis, or blocking bad traffic from entering the network [Dreger et al., 2008;

Chen et al., 2010]. Network-based detection requires each detection agent to be po-

sitioned at choke points throughout the network. Choke points typically reside at

routers/switches where traffic aggregates and is then distributed out to the rest of

the network. On broadcast networks, where every communication is broadcast and

each host can identify which messages belong to them, the network detection agent

can reside anywhere in the network and still receive all traffic. When positioned cor-

rectly across the network, all traffic in to and out of the protected network must pass

through a network detection agent before arriving at its intended destination.

One advantage of network-based detection is that it provides the network admin-

istrator with a broad view of what is occurring on a network without having to query

every individual machine. Installing and managing sensors on individual machines

may be prohibitive due to resource constraints. Additionally, actions can be taken

on network traffic before it reaches the individual host. A host may be vulnerable

to a particular attack, but a network detection agent that is not vulnerable to such

attacks can either stop the traffic from getting to the vulnerable host or notify the

system administrator that such traffic is destined to the host.
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Network-based detection agents must determine how the destination host will

treat individual packets, and therefore a major design decision is whether the sensor

will operate on individual packets out of context or act on sessions of reassembled

packets. Network detection agents are more complex when designed to process the

application or reassemble the transport layers of the target traffic. However, malware

that operates at the application layer may be difficult to detect at lower levels of

the TCP/IP model [Handley et al., 2001]. For example, at the IP layer a network-

based detection agent can use a blacklist to limit traffic coming into the network from

“bad” IP addresses. To operate at the TCP or UDP layer the network detection

agent must keep track of ports that are associated with each IP address. The feature

set has increased from 2 unique features to 5, commonly referred to as the 5 tuple.

The 5 tuple consists of source IP, source port, destination IP, destination port, and

protocol, where the protocol is typically UDP or TCP. At the transport layer the

network-based detection agent can filter protocols based on port and can also begin

filtering on the contents of individual packets. Operating at the application layer

requires maintenance of significantly more state information. Each TCP or UDP

packet can be recombined with the other packets in the same stream to build the

session, containing the complete message being sent to the destination host. The

network-based detection agent must be able to reassemble the packets into the same

session that the destined host would reassemble the packet in order to get the message

accurately. Handley et al. [2001] have shown that network-based detection agents can

be exploited by forcing the application layer to be fragmented across the transport

layer in such a way that reassembly of the packets will result in different sessions
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depending on the operating system performing the reassembly. The network detection

agent is tricked into reassembling the wrong stream and misses a feature of the stream

that would have resulted in classifying the stream as “bad”.

Finally, network-based detection can suffer from lack of information on how ap-

plication layers should be decoded. If the application layer is encrypted or otherwise

encoded using a shared secret between the source and destination of the communi-

cation, then without the shared secret or decoding information, the network-based

detection agent will be unable to view the information being passed between the two

hosts and will therefore be unable to make an accurate classification of the traffic.

Certain network policies may prohibit encrypted communication or require encrypted

communications be registered with the administrators. However, as encryption be-

comes ubiquitous in network communication, network-based detection will become

more difficult [Goh et al., 2010, 2009].

Specific examples of network-based detection agents are Snort [Papadogiannakis

et al., 2010; Snort, 2010], Sax2 [Trabelsi and El-Hajj, 2010; Sax2, 2010], Bro [Paxson,

1999; Vallentin et al., 2007; Flaglien, 2007] and Shoki [shoki, 2010]. There are a

variety of other network-based detection agents.

2.3.2 Host-Based Detection

Host-based detection requires a detection agent deployed to each host. From the

host the sensor is capable of observing network traffic, as well as processes running on

the host. Ideally, each network communication is associated with a specific process or

more generally an application. In addition, a sensor may have access to the memory
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space of each process as well as access to read and write to the file system on the

host. Host-based detection is therefore capable of performing a number of tasks that

network-based sensors are not. For example, if a host is the victim of a trojan, the

network sensor must rely on the network traffic to determine the existence of the

trojan. If the network traffic is encrypted or otherwise encoded, the trojan might go

unnoticed. The host-based detector can monitor the list of running processes, and

from there determine if a trojan is running. Upon discovery the host-based detector

may be able to terminate the process and notify the administrator of the existence

of the trojan, so that it can be cleaned from the system [Molina and Cukier, 2009;

Jiang and Wang, 2007]. The host-based detector may have the capability of removing

the trojan itself, if it is able to determine what file the trojan resides in. Maintained

host-based detectors are effective at taking care of a single host. Many anti-virus

vendors currently offer services like the ones explained above, as typically anti-virus

is a form of host intrusion detection [Kolbitsch et al., 2009].

Host-based sensor management must scale to the size of the protected network.

Each host should have its own instantiation of the host-based detector and each

of those detectors must be maintained up to date. Many private sector vendors

offer managed services for host-based sensor management, for example [Mcafee, 2010;

Symantec, 2010; Kaspersky, 2010].

The host-based sensor is susceptible to attack, which may render the sensor in-

effective. If the administrator relies on the integrity of the host-based sensor, and

that sensor is compromised then the machine itself becomes compromised. There are

several worms and viruses that attempt to terminate anti-virus processes. Once the
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anti-virus is disabled the machine is vulnerable [Molina and Cukier, 2009]. Addition-

ally, virus/worm writers can acquire access to the same commercial host-based sensors

that are available to their targets. By testing the detection capability of these com-

mercially available and managed host-based sensors, virus/worm writers can modify

their malware until it is not detected.

There are several host-based intrusion detection systems available, examples in-

clude Swatch [Hansen and Atkins, 1993; Swatch, 2010] , Snare [Zhu and Hu, 2003],

Sentry Tools [Tools, 2010] and Log Surfer [Surfer, 2010]. Host-based intrusion detec-

tion has existed for decades [Lane and Brodley, 1998; Lee and Stolfo, 1998]. However,

recent research on host-based intrusion detection include [Hu et al., 2009; Hugelshofer

et al., 2009].

Adopting a combination of host and network-based detectors allow administrators

to gain the benefits of both types of detectors.

2.3.3 In-line Detection

The main feature of in-line detection is that all network traffic must pass through

the detector before it continues on to the rest of the network. In this case, each packet

or reassembled session must be analyzed and classified in real-time as the detector

processes them. The packets may be forwarded one at a time, or the sensor may

attempt to reassemble sessions on behalf of the host, perform detection on the session

and then forward the session to its intended destination. In any case, the detector will

impact the flow of the traffic. Ideally the detector’s impact will not severely limit the

usability of the network. There are some very simple detection techniques performed
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routinely by network detector systems in real-time, such as port filtering and IP

address blacklisting. Other more complex tasks, such as matching strings, calculating

entropy and decoding ciphers, can seriously impede the network flow [Scarfone and

Mell, 2007].

If in-line detection is achieved and the impact on the network is manageable, the

detection agent gains the capability to take action on traffic before it gets to the host.

For example, the detector can actively block specific connections from taking place,

reset malicious sessions or redirect traffic to follow on processes. In-line detection

provides the sensor with flexibility with respect to taking action against malicious

traffic, but limits the detection capability of the sensor by requiring it to detect and

respond in real-time.

In-line detection may allow the detector to become a target of attack. Given that

the in-line detector is potentially accessible to would-be attackers, any vulnerability

in the detector itself may be exploited by an attacker. Once an attacker controls

the in-line network detector they may perform a variety of malicious tasks, such as

modifying black lists, denying service, or modifying traffic. Another attack on in-line

detection involves an attacker having knowledge of a subset of the in-line detector’s

rule set. An attacker could potentially force a denial of service by sending traffic

they know will trigger more alarms then the in-line detector can cope with, therefore

degrading network performance.
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2.3.4 Passive Detection

Passive detection is a slight variation on in-line detection. The detection agent

gets its own copy of all traffic entering and leaving the network from a particular

point in the network, sometimes enabled through a spanning port on a router or a

network tap. The detector is then not accessible by any outside machine, since it is not

connected directly to the network. The advantages of this configuration are: smaller

attack surface for would be attackers, process traffic may not be in real-time, but can

lag as long as during slow traffic periods it has the capability to catch up to current

traffic, it does not directly effect the usability of the network it is protecting. The

disadvantage is its limited ability to take action against traffic in real-time [Scarfone

and Mell, 2007]. There is technically no delay between the time when the detector

gets a copy of the traffic to when the host where the traffic was destined gets its

copy of the traffic, therefore the detector can not prevent the connection from being

established. However, if the passive detection is capable of performing detection in

near real-time, it may be able to reset connections through some other means before

the attacker completes its session.

2.3.5 Offline Detection

Offline detection is akin to network forensics. However instead of being in response

to an intrusion, offline detection involves analyzing stored traffic with the intention of

finding attacks. Offline detection typically requires a device on the network to write all

data to hard disk where analysts can apply algorithms to the traffic. Many intrusion

detection algorithms that require intense processing or large memory requirements
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have to post-process traffic since it cannot be done in real-time.

The main disadvantage to offline detection is that there is a delay between the

attack and response. Once an attack is identified too much time may have passed

to effectively respond to the attack. For example, determining that a DDoS attack

occurred the day after it finished is not efficient for preventing that particular attack.

Offline detection does enable prevention of future attacks even if they are identified

during post processing. Identifying that a botnet is expanding on the network still

allows network administrators to find and remove the existing trojans. Especially if

finding them cannot be done in real-time due to processing limitations.

2.4 Traditional Technologies

This section describes four traditional computer security technologies that are

common in computer networks today: firewalls, intrusion detection systems, intrusion

prevention systems and honeypots.

2.4.1 Firewalls

A firewall is an example of a simple in-line network security device. Traditionally

a firewall is designed to work at the Internet layer by filtering traffic by IP address or

the Transport layer by filter traffic according to the port of the traffic and its transport

protocol. In effect a firewall operates against a five tuple and either allows or denies

traffic in and out of the network depending on the five tuple. Firewalls are meant

to be a fast response first line of defence against Internet misuse and are common in

most networks [Chapman and Zwicky, 1995]. Firewalls used to be implemented as
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stand alone appliances or machines, but are now integrated into many home as well

as enterprise class routers. Host-based firewalls are integrated with many popular end

user operating systems, for example Windows, Mac OS and Ubuntu have integrated

firewalls [Al-Rawi and Lansari, 2007; Peisert et al., 2010; Kurland, 2010]. Host-based

firewalls, in addition to basing access to the machine by five tuple, are also capable

of limiting access to the Internet by applications installed on the host machine. The

relative simplicity of firewalls make them ideal for deploying at multiple levels of

the network. However, their simplicity also makes them susceptible to exploitation.

Firewall rules are updated based on blacklists, requiring malicious IP addresses to

be identified before they can be blocked. While the space of IP addresses is finite,

attackers can still originate from novel IP addresses with each new attack. Victims

offering services to a large number of consumers cannot block large subsets of the IP

space without impeding the victim’s ability to serve the consumer base. For a firewall

to be truly effective, the administrator must know ahead of time exactly which IP

addresses are the ones that can be trusted to interact with the victim’s machines.

Finally, since firewalls are typically support simple allow/deny settings based on

five tuples, any learning or modification of the firewall must be done from some other

application or device.

2.4.2 Intrusion Detection Systems

Intrusion detection systems (IDS) are designed to be more complex than firewalls,

with the intention of observing traffic and then logging alerts when traffic matching

a rule or heuristic is triggered. An IDS traditionally inspects further into a packet
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than a firewall (see Section 2.4.1). The IDS engine examines the IP and TCP/UDP

header features, such as source and destination IP addresses, ports, TCP flags, etc.,

acting at the second and third layers of the TCP/IP protocol stack. Additionally,

an IDS may look at the data section of an individual packet, or sessionize several

packets and match its rules/heuristics on the application layer [Scarfone and Mell,

2007]. The capabilities of an IDS are dependent on the placement of detection agents

as described in Section 2.3.

2.4.3 Intrusion Prevention Systems

Intrusion Prevention Systems (IPS) are an extension to the IDS, and were origi-

nally designed to allow dynamic modification of firewalls to block ongoing or predicted

attacks. Where an IDS is a passive device, monitoring network traffic and generating

alerts, the IPS monitors traffic and actively blocks traffic, either by modifying an

existing firewall or by itself acting as a firewall. Low false positive rates are desirable

for a system that blocks traffic dynamically without user intervention, and posses a

greater risk of blocking legitimate traffic if the rules/heuristics are unable to accu-

rately describe the malicious activity without producing false positives [Scarfone and

Mell, 2007].

2.4.4 Honeypots

In the context of computer network security, the honeypot is a monitored machine

that is intentionally left vulnerable to attack by malicious software. Such vulner-

abilities may include the absence of a firewall, easy-to-guess passwords, unpatched
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software, older operating systems, etc. The goal of the honeypot is to attract mali-

cious attackers. The honeypot administrator can then study any malware that infects

the honeypot to learn how to better protect other computer networks. Groups of hon-

eypots are sometimes referred to as honeynets. Since there is a significant amount

of automated victim discovery, a honeypot has the potential to be compromised by

automated as well as supervised attacks. There are, however, several disadvantages

to honeypots. First, a large number of attacks require user intervention. Many at-

tacks require content delivery (e.g. a download of an infected webpage, or opening of

an infected attachment). With no one to access a document infected with malware,

the honeypot may never be infected. Second, once a honeypot is infected it may

participate in malicious behaviour. There are ethical issues with respect to allowing

a machine to participate in malicious behaviour that may cause damage to other

systems. Third, honeypots require patience, and the infecting malware may not be

easily identified, requiring a significant amount of work for it to be effective [Baecher

et al., 2006; Provos, 2004; Balas and Viecco, 2005].

2.5 Detection Models

This section provides details on three detection models that will be incorporated

into the architecture of the system described in Chapter 4: misuse detection, anomaly

detection and heuristic detection.
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2.5.1 Misuse Detection

Misuse Detection identifies malicious behaviour based on a set of predefined rules

or signatures [Chen et al., 2007]. The rules generally identify specific instances of

known attacks. For example, a misuse detection rule may identify traffic on a specific

port containing a specific byte sequence as belonging to a particular bot. Consider

an example rule from the Bleeding Snort Virus rules [Snort, 2010]:

alert tcp $HOME NET any -> $EXTERNAL NET 25 (msg: “BLEEDING-
EDGE VIRUS - Bugbear@MM virus in SMTP”; flow established; content:
“uv+LRCQID7dIDFEECggDSLm9df8C/zSNKDBBAAoGA0AEUQ+”; ref-
erence:url,www.symantec.com/avcenter/venc/data/w32.bugbear@mm.html;
classtype: misc-activity; sid: 2001764; rev:4;)

A more in-depth discussion of the Snort rule structure will be addressed in sec-

tion 2.5.3. The signature above looks for TCP traffic leaving the home network going

to an external network over port 25 and having the specific content string above.

The rule identifies traffic from a known intrusion attempt. If the bugbear virus is

ever changed and even a single byte of the content is modified, the signature will no

longer detect the bugbear virus and will require modification in order to detect any

new variation. This is a critical weakness in traditional signature detection, since a

number of malware distribution mechanisms will obfuscate their code with the in-

tention of evading signatures. Some of these attempts include applying XOR masks

to the data [Stone-Gross et al., 2009; Baecher et al., 2006], dynamically injecting

code [Wang et al., 2006], implementing custom decoding routines [Wang et al., 2006],

or encrypting/packing payloads [Gu et al., 2008a].

Many traditional IDSs are based on misuse detection. Security analysts write

rules as new attacks are published, potentially leaving a time frame between updates
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where systems are vulnerable. Misuse detection typically requires manual mainte-

nance to keep the rule lists deployed to sensors up to date, essentially responding

to known threats. This constant update requirement is one major disadvantage of

misuse detection based systems [Zanero and Savaresi, 2004a].

2.5.2 Anomaly Detection

Anomaly detection is a fundamental aspect of computer network security, and in

general identifies anomalies in a given data set. Anomalies in intrusion detection can

be characterized by several deviations from expected activities, such as deviations in

network traffic or process behaviour on a host. When dealing with network traffic, the

goal is to classify a given sample of traffic as either an anomaly or normal, and more

specifically as either malicious or benign. Anomaly detection is often described as a

classification problem[Zanero and Savaresi, 2004b; Wang et al., 2009; Teng et al., 2010;

Sun and Wang, 2010; Khor et al., 2009]. However, if plenty of examples from every

class are not available when designing the system, the anomaly detection engine will

only be able to model normal behaviour and then infer anomalies from those inputs

that are determined different than the data already observed, as described in the

papers referred to above. Classification when examples of each class are available

and labelled is termed supervised learning, while unsupervised learning or novelty

detection refers to data sets where labels are not provided with the data or there

does not exist examples of all of the classes in the data set [Yeung and Ding, 2003].

Essentially, the system has to learn to assign each sample to a category as malicious or

benign without a priori labels [Portnoy, 2000]. Unsupervised learning is desirable as
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it requires less involvement of the end user. There are a number of previous Intrusion

Detection Systems that have attempted to use unsupervised learning [Zanero and

Savaresi, 2004a]. For more information see Chapter 3.

2.5.3 Heuristic Detection

A heuristic defines a set of characteristics that are associated with an anomaly.

However heuristic detection is more general than misuse detection [Dash et al., 2006].

For example, consider the type of traffic expected on port 80. Port 80 traffic typically

consists of HTTP traffic, and one might expect that any other traffic on port 80

is an anomaly. Normal HTTP traffic should begin with an HTTP header, either a

GET or a POST. A very simple heuristic is thus: if a session on port 80 does not

contain GET in the first content carrying packet of the session (i.e. after the TCP

handshake), then mark it as an anomaly.

A number of heuristics can be generated by observing network traffic and doc-

umenting exceptions for traffic. Typically heuristics are manually tailored by the

system administrator of a network to suite the type of traffic they expect to observe.

Heuristics can be represented as IDS rules in many cases, assuming that the gram-

mar for describing the IDS rules is expressive enough to encompass the details of the

heuristic. If the grammar is not expressive enough, it can lead to rules that do not

encompass the entire meaning of the heuristic and generate false positives through

low specificity.

Snort is an IDS with a grammar capable of identifying traffic by several traffic

features, allowing rules to be written that map to user defined heuristics. The basic
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structure of the rule is:

<alert type><protocol><ip address A><port A><-><ip address B><port
B>( <option 1>: <arguments 1>; <option 2>: <arguments 2>; ... <op-
tion N>: <arguments N>)

The first 7 fields comprise the rule header. <alert type> allows the user to define

types, for simplicity sake we’ll consider it to be alert. The <protocol> describes the

network protocol, such as TCP, UDP, IP, etc. It also allows two IP addresses and

two ports with a directionality identifier between them. <- targets traffic from IP

address B and port B to IP address A and port A, while -> targets traffic in the

opposite directions, from A to B. Lastly <-> identifies traffic in both directions. The

IP addresses can be either specific address, such as 192.168.15.1 or the term any,

which signifies that any IP address can match the heuristic. Equally, the ports can

be numbers from 1 to 65536, each representing the 2 byte port number of the traffic,

or the term any, which matches all ports.

For example a rule header could be constructed as follows:

alert tcp 192.168.15.1 80 -> any any

The rule header generates alerts on all TCP traffic originating from 192.168.15.1

on port 80 to any ip address and any port.

The next section of the rule contains a list of options and their arguments. The

Snort manual describes three different option types: general rule options, payload

detection rule options, non payload detection rule options, and post-detection rule

options. It is outside of the scope of this discussion to address all of the options here.

However, a sample of some of the common options, with a short description of each,

follows. For more details please refer to the Snort user manual [Snort, 2010].
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General rule options give information about the rule. Examples include the mes-

sage (msg) that the rule displays when it fires, the signature id (sid) which uniquely

identifies each rule and the priority if some rules require a faster response when they

fire or special attention. Payload detection rule options enable deep packet inspec-

tion. One of the primary options for deep packet inspection is content. Content, as

the name implies, performs matching against the content of the packet. The following

rule will fire on all standard HTTP get requests:

alert tcp any 80 <- any any (msg: “Get request detected”; content: “GET
”; sid: 12345;)

Content can be modified with the payload detection rule options offset and depth,

which specify how far to look into a given packet and where to start looking. Non-

payload detection rule options specify the values for several protocol header fields,

such as the packets time to live (ttl) indicating the number of hops the packet has

passed through, the size of the packet (dsize) and the TCP flags (flags). Finally,

post-detection rules offer optional actions to take once an alert fires. For example,

the option tag will log a fixed amount of packets after a single packet triggers an

alert. The option session extracts the session that the packet responsible for the

alert resides in. The following example illustrates the potential complexity of the

Snort rule grammar:

alert tcp 192.168.15.2 443 ->172.0.0.1 3443 (msg: “Example rule”; flags:
PA; flow: established; content: “Some test string”; depth: 50; sid: 12345;)

The rule above looks for TCP packets from 192.168.15.2 on port 443 to 172.0.0.1

on port 3443, where the push and ack flags are set, the flow is established and it

contains the string “Some test string” in the first 50 bytes of the packet. When
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the signature hits on the packet it will send the message “Example rule” with the

identification number 12345.

Heuristics are often realized in anomaly detection systems as rules, and gener-

ally speaking are generated by security analysts who study traffic to specify how to

describe anomalous behaviours. Tasked with finding anomalies, the security analyst

will typically use a number of tools and log files to search for anomalies.

2.6 Summary

This chapter provided a baseline of computer network security knowledge required

to understand the remainder of this work. Now that the reader has security back-

ground in hand, I can begin examining the important prior research related to this

work, including a more specific look at botnet detection, machine learning, multi-

agent systems and a discussion on malware collection, feature extraction and finally,

a brief look at the impact of encryption and virtual private networks.
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Literature Review

3.1 Overview

This research contains elements from the fields of autonomous agent development,

computer security, and distributed artificial intelligence. Each of the fields named

previously has been the topic of research for many years. The goal of this chapter

is to introduce important research in areas related to this thesis and to differentiate

this research from similar work. Included in this literature review will be a discussion

of botnet detection techniques, the current state of machine learning in anomaly

detection and an overview of multi-agent systems. I will also touch on research in

plan recognition, malware collection and feature extraction. Finally, I will discuss

how encryption impacts anomaly detection and the study of malicious multi-agent

systems.

54
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3.2 Botnet Detection

There are a several recent research endeavors focused on identifying botnets. They

use a number of different techniques, and the following section details a subset of

techniques that have been deployed for botnet detection.

Rieck et al. [2010] attempt to detect malware by focusing on “phoning home” tech-

niques, and developed a system called Botzilla. There are three phases in Botzilla’s

malware detection. First it attempts to capture new malware using a variety of

methods, including forensic analysis of security incidents, honeypots, honeyclients,

etc. For more information on honeypots see Section 2.4.4. Once binaries for mal-

ware are collected, they are passed on to a repetitive execution phase. Each binary

is executed several times in different environments within a sandnet. Executions in-

volve modifying the host operating system, date and time, IP address, etc. Packet

captures are collected for every execution. Botzilla performs signature generation

using Bayesian techniques. Tokens are extracted from the network captures. Those

tokens are assembled into signatures. The signatures are tested against live network

flows and evaluated for their accuracy. The researchers claim that they achieved a

94.5% detection rate when deployed on a university network, and that their technique

identifies novel malware automatically with no human intervention.

Gu et al. [2007] aim to monitor a network perimeter for coordination dialog and

malware infections, using a system named Bothunter. The focus is on identifying the

stages of a malware infection. Those stages are: inbound scanning, exploit usage, egg

downloading, outbound bot coordination dialog and outbound attack propagation.

Dialog event detection is based on Snort and enhanced with anomaly detection plug-
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ins SLADE and SCADE. The former performs a form of n-gram statistical payload

analysis (discussed below), while the latter focuses on port scan analysis, weighting

scan attempts based on the ports they target, their frequency and whether they suc-

ceed or fail. Given that many networks are attacked regularly, Bothunter attempts to

associate outbound communication flows with botnet behaviour and then pair those

outbound communications with intrusion attempts. Since Bothunter is intended to

monitor a network’s egress point (i.e. the point where traffic leaves a local network),

they ignore DNS activity, local host modifications, and internal network propagation,

assuming that those three characteristics are not reliable measures at the egress point.

An important characteristic of Bothunter is its flexibility with respect to ordering of

the coordination dialog. The authors ascertain that due to a number of conditions

only some of the dialog may be captured, and work out a system of weights and

thresholds that help to identify when a dialog is considered malicious. The Both-

unter correlation engine tracks dialog events across time windows, aging off older

events. When events occur that meet some threshold criteria, a bot profile is created.

The criteria described in [Gu et al., 2007] are 1) an incoming infection warning fol-

lowed by outbound local host coordination or exploit propagation warnings or 2) a

minimum of at least two forms of outbound bot dialog warnings. Note that SLADE

is tasked with identifying anomalous payloads, while SCADE is tasked with identi-

fying inbound and outbound scans. However, Snort identifies known exploits, egg

downloads and command and control traffic. Therefore, the signature engine requires

human intervention to create and maintain signatures. Bothunter achieved a 95.1%

true positive rate when tested in a honeynet environment. However, the results when
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deployed to a live University network and an institutional laboratory were not as

conclusive as to Bothunter’s effectiveness.

Botminer [Gu et al., 2008a] is an architecture designed to passively identify botnets

by correlating command and control with activity traffic, independent of the former’s

structure or content. The authors ignore the initial infection, and instead focus

on the ongoing traffic associated with the existing infection. The system is split

into 5 components: C-plane monitor, A-plane monitor, C-plane clustering, A-plane

clustering and Cross-plane correlation. The C-plane monitor collects network flow

records. Each flow is identified by the following features: time, duration, source

IP, source port, destination IP, destination port, number of bytes transferred in both

directions, and number of packets transferred in both directions. The A-plane monitor

attempts to identify activities associated with botnets, such as scanning, spamming,

binary downloading, and exploiting. The A-plane is based on Snort, with the addition

of the SCADE plug-in and an additional plug-in that tracks anomalous DNS queries

and anomalous SMTP connections. The A-plane monitor also uses misuse detection

for identifying binary downloads. C-clustering uses X-means clustering applied to

a set of flows collected by the C-monitor over a specified period that have been

converted to vectors and scaled. The A-clustering is based on activity type, followed

by further clustering by features of the activities. Cross-plane correlation calculates a

botnet score for each host that exhibits at least one suspicious activity. A threshold

is applied to the score to indicate whether the host is likely part of a botnet or not.

Kang et al. [2009] describe a method for enumerating the hosts in a p2p botnet.

They propose a Passive P2P Monitor (PPM), that passively participates in p2p bot-
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nets by implementing a bot with the capability to decode and understand the Storm

protocol. However, they constrain the bot from actively participating in file sharing

or sending malicious payloads. Instead, the bot is limited to routing messages in the

botnet. They compare their approach to a crawler, which crawls the p2p network

by first asking a starting node for a list of all the nodes it knows of, then asking

the resulting nodes for lists of nodes they know of, etc. A crawl of the p2p network

could potentially identify a large percentage of the network in a short amount of time

with limited resource requirements. However, crawlers are limited in their ability to

detect network address translated machines, or machines behind firewalls. The PPM

uses a firewall checker (FWC) to attempt to identify which Storm IP addresses are

originating from behind a firewall, and therefore improve their estimate of the botnet

size. Kang et al. [2009] show that the PPM is capable of identifying more nodes than

a crawler. However, the crawler may contain lists of nodes whose lifespan was too

short for them to interact with the PPM. They conclude that any bot that sends

approximately 200 messages will be identified by the PPM with a high likelihood.

3.3 Machine Learning in Anomaly Detection

In addition to techniques directed at botnets in particular, several machine learn-

ing techniques have been applied to anomaly detection, such as probabilistic detec-

tion [Ying-xu and Zeng-hui, 2009; Newsome et al., 2005; Khor et al., 2009; Farid et al.,

2010; Farid and Rahman, 2010; Alpean et al., 2010]; artificial neural networks such

as self organizing maps Polla et al. [2009]; Rhodes et al. [2000]; Portnoy et al. [2001];

Zanero and Savaresi [2004a]; Ramadas et al. [2003]; Cortada Bonjoch et al. [2002]; Li-
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chodzijewski et al. [2002]; Kohonen [2001]; Labib and Vemuri [2002]; Girardin [1999];

Patole et al. [2010]; Yang et al. [2010], and multi-layer perceptrons [Vatisekhovich,

2009; Golovko et al., 2010; Ali et al., 2010; Mohamed and Mohamed, 2010; Sheikhan

and Jadidi, 2009; Pinzon et al., 2010]; support vector machines [Mukkamala and Sung,

2003; Sung and Mukkamala, 2003; Gornitz et al., 2009; Pinzon et al., 2010; Teng et al.,

2010; Sun and Wang, 2010; Wang et al., 2009; Yuan et al., 2010]; K-means [Faraoun

and Boukelif, 2007; Chairunnisa et al., 2009; Zanero and Savaresi, 2004b]; and artifi-

cial immune systems [Greensmith et al., 2010; Twycross, 2007; Twycross and Aickelin,

2006]. The following sections will elaborate on the techniques techniques mentioned.

3.3.1 Probabilistic Detection

Probabilistic detection can be applied to anomaly/intrusion detection in two ways.

First, a probabilistic algorithm processes the features of a traffic sample and uses a

probabilistic classifier to compute the likelihood that the traffic is malicious (or more

precisely, the likelihood that some series of events will occur). The lower the likelihood

of a series of events, the more likely it is an anomaly. Additionally, the probabilistic

algorithms can be applied to determine which features are important for detection by

ranking the features by the probability that they will provide information related to

anomalies. If a feature exhibits high information gain with respect to the occurrence

of an anomaly, then it is ranked higher as an important feature.

Probabilistic intrusion detection typically has some foundation in Bayes rule, de-

fined by the equation P (h|D) = (P (D|h)P (h))/P (D), where D is the observed data

and h is a hypothesis. From the equation,P (D) is the probability of the occurrence



60 Chapter 3: Literature Review

of data D, P (h) is the prior probability associated with hypothesis, P (h|D) is the

posterior probability and finally P (D|h) is the conditional probability [Farid and Rah-

man, 2010]. When applying Bayes rules, the goal is typically to find the hypothesis

with the highest probability given the observed data, or more precisely the maximum

posterior hypothesis. Näıve Bayes classifiers are derived from the Bayes rule with the

assumption that observed data attributes are independent of one another, and even

though the assumption is often not valid in practice they typically perform well.

Ying-xu and Zeng-hui [2009] present a Half Increment näıve Bayes classifier, based

on the traditional näıve Bayes classifier, to determine the probability that a given

piece of compiled binary code is malicious. The authors enhance the performance

of traditional näıve Bayes classifiers by introducing an evolutionary search into the

feature selection process. They show that Half Increment näıve Bayes has a lower

implementation cost than traditional näıve Bayes and Multi-näıve Bayes, as well as

a faster execution speed and higher detection accuracy. Given that binaries are often

transferred across a network, the same technique is applicable to network anomaly

detection, assuming the transfer of certain binaries is in fact malicious.

Newsome et al. [2005] propose a type of probability based signature called a Bayes

signature within the context of their Polygraph monitor. They score tokens in a flow

and calculate the probability that the flow is a worm based on those scores. They

use a threshold to determine if the resulting probability is high enough to classify the

flow as a worm. In order to apply a näıve Bayes classifier, they assume that tokens

identified in each malicious flow are independent of the existence of other tokens

in the same flow. Applying probabilistic methods is considered to be more flexible
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than the exact match exact match typically required in standard misuse detection

signatures, since the existence of a combination of tokens may indicate enhanced

probability of an attack rather then certainty. Newsome et al. [2005] showed that

generating signatures to detect polygraphic worms using probabilistic methods could

be tuned to detect worms as well as some other signature detection algorithms. In

their experiments, however, regular expressions could achieve similar, and in some

cases better performance.

Khor et al. [2009] implement Bayesian algorithms to perform network intrusion

detection. They choose a subset of selected features from the wider range of available

features using empirical evaluation, and then build Bayesian networks based on the se-

lected features. The feature selection process used in this research is further discussed

in Section 3.7. They test their algorithm using the KDD99 intrusion set data. Once

the features are selected, they compare the performance of a näıve Bayesian Classifier,

a Learned näıve Bayesian Classifier and an Expert-elicited Bayesian Network. The

Learned näıve Bayesian algorithm used existing search algorithms in addition to the

conditional independence of the variables. The Expert-elicited Bayesian Network in-

corporates the views of domain experts in the construction of the network. They show

that the classification accuracy varied depending on the classification of the attack,

and of the three Bayesian approaches selected, none dominated. Bayesian networks

obtained the highest classification accuracy with the Normal and DoS attacks, while

näıve Bayesian Classifiers performed best at classifying probes and Remote to Local

attacks, and the Expert-elicited Bayesian Networks achieved the highest classification

on the User to Root category. They conclude that even though the performance of all
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three classifiers were comparable, the näıve Bayesian Classifier was the most efficient

in terms of classification time on large data sets, while the Expert-elicited showed the

most improvement when the there are a small number of attack samples compared to

the data set size. For the exact numbers and more in-depth explanation for possible

differences, see [Khor et al., 2009].

Farid et al. [2010] use näıve Bayesian trees in an attempt to reduce false positives

in intrusion detection. They identify three issues in intrusion detection. First, unbal-

anced detection rates for different types of intrusion where the IDS is able to detect

one type of attack with high accuracy like a denial of service but is less effective

against network probing. Second, excessive false positives such as continually identi-

fying benign DNS requests as malware beaconing. Third, redundant input attributes

that do not provide additional value, but do impact the responsiveness of the learning

algorithm. While their research focuses on the issue of false positives, they show that

they can improve detection rates while also identifying important attributes. They

also test their research on the KDD99 intrusion set data. Specifically, they rank the

available network features using the näıve Bayesian tree, splitting nodes where there

is maximum information gain. The actual rank of an attribute is determined by the

minimum depth at which the attribute is tested. Important attributes are tested

closer to the root, indicating that they were important in an early decision to split

the data set into distinct sub classes. The authors modify the stock decision tree by

adding standard näıve Bayes classifiers at the leaf nodes of the tree. They perform

learning on training sets by iterative tree building based on the training data and

updating the weights of the attributes depending on the depths of those attributes in
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the tree. See [Farid et al., 2010] for the complete pseudocode of their algorithm.

Farid and Rahman [2010] introduce the improved self-adaptive Bayesian algorithm

(ISABA), based on the adaptive Bayesian algorithm. Given some training data set,

the adaptive Bayesian algorithm derives a function to estimate the class conditional

probabilities for each attribute value. Training is performed until classification of

each example of the training set is successful or a target accuracy is achieved. An

adaption process follows, where the classifier is tested against a set of test examples.

The algorithm adapts by using the similarity between mis-classified test examples and

training examples to modify the attribute weights with the formula Wi = Wi + (S ∗

0.01), where S is the similarity. Adaptation is continued until the classifier correctly

classifies all data in the test set. The ISABA adds the additional step of building

a decision tree by information gain using the final updated weights of the training

examples after all the test examples have been correctly classified. It also appears

to slightly modify the adaptive update with Wi = Wi + (S + 0.01). However this

may be a typo, as there is a change from multiplication to addition and it isn’t clear

why it should be different from the previous formula. The authors’ evaluation shows

improvement in detection accuracy and some reduction in testing time. However

the training time when compared to adaptive Bayesian algorithm is slower. When

compared to näıve Bayes Classification the detection accuracy improves from 64% to

99.17% with respect to the User to Root attacks. Most other improvements are only

marginal.

Alpean et al. [2010] introduce a probabilistic diffusion scheme consisting of a

bipartite graph model that models probabilistic dependencies between a set of proto-
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types and a set of features that characterize those prototypes. Their goal is to detect

malware and identify anomalies in smart phone usage by applying their Bayesian

probabilistic model to the smart phone logs. Their algorithm contains elements sim-

ilar to the Google adjusted page ranking algorithm. The algorithm is intended to be

lightweight enough to run on a smart phone without taking up all of its resources.

However, the research also demonstrates anomaly detection in a resource starved en-

vironment, which is similar to a high speed environment where the network speeds

are too high to do in-depth packet processing at line rates.

3.3.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) were originally aimed at modelling the complex

interactions of the neurons in a biological brain abstractly through a mathematical

representation of neurons in a graph structure [Hopfield, 1982]. ANNs are typically

applied to classification problems, where the designer presents the system with an

input X containing N features X0, X1, ...XN . Each feature is passed to a series of

input nodes in the ANN. The nodes apply a function and send the outputs to the next

layer in the ANN. Each layer transforms the inputs until they reach the output layer.

The output layer classifies the inputs [Aleksander and Morton, 1995]. Self Organizing

Maps (SOM)[Kohonen, 2001] and Multi-Layer Perceptrons (MLP) [de Sá, 2001] are

two popular techniques applied to anomaly/misuse detection using ANNs.

SOMs are an unsupervised learning technique that map input vectors to low di-

mensional graphs [Polla et al., 2009]. Each neuron in the ANN weights the com-

ponents of the incoming vector and outputs the vector as coordinates in the low
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dimensional, typically a 2 dimensional, graph. A neighbourhood function classifies

each output vector, according to a set of training inputs processed previously by the

ANN.

SOMs have been utilized in a number of domains, especially due to their ability to

represent data with high dimensionality [Polla et al., 2009]. Rhodes et al. [2000] used

a SOM to classify traffic as either normal or abnormal, training the ANN using vectors

derived from network traffic. In order to derive the vectors they recombine packets

into application layer streams, instead of using individual packets. Each application

stream is monitored by a SOM trained to recognize abnormalities in that specific type

of traffic. Portnoy et al. [2001] also used SOMs to cluster network traffic, and chose

to extract features from not only the individual connection (duration, protocol type,

number of bytes transferred and the flag indicating the normal or error status of the

connection) but also from domain knowledge and features extracted from monitoring

the connection over time (including failed login attempts, percent of packets with the

SYN flags, etc.). The vectors consisted of forty-one features over continuous values.

Zanero and Savaresi [2004a] rank the SOM algorithm as the best performing out of

several they tested for anomaly detection on TCP/IP traffic, highlighting its ability

to classify attacks that are difficult to write for misuse detection systems as well as its

resistance to polymorphic attacks. SOMs have also been used in a number of other

intrusion detection research efforts [Ramadas et al., 2003; Cortada Bonjoch et al.,

2002; Lichodzijewski et al., 2002; Kohonen, 2001; Labib and Vemuri, 2002; Girardin,

1999; Patole et al., 2010; Yang et al., 2010].

A Multi-Layer Perceptron is an extension of the original linear perceptron, that ap-



66 Chapter 3: Literature Review

proximates non linear approximation functions using multiple layers of nodes. MLPs

are often used in supervised learning techniques. Inputs traverse the network of

nodes, where each edge applies a weight to the previous output and each node per-

forms a non linear activation function on its input, either activating or deactivating

the signal leaving the current node. Each node is connected to every node in the next

layer [de Sá, 2001].

MLPs have been used extensively in anomaly detection. Vatisekhovich [2009] and

Golovko et al. [2010] proposed an intrusion detection system based on a combination

of Artificial Immune System (AIS) and Artificial Neural Networks. The ANN portion

of the proposal includes a Multi-Layer Perceptron. MLPs have been used in a number

of Intrusion Detection Systems, either as the primary classification method [Ali et al.,

2010; Mohamed and Mohamed, 2010] or as part of a hybrid system [Sheikhan and

Jadidi, 2009; Pinzon et al., 2010].

3.3.3 Support Vector Machines

Support Vector Machines (SVMs) use nonlinear mappings to transform data into

higher dimensions. The algorithm defines a linear optimal separating hyperplane

for the higher dimensional data, resulting in a separation of the data into distinct

sets. There have been several efforts to use SVMs for intrusion detection, either

independently, extending them or combining them with other learning algorithms

or feature reduction schemes. Mukkamala and Sung [2003] identify support vector

machines as superior to traditional ANNs in Intrusion Detection Systems [Mukka-

mala and Sung, 2003; Sung and Mukkamala, 2003]. They claim that SVMs scale
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better, result in higher classification accuracy, and run an order of magnitude faster.

Hypersphere-based Anomaly Detection is an anomaly detection technique based on

one-class support vector machines [Gornitz et al., 2009]. Hypersphere-based anomaly

detection seeks to enclose normal data into a minimal enclosing hypersphere, and any

data points that are not found inside the hypersphere are considered anomalous. The

hypersphere consists of vectors of data derived from network packet payloads. Data

is therefore classified either as normal (contained in the hypersphere) or abnormal

(not contained in the hypersphere). Pinzon et al. [2010] combine a SVM with a tra-

ditional neural network to reliably classify SQL queries, in their attempts to identify

SQL injection attacks. They compare the results of several classification algorithms

by testing the algorithm with 705 previously-classified samples and show that the

combination of an SVM and a MLP classifies more accurately than several other

algorithms, including: Bayesian Networks, näıve Bayes, AdaBoost M1, Bagging, De-

cisionStump, J48, JRIP, LMT, Logistic, LogitBoost, MultiBoosting AdaBoost, OneR,

SMO and Stacking. Teng et al. [2010] implement a fuzzy SVM that addresses the

traditional SVMs sensitivity to outliers and noise. Sun and Wang [2010] outline an

approach called weighted support vector clustering (SVC), which seeks to improve the

performance of SVM in clustering network intrusions and reducing false positives. In

order to convert the SVM to a weighted SVC inputs are assigned weights enabling

them to contribute differently to learning of cluster boundaries. They show by apply-

ing the weighted SVC host algorithm, they obtain better performance than both SVC

and K-means. Wang et al. [2009] attempt to improve traditional SVM by introducing

particle swarm optimization (PSO) to identify free parameters for the SVM and addi-
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tionally use binary PSO to obtain the optimum feature subset for intrusion detection.

They show that PSO improves the detection capability of traditional SVM. Another

examples of SVM applied to intrusion detection is [Yuan et al., 2010].

3.3.4 K-means

The k-means clustering algorithm has been applied to aspects of intrusion detec-

tion where addressing smaller subsets of data is less processor intensive than tackling

the whole data set at once. For example, Faraoun and Boukelif [2007] use k-means

to effectively reduce the sample size forwarded to their neural network classifier to

decrease computational intensity, by only sending representative samples from spe-

cific categories. While other efforts (e.g [Chairunnisa et al., 2009]) have evaluated

k-means as a method to classify data into different types of attacks, its performance

as an independent classifier have not been as good as some other popular methods.

The unsupervised nature and simple implementation of k-means makes it attractive

as a first stage filter and a base line to compare other algorithm performance. Zanero

and Savaresi [2004b] also used k-means as one of several clustering algorithms in their

research. They found that it did not perform as well as Kohonen’s Self Organizing

Maps and principal direction partitioning also trained in their research.

3.3.5 Artificial Immune System

Artificial Immune Systems (AIS) attempt to map the functions of the biological

immune systems to solve computational challenges such as anomaly detection. De-

pending on the resolution of the researcher’s approach, some element of the computer
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network, whether it be individual machines, subnets, or even the Internet service

provider is treated like a biological entity. The goal of the artificial immune system

is to maintain the health of the entity by identifying and suppressing antigens. The

approach attempts to model biological functions, and should improve as researchers

in biology learn more about how immune systems are able to distinguish between

good and bad in biological hosts.

Greensmith et al. [2010] have applied artificial immune system techniques to the

detection of port scans. One such technique is the application of the dendritic cell al-

gorithm. In the human immune system, dendritic cells observe environmental features

and locality markers, and either activate or suppress immune responses. Essentially,

dendritic cells act as anomaly detectors. Given that dendritic cells are capable of

performing anomaly detection with high true positive and low false positive rates,

Greensmith et al. [2010] postulate that an artificial dendritic cell should also hold

those characteristics when applied to anomaly detection in computer networks. They

identified four biological signals: pathogen associated molecular patterns (PAMP),

necrotic signals, apoptotic signals and pro-inflammatory cytoklins, and mapped them

to a set of abstract signals: PAMP, danger signals, safe signals and inflammation. The

PAMP functions as a signature of a likely anomaly. High levels of the danger signal

indicate potential anomalies. High levels of the safe signal indicate normal function-

ing. Lastly, there is an inflammation signal that multiplies the other input signals

by some factor. Within the system there exists a population of immature dendritic

cells. As the dendritic cells are exposed to various signals they become either mature

or semi-mature cells. Semi-mature cells result from antigens collected under normal
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conditions, while mature cells result from possibly anomalous conditions. In the scan

detection context the PAMP signal is generated from the rate of ICMP destination

unreachable errors received per second. The number of packets sent per second gen-

erates the danger signal. The safe signal is represented by the inverse of the rate of

change of the packets. Finally, the antigen is determined by systems calls, identified

by the PID of the calling process. They show that they can identify scans using this

method.

Twycross [2007] introduced the TLR algorithm based on the Toll-like receptor

(TLR) family of pattern recognition receptors and applied TLR to intrusion detec-

tion, comparing it to implementations of other pattern recognition receptor algorithms

twocell and pad1 within the libtissue framework. Libtissue is a software system de-

signed specifically for implementing and evaluating AIS algorithms. Libtissue pro-

vides mechanisms to represent tissue compartments. A multi-agent system of cells,

antigen and signal interact within the compartments to realize the AIS. Twycross

applied the TLR algorithm to identify malicious FTP attacks in a set of otherwise

normal FTP transactions. Given that the biological processes involved are complex,

explaining each one presented by Twycross is beyond the scope of this literature re-

view. For the sake of brevity I will consider only the twocell algorithm. Twocell is

a simple algorithm with type 1 and type 2 cells. Type 1 cells have a cytokine recep-

tor and a antigen receptor, and can produce antigen. They mimic the antigen and

signal processing in biological immune systems. The cytokine receptor accept signal

from tissues while also accepting antigens from its locality. Type 2 cells contain a

cell receptor, a variable region receptor, and a response producer. Type 2 cells are
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responsible for emulating T-Cells capable of cellular binding, antigen matching, and

antigen response. Through the interaction of the two cells binding, the type 1 cell

can produce antigen and bind to the type 2 cell, which can then match with the type

1 cell and produce a response. Twycross and Aickelin [2006] use system calls and

CPU usage an antigen signal in a twocell implementation to identify anomalies.

3.3.6 Online Machine Learning

So far the literature review has described a number of machine learning algorithms

and how they have been applied to anomaly detection. Here I will discuss a series of

online machine learning algorithms applied to computer vision. Real time network

monitoring shares some of the same characteristics as computer vision. In both you

have a stream of information, as opposed to a discrete set of static data points.

Equally, in both contexts the data points of interest are surrounded by noise and

it is important to discern multiple sources of noise from interesting features. Both

share a dynamic environment requiring flexible learning where training is continual,

enabling the system to incrementally correct itself over time. Online machine learning

algorithms are designed to be quick enough to handle incoming data at varying rates

and with low memory requirements, since samples don’t have to be stored in memory.

However, not all machine learning algorithms are suitable for online processing.

Saffari et al. [2009] proposed a novel approach to visual tracking using an Online

Random Forest machine learning algorithm. It effectively combines concepts from

both online bagging and extremely randomized forests. They describe a mechanism

to build trees and over time trees are replaced to enable the algorithm to adapt to
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the data stream. Choosing what trees to discard is dependent on the out-of-bag-

error of the various trees in the forest. Random Forests are typically resilient to

the loss of a single tree, and Saffari et al. [2009] show that the risk of discarding

a tree is out-weighted by the adaptability gained by growing new trees. Further

research in visual tracking by Saffari et al. [2010] introduced another novel algorithm

called Online Multi-Class Linear Programming Boost. While online boosting typically

solves binary tasks, Saffari et al. [2010] seek to overcome that limitation. They use a

linear combination of weak learners, such as Random Forests. Their technique uses

alternating primal-dual descent-ascent across a set of weak learners for calculating

weights and age off older samples with newer samples. Interestingly, in their work

they also convert the offline multi-class boosting algorithm described in Zou et al.

[2008] to an online multi-class boosting algorithm for testing purposes and term it

Online Multi-Class Gradiant Boost.

Bordes et al. [2007] demonstrated a successful Online Multi-class support vector

machine algorithm named Linear LaRank. Linear LaRank relies on randomized ex-

ploration inspired by the perceptron algorithm. The advantage of LaRank is that few

passes, or even a single pass over the data can generate error rates that approximate

the the final solution. This is an ideal feature for an online machine learning algo-

rithm dealing with a stream of data. SVMs in general were discussed earlier in the

literature review, see Section 3.3.3. Saffari et al. [2010] also provide source code for

their implementation which include an implementation of Linear LaRank.
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3.4 Multi-Agent Systems

This research can fundamentally be characterized as a set of competing multi-

agent systems. At the core, there is the Multi-Agent Malicious Behaviour Detection

system deployed to protect the network. In opposition to it, there are potentially

multiple collections of individual and interacting malicious software agents (mali-

cious multi-agent systems). This section discusses general research in multi-agent

systems, focussed primarily on intrusion detection. Intrusion and anomaly detection

are dynamic complex problems suitable for Multi-Agent System (MAS) approaches.

MASs, both biological and artificial, are ubiquitous. Individual agents in any specific

MAS can have varying levels of sophistication. Some agents are aware, interact with,

and build trust models of other agents in their environment. Less sophisticated agents

may interact with the world as though it is a black box, accepting input and produc-

ing output with little or no direct observation of other agents interacting with the

same encompassing system. In a MAS, multiple agents are tasked to solve problems

with varying levels of interaction and/or communication with other agents and their

environments often leading to a partition of the task in terms of type or amount of

work, such as Brooks [1991b]; Arkin [1998]; Balch and Arkin [1995]; Nilsson [1984].

For example, in [Wegner, 2003], multiple homogeneous agents were deployed to per-

form Urban Search and Rescue. There are many multi-agent systems designed to

play robotic soccer [Kuhlmann et al., 2006; Baltes et al., 2009; Baltes and Anderson,

2007; Anderson et al., 2002b,a], perform intrusion detection [Abraham et al., 2007;

Dasgupta et al., 2005; Álvaro Herrero et al., 2009; Herrero and Corhado, 2009; Re-

hak et al., 2008; Onashoga et al., 2009], search disaster areas [Wiebe and Anderson,
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2009; Wegner and Anderson, 2006; Anderson et al., 2003], perform robotic localiza-

tion and mapping [Bagot et al., 2008; Bandini et al., 2004], participate in electronic

commerce [Dong et al., 2004; Guttman and Maes, 1998; Ketter et al., 2009], and per-

form in a number of other environments as well [de Denus et al., 2009; Allen, 2009;

Parunak, 1997].

Here I will discuss some basic background on agents before describing some exist-

ing MASs used in computer security.

3.4.1 Agents

All agents respond in some fashion to the world in which they are situated [Russel

and Norvig, 1995]. The goal of agent design is to have the agent respond to its

environment in a meaningful way. The agent must have some way of perceiving

elements of the environment and interacting with those elements in a purposeful

manner. How agents should respond to their environment is highly domain-specific -

what is good in one setting might be poor in another. Because domains vary greatly in

sophistication, so do the needs of successful agents for those domains. This variation

has led to a wide variety of approaches to agent design. Most agent design approaches

can be broadly grouped into one of three categories: planning agents, reactive agents,

and hybrid agents.

3.4.1.1 Planning Agents

The discipline of artificial intelligence has focused for many years attempting to

build intelligence using various forms of representation (e.g. logic, rules) to construct
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and reason about a model of the world an agent inhabits [Brooks, 1991b]. Central

to many classical planning agents is the physical symbol system hypothesis [Newell

and Simon, 1976], which states that intelligence operates on a system of symbols,

where the symbols represent entities in the environment. Agents typically execute

a sequence of three phases; sense, plan and act. In the first phase, sense, the agent

uses its sensors to gather data about the world around it. The data is used to update

the agent’s internal world model, so that changes in the environment are reflected in

the symbolic representation maintained by the agent. Following the sensing phase,

the agent plans a course of action. The agent analyzes the new internal world model

and using some planning algorithm decides what sequence of actions will result in

the agent achieving its current goal. Once a sequence of actions has been chosen,

the execution phase commences. The execution phase takes as input the sequence of

actions that the agent would like to execute and attempts to perform them [Arkin,

1998].

Symbolic reasoning has the advantage of enabling the agent to reason about its

past and form elaborate plans for its future. Assuming the sense, plan and act cycle

repeats frequently enough, the agent can adjust the plan as things in the environment

change. An example of a planning agent is described in [Nilsson, 1984].

Several disadvantages for planning agents have been identified. One major dis-

advantage of planning agents lies in the difficulty of maintaining accurate internal

world models [Brooks, 1991a]. The accuracy of a world model is affected by the fre-

quency that the world model is updated. Because the environments for which agents

are designed are often very complex, very elaborate world models are required, and
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maintaining consistency between such complex world models and the real world is

a daunting task [Agre and Chapman, 1991; Brooks, 1990; Chapman, 1989]. If the

world model is not updated frequently enough, the world model will fall out of sync

with the real world [Brooks, 1990]. If the planning algorithm is applied to a world

model that is out of date, the plan produced by the planning algorithm may not be

applicable to the real world, since the real world may have changed since the last

time the world model was updated [Brooks, 1990; Mataric, 1997].

Another disadvantage is related to the reliance of many planning agents on the

physical symbol system hypothesis. If the symbols representing entities in the world

model are not sufficiently grounded to physical objects in the real world, they become

meaningless [Coradeschi and Saffiotti, 2000; Harnad, 1990]. Additionally, the symbols

are task dependent: different tasks require specific representations, making a planning

agent only capable of solving the problem it was designed for [Brooks, 1990].

Planning is also very time consuming. Since the world being modelled is complex,

the planning system has to be able to predict an exponential number of outcomes.

This requires searching through a potentially exponential search space. Heuristics are

useful for trimming the search space, but heuristics often sacrifice accuracy [Chapman,

1989]. In any case, planning takes a significant amount of time. Agents in most real

world environments do not have significant time to ponder their actions, since rapid

changes in the environment quickly make plans obsolete. Taking too much time

to plan also highlights another disadvantage: obsolete plans require rerunning the

planning algorithm to produce another plan, which may also be obsolete by the time

it is ready to execute. Once a plan is prepared to execute, the agent will attempt
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to complete plan execution until either the plan will obviously fail or a better course

of action arises. This requires a level of planning above the planning algorithm to

determine when a plan is no longer sensible [Agre and Chapman, 1991]. The plan-

replan cycle can lead to agents spending all their time planning, and never executing

any actions in the environment. The sense, plan and act cycle in very complex systems

inevitably ends up taking too long to allow the agent to interact with a sophisticated

world in real-time.

3.4.1.2 Reactive Agents

Reactive agents address some of the downfalls of planning agents. Reactive agents

react to the environment without searching or requiring world models [Mataric, 1997].

In general, reactive systems are based on stimulus-response relationships. Stimuli in

the environment trigger an immediate response from the agent. Reactive agents are

more resilient to noisy data collected from sensors, since there is no world model

and therefore noise in collected data is not cumulative. Planning is also eliminated,

since responses occur immediately in response to the stimuli requiring very little

time [Mataric, 1997; Brooks, 1990]. Eliminating planning makes interactions between

reactive agents and their environment much faster than planning agents. Reactive

agents are therefore more effective at interacting with the environment in real-time.

Reactive systems are based on the assumption that the world is its own best model,

since it is always up to date and always contains every detail there is to know [Brooks,

1990]. Reactive agents also address the difficulties with the symbol system hypoth-

esis using the physical grounding hypothesis [Brooks, 1990]. The physical grounding
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hypothesis is based on having a system composed of modules, where each module pro-

duces behaviour and the combination of those modules produce more complex emer-

gent behaviour [Brooks, 1990; Mataric, 1997; Arkin, 1998]. Purely reactive agents

are robust. Since every module of the reactive system produces responses based on

stimuli, if stimuli does not occur in the environment, the associated responses are

simply not elicited, having little effect on the emergent behaviour of the agent.

Central to many reactive approaches is the notion of a behaviour. Arkin [1998]

defines a behaviour as a stimulus/response pair for a given environmental setting

that is modulated by attention and determined by intention. Reactive approaches

that are behaviour-based take the concept of a behaviour and add structuring to

it. Behaviours are organized into larger packages that interact with each other in

some way, and often some form of layering is added to mediate between competing

behaviours and packages of behaviours

One of the earliest behaviour-based approaches was the subsumption architecture,

proposed by Brooks [1986] in response to the limitations of planning agents. Like

many reactive systems, subsumption discourages the use of internal world models,

allowing only very small pieces of state information to be stored in the behaviour

modules. Many agents have been implemented using the subsumption architecture

(e.g. [Horswill, 1993; Mataric, 1992; Brooks, 1986, 1989, 1990; Brooks et al., 1999]).

A disadvantage to the purely reactive agents proposed by Brooks is the difficulty of

representing complex behaviours without any internal representation and very little

memory. Schematically, even simple behaviours such as foraging require complex

subsumption diagrams. Since the complexity of the subsumption diagram grows
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rapidly as the emergent behaviours require more complexity, the scalability of the

subsumption architecture is questionable. Another disadvantage of a subsumption

architecture is the likelihood of the system becoming trapped in a local minima. A

local minima is a position where every action that the agent executes will lead it back

to the same position. Since the responses to a sequence of events can potentially

repeat endlessly, the agent can become trapped by continuing to repeat the same

actions over and over again and making no progress. Getting trapped in local minima

highlights the need for agents that are able to use past experience to modify future

behaviour.

Schema-based agents emerged as an approach to agent control that realizes the

advantages of purely reactive agents while loosening some of the constraints proposed

by Brooks [Arkin, 1998]. Schema-based agents retain the reaction speed achieved by

purely reactive agents by discouraging complex world models and instead containing

multiple simple world models that are efficient to maintain. This addresses many of

the disadvantage of purely reactive agents. Like many approaches to robot control,

schema-based agents support the notion that there is a lot more to be gained by

increasing the functionality of reactive approaches before adding planning facilities.

Schema-based agents are based on schema theory. Briefly, schema are a mapping of

perceptions to actions associated with the perceptions. They contain the information

necessary to encode agent behaviour by means of the sensory data required to illicit an

action, where the computational process for how the action is performed is embedded

in the schema [Arkin, 1998].

Many schema-based agents have been implemented (e.g. [Arkin, 1992; Cameron
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et al., 1993; Balch and Arkin, 1995]). While schema-based agents are meant to ad-

dress the disadvantages of purely reactive systems, some disadvantages still remain.

Schema-based agents are not proactive. They lack the ability to reason about the

future or the past having little to no representation of the world. In addition, schemas

are intended to be mapped onto the hardware for which they are designed, making it

difficult to move systems from one platform to another [Arkin, 1998].

3.4.1.3 Hybrid Approaches

There are a number of control architectures that attempt to combine the advan-

tages of both symbolic reasoning and reactive control [Graves and Volz, 1995; Arkin

and Balch, 1997; Gat, 1992; Lyons and Hendriks, 1995; Lee et al., 1994]. The ma-

jority of these systems use a reactive control system as their base. The agent reacts

to the environment as the environment changes and in general is designed to handle

the agent’s short term, underlying behaviour. Often the reactive component is re-

sponsible for very time sensitive tasks that could pose a risk to the agent. Above the

reactive subsystem, there is generally a higher level planner. The planner is respon-

sible for planning ahead and directing the high level goals of the agent. Ideally the

planner can take as much time as it needs to maintain a world model and plan using

that world model, since while planning, the agent is continuing to function using the

reactive subsystem. The agent does not have to wait until the planner is ready to

send actions before the agent can perform productive work.

Knowledge used to represent internal world models for the planning component of

the hybrid system can make the behavioural configurations of the underlying reactive
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system more versatile by adding knowledge about the task and the environment.

Additionally the dynamic nature of the internal world model may provide insight

into ways of achieving goals that the reactive system is not able to, since it has no

representation to work with [Mataric, 1997].

The planning component of a hybrid system still shares the disadvantages of plan-

ning agents described in Section 3.4.1.1. If the environment is not stable or consistent

from one time step to the next, the planner may still develop useless plans [Arkin,

1998]. Continually re-planning will result in a slowdown of the overall system, espe-

cially if the plans are not relevant. The issue of physical symbol grounding is still

present, even with a reactive subsystem: if the symbols used by the planner are not

well grounded they will be of little use [Brooks, 1990]. Finally, the world model may

still be inaccurate, adding to poor plans [Mataric, 1997].

3.4.2 Multi-Agent Systems in Computer Security

Having described the basic concepts surrounding intelligent agents, we can now

examine putting these together into intelligent multi-agent systems. As mentioned

previously, there are many domains to which this can be oriented, and for the purposes

of this thesis I will be focusing on work in computer security that adopts a multi-agent

approach.

There are several existing multi-agent intrusion detection systems such as CIDS [Das-

gupta et al., 2005], APHIDS [Deeter et al., 2004], AAFID [Spafford and Zamboni,

2000] and SCIDS Abraham et al. [2007]. The focus of these intrusion detection sys-

tems is on the distribution of the detection, where the detection system is a MAS
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composed of multiple detection agents that communicate. This is distinct from the

research at the core of this thesis, which is a system for the detection of malicious

multi-agent systems, i.e. where the intruders themselves are potentially interacting

agents.

CIDS [Dasgupta et al., 2005] is a multi-agent intrusion detection system based on

Cougar, an open source agent framework. The agents in CIDS are partitioned into

one of 4 types: manager agents, monitor agents, decision agents and action agents.

Security nodes encompass one of each agent, while a security node society is a group

of security nodes. Each agent within a security node has a specific task: manage

the communications and commands between agents, monitor the host or network

collecting data and identifying possible intrusions, make decisions based on data and

analysis provided by the monitor agents, or take some form of action as recommended

by the decision agent. The security nodes are distributed among the subnets of a

network. The agents themselves use standard artificial intelligence approaches such

as those discussed in section 3.3.1.

Deeter et al. [2004] designed APHIDS, a mobile agent-based programmable hy-

brid intrusion detection system. They identify the principle challenges for intrusion

detection as false positives as well as management and correlation of large amounts of

data. The proposed system consists of a set of distributed agents deployed through-

out the network on service providing hosts, such as web servers and mail servers,

as well as network monitoring devices such as fire walls and intrusion detection sys-

tems. The agents are managed through a scripting language which describes trigger

and task agents, and effectively pushes the analysis and response to the distributed
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agents. The distributed nature of the system reduces bandwidth and farms out the

resource usage to the hosts. The script language enables new agents to be added as

well as supporting future host types by abstracting away from the specific systems

to the scripting language understandable by each agent in the distributed system.

APHIDS appears to be an intelligent distributed management layer that incorporates

the various existing security and service providing hosts.

Spafford and Zamboni [2000] describe a system called AAFID. AAFID is a dis-

tributed detection architecture. Spafford highlights the strengths of an agent-based

distributed architecture, namely that each agent can operate independently, can be

reconfigured, restarted, or even removed entirely without impacting the distributed

system. Agents can also be tested independently and introduced into the environ-

ment afterwards. They also propose measuring the performance of agent-based ar-

chitectures based on the following properties: continuous running, fault tolerance,

resistance to subversion, minimal overhead, configurability, adaptability and scalabil-

ity. The AFFID architecture contains a hierarchy of entities, composed of monitors,

transceivers, filters and agents. At the lowest level the agents subscribe to filters and

analyze data for signs of intrusion. The filters provide the agents with system inde-

pendent information to analyze. Each agent is autonomous and searches for instances

of some specific interesting event. Any number of agents can exists within a single

host. The agents in a particular host report their findings to the hosts transceiver.

Each host’s transceiver then communicates with a monitor. The transceivers are re-

sponsible for aggregating data from all of the agents in a host as well as controlling

the agents, sending them commands, configurations and start and stop instructions.
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A monitor is responsible for communicating with one or more host transceivers. Mon-

itors can correlate alerts from several transceivers and produce reports on activities.

Monitors can also be organized in a hierarchical fashion, with higher order monitors

communicating with lower level monitors. Notice that even though the agents are

distributed the system as a whole still has a hierarchical form, resulting in a central

point for reporting higher in the architecture. One important aspect of this archi-

tecture is that agents are not capable of communicating with each other: instead all

communications must be sent to a transceiver.

Rehak et al. [2008] introduce the concept of trust into the analysis of Netflow data.

In their model, agents are responsible for analyzing traffic flow data to determine if

a specific flow is malicious. The system then aggregates the results of individual

agent analysis to produce a trust score based on reputation. More specifically, their

approach has three layers. The first layer consists of traffic acquisition and prepro-

cessing. Data is collected using hardware-accelerated NetFlow probes. Next, the data

is passed to a cooperative threat detection layer, consisting of specialized agents ca-

pable of detecting some malicious anomaly. The agents use an extended trust model,

and collectively decide the degree of a flow maliciousness using a reputation mech-

anism. Finally, an operator and analyst interface layer provides network operators

with a mechanism to interpret the output of the collective agents. The strength of the

system is that is reduces the cognitive load of the operator by reducing false positives

produced by agents whose detection mechanism are prone to error. The trust model

only passes on those events where the agent collective has determined that the flow

is likely malicious.
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Abraham et al. [2007] use co-operative intelligent agents distributed across a

network to validate their fuzzy rule-based classifiers, intended to detect intrusions in a

network. Like similar work in distributed intrusion detection using agents, the agents

are located at various hosts, and each on is responsible for implementing some part of

the fuzzy rule system. They propose both a light weight and a heavy weight SCIDS.

The heavy weight SCIDS operates against 41 variables, similar to many intrusion

detection systems before it (see Section 3.7), while the light weight operates on 12

variables resulting from feature selection on the 41 features using decision trees. They

implement decision trees, linear genetic programs, and fuzzy classifiers for intrusion

detection. This research highlights the importance of controlling agents interacting

with other agents in a hierarchical manner, such that information flows between agents

and up to agents higher in the hierarchy, flowing information to the administrator.

3.5 Plan Recognition

All malware characterized earlier (Section 3.4.2) has an intended end to the be-

haviour in which it engages. This is true whether the given malware is an isolated

entity or a set of collaborating entities. In artificial intelligence, the subfield inter-

ested in reconstructing an agent’s intentions from its observable behaviour is known

as plan recognition Kautz and Allen [1986]. This problem is much more complex

when involves a set of observed agents rather than one, since each may have its own

intentions distinct from that of the group [Banerjee et al., 2010]. At the same time,

however, the actions of one agent in a known system may allow hints at what other

agents may be intending [Intille and Bobick, 1999]. Little work has been done directly



86 Chapter 3: Literature Review

on treating distributed malware infections as malicious MASs, and studying the be-

haviour of those systems. However, work in plan recognition has been performed

in other areas, and shows promise for application to security. In competitive multi-

agent environments, one team of agents attempts to model the behaviours of another

team of agents in order to gain some advantage as they compete for resources. Plan

recognition is important for determining the intentions of individuals and teams of

autonomous agents.

PHATT [Geib and Goldman, 2009] is an algorithm for plan recognition that uses

a Bayesian approach. Geib and Goldman [2009] seek to improve plan recognition by

reducing the number of simplifying assumptions that previous systems required to be

effective, such as restricting the number of plans observed agents pursue, requiring

plans to be ordered, etc. PHATT makes use of plan libraries organized to represent

plans as partially ordered AND/OR trees, where each node is augmented with prior

probabilities, specifically prior probabilities of root goals, method choice probabilities,

and probabilities for picking elements from the pending sets. The tree allows for

method decomposition, choice points and ordering constraints. Using Bayes’ rule,

PHATT observes an agent performing a set of actions and then determines where

those actions fit in a preset plan library, as part of one of several sequences of actions

to achieve some goal or as an action in a pending set for some goal. Note that

PHATT does not attempt to deal with deceitful agents, and assumes that the actions

that agents execute are all intended to help achieve their goals. Geib and Goldman

[2009] provide a formal grammar for defining a plan library and explain how to apply

algorithms to plan trees built from the proposed grammar.
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Kuhlmann et al. [2006] present an autonomous system, UT Austin Villa, capa-

ble of observing and classifying behaviours of multi-agent systems. In general the

system uses knowledge gleaned from past observations to inform a multi-agent team

of strategies to use against an opponent multi-agent team. UT Austin Villa is ca-

pable of observing groups of agents playing robotic soccer, and by using predefined

formation patterns and a set of statistical features at specific times throughout the

game, it classifies the opponent teams behaviour. In essence the autonomous coach

uses features to classify team behaviour into one of several predefined classes. The

methods appear to be specific to robotic soccer as they use a ball attraction model,

that would require modification to be applicable to the information security realm.

The work does provide inspiration for multi-agent modelling.

Zilberbrand [2009] proposes a hybrid system consisting of a symbolic plan recog-

nition algorithm capable of detecting anomalous behaviour and a utility-based plan

recognizer tasked with reasoning about the expected cost of hypotheses. The goal of

their system is to overcome previous systems reliance on plan recognition accuracy as

the primary measure of performance, as opposed to the utility of the information in

the observing agent, as well as overcoming multiple simplifying constraints imposed

by previous systems. A number of previous plan recognition systems, when given a

set of observations, will return some number of likely plans, ignoring plans that are

not likely. However, Zilberbrand [2009] examines the impact of ignoring plans that

are not likely, however represent a high amount of risk or opportunity if they repre-

sent the agents true intentions, and implemented the utility-based plan recognizer for

that purpose. Zilberbrand [2009] also extended standard symbolic plan recognition
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by adding feature detection trees for dealing with complex multi-faceted observations,

added reasoning about time duration in plan execution to rule out hypothesis early

in the reasoning process and added extensions to deal with lossy observations and

interleaved plans.

3.6 Malware Collection

Malware collection is an important aspect of research in anomaly detection. As

the evolution of malware outpaces the efforts of network security practitioners to

defend their networks, researchers must constantly develop new techniques that are

effective against modern and future malware, as opposed to past examples of malware,

whose behaviours may not be encountered in the wild anymore (or pose as much of

a threat). Evaluating any system requires realistic test cases, and so to evaluate my

work a reliable source of malware was required. Section 6.2 discusses how traffic was

gathered for the evaluation of my approach. Here, I review prior work in malware

collection for comparison purposes.

Often malware collection is performed using one of two types of honeypots (see

Section 2.4.4), low interaction honeypots and high interaction honeypots. Low inter-

action honeypots are designed to provide an attacker with a subset of functionality,

the minimum required to elicit an infection with some interaction between the at-

tacker and the victim. However, it is not intended to be a fully operational machine,

and is minimalist in nature, which significantly improves its scalability [Baecher et al.,

2006; Provos, 2004]. High interaction honeypots are intended to be much more func-

tional, and are in fact a real, fully featured machine for the attacker to interact with.
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It is less scalable, but often more information about the attack is available from the

machine [Baecher et al., 2006; Balas and Viecco, 2005].

Gu et al. [2007] use a honeynet in order to test their Bothunter architecture. The

honeynet is composed of a Drone Manager, a high interaction-honeynet system and a

DNS/DHCP server. The Drone Manager keeps track of a list of available machines.

When a connection attempt is made to the target IP range, the Drone Manager ei-

ther chooses a new virtual machine to forward the connection to, or forwards the

connection to a potentially infected virtual machine already assigned the target IP

address. As machines become infected, a list of “tainted” machines is built consist-

ing of machine that are under attack. The high interaction-honeynet system is an

Intel Xeon 3 GHz, dual core system with 8 GB of memory responsible for providing

the virtual machines. The authors found that typically 9 Windows XP instances,

14 Windows 2000 instances and 3 Linux FC3 instances were capable of handling the

network requests, given that many of the infection attempts were unsuccessful, allow-

ing the machines to be recycled to accept new connections. The DNS/DHCP server

is responsible for providing the virtual machines with IP addresses and answering

DNS requests from the hosts. The authors note that most infection attempts did not

succeed on unpatched version of Windows 2000 and Windows XP, which might be

due to malware able to distinguish true hosts from virtual machines.

Baecher et al. [2006] propose Nepenthes, a platform designed to collect self-

replicating malware in the wild, essentially a honeypot (see Section 2.4.4). It focuses

on emulating only the vulnerable portions a service/machine to increase efficiency.

The architecture is formed by a number of modules built on top of the nepenthes core,
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which is responsible for the network interface. The modules pass the malware through

several stages, starting with vulnerability modules designed to mimic only the rele-

vant parts of exploitable services. When a virtual service is exploited, the payloads

are passed to a shellcode parser. If the shellcode is successfully parsed and it contains

instructions to download malware, the location is passed to a fetch module capable

of using a variety of protocols to obtain the malware. Depending on the objective

of the user, several different modules can perform actions on the fetched malware.

Nepenthes also has reverse shell emulation and virtual file systems for infection vec-

tors that require them. Additionally, Nepenthes is designed to identify exploits that

diverge from expected behaviour and redirect the exploit to a high-interaction hon-

eypot with the goal of capturing zero-day attacks (for more information on zero-day

see Section 2.2.1). Note that Nepenthes is only capable of collecting autonomously

spreading malware and, like many honeypots, has difficulty capturing hit list attacks.

The authors claim that one instance of Nepenthes can emulate 16000 IP addresses,

emulating 2000 concurrent honeypots. In testing, Nepenthes observed 5.5 million ex-

ploitation attempts in 33 hours, and collected 1.5 million binaries, 508 of which were

unique.

Provos et al. [2008] use a web-honeynet to verify drive-by downloads. The web-

honeynet is composed of a large number of Microsoft Windows images in virtual

machines. In order to check if a URL is malicious a given virtual machine will load

a fresh Microsoft Windows image with an unpatched version of Internet Explorer.

The browser is directed to the URL, and a variety of heuristic checks and anti-virus

scans are performed on the virtual machine to see if it was compromised. Each
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HTTP response is scanned with a variety of anti-virus products. Additionally, the

system is monitored for abnormal activity such as newly created processes, changes to

system registry and file system changes. The abnormal activities are combined into

a heuristic score representing the likelihood that a URL was malicious. On average

out of the one million URLs that the web-honeynet could process daily, about 25,000

of those were classified as malicious.

Potemkin [Vrable et al., 2005] is a honeyfarm that addresses the trade-off between

scalability, fidelity and containment. Vrable et al. [2005] propose taking advantage of

idle memory and cpu cycles by exploiting several infection characteristics, primarily

that given the large IP space of virtual machines (VM), only a very small number of

IP addresses are active at any given time and therefore do not require the resources of

an instantiated virtual machine. Their implementation involves a gateway machine

that filters packets into their honeyfarm, dropping scan packets and packets that

are not destined to the target IP range. It also contains the honeyfarm by applying

similar filters to outgoing packets. A Virtual Machine Manager within the honeyfarm

is responsible for instantiating reference images, which are snapshots of machines

already booted with their applications loaded and ready to accept connections. As

packets enter the network through the gateway destined for a new VM, a clone is

spawned that adjusts its IP address and then picks up the network packets. The

authors term this flash cloning. Another mechanism to aid with scalability is delta

visualization. In order to save on resources, each spawned clone maps all of its code

and data pages from the reference image, instead of creating a copy of them. The

reference map of code and data pages is not writable and therefore maintains a pristine
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status. There is copy-on-write functionality that allows machines to deviate from the

reference image.

Wang et al. [2006] introduce HoneyMonkeys, a set of virtual machines that host

monkey programs in a variety of different operating systems. Each monkey program

drives an unpatched browser and attempts to mimic human browsing habits. The goal

is to infect the virtual machine by following malicious links, if they exist. The authors

use an application called Strider Tracer [Wang et al., 2003] to monitor file changes to

the virtual machines indicative of infection. In a one month trial of HoneyMonkeys,

Wang et al. [2003] discovered 752 unique malicious URLs with the capability to exploit

unpatched versions of Microsoft Windows XP. The malicious URLs were hosted on

288 web sites. Further trials identified 741 web sites hosting 1,780 exploit URLs. In

their trials they deployed 10 browsers per virtual machine, one virtual machine per

physical machine, and a total of 20 physical machines. The Windows machines had

varying patch levels applied to them, with fully patched Windows machines used to

verify if a malicious URL identified earlier on unpatched machines was actually a

zero-day attack (see Section 2.2.1). Wang et al. [2006] demonstrated that they could

identify zero day attacks before the rest of the security community using their system.

For more examples of researchers using virtual machines for honeypots see [Anag-

nostakis et al., 2007; Moshchuk et al., 2006].

One issue identified by Stone-Gross et al. [2009] in using virtual machines in

malware analysis is that malware can do system checks to identify when a machine

is hosted virtually, by performing checks on the virtual hardware serial and model

numbers. These numbers are often consistent across virtual machines.
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Wang et al. [2010] explore the detection of honeybots and honeynets. They pro-

pose that a botmaster can use ethical and legal bounds applied to security researchers

to verify whether or not a particular bot in their botnet is actually a honeypot. Typ-

ically security professionals are liable for the traffic originating from their honeypots,

therefore they must filter the traffic leaving their honeypots to ensure they do not

damage public property. The botmaster instructs a bot to send out malicious traffic

to another bot (sensor) under the botmaster’s control. The botmaster then verifies

with the sensor bot to see if the malicious traffic was received. If the malicious traffic

was not received, the botmaster assumes that the originating bot is either a honeypot,

or in a secure network. In either case, the original bot can be discarded. Examples of

malicious traffic are attempts to infect other machines, low-rate port scanning, and

email spam, all of which should be blocked by the security professionals managing the

botnet to avoid legal proceedings. Wang et al. [2010] also illustrate that implement-

ing DNS sinkholes are detectable by botmasters using master DNS controller lists

that can be routinely compared to a bot sensor’s own DNS resolutions. Lastly, they

demonstrate that if a botnet’s controller is hijacked, the same mechanism that de-

tects honeypots using malicious traffic can equally be applied to identifying hijacked

botnet controllers.

Wang et al. [2010] also address how a P2P botnet might detect honeypots. They

designed a two-stage reconnaissance worm, the two stages are spearhead and main-

force. The spearhead infects a machine, and then attempts to infect some other

number of machines. Once spearhead manages to infect some fixed number of other

machines, it downloads the main-force stage. Main-force contains the payload re-
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quired to formally join the P2P botnet, which may consist of an authorization key.

The authors are taking advantage of the fact that security researchers will not al-

low their honeypots to deliberately infect the number of machines required to obtain

main-force. Some of the effect of two-stage reconnaissance worms can be mitigated by

deploying a honeynet, as opposed to a honeypot, and having honeypots infect other

honeypots without sending malicious traffic past the gateway. However, Wang et

al. show that further modifications to the two-stage reconnaissance worm can detect

such activity. The trade off is really in how much the botmaster intends to invest in

ensuring the botnet can detect honeypots.

Wang et al. [2006] identified three methods that their HoneyMonkeys could po-

tentially be identified by malware, preventing the malware from executing. First,

adversaries could discover the IP addresses known to host HoneyMonkeys or hon-

eynets in general, and refuse to infect those machines. Second, the malicious website

could try to detect honey clients by attempting to interact with the user, through

dialog boxes or CAPTCHA tests for example. Third, there are a number of methods

for an application to determine if it is in a virtual machine, for example: executing

instructions with high virtualization overhead and detecting anomalies in the elapsed

time, or identifying the execution of x86 opcodes typically reserved for specific virtual

machines.

3.7 Feature Extraction

A network flow or the memory space of a target machine can have an abundance

of features. While some of those features are important for identifying malicious and
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anomalous behaviour, many of those features can be ignored. A substantial amount of

research focuses on identifying important features that provide maximum information

gain. As such, feature selection is important in intrusion detection, as a good set of

features can improve detection accuracy and reduce processing time. Large feature

sets can impact the running time of anomaly detection algorithms. While a minimal

set of features can enable real-time processing by reducing the execution time of the

anomaly detection algorithms. In particular, for ANN, the training increases with

the square of number of features in each input vector [Kauzoglu, 1999].

Gonzalez [2009] studied feature selection by applying several feature selection al-

gorithms to a set of 248 features for network intrusion detection. Gonzales applied the

following algorithms: accuracy rate with best first search, Decision Tree (C.45), accu-

racy rate with a genetic algorithm, RELIEF-F, Probability of Error and Average Cor-

relation Coefficient (POEACC), Generalized Relevance Learning Vector Quantization

Improved (GRLVQI), median Bhattacharyya and minimum surface Bhattacharyya

methods. Gonzales concludes that there are a subset of key features required for gen-

erality: ports, packet size, timing attributes, and other protocol-specific indicators.

Specifically, RELIEF-F produces a feature subset that maintains generality across

all tested classifiers using 16 features from the original 248 for Transmission Control

Protocol flows, for example client port, server port, time since last connection, and

maximum data sent. The other feature selection algorithms selected subsets between

12 to 27 features and were often able to improve the classification accuracy of at least

one of the 4 classification algorithms. See Table 3.1 for an example subset of features.

See [Gonzalez, 2009] for a complete list of the 248 features.
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Feature Subset

client port server port med data control a b
max data wire max data ip mean data control a b
max data control req sack b a q3 data control a b
max segm size a b max segm size b a max data wire b a
min segm size a b avg segm size a b max data ip b a
max data wire a b max data ip a b var data control b a
Time since last connection

Table 3.1: Sample subset of features chosen by Gonzalez [2009]’s algorithm.

Lorenzo-Fonseca et al. [2009] addressed the issue of reducing the number of charac-

teristics necessary for presenting an input to an ANN with minimal loss of specificity.

A TCP/IP traffic input consists of over 400 potential features, that Lorenzo-Fonesca

et al proposed to reduce to 20 principal components using a principal component

methods, and claimed they could express over 95% of the original input samples total

information. Using a Multi-Layer Perceptron ANN: composed of 20 neurons in the

input layer, 36 neurons in the hidden layer and 1 output layer, they classified traf-

fic as either Normal or Attacks with 99.41% accuracy on their own test data and a

detection rate of 90% on the DARPA intrusion detection evaluation data. Not only

does the research demonstrate promising results for ANN in general for the IDS task,

it also demonstrates the increase in efficiency attainable by reducing the inputs layer

from a potential 400 inputs to 20.

Zanero and Savaresi [2004a] use approximately 30 input entries for each TCP/IP

packet they process in their anomaly detection engine. They also highlight the re-

quirement to search for anomalies within individual packets (intra-packet correlation)

as well as anomalies that emerge from groups of associated packets (inter-packet cor-

relation) [Zanero and Savaresi, 2004a]. However, later in their paper they identify

that the choice of features were done through trial and error, and later experiments
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used fewer features and gleamed better results for a system that analyzed groups of

10-20 packets at a time. They indicate that proper feature selection requires more

research.

The DARPA data set, which has been a standard for testing anomaly detection in

many anomaly detection research efforts since 1998, describes network traffic using 41

features for each TCP/IP connection. The data set is intended to simulate a typical

U.S. Air Force LAN. However, the simulated LAN was subjected to a large number

of network attacks. A set of 24 attack types were introduced into the data set that

fall under the following four categories: Denial of Service, Remote to User, User to

Root, and Probing. The features include such things as protocol, flags, duration,

destination host count, is host login, is guest login, etc. For a full list of features

see [Sheikhan and Shabani, 2009].

DARPA features Sheikham Chebrolua Mukkamala Khor

duration X
protocol type X
service X X X F1, F2, F3, F4, F5
src bytes X X F2, F4
dst bytes X X F1, F2, F3, F4, F5
logged in X X F1, F2, F3, F4, F5
num compromised X
root shell F1, F4, F5
count X X F1, F2, F3, F4, F5
srv count X X X
serror rate X
rerror rate X
srv rerror rate X X
same srv rate X
diff srv rate X
srv diff host rate X F1, F4
dst host count X X F1, F4, F5
dst host srv count X X X F2, F4
dst host same srv rate X
dst host diff srv rate X X F2, F4
dst host srv diff host rate X F1, F4
dst host rerror rate X F2, F4, F5
dst host srv rerror rate X

Table 3.2: Features identified by several algorithms as important to anomaly
detection.
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Sheikham et al. [2010] test the effect of reducing the feature set of the original

KDD 99 on classification rates and learning time for neural attack recognizers. They

take 41 features described in the KDD 99 data and through preprocessing, scale and

map them to linearly scaled values (e.g. in the range of [0,1]) and integer ranges (e.g.

1,2,3...N). They rank the features by applying logistic regression on the Chi-squared

feature values, effectively ranking the features by evaluating subsets of feature from

size 1 to 41. They found that using 15 features in a MLP they could achieve better

overall performance than several other learning algorithms using varying feature set

sizes. For a list of the 15 top ranked features see Table 3.2.

Khor et al. [2009] constructed BN Classifiers to evaluate the performance of their

feature selection algorithm. The feature selection proposed using a correlation based

feature selection subset evaluator and a consistency subset evaluator to form two fea-

ture subsets (F1 and F2). They formed a third subset (F3) as the intersection of

the first two subsets (F3 = F1 intersect F2), and a fourth subset (F4) as the union

of the first two subsets (F4 = F1 union F2). They also allowed domain experts to

add features they deemed important to the third subset to create a fifth subset (F5

= F3 + domain knowledge). For a list of the individual features in each feature set

see [Khor et al., 2009]. They conclude that classification accuracy can be maintained

with the reduction of the feature set. Important features can be identified by combin-

ing multiple feature selection algorithms, and taking the intersection of the selected

features, while the resulting feature set can be improved using additional features

recommended by domain experts. The features of the set F1, F2, F3, F4 and F5 are

listed in Table 3.2
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Botminer [Gu et al., 2008a] uses the following features to identify command and

control communications: time, duration, soure IP, source port, destination IP, des-

tination port, number of bytes transferred in both directions and number of packets

transferred in both directions.

Mukkamala and Sung [2003] use a performance base ranking method (PBRM) to

determine what features are important for identifying anomalies in network traffic.

They also used a unique ranking method, Support Vector Decision Function Ranking

Method (SVDFRM) for choosing the most important features for anomaly detection

using SVMs specifically. Both methods begin with the 41 features of the DARPA data

set and iteratively transform the feature set into three subsets of important features,

secondary features and unimportant features. For a list of important features see

Table 3.2 and [Mukkamala and Sung, 2003].

Chebrolua et al. [2005] applied Bayesian networks (BN) and Classification and

Regression Trees (CART) as well as a combination of the two, to feature selection

in the design of an IDS. Using BN they seek to identify a Markov blanket defined

as follows: the Markov blanket of a feature T , MB(T ) of a BN. The set of parents,

children, and parents of children of T . MB(T ) is the minimal set of features con-

ditioned on which all other features are independent of T , i.e. for any feature set S

P (T |MB(T ), S) = P (T |MB(T )). The BN MB model for feature selection identified

17 important features. For a full list of 17 features see [Chebrolua et al., 2005].

Chebrolua et al. [2005] CART algorithm is based on binary recursive partitioning

with nodes representing items to be classified and each node splits on different fea-

tures. Features that contribute the most to classifying inputs at each split increase in
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importance. The CART algorithm yielded 12 important features. The 12 important

features are listed in Table 3.2 and found in Chebrolua et al. [2005].

Kloft et al. [2008] propose a learning algorithm to automatically identify features

for anomaly detection. Their approach is based on an extension to support vector

data description (SVDD) using one-class anomaly detection. They show that it is

feasible to select optimal feature combinations automatically with machine learning

and demonstrated their technique on HTTP traffic.

Provos et al. [2008] use features such as “out of place” IFRAMEs, obfuscated

JavaScript and IFRAMEs to known distribution sites as features in web-pages to

help identify attacks that redirect browsers to malware distribution websites.

3.8 Impact of Encryption and the VPN

Encryption and Virtual Private Networks add an additional layer of complexity

to anomaly detection [Goh et al., 2010, 2009]. Assuming traffic is passed as plaintext,

devices designed to inspect the contents of network packets can perform matching

against the content of the packet using several well known string matching algorithms.

Sessionizing, the act of constructing sessions from individual packets sharing the same

IP addresses and ports, is time consuming, as the state of the traffic flow must be kept

in memory. If packets are encrypted, the device must either decode the packets on the

fly, which can delay in-line processing, or match against the encrypted content. Given

that the encrypted content of any given packet is unlikely to match a content-based

rule, encrypted malicious traffic is more likely to circumvent an IDS. Decoding the

content of the packets requires the IDS to have access to all of the keys to perform
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decryption. Depending on the encryption used, a full session of data may have to be

collected before decryption can occur.

Encryption on the wire increases the value of host-based intrusion detection, given

that once traffic arrives on the host it is decoded to be used by the application

responsible for those communications. The host-based sensor may be able to delay

matching against the traffic until the application responsible for generating the traffic

performs decryption.

Virtual Private Networks (VPN) introduce similar difficulties. However, place-

ment of network sensors can alleviate many of the difficulties. Since VPN traffic

consists of a tunnel, the IDS should monitor the traffic after it has been reassembled

from the tunnel instead of matching against the VPN traffic encapsulating the true

network traffic.

Encrypted traffic is quickly becoming ubiquitous, and in general all encrypted

traffic on a network should be documented by system administrators. There is some

merit to blocking all unknown encrypted traffic entering or leaving a network, but

given that legitimate encrypted traffic is popular, system administrators are responsi-

ble for learning what encrypted traffic must be allowed and what can continue being

blocked. Gu et al. [2007] identify encryption as a challenge for the effectiveness of

their detection architecture.

3.9 Summary

In this chapter I described existing research in botnet detection, and reviewed

a range of work in machine learning as applied to anomaly detection. I reviewed
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the artificial intelligence concepts of agents and plan recognition, and then intro-

duced multi-agent systems and their applications in computer security. I discussed

techniques for both collecting malware and extracting features from collected traffic.

Finally I touched on the impact encryption has on anomaly and intrusion detection.

The next chapter is concerned with describing the architecture of the Multi-Agent

Malicious Behaviour Detection.



Chapter 4

Multi-Agent Malicious Behaviour

Detection Architecture

4.1 Overview

The major contribution of this thesis is a framework for Multi-Agent Malicious

Behaviour Detection, which is described in this chapter. This framework aids net-

work defenders in the detection, mitigation, and study of malicious multi-agent sys-

tem through interaction with both the human network defender and the malicious

multi-agent system. The architecture of the Multi-Agent Malicious Behaviour De-

tection system is described in seven sections. First, I define and discuss the concept

of a Multi-Agent Malicious Behaviour Detection system. Second, I summarize the

distinction between the architecture described in this chapter and both standard mis-

use detection and anomaly detection. Third, I described the role of the network

defender, and the teleautonomous aspects of Multi-Agent Malicious Behaviour De-

103
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tection. Fourth, I describe the Multi-Agent Malicious Behaviour Detection Agents

that make up the system and the function they serve. Namely, I will describe the

Traffic Source Agent, Feature Source Agent, Machine Learning Agent, Alert Source

Agent, Protocol Analysis Agent, Observer Agent, and Traffic Manipulation Agent.

Fifth, I illustrate a set of agents deployed in a fictional network to demonstrate how

the agents in the system interact. Sixth, I describe the communication infrastructure

for the agents in the system. Finally, I give a detailed example of how sessions of

traffic are processed by a hypothetical Multi-Agent Malicious Behaviour Detection

system.

4.2 Multi-Agent Malicious Behaviour Detection

As described in Section 1.1, Multi-Agent Malicious Behaviour Detection is inspired

by the hypothesis that malicious software agents continue to become more intelligent,

autonomous and cooperative and techniques from artificial intelligence, namely ma-

chine learning and multi-agent systems, are valuable in detecting, discovering and

mitigating malicious multi-agent systems. Framing network attacks as potentially

intelligent malicious multi-agent systems benefits both the computer security and

multi-agent system domains. Such framing demands novel techniques for learning

behaviour from intelligent malicious multi-agent systems (Section 1.5.4), where those

systems are themselves designed to evade detection wile carrying out a series of tasks.

The key to Multi-Agent Malicious Behaviour Detection is the generation of features

derived from interactions between malicious software agents. These features can then

be generalized across a variety of current and future malicious multi-agent system
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instances, and exploited to detect them. A feedback mechanism encourages network

defenders to extend the Multi-Agent Malicious Behaviour Detection system’s capa-

bility with human expertise. This methodology relies on both machine learning and

manual techniques to infer behaviour patterns from malicious multi-agent systems.

Care is taken to ensure that the behaviours derived from the malicious code are not so

general that they are similar to other legitimate software agents present and operating

on the network, which malicious software agents may try to disguise themselves as.

However, given that there are several legitimate groups of software agents behaving in

similar ways, the architecture includes a method for whitelisting specific applications

where possible.

Malicious software agents in the wild infect machines in a variety of ways (see

Section 2.2.2). Once a malicious software agent establishes a presence on a victim

machine, several key behaviours are commonly presented in order to achieve the ma-

licious multi-agent system’s intended goals (Section 1.5.4). First, malicious software

agents often beacon to other instances in a malicious multi-agent system within the

same local network, organization or autonomous system. Equally, malicious soft-

ware agents often beacon out to malicious multi-agent system controllers responsible

for managing the various malicious software agents, and may initiate an update be-

haviour. Second, in order to communicate, malicious software agents have methods

for identifying other instances and those methods may mimic common traffic on the

network. For example a domain name look up, a connection to a predefined location,

or the form a broadcast takes may all serve to identify similar malicious software

agents. Third, malicious software agents typically have a means for propagation,
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such as copying malicious code into emails, or embedding scripts into HTTP requests

(Section 1.5.4). Malicious software agents may also attempt to escalate their priv-

ileges on the local network through a variety of attacks, often targeting local mail

servers, domain name servers, or authentication servers such as the domain controller

in a Microsoft Windows based network, to facilitate propagation.

The malicious behaviours addressed by the Multi-Agent Malicious Behaviour De-

tection Architecture, presented in Section 1.5.4, are those that can be identified on

the network using a variety of packet capture and feature extraction methods. The

architecture is intended for detection capability in real-time. The architecture is also

capable of promoting the propagation of a malicious multi-agent system in a con-

trolled manner, in order to increase the framework’s opportunity to learn from a

malicious multi-agent system’s communications.

4.3 Distinction

Here I discuss the distinction between a misuse detection architecture, an anomaly

detection architecture and the Multi-Agent Malicious Behaviour Detection Architec-

ture. The first distinction is the focus. Anomaly detection and misuse detection

are techniques for identifying malware, while Multi-Agent Malicious Behaviour De-

tection focuses on detecting sophisticated malicious multi-agent systems. All three

approaches are capable of detecting both individual malicious software agents as well

as malicious multi-agent systems. However, there are subtle differences between these.

Whereas misuse detection (see Section 2.5.1) is typically reactive to very specific

instances of malicious activity, and only effective against the specific case a given
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rule was defined to identify, Multi-Agent Malicious Behaviour Detection generalizes

from previous malicious multi-agent system communications and focuses in on those

behaviours that are likely to be repeated across future varied malicious multi-agent

system instances. Often misuse detection depends on string matching for terms pre-

viously identified or for known malicious domain names and IP addresses. These

predefined terms are likely to change over time, as attackers acquire new IP addresses

or change their domain names, or obfuscate their code, rendering the rules useless.

However, some behaviour must remain consistent in spite of such changes, and the

aim of Multi-Agent Malicious Behaviour Detection is in part to identify those char-

acteristics.

Anomaly detection (see Section 2.5.2) attempts to identify the unknown malicious

behaviour through a variety of classification methods. Ideally, all traffic is classified as

either normal or abnormal. Unfortunately, anomaly detection requires a substantial

sample of normal traffic, and as the anomaly detection system is applied to a variety

of different networks, the concept of normality can vary wildly. What is normal on

one network is abnormal on another, and vice versa. One key aspect of anomaly

detection is that it finds anomalies, not specifically malicious behaviour. Starting

from a base set of knowledge (often some training set of network traffic), everything

different beyond some tolerance level from the training set is termed anomalous and

must be investigated. Every new legitimate network behaviour will also trigger the

anomaly detection engine and may produce a number of false positives. Additionally,

there is the risk that existing malware on a network will be included as normal traffic

since it is active when traffic samples are taken for the training set of normal traffic.
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Existing malware that is covertly communicating within the network could potentially

become whitelisted. In general, attempting to define normality makes very little sense

on the Internet as a whole. Multi-Agent Malicious Behaviour Detection differs from

standard anomaly detection in that it starts with learned seed behaviours that are

then generalized and added to a set of behaviours that identify malicious activity

(as opposed to merely anomalous). Additionally, Multi-Agent Malicious Behaviour

Detection does not consider the problem to be that of pure classification, but rather a

study of intelligent malicious multi-agent systems capable of blending in with normal

traffic.

Misuse detection is a reactive approach, which focuses on finding instances of

known malicious behaviour, while anomaly detection is a proactive approach seeking

to identify novel instances of malicious activity. Multi-Agent Malicious Behaviour

Detection is somewhere between the two: it seeks to find novel attacks based on lessons

learned from previous attacks. Additionally, both misuse detection and anomaly

detection are effective when applied against simple attack scenarios, such as scan

detection, where the behaviour is well defined. However, as machines become more

powerful, increased processing capability provides more available resources that in

turn allow malicious software to operate unnoticed by taking advantage of idle cycles.

This in turn allows for more sophisticated and intelligent malicious software agents,

which are better able to avoid traditional anomaly detection.

Now that I have given a high level description of the Multi-Agent Malicious Be-

haviour Detection system and how it is distinct from both misuse detection and

anomaly detection, I will briefly discuss the role of the network defender with respect
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to Multi-Agent Malicious Behaviour Detection.

4.4 Network Defenders

In Section 1.1 I introduced the concept of network defenders as human individuals

responsible for protecting computer networks. In computer security, network defend-

ers are also referred to as IT security specialists, security professionals, white hats,

system administrators, etc. For Multi-Agent Malicious Behaviour Detection, the net-

work defender is the human in the loop, providing expertise, feedback and exerting

control over the Multi-Agent Malicious Behaviour Detection Agents. As discussed

earlier (Chapter 1), detecting malicious multi-agent systems is a complex problem.

While a completely autonomous system for protecting computer networks is ideal,

some network behaviour detection tasks remain easier for trained human experts to

recognize and validate than the current state of the art in artificial intelligence can

support. Multi-Agent Malicious Behaviour Detection therefore seeks to be a teleau-

tonomous system - one which allows its automated components a level of autonomy,

but also allows the inclusion of input from a human. The Multi-Agent Malicious Be-

haviour Detection framework engages the network defender through an intuitive user

interface (Section 4.5.7), and takes advantage of the defender’s expertise to verify the

system’s hypotheses, as well as enabling network defenders to provide feedback into

the system. Multi-Agent Malicious Behaviour Detection aims to reduce the cognitive

load of the network defender while still providing situational awareness through the

Observer Agents and Protocol Analysis Agents (Section 4.5.5). Taking advantage of

teleautonomy enables Multi-Agent Malicious Behaviour Detection to take advantage
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of human-level intelligence while still pushing the boundaries of artificial intelligence.

This research reinforces the blending of human and machine intelligence and provides

a research platform to explore human and artificial intelligence interaction. Next, I

present the individual Multi-Agent Malicious Behaviour Detection Agent types that

make up the Multi-Agent Malicious Behaviour Detection system.

4.5 Multi-Agent Malicious Behaviour Detection

Agents

The Multi-Agent Malicious Behaviour Detection Architecture consists of a num-

ber of cooperating Multi-Agent Malicious Behaviour Detection Agents. Multi-Agent

Malicious Behaviour Detection Agents are categorized by one of seven roles: traffic

source, features source, machine learning, alert source, protocol analysis, observation,

and traffic manipulation. Figure 4.1 illustrates the various Multi-Agent Malicious Be-

haviour Detection Agent roles, and gives an example of communication between the

various agents. The green boxes represent a network packet. In Figure 4.1, a Traffic

Source Agent (the main means by which the system interacts with incoming network

streams, Section 4.5.1) copies the packet into memory, and initiates cooperative pro-

cessing of the packet by the other Multi-Agent Malicious Behaviour Detection Agents.

At the bottom left, a Traffic Manipulation Agent inserts a replacement packet, rep-

resented by a red box, in front of the original packet back into the network. The

replacement packet represents the potential response of the Multi-agent Malicious

Behaviour Detection Framework to the given traffic. Though the system may have
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additional side effects (e.g. through the actions of warned network defenders), the

replacement packet allows my framework to directly affect the network. For exam-

ple, a replacement packet intended to get to the destination host before the original

packet (Section 4.5.6), as in a spoofing attack [Yan et al., 2006]. Such a replacement

packet could be a modified DNS packet to redirect the host to a benign server, or

an HTTP response with a malicious link removed, or even a TCP packet with the

FIN flag set in an attempt to close down the connection. For the sake of simplicity

only one Multi-Agent Malicious Behaviour Detection Agent per role is illustrated in

Figure 4.1. However, the system is intended to allow multiple Multi-Agent Malicious

Behaviour Detection Agents for each role. This is further elaborated in the sections

that follow, along with a more sophisticated example once all agent types are de-

scribed. I will refer back to Figure 4.1 while describing each Multi-Agent Malicious

Behaviour Detection Agent role.

The Multi-Agent Malicious Behaviour Detection Architecture is intended to be

dynamic: agents occupying the roles described in this section can be added or removed

as the system does its work. Regardless of the individual agent role, each Multi-Agent

Malicious Behaviour Detection Agent must first announce its presence to the other

agents currently in the system by way of a broadcast message. The message includes

a unique identifier for the new agent and an indicator of what role it intends to fill.

Existing Multi-Agent Malicious Behaviour Detection Agents in the system respond to

the broadcast indicating their unique identifier and role, allowing agents to establish

directed communication between on another.

The ability for agents to join or leave the system in this way increases the system’s
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Figure 4.1: The seven agent roles and an example of information flowing through the
system.

overall resilience in four ways. First, it improves the system’s ability to cover complex

network topologies. For example, in a segmented network certain segments may be

covered by a variety of Traffic Source Agents (Section 4.5.1). Each Traffic Source

Agent can examine network traffic independently, providing different forms of ab-

stracted perception (i.e. information of interest) to other agents in the system based

on their needs. Second, it enables resource management. Multi-Agent Malicious Be-

haviour Detection Agents can be instantiated on a number of different machines in

the protected network. However, each machine may have other processing priorities.

When processing resources are limited, Multi-Agent Malicious Behaviour Detection
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Agents can leave the Multi-Agent Malicious Behaviour Detection system in order

to give those resources back to the host machine. The Multi-Agent Malicious Be-

haviour Detection system can still carry on, minus the abilities by that particular

agent. Third, multiple Multi-Agent Malicious Behaviour Detection Agents provide

redundancy. If one Multi-Agent Malicious Behaviour Detection Agent crashes, or

even becomes compromised, other agents can be instantiated to dynamically take its

place. Finally, a network defender could potentially design and implement a new type

of agent and deploy it into the existing system and dynamically remove the agent if

it does not perform as expected.

The following sections describe in detail the individual Multi-Agent Malicious

Behaviour Detection Agent types. A detailed example of how a population of Multi-

Agent Malicious Behaviour Detection Agents cooperate is provided in Section 5.4.2.

4.5.1 Traffic Source Agents

Traffic Source Agents provide other Multi-Agent Malicious Behaviour Detection

Agents in the system access to some traffic resource. Traffic Source Agents are passive

listeners, taking advantage of network taps, ethernet cards in promiscuous mode or

previously collected traffic. Each Traffic Source Agent is capable of processing network

traffic to a degree required for Multi-Agent Malicious Behaviour Detection Agents in

the system to exploit it. Traffic Source Agents provide access to the traffic source

in as close to the raw data packets as possible, while providing some structure to

simplify further processing. The experimental networks used for the implementation

of this architecture (Chapter 5) are IPv4 over ethernet, requiring each Traffic Source
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Agent implementation to provide Multi-Agent Malicious Behaviour Detection Agents

with a method to subscribe to IP layer traffic. Generally though, a Traffic Source

Agent should not be limited to IPv4 or even IP.

Placement of Traffic Source Agents in the network topology is important, but

not as critical as typical network sensor architectures. As discussed in Section 2.3.1,

typically sensors should exist at choke points throughout the network, and these may

impact network performance, such as in the case of in-line detection. The novelty of

Traffic Source Agents is that multiple Traffic Source Agents can exist throughout the

network, each sharing network traffic from its own view of the environment, providing

Multi-Agent Malicious Behaviour Detection Agents in the system the opportunity to

pick and choose the traffic sources in which they are interested.

Each Traffic Source Agent is a source of shared perception in the Multi-Agent

Malicious Behaviour Detection system. Figure 4.1 shows an example Traffic Source

Agent reading network packets from some network medium and distributing the re-

sulting structured network packets to a Feature Source Agent, a Protocol Analysis

Agent, and an Alert Source Agent. The structured network packets will have im-

portant fields, such as IPs, ports, and flags parsed with pointers into the raw data,

making it easier for other agents to work with them. Having one agent do this parsing

work removes the need for all the other agents having to parse their elements of inter-

est individually, and speeds the system by removing redundant work. In general, any

Multi-Agent Malicious Behaviour Detection Agent can subscribe to a Traffic Source

Agent: Figure 4.1 is just an illustrative example.

The challenging aspect of a Traffic Source Agent’s role is ensuring that it is capable
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of keeping up with the speed of packets that are being sent across the network medium.

It is not uncommon for home networks to be connected to the Internet at speeds

of up to 40-60 Mbits per second, while personal home networks commonly contain

routers capable of achieving 100 to 1000 Mbits per second. Raw network capture

libraries, such as tcpdump, are capable of capturing packets at fairly high rates.

However, the major requirement of Traffic Source Agents is providing an interface

for higher level programming languages to manipulate low level packet structures

enabling efficient analysis and the capability to insert modified packets back into the

network fast enough to allow the Multi-Agent Malicious Behaviour Detection system

to interact with malicious multi-agent systems. If Traffic Source Agents cannot keep

up with the packets, then the whole Multi-Agent Malicious Behaviour Detection

system will either fall behind in processing or be forced to drop packets. Programming

for speed is the essential challenge in implementing a Traffic Source Agent (Section

5.5.1). As network speeds increase, specialized hardware is required to keep up with

packets. This research focused on using standard hardware that was readily available

and inexpensive. Reliance on open source libraries was necessary to produce high

level Multi-Agent Malicious Behaviour Detection Agents, but also limited the capture

speed attainable for this research. Section 5.5.1 discusses more about the specific

libraries used. A deep understanding of networking was required to try and get

the most out of the packet capture libraries to improve the Traffic Source Agent’s

performance.

By providing multiple Traffic Source Agents and abstracting away the details of

the traffic medium, the system has the potential to blend in a number of traffic
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sources to expose the system to artificial attack traffic as well as the live network

traffic. For example, a Machine Learning Agent (Section 4.5.3) might be trained

while no malicious network traffic is available by playing back previously-recorded

traffic.

The implementations of two traffic sources, PcapFileTrafficSource and PcapLive-

TrafficSource, are further described in Section 5.5.1.

4.5.2 Feature Source Agents

Feature Source Agents are similar to Traffic Source Agents in that they provide

Multi-Agent Malicious Behaviour Detection Agents with a source of shared percep-

tion. However, there is an important distinction between traffic sources and feature

sources. Feature sources process the raw packets into a set of features - an inter-

mediate step - so that other Multi-Agent Malicious Behaviour Detection Agents can

consume those features instead of the raw data. Feature sources provide a further

layer of abstraction from the raw data. While the feature source is not concerned

with the mechanism for capturing packets, it must understand what a packet is, and

what features are important. Features can be derived from single packets, or groups

of packets. Feature Source Agents are closely associated with both Protocol Analy-

sis Agents and Traffic Source Agents (see Section 4.5.1 and 4.5.5). The output of a

Feature Source Agent is a feature set, which contains no network packets, just the rel-

evant abstracted features such as: the number of packets processed, the average size

of the application layers in the packets, and the time since the machines involved last

connected. Feature Source Agents contain the logic to perform this feature extraction
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(Section 3.7).

A significant challenge for Feature Source Agent design is identifying the number

of packets sufficient for deriving relevant features to send to other Multi-Agent Ma-

licious Behaviour Detection Agents. If too few packets are used to derive a feature

set, then the set will not be useful in identifying valuable features. However, if the

Feature Source Agent waits for too many packets, then the delay between the Multi-

Agent Malicious Behaviour Detection system observing the packets and the feature

set reaching all of the interested Multi-Agent Malicious Behaviour Detection Agents

reduces the overall value and reaction time achievable by the Multi-Agent Malicious

Behaviour Detection system. To deal with the range of packets one might wish to use

as a basis for deriving a feature set, three modes for the Feature Source Agent are

provided: deriving features from single packets, a complete session, or a fixed number

of packets.

Consider deriving features from single packets. This technique provides the fastest

reaction time for the Multi-Agent Malicious Behaviour Detection Agents. If a single

packet is sufficient in identifying the features of malicious multi-agent system agent

communications, then Multi-Agent Malicious Behaviour Detection Agents can be no-

tified of the packet features with fairly low latency. However, using only a single

packet reduces the number of features that can be derived. Recognizing important

features such as the amount of data exchanged between two IP addresses requires

tracking the bytes for the duration of the communication between two IP addresses.

Many such features identified in previous research (Section 3.7) require multiple pack-

ets. Features derived from a single packet out of context might not provide enough
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information for the Multi-Agent Malicious Behaviour Detection Agents using these

features to make informed decisions. For example, in the case of a three way hand-

shake during a TCP connection set up, a SYN packet is not likely to contain features

worthy of forwarding on to other Multi-Agent Malicious Behaviour Detection Agents.

However, in some circumstances, such as standard DNS responses and requests, a sin-

gle packet contains all of the relevant features.

Next, consider deriving features from entire sessions. A session can typically

be defined by five primary features: the server and client IP addresses, the server

and client port numbers, and the protocol. Identifying packets that belong to a

session is straightforward: a hashing structure that derives keys from the five primary

features can be used to index a set of features, one for each session. As packets are

identified that belong to a specific session, the session features are updated with

the relevant parts of the new packet. Identifying when sessions are complete, and

then publishing the feature sets to other Multi-Agent Malicious Behaviour Detection

Agents is critical to efficient operation. The problem appears to be simple in the

case of a TCP session. Each TCP session should begin with a TCP handshake

involving a SYN, SYN/ACK and ACK. Then each TCP session should end when

either both ends of the session sending packets with a FIN flag set, or one of the

machines sends a packet with a RST flag set. However, in reality a large number

of TCP sessions do not end properly. In fact, quite often there is no proper TCP

session close. Instead, the TCP session eventually times out. The way the Feature

Source Agent deals with improperly closed TCP sessions will impact its capability

to react to events in the system. If the Feature Source Agent sees a FIN flag set on
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a packet from both the client and server ends of the session, then a feature set is

published and the session can be removed from the indexing structure. If a proper

close is not observed, then the session remains in memory. Sessions that remain

in memory too long impede the system’s capability to respond to threats in the

network. A timeout must be chosen that increases the likelihood that TCP sessions

with a proper tear-down are not truncated, and minimizes the delay for timed out

TCP sessions. The issue is compounded by connectionless transport protocols such

as UDP, where relevant features can be derived across a complete session, but there is

no obvious mechanism for the Feature Source Agent to identify the end of the session,

without perhaps understanding the overarching application protocol. Additionally,

being connectionless, a UDP session is misleading. For the purposes of this thesis,

two hosts observed exchanging UDP datagrams will be considered by convention, as

participating in a session, with the host that initiates the exchange considered the

client. A host that responds, after receiving an initial UDP datagram, by sending

back a UDP datagram will be regarded as a server and its corresponding UDP srouce

port is regarded as open. Depending on the number of sessions tracked at any given

time, the available memory of the Feature Source Agent becomes a factor. Too many

sessions in memory at one time could tie up large amounts of system memory and

effectively render the Feature Source Agent useless, as in a denial of service attack

like those described in Section 1.5.4.

Finally, one could estimate a fixed number of packets that provide a high likelihood

of capturing complete sessions while minimizing the number of truncated sessions and

delay from deriving features to notifying additional agents. However, estimating a



120 Chapter 4: Multi-Agent Malicious Behaviour Detection Architecture

fixed number of packets does not prevent very short sessions from having to timeout.

Suppose, after studying the average session length on a network, it is determined that

most sessions complete after ten packets. Any sessions less than ten packets long,

for example DNS, would require an additional timeout since they will not reach the

ten packet threshold. Instead, average session lengths would have to be determined

on a per protocol basis, requiring additional computations to recognize the variety of

protocols on a network. Even within a given protocol, the actual number of packets

can vary wildly. For example, consider HTTP. There are a number of different data

types and lengths that are transferred across HTTP that make it very difficult to

determine an appropriate number of packets.

The problem of estimating a useful number of packets can be handled by dividing

sessions into categories, where the number of categories depends on the implementa-

tion (Section 5.5.2). In this research, a set of categories represent traffic types that

fit into one of the 3 modes described above. However, other undefined modes may

prove more efficient for types of traffic not considered in my research. In any case, the

choice of mode has to be made early in the session processing, and simple heuristics

are preferred. Choosing a mode based on the port number, protocol, or some other

simple characteristic of the first or second packet is an efficient mechanism. While not

perfect, a simple heuristic reduces the potential delay between receiving the packets

to a session and the features of that session being published for other Multi-Agent

Malicious Behaviour Detection agents. See Section 5.5.2 for more information on how

Multi-Agent Malicious Behaviour Detection categorizes sessions.

This leads to the next challenge associated with deriving features from sessions,
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determining what features are sufficient to identify the target malicious multi-agent

system behaviours (Section 1.5.4) and providing those features to other Multi-Agent

Malicious Behaviour Detection Agents. I have previously reviewed much work on

feature extraction (Section 3.7). For the purposes of this work, the primary features

extracted from TCP and UDP sessions are based on those described in by Gonzalez

[2009] and presented in Table 3.1. However, special cases are made for HTTP and

DNS, given that the literature reviewed identifies them as rich sources of malicious

software agent communication (see Sections 3.2, 3.6 and 3.7). The features in Table

3.1 are applicable to the HTTP, TCP, and UDP sessions. However, only a subset of

the features are applicable to the DNS sessions.

DNS traffic is unique in that each session consists of a very small number of packets

and it is used frequently in malicious multi-agent system communications (Section

3.2). Each DNS packet is also rich with features that can be quickly extracted into

feature sets. Table 4.1 contains a list of the additional features extracted from DNS

packets.

DNS Features

Identifier Created by the program to represent the query, used to
match requests to replies.

Flags 16 bits reserved for various flag bits, including the aa,
tc, rd, ra and z bits.

Question Count The number of DNS queries in the DNS request.
Answer Count The number of answers in the DNS response.
Name Server Count The number of name servers referenced in the DNS re-

sponse.
Additional Record Count The number of additional records in the DNS packet.
Host Name Features Various features for ASCII host name strings found in

the DNS packet.

Table 4.1: Features extracted from DNS packets.

Additional features are also extracted for HTTP traffic. The features are based

on the HTTP request and response headers found in sessions on port 80 and 8080.
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When a Feature Source Agent identifies an HTTP method, or an HTTP response, the

Feature Source Agent extracts various HTTP header field values, such as User-Agent,

Via and Referrer. For a full set of extracted header fields see Table 4.2.

HTTP Features

User-Agent The user agent string of the user agent.
Via A list of proxies that a request has passed through.
Referrer Indicates a web-page that redirected to the current web-

page.
Host The domain name of the server.
Cookie A previously set cookie.
Server A name for the server in an HTTP response.
Location The content location in an HTTP response.
Set-Cookie Sets a session cookie.
URL The universal resource locator.

Table 4.2: Features extracted from HTTP sessions.

The Multi-Agent Malicious Behaviour Detection system is designed with exten-

sibility in mind for additional Feature Source Agent types. So while this research

introduces five specific Feature Source Agent types (see Section 5.5.2), these are im-

plemented so that new agents (e.g. a SMTP Feature Source Agent) could be added

by extending one of the existing types. For more information specifically on the im-

plementation of these agents and how they might be extended to add support for

additional features, see Section 5.5.2.

4.5.3 Machine Learning Agents

Machine Learning Agents consume feature sets provided by Feature Source Agents.

Section 3.3 introduced a number of machine learning algorithms that have proved suc-

cessful in identifying malicious behaviour. As discussed in Section 1.6.6, this research

does not seek to advance machine learning techniques per se, but rather exploits

available machine learning work to further computer security, while exploring com-
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binations of techniques which have not been explored previously in this area in an

online manner. From the point of view of the computer security researcher, the dif-

ficulty of working with machine learning algorithms is understanding what machine

learning algorithms are applicable to the texture of data available in the computer se-

curity environment and how to adapt information from that environment to existing

machine learning algorithms.

With respect to the applicable algorithms, I chose to leverage a series of online

machine learning algorithms used for visual object tracking in computer vision de-

scribed by Saffari et al. [2010]. The algorithms include Online Random Tree, Online

Random Forest, Online LaRank, Online Multi-Class Linear Programming Boost, and

Multi-Class Gradient Boost. The reasons for choosing these particular algorithms

were twofold. First, the types of algorithms matched those that have been used in

previous computer security research, as discussed throughout Section 3.3, with the

exception that in the computer security work discussed the algorithms were offline.

Second, while traditionally machine learning has been used in offline learning to iden-

tify network threats, my Multi-Agent Malicious Behaviour Detection Framework aims

to introduce online malicious multi-agent system communications analysis to provide

network defenders with the capability to react in real-time to malicious software

agent behaviours, as described in Section 1.5.4. This novel approach highlights the

similarities between requirements for visual object tracking and Multi-Agent Mali-

cious Behaviour Detection. Both tasks require continual learning as the environment

changes. In addition, each must process and react quickly enough to input to meet

real-time demands. While in the object tracking domain the algorithms are adjusting
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to a dynamic world, in this research the algorithms are adjusting both to the network

defender’s feedback and changes in the networking environment. To be clear, there

are a number of other potential algorithms that could have been implemented as

Machine Learning Agents, and the design of Machine Learning Agents is intended to

allow for quick hypothesis testing of any available algorithm with minimal changes by

providing a clean interface to wrap the machine learning algorithm in and abstract it

from the work performed in both Traffic Source Agents and Feature Source Agents.

The provision for several different algorithms contributes to the novelty of this work

by ensuring a modular and relatively easy way of exploiting advances in machine

learning. The representative sample of machine learning algorithms are integrated

into Machine Learning Agents. Through various experiments (Chapter 6) I further

demonstrate the capability of Machine Learning Agents to provide value within the

Multi-Agent Malicious Behaviour Detection system, making a novel contribution to

computer security.

With respect to adapting information from the environment to meet the require-

ments of machine learning algorithms, the Feature Source Agents, discussed in Section

4.5.2 provide the majority of adaptation. By feeding sets of features represented by a

series of floating point values derived from network traffic, the Feature Source Agents

enable the clean interface between raw traffic and machine learning input.

Machine Learning Agents operate by associating features pulled from the un-

derlying network traffic with classifications derived from human network defender

expertise. In traditional machine learning an algorithm is presented with a training

sample set to learn how to classify samples in the problem domain [Alpaydin, 2004].
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The training set should consist of a representative sample of data from the problem

domain where the classification of each data sample is known. Training is achieved

by presenting a data sample to the machine learning algorithm, with its associated

classification and the machine learning algorithm updates to compensate for the new

data sample and classification. As the training set is exhausted, the machine learning

algorithm learns to classify the data. After training, the algorithm is presented with a

labelled testing set. In order to test the machine learning algorithm’s accuracy, each

sample in the test set is passed through the machine learning algorithm and the class

assigned to the data sample by the machine learning algorithm is compared to the

desired classification provided by the test set. Typically the accuracy of the machine

learning algorithm is defined by the number of correct classifications divided by the

total number of samples [Alpaydin, 2004]. One or more training and test sets may

be employed with the goal of achieving a high degree of classification accuracy on

a test data set before deploying the trained algorithm against the real world prob-

lem. While the scenario just described has been used previously to classify network

traffic [Alpaydin, 2004], it relies on three assumptions. First, that one can derive a

set of network traffic that is representative of the expected network traffic. Second,

that once a baseline of network traffic is derived, it will remain stable enough to con-

tinue to use as a reliable mechanism to train the machine learning agent. Third, the

labelling in the test set has been done correctly.

As discussed in Section 3.3.6, online machine learning tackles a different problem.

Network traffic is dynamic. Applications are installed and removed, protocols change

and malicious software agents evolve. A baseline of traffic is likely to be rapidly out-
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dated. Additionally, providing a reliable set of labelled data for learning is difficult,

especially given that malicious multi-agent system communications are attempting to

blend in with common protocols. Instead, the Machine Learning Agents are designed

to learn over time and remain dynamic as Feature Source Agents publish network fea-

tures for them to consume. Some feature sets will be labelled by Alert Source Agents,

while many feature sets will not. Machine Learning Agents consume the feature sets,

training against the labelled feature sets and attempting to classify the unlabelled

feature sets. The labelled feature sets provide Machine Learning Agents with an

opportunity to adapt to network traffic by taking advantage of previous knowledge,

providing meaningful assistance to a network defender tasked to identify novel ma-

licious multi-agent system communications. For more information on how traffic is

labelled in the Multi-Agent Malicious Behaviour Detection system, see Section 4.5.4.

Importantly, and further elaborated in Section 4.5.4, there are two strategies in-

vestigated here for what sorts of features are ultimately passed on to the Machine

Learning Agents and how it impacts their performance. The uniquely malicious tech-

nique labels only what is perceived to be malicious and effectively tasks the Machine

Learning Agents to identify network traffic with similar features as those identified

through misuse detection, therefore providing a mechanism to discover new instances

of malicious multi-agent system communications that exhibit similar behaviour to

known instances. Alternatively, the classify all technique, while much more expen-

sive to operate, uses signatures like those used in misuse detection with the addition

of signatures designed to classify benign traffic as well. The Machine Learning Agents

are then tasked with identifying all traffic it sees as one of several protocols where
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a subset of those protocols are malicious. In the second mode, signatures designed

to identify benign traffic act as a whitelist and should be updated as applications

are installed and removed from machines in the protected network. Analyzing the

output of the Machine Learning Agents requires that attention be paid to the situa-

tion where the Machine Learning Agent identifies something that looks like malicious

multi-agent system communications, but also the situation where something is classi-

fied as benign, but the next most likely classification is a malicious one. The similarity

is quantified by a confidence value for a malicious behaviour class. Even though the

confidence value for the malicious behaviour class is less than the confidence for the

benign protocol class, the confidence value for the malicious behaviour class still pro-

vides evidence for potential malicious behaviour. For example, a malicious software

agent beacon might share a number of features with an HTTP post. The malicious

software agent mimics the HTTP post so well that the Machine Learning Agent has

a 0.75 confidence that the disguised beacon is benign. However, the beacon class

confidence is 0.20 and all other confidence values are insignificant. Given that the

Multi-Agent Malicious Behaviour Detection system assumes a malicious multi-agent

system will attempt to mimic HTTP posts, a 0.20 confidence might warrant further

analysis from a network defender. More on such analysis techniques will be presented

in Chapter 6.

While significant work was required to wrap existing machine learning algorithm

implementations into Machine Learning Agents, Section 4.5.4 explains how the data

provided by Alert Source Agents aids in grounding the feature set data to network

traffic and labels that are comprehensible to network defenders.
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4.5.4 Alert Source Agents

There are a significant number of existing misuse and anomaly detection systems

(Section 2.4). A common theme for both misuse and anomaly detection involves

using a form of signature that triggers an alert. An alert flags a potential threat to

the system that must be reviewed (by either a human or intelligent system), and is

typically identified by a signature ID. The alert itself is the combination of network

traffic and misuse or anomaly detection signature.

Alert Source Agents provide alerts in a manner that is meaningful to the Multi-

Agent Malicious Behaviour Detection system. These can either be done by monitor-

ing an existing detection system and converting that system’s alerts, or by generating

such alerts themselves. This leaves the opportunity of folding any existing detection

system or collection of systems into my framework, and also allows the construction

of custom detection systems as part of this. Existing misuse and anomaly detection

systems have extensive knowledge bases, consisting of potentially thousands of sig-

natures. Additionally, many such detection systems have well defined and unique

mechanisms for network defenders to write new signatures or modify existing ones.

In order to incorporate existing detection systems, Alert Source Agents monitor de-

tection systems and convert their alerts to something meaningful to the Multi-Agent

Malicious Behaviour Detection system. Incorporating existing systems enhances the

Multi-Agent Malicious Behaviour Detection system by: providing network defend-

ers with context; enabling network defenders or other agents to map signature IDs

from existing detection systems to hypothesis made by the Multi-Agent Malicious Be-

haviour Detection system; and providing a feedback mechanism for network defenders
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and other agents capable of writing or modifying existing signatures for malicious

multi-agent system detection.

Existing misuse/anomaly detection systems are often incompatible. Therefore,

each Alert Source Agent is written specifically to interpret the source detection sys-

tem’s alert format, and feed a single standardized alert message into the Multi-Agent

Malicious Behaviour Detection system using a unique identifier that ties the alert

message back to the original network traffic and the particular detection system that

generated the alert. Existing Multi-Agent Malicious Behaviour Detection Agents re-

ceive alert messages from Alert Source Agents and make decisions based on the alert

messages received.

The common mechanism for Multi-Agent Malicious Behaviour Detection Agents

to communicate about traffic is through feature sets. By introducing alert messages

into the Multi-Agent Malicious Behaviour Detection system, agents can match up

feature sets with alert messages and supplement the feature set by adding a signature

ID that associates the feature set with known malicious multi-agent system commu-

nications or some other traffic type. Alert Source Agents enable the Multi-Agent

Malicious Behaviour Detection system to take advantage of existing misuse/anomaly

detection knowledge bases, through the signature IDs that are added to feature sets.

External to the Multi-Agent Malicious Behaviour Detection system, misuse/anomaly

detection processes generate alerts based on network packets matched against detec-

tion signatures. Alert Source Agents, through interacting with the misuse/anomaly

detection processes, identify alerts, convert them into alert messages, and pass the

alert messages on to agents in the Multi-Agent Malicious Behaviour Detection sys-
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tem. Recall from 4.5.1, Traffic Source Agents intercept packets independent of the

misuse/anomaly detection processes and share them with other Multi-Agent Mali-

cious Behaviour Detection Agents. Feature Source Agents (Section 4.5.2) integrate

the packets into feature sets. Feature set messages and alert messages enter the sys-

tem independently. However, a feature set and an alert message may be associated

with one or more of the same original network packets. If a feature set generated by a

Feature Source Agent and an alert message generated by an Alert Source Agent con-

tain the identical source IP, destination IP, source port, destination port and protocol,

Multi-Agent Malicious Behaviour Detection Agents who receive both messages match

up the feature set with the alert message and enrich the feature set with the detection

signature ID. When Machine Learning Agents receive a feature set enriched with a

signature ID, the agent can use the labelled feature set to learn to identify similar

traffic based on features of the traffic as opposed to the detection technique from the

external detection system that originally generated the alert. More on how Machine

Learning Agents take advantage of labelled features sets is discussed in Section 4.5.3.

Part of the difficulty with implementing Alert Source Agents is determining how

much of the incoming traffic should be labelled with alerts from misuse detection sys-

tems in order to provide Machine Learning Agents with enough samples to distinguish

between benign traffic and malicious multi-agent system traffic. As discussed in Sec-

tion 4.5.3, whether the Multi-Agent Malicious Behaviour Detection system is trying

to classify all traffic or uniquely malicious traffic significantly changes the amount of

work that Alert Source Agents must perform. When Machine Learning Agents are

only expecting labels for malicious multi-agent system traffic, as in uniquely mali-
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cious, Alert Source Agents can forward each alert they identify through their internal

mechanisms. However, when classify all is employed, the Alert Source Agent may

only forward a subset of alerts to manage resources.

Coordination between Traffic Source, Alert Source and Feature Source agents is a

non-trivial problem. Consider, for example that Traffic Source Agents are attempting

to pass traffic up to Feature Source Agents as fast as they can. However, if Feature

Source Agents process features faster than Alert Source Agents process traffic/alerts,

they will miss incoming alerts and feature sets will pass through the Multi-Agent

Malicious Behaviour Detection system onto the Machine Learning Agents unlabelled.

The same can be said of Feature Source Agents potentially running slower than Alert

Source Agents. In order to compensate, each Feature Source Agent maintains met-

rics on how many feature sets it labels, and how many alerts it receives that it is

unable to match to a feature set resident in memory. If too many feature sets are

published without labels, or too many alerts arrive without a matching feature set,

Feature Source Agents will keep feature sets cached for a longer time. There is a

constant balancing act between the Multi-Agent Malicious Behaviour Detection sys-

tem’s ability to keep up with traffic and react quickly to incoming traffic, and the

finite resources available to Feature Source Agents. The coordination is more easily

achieved when only malicious traffic alerts are passed through Alert Source Agents.

The advantage to the approach described in this research is that while the Multi-

Agent Malicious Behaviour Detection system is likely to fall behind, it can compensate

for some data loss. Machine Learning Agents (Section 4.5.3) are not expecting per-

fectly labelled data. As such, the Multi-Agent Malicious Behaviour Detection system
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is biased towards dropping alerts in favour of keeping up with the traffic in order to

enable real-time reaction capability. More specifics on messaging between the vari-

ous agents in the Multi-Agent Malicious Behaviour Detection system is provided in

Section 4.6.

4.5.5 Protocol Analysis Agents

Feature Source Agents are responsible for scanning traffic and looking for features

that other agents will be interested in. However, the features that Feature Source

Agents are tasked to identify are low-level and intended for other automated agents.

Since human network defenders will be interacting with the Multi-Agent Malicious

Behaviour Detection system, they will need information that is more highly abstracted

and tuned for their needs. The feature sets generated by Feature Source Agents are

of less value in their raw format to a network defender. Protocol Analysis Agents are

intended to satisfy the need for information in a format friendly to human network

defenders.

Protocol Analysis Agents are designed to provide real-time functionality for net-

work defenders to seek out situational awareness. Protocol Analysis Agents under-

stand a specific application layer protocol from the TCP/IP model and extract con-

textual information, making it available to network defenders and Multi-Agent Ma-

licious Behaviour Detection Agents alike. As discussed in Section 2.2.1, malicious

multi-agent systems are known to exploit and mimic non-malicious protocols to en-

gage in a number of behaviours such as beaconing, propagating, denying, ex-filtrating,

and updating (Section 1.5.4). For example, malicious multi-agent system agents can
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propagate in emails, beacon using DNS or ex-filtrate data over HTTP. In some cases

malicious software agents adhere to the protocol standard, and only by understanding

the protocol and extracting meaning from the application layer data can the mali-

cious behaviour be detected. In other cases, while malicious software agents make

an attempt to disguise their actions by mimicking a known protocol, the resulting

communications don’t adhere to the protocol standards. For example, a malicious

software agent may attempt communications with a malicious multi-agent system

using an encrypted tunnel on port 53 to ex-filtrate data, an attempt to mimic DNS

traffic. When possible, a network defender can query Protocol Analysis Agents in

real-time for contextual information regarding activity on the network.

Consider the following example. An Alert Source Agent monitors a hypothetical

misuse detection system. The detection system’s knowledge base contains a signa-

ture that identifies all DNS queries for the host name mybad.host.com as beaconing

behaviour for a malicious multi-agent system. The Machine Learning Agents, having

learned previously to identify mybad.host.com DNS queries as malicious, receive a

feature set for a DNS query for toobad.host.com and classify it with the same label it

would give to DNS queries for mybad.host.com. A Machine Learning Agent notifies

the network defender via an Observer Agent providing a misuse detection signature

ID for reference (see Section 4.5.7 for more information about Observer Agents). At

this point the network defender needs more context, and performs a query against

a Protocol Analysis Agent for all recent DNS queries and looks for one similar to

mybad.host.com. The network defender finds a DNS query for toobad.host.com that

matches the IP and port numbers reported by the Machine Learning Agent and then
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further queries an Protocol Analysis Agent to determine if any hosts have made re-

quests for web-pages at the IP address that mybad.host.com resolved to. At this

point, the network defender is in a better position to decide how to react in real-time

to the alert. The network defender can deploy a new misuse detection signature for

toobad.host.com and indicating that it belongs to malicious multi-agent system com-

munications, or whitelist it depending on the functioning mode of the Multi-Agent

Malicious Behaviour Detection system, or enable some form of traffic manipulation

(Section 4.5.6) to attempt to interact with any malicious software agents associated

with toobad.host.com in a manner that does not further threaten the protected net-

work.

Protocol Analysis Agents subscribe to Traffic Source Agents to retrieve network

traffic, perform some degree of session reconstruction, and maintain some representa-

tion of the network environment that the network defender can query against to aid

in identifying threats in real-time. For the purposes of this research, two Protocol

Analysis Agents were implemented. These are described in Section 5.5.5.

In Figure 4.1, Protocol Analysis Agents subscribe directly to Traffic Source Agents

and produces information about the target protocol. The protocol information is then

published to Observer Agents and Traffic Manipulation Agents.

4.5.6 Traffic Manipulation Agents

In computer network security, it is often advantageous to modify existing network

traffic in order to give network defenders an advantage over the malicious multi-agent

systems. One might want to disrupt malicious multi-agent system communications,
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or interact with malicious software agents to elicit specific behaviours. Traffic Ma-

nipulation Agents are responsible for modifying existing network traffic or generating

new network traffic. Two primary opportunities for agents to manipulate the network

traffic are discussed here. First, Traffic Manipulation Agents can interrupt malicious

multi-agent system communications to render the malicious software agents ineffec-

tive in the network. This is intended as a quick reaction capability to allow a response

(either from a network defender or some other intelligent system) when a malicious

software agent is recognized. Second, Traffic Manipulation Agents can influence the

network environment to provide more exposure for the Machine Learning Agents to

known or recently discovered malicious multi-agent system behaviours.

The first opportunity involves Traffic Manipulation Agents hindering malicious

software agents. Suppose, for example, the Machine Learning Agents identify an

HTTP request to a known malicious web server. In this case, if the Multi-Agent Ma-

licious Behaviour Detection system is capable of identifying the request fast enough,

it can reset the connection from the host and prevent that host from receiving a

potentially malicious reply. The technique requires that Traffic Manipulation Agents

craft reset packets based on observed traffic. While difficult, is not uncommon among

various commercial security products, such as those discussed in Section 2.4. An-

other technique involves identifying DNS requests for malicious hosts and responding

to them locally with a loopback address. If a malicious software agent depends on

a successful DNS request and response to locate controlling infrastructure in a mali-

cious multi-agent system, this technique can render malicious software agent unable

to communicate with the malicious multi-agent system controllers. For traffic other
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then HTTP or DNS, Traffic Manipulation Agents can change firewall rules on the

fly to reject communications from malicious multi-agent systems. While the Traffic

Manipulation Agent does not remove malicious software agents it provides time for

some other entity to consider the current status and react to it appropriately. In the

implementation described in Chapter 5, the entity responsible is the network defender

- however, the framework itself supports the addition of other agents that could take

on this responsibility.

The second opportunity involves promoting controlled interactions with malicious

multi-agent systems to help train Machine Learning Agents. There is a weakness

in the Multi-Agent Malicious Behaviour Detection system in that, even though the

Machine Learning Agents are capable of discovering previously unknown malicious

multi-agent system communications they still must be based on something that the

system has seen before - even if something only remotely similar. The Multi-Agent

Malicious Behaviour Detection system requires at least some exposure to malicious

multi-agent system traffic in order to learn to detect the target malicious multi-agent

system behaviours (Section 1.5.4).

Some exposure can be provided by artificially injecting previously recorded traffic

through Traffic Source Agents, discussed in Section 4.5.1. When previously recorded

traffic is not available, Traffic Manipulation Agents can be used to elicit infection in a

controlled way. A Traffic Manipulation Agent can interact with malicious multi-agent

system by mimicking the same behaviours that the Multi-Agent Malicious Behaviour

Detection is designed to detect, such as beaconing or updating (Section 1.5.4). The

goal of the interaction is to elicit a response from the malicious multi-agent system,
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which may include recovering a sample of the malicious software agent. Traffic Manip-

ulation Agents are similar in concept to the Honey Monkey in Wang et al. [2006], the

Drone Manager in Gu et al. [2007] and Nepenthes in Baecher et al. [2006] described

earlier in Section 3.6. The difference is that, while the systems previously mentioned

collect malware, Traffic Manipulation Agents are part of a larger system capable of

interacting with malicious multi-agent system to enable learning by other agents in

the system. A Traffic Manipulation Agent is tasked to perform some potentially risky

action tailored to elicit interaction of infection from a specific malicious multi-agent

system. Figure 4.2 and Figure 4.3 illustrate an example scenario. In Figure 4.2 a

Traffic Manipulation Agent makes a request for the URL www.badstuff.com, where

the red squares represent the inserted packets. Assuming badstuff.com is hosting ma-

licious software agent software, the get request will retrieve an infected document

and forward the malicious component onto a specific machine purposed for subse-

quent infection, as in Figure 4.3, where the green boxes represent the response from

the malicious server. There are a number of potential dangers in eliciting infection.

This research does not specifically address those dangers, I direct the reader to the

various research in malware collection reviewed in Section 3.6.

While the functionality provided by Traffic Manipulation Agents in this case is

similar to a honeypot, there is an important distinction. A honeypot is a monitored

machine that is vulnerable to attack. Such vulnerabilities may include no firewall, easy

to guess passwords, unpatched software, older operating systems, etc. Since there is a

significant amount of automated victim discovery, a honeypot has the potential to be

compromised by automated as well as supervised attacks. The primary disadvantage
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Figure 4.2: A Traffic Manipulation Agent attempts to infect a host by making a web
request to badstuff.com.

of a traditional honeypot is that a large number of attacks require user intervention.

Many attacks are content delivery, and with no one to access a document infected

with malware, the honeypot may never be infected. A Traffic Manipulation Agent,

on the other hand, takes a more proactive role in eliciting interaction from malicious

multi-agent systems.

Traffic Manipulation Agents can target recently published network attacks given

that several sources make it possible to identify websites hosting infected documents.

For example, if a specific network attack involves redirecting hosts to a website to

download malicious software, and the website is reported in the analysis of the attack,

the agent can browse to the website intentionally in order to retrieve the malicious

software and infect a controlled host.
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Figure 4.3: Badstuff.com infects the host that the Traffic Manipulation Agent spoofed
the request from.

In Figure 4.1 Traffic Manipulation Agents subscribe to Machine Learning Agents,

Observer Agents, and Protocol Analysis Agents. Traffic Manipulation Agents use

the information derived from those agents as perceptions and plans based on those

perceptions. Traffic Manipulation Agents could, for example, attempt to masquerade

as one of the protected hosts in an attempt to communicate with malicious software

agents in a malicious multi-agent system. This leads to learning through exploration:

as the Traffic Manipulation Agents (with human network defender assistance) actively

explore interactions with malicious software agents, the Machine Learning Agents can

learn from the malicious multi-agent system responses. The communications between

Observer Agents and Traffic Manipulation Agents are important. Traffic Manipula-

tion Agents tasked with maintaining communications with a malicious multi-agent
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system may require intervention to maintain communication integrity between the lo-

cal malicious software agent and its controlling malicious multi-agent system, ensuring

the malicious multi-agent system does not become suspicious of the infected box and

reject it. Additionally, the communications must remain both secure and unmodified

to prevent the malicious multi-agent system from exploiting them if it does become

suspicious. As network defenders learn more about the malicious multi-agent system

that a Traffic Manipulation Agent is interacting with, they can add routines to handle

novel malicious multi-agent system behaviour, expanding the Multi-Agent Malicious

Behaviour Detection system’s capabilities. This intervention on behalf of the network

defender requires a robust Observer Agent supported by a teleautonomous system.

Similar to work performed in [Wegner, 2003], the Traffic Manipulation agents are

essentially semi-autonomous.

4.5.7 Observer Agent

Previously, I introduced the Protocol Analysis Agents, responsible for providing

human network defenders with abstract information about specific protocols. Each

Protocol Analysis Agent is capable of deriving those abstract features from a single

protocol, caching them until either a network defender (or some other agent) makes

a request for the information, or until the cached information ages off. However,

while Protocol Analysis Agents provide specific protocol information, there is still a

requirement for defining how human network defenders interact with the framework

as a whole. While there is a motivation for a completely autonomous Multi-Agent

Malicious Behaviour Detection system, human input is still required to enhance the
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Figure 4.4: A Traffic Manipulation Agent tries to carry on communications with a
malware server. When the malware server makes a request that the Traffic Manipula-
tion Agent does not understand it notifies an Observer Agent. The network defender,
interacting through the Observer Agent, provides a suitable reply.

capabilities of various agents. Observer Agents provide the interface between the

network defender (Section 4.4) and the Multi-Agent Malicious Behaviour Detection

system. Observer Agents consume one or more sources of information, whether it be

from Traffic Source Agents, Protocol Analysis Agents, Alert Source Agents or Traffic

Manipulation Agents, and provide the network defender with a means to configure

or interact with those agents. The goal of Observer Agents is to provide situational

awareness to network defenders and the capability to interact with the Multi-Agent

Malicious Behaviour Detection system. Observer Agents act as the mechanism for

providing network defenders a degree of teleautonomous control over the Multi-Agent

Malicious Behaviour Detection Agents.
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Observer Agents are effectively user interfaces. While user interfaces are not

the primary focus of this work, an interface is obviously an important part of any

computer system expected to interact with humans. The architecture requires an

ergonomic user interface, and there is one important point in the user interface litera-

ture that is imperative to follow. The user must always be in control [Krogseter et al.,

1994; Krogseter and Thomas, 1994; Strachan et al., 2000]. The Observer Agent places

the ultimate control in the hands of the network defender. The network defender is

able to make decisions on how the Multi-Agent Malicious Behaviour Detection system

operates and can interact with Multi-Agent Malicious Behaviour Detection Agents

at any time. Because of this, each Multi-Agent Malicious Behaviour Detection Agent

implementation must provide provisions for a network defender to take control or

shutdown any Multi-Agent Malicious Behaviour Detection Agent instance. This is

especially important for Traffic Manipulation Agents (Section 4.5.6), which may them-

selves inadvertently perform malicious actions against machines owned by innocent

bystanders. There is always the risk that while working with malicious multi-agent

systems in an Internet connected environment, a malicious software agent may get

out of control and do harm or damage to any connected networks.

In Figure 4.1, Observer Agents accepts messages from multiple Multi-Agent Ma-

licious Behaviour Detection Agents. In order to provide a high degree of situational

awareness for the network defender, multiple sources of information are consolidated

in Observer Agents.
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Figure 4.5: A fictional network consisting of a client network, a server network, and
an Internet connection.

4.6 Agent Interactions

The previous section described the various Multi-Agent Malicious Behaviour De-

tection Agent types in this architecture. Each Multi-Agent Malicious Behaviour De-

tection Agent performs some form of communication with one or more other Multi-

Agent Malicious Behaviour Detection Agents (or with human network defenders). In

any multi-agent system, however, the important element of the system as a whole

is the interaction between agents and the behaviour that arises as a result. Thus,

before moving to an implementation-level discussion of these agents (Chapter 5), I

focus on an example of a collection of the agents described in this chapter, deployed
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in a fictional network setting. This setting is depicted in Figures 4.5 to 4.13, and

described in the subsections that follow.

4.6.1 Network Environment

The network in Figure 4.5 is divided into three segments connected by a border

gateway router, designated BGR. Left of BGR is a client network, right of BGR is a

network of servers, and below BGR is a connection into the Internet.

The network of client machines contain four hosts: CMA, CMB, CMC, and CMD.

Between the border gateway router and the network of clients is a firewall, labelled

FWA (Section 2.4.1).

The network of servers is relatively simple. It consists of a DNS server (DNS ) and

a web server (WEB). In addition to the servers there is a firewall (FWB) between

the border gateway router and the servers. A misuse detection system system (DET)

is connected via a passive network tap, represented by the dotted lines, to the link

entering both the client network and the server network (Section 2.4.2).

In Figure 4.5, the Internet is represented by a cloud. Three infected machines are

shown connected to the cloud via generic border gateway routers. These machines

represent a portion of a malicious multi-agent system. The malicious multi-agent

system in this scenario is seeking to recruit additional hosts for distributed denial of

service attacks (Section 1.5.4).
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Figure 4.6: An example deployment of agents in a fictional network environment.

4.6.2 Agent Deployment

Figure 4.6 shows a possible Multi-Agent Malicious Behaviour Detection system

deployment. A Traffic Source Agent (TSA1) and an Alert Source Agent (ASA) share

resources with the DET. This is an ideal position for both agents, as TSA1 can

monitor traffic into both subnetworks and the ASA can read alerts from the Snort

intrusion detection system. A Feature Source Agent (FSA1) and a Protocol Analysis

Agent (PAA1) reside on the DNS server. The client network hosts a number of

different agents. CMA hosts both a Feature Source Agent (FSA2) and a Protocol

Analysis Agent (PAA2). CMD has a resident Traffic Source Agent (TSA2). CMC is

sharing resources between a Machine Learning Agent (MLA) and an Observer Agent
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Figure 4.7: Client Machine B is infected by badguy.com.

(OBA). A network defender would be physically present at CMC, interacting with the

Multi-Agent Malicious Behaviour Detection system via the user interface provided by

the OBA. Two Traffic Manipulation Agents (TMA1 and TMA2) are also present in

the network, one on each of the firewalls. From this position, the Traffic Manipulation

Agents can inject packets into the network and interact with the firewalls to block

malicous traffic leaving the network.

4.6.3 Initial Infection

Now that the network setting has been described, I will run through four scenarios.

Note that these situations have been greatly simplified compared to actual network
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scenarios, given that in a real world network scenario hundreds or thousands of feature

sets could traverse the network in a matter of minutes. In Figure 4.7, CMB makes

a web request out to an infected web server badguy.com, and is served an infected

pdf document. TSA1 observes each packet between CMB and badguy.com, recognizes

that FSA2 is interested in packets to any of the client machines on port 80 and sends

messages containing those packets to FSA2. As FSA2 receives the packets, it builds

up a feature set. Also, PAA2 has registered an interest in web traffic and receives

the packet messages from TSA1 as well. In parallel, DET fires an alert on one of the

packets between CMB and badguy.com. ASA reads the alert, checks if it is relevant to

Multi-Agent Malicious Behaviour Detection, and prepares an alert message to notify

any interested agents in the system. FSA2 receives the alert message and matches

it to an existing feature set it is currently building. When FSA2 receives the FIN

packets between CMB and badguy.com, it finalizes the feature set and sends it to

MLA and OBA. MLA processes the feature set.

At this point the packets between CMB and badguy.com have impacted the Multi-

Agent Malicious Behaviour Detection system in a number of ways. PAA2 caches the

web request and response headers, so that network defenders (or other agents) can ac-

cess this information until it expires from the PAA2 cache. OBA notifies the network

defenders that a session has been identified by DET as containing possible malicious

multi-agent system communications. MLA has learned to identify some form of ma-

licious multi-agent system communication based on the feature set it received from

FSA2.

At this point, the network defender is aware that some infection may have taken
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Figure 4.8: The malicious multi-agent system propagates to Client Machine D.

place. However, here I assume that the network defender decides to take advantage

of the Multi-Agent Malicious Behaviour Detection system to learn more about the

potential infection. In this scenario CMB, now that it is infected, will attempt to

partake in three behaviours: propagate to local hosts, beacon out to the malicious

multi-agent system infrastructure, and update to the latest malicious software agent

version.

4.6.4 Propagate

Suppose the malicious multi-agent system in question is capable of taking advan-

tage of local file shares to propagate to other hosts. The malicious software agent
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on CMB initiates a connection to CMD, and copies an infected file over to CMD

(Figure 4.8). TSA1 does not observe the packets, as they do not leave the local net-

work past the network tap that feeds TSA1. However, TSA2, which is resident to

CMD, observes the packets for the session and identifies that FSA2 is interested in

all packet between client machines. TSA2 generates a series of packet messages and

sends them to FSA2. FSA2 builds a feature set for the observed packets. Unlike the

initial infection, no alert message is associated with the feature set, so it is passed to

MLA unlabelled. MLA attempts to classify the feature set, and finds that it shares

similar features with the previous feature set involved in the initial infection. MLA

notifies OBA that is has detected behaviour similar to the initial infection.

Now the network defender has information regarding possible propagation. There

is an opportunity for the network defender to feedback into the Multi-Agent Mali-

cious Behaviour Detection system by writing a new misuse detection signature that

increases the likelihood of catching the propagation should it occur again.

4.6.5 Beacon

Figure 4.9 shows the two infected clients on machines CMB and CMD. The ma-

licious software agent are likely to try and contact the malicious multi-agent system

infrastructure using a form of beacon. In the example illustrated by Figures 4.9 to

4.12, CMB makes a DNS request for badguy.com. The request goes to the local DNS

server, and returns with a response. CMB, using the IP address from the response,

makes an HTTP request to the server badguy.com and receives a single packet reply.

TSA1 observes the DNS request and response packets, generating packet message
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Figure 4.9: Client Machine B performs a DNS lookup for badguy.com.

for both. The TSA1 determines that FSA1 is interested in DNS traffic and sends

packet messages to FSA1. Equally, PAA1 has also registered interest in DNS pack-

ets, and therefore also receives the packet messages. PAA1 caches the request and

response, making it available to the network defender via the OBA. FSA1 generates

feature sets for the DNS traffic and passes it off to the MLA, that in turn classifies it

as a benign DNS lookup (Figure 4.9).

The packets involved in the HTTP request and response are observed by TSA1,

and passed to both PAA2 and FSA2 (Figure 4.10). PAA2 caches the HTTP headers,

making them available to the network defender. FSA2 generates a feature set for

the HTTP session and passes it on to MLA. MLA attempts to classify the feature
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Figure 4.10: Client Machine B beacons to the malicious multi-agent system
infrastructure.

set, and finds the features similar to a beaconing technique witnessed by another

malicious multi-agent system. Both OBA and TMA1 are notified as they have both

registered interest in beaconing behaviour. TMA1 adds the IP address to a blacklist,

and interfaces with the FWA, adding a rule to block all attempted connections to the

IP address. It also notifies the network defender via the OBA. The network defender

receives notification from the OBA of a possible beacon as well as the notification

from TMA1 that it has taken action to block further communications to that IP

address. The network defender makes a query via the OBA for DNS requests that

have resolved to the IP address that TMA1 has now blocked. The network defender is
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Figure 4.11: Client Machine D attempts a DNS request for badguy.com.

informed by PAA1 that there was a recent DNS request for badguy.com that resolved

to the IP address in question. The network defender can then react by writing

a misuse detection rule for DNS requests to badguy.com and indicating to TMA1

that if it observes further requests to badguy.com it should generate a DNS response

indicating that badguy.com actually resolves to the same IP address as WEB.

In Figure 4.11 CMD makes a DNS request for badguy.com and TMA1 answers

the DNS request, redirecting the CMD to WEB (Figure 4.12). Effectively, the Multi-

Agent Malicious Behaviour Detection system has disabled the beaconing behaviour.
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Figure 4.12: Client Machine D is redirected to WEB.

4.6.6 Update

Suppose that the malicious software agent have a routine that indicates they

should attempt to update on a fixed interval. However, unlike the beacon described in

the last section, the update attempts to retrieve an executable from nastyperson.com.

Figure 4.13 illustrates the updating behaviour. CMB makes a DNS request and

receives a response, the resulting traffic will be processed through the Multi-Agent

Malicious Behaviour Detection system as a benign DNS request, similar to how the

DNS request for badguy.com was treated in the last section (Figure 4.9). When

CMB attempts to retrieve an update, via an HTTP request to the IP address hosting

nastyperson.com, the misuse detection system does not fire an alert, as the misuse
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Figure 4.13: Client Machine B attempts to retrieve an update from nastyperson.com

detection signature does not succeed in matching against the packet due to changes

in the executable returned by nastyperson.com. However, TSA1 observes the packets,

and sends packet messages to the interested agents, FSA2 and PAA2. FSA2 produces

a feature set for the HTTP request and response and passes it off to the MLA.

MLA attempts to classify the feature set, and based on previous learning during the

initial infection (4.6.3), classifies the feature set as potential malicious multi-agent

system communications. The network defender is notified via the OBA, does some

investigation by interfacing with PAA1 and PAA2, and uses the unique identifier

on the classified feature set to match the potential malicious multi-agent system

communications to the misuse detection signature in the misuse detection system
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knowledge base. Now the network defender can again feedback into the Multi-Agent

Malicious Behaviour Detection system by developing a misuse detection signature.

The examples above only explore a subset of the possible interaction between

the agents within the Multi-Agent Malicious Behaviour Detection system. However,

these simple scenarios show the novel aspects of this system as a whole:

• Multi-Agent Malicious Behaviour Detection agents are deployed across a num-

ber of hosts, distributing the resource load across a number of processor cores:

improving resilience of the entire system, and taking advantage of idle processor

cycles.

• Machine Learning Agents generalize from specific malware detection signatures

to broader malicious multi-agent system behaviour, assisting in discovering pre-

viously unknown malicious behaviour.

• Protocol Analysis Agents provide the network defender with information re-

quired for further investigation, through an Observer User Interface enabling

real-time detection.

• Traffic Manipulation Agents redirect malicious software agents to benign ser-

vices, enabling further study, while still allowing them to perform some mali-

cious behaviours.

• The amalgamation of several Multi-Agent Malicious Behaviour Detection agent

functions into a one purposed multi-agent system capable of malicious multi-

agent system detection.
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While the example is not exhaustive, it should give the reader a fairly complete

understanding of the various agent interactions in the framework.

4.7 Summary

This chapter described the Multi-Agent Malicious Behaviour Detection system

architecture. The various agents and their functions were discussed as well as the

mechanism that supports the agent communications. Finally, I gave an example of

how a series of sessions could be processed by a hypothetical Multi-Agent Malicious

Behaviour Detection system deployment. The next chapter will provide a detailed

description of the implementation of the Multi-Agent Malicious Behaviour Detection

system for those researches seeking to implement their own variation or replicate the

work here.



Chapter 5

Multi-Agent Malicious Behaviour

Detection Implementation

5.1 Overview

To validate the abilities of the framework described in Chapter 4, I implemented

a Multi-Agent Malicious Behaviour Detection system, and then evaluated the imple-

mentation by deploying it on an experimental network. This chapter describes the

implementation of the Multi-Agent Malicious Behaviour Detection framework, both

to provide insight in interpreting the environment in which the experiments of Chap-

ter 6 were performed, and to offer some insight for those interested in replicating this

work. I begin with a description of the target environment and the programming

languages used to implement the various agents. Next, I discuss the communication

framework deployed to maintain agent interactions. Finally, I describe the implemen-

tation of agents in the system and discuss issues encountered during the implemen-

157
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tation of the Multi-Agent Malicious Behaviour Detection system. Further low-level

implementation details of all components are available as appendixes, which will be

referred to at various points in this chapter.

5.2 Target Environment

There are a number of different network environments into which the Multi-Agent

Malicious Behaviour Detection framework could be embedded, such as IPX, Ap-

pleTalk, SNA or even UMTS. However, the dominance of TCP/IP makes it an obvi-

ous choice for attacks based on malicious multi-agent systems, and an equally obvious

choice to implement a system for detection of such attacks. Therefore, I have targeted

the implementation of the Multi-Agent Malicious Behaviour Detection framework to

local area networks implementing the TCP/IP model of the Internet. Further, the

Multi-Agent Malicious Behaviour Detection Agents I implemented only perform de-

tection at the Internet, Transport and Application layers, ignoring the Link layer.

While other implementations or future work may consider the Link layer, it was not

considered a significant enough source of malicious multi-agent system activity to

warrant further attention from this research.

Multi-Agent Malicious Behaviour Detection Agents were implemented on either

Microsoft Windows 7 or Mac OS X platforms. This decision was based on the avail-

ability of the machines and my relative comfort with the development environments

of each, but part of the point of this choice was to illustrate that the framework is

not confined to one particular operating system environment. The agents could have

been implemented on other platforms, such as Unix, Linux, or FreeBSD.
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5.3 Implementation Language

I chose to implement the Multi-Agent Malicious Behaviour Detection Agents using

three different computer languages: C#, C++, and Python.

The majority of agents were implemented in C#. The decision to use C# was

influenced by its ease of use and the richness of the Microsoft Dot Net Libraries. As

a language C# contains many object-oriented features that make development using

it attractive. The development of Multi-Agent Malicious Behaviour Detection agents

naturally fits with the object-oriented paradigm, and C# is a powerful object-oriented

language.

The disadvantage of using C#, as opposed to C or C++, is speed. While this

was a more prominent issue five to ten years ago, many limitations of interpreted lan-

guages (such as Java and C#) have been overcome by more intelligent just-in-time

compilation and improvements in interpretation. There are still methods for optimiz-

ing C++ that make it attractive over C# for some tasks, but the overall ease-of-use

of a language like C# makes it competitive for rapid object-oriented development.

In order to take advantage of some pre-built machine learning libraries (Section

5.5.3), the Machine Learning Agents described in Section 4.5.3 were implemented in

C++. C++ is a powerful language. However, given that it is essentially built on top

of a non-object-oriented language (C) and still provides access to the features of C,

it is less attractive for use in agent implementation.

Finally, Python provides a mechanism for prototyping agents quickly. Python is

an impressive scripting language. It is geared toward object-oriented development

and, like C#, is attractive for agent development.
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I am confident that Multi-Agent Malicious Behaviour Detection Agents could be

implemented using a variety of languages. It was my intention to choose a set of

languages that allowed flexibility in implementation decisions and suited the task at

hand, while serving to demonstrate the concept of agent design being independent of

language choice. The abstraction of the Multi-Agent Malicious Behaviour Detection

Agents from the underlying network and communication infrastructure (Section 5.4.1)

ensures that developers could potentially implement additional Multi-Agent Malicious

Behaviour Detection Agents and integrate them with the existing agents implemented

as part of this research in order to pursue future research in this area.

All code for this research was designed and implemented with object-oriented

techniques. Since the code is object-oriented, it is very extensible, as well as easy

to read and understand. Wherever possible, objects related to one another were

organized into object hierarchies.

Now that the target environment and implementation tools have been described, I

can build upon this by describing the communications used by Multi-Agent Malicious

Behaviour Detection Agents.

5.4 Communications Infrastructure

The core communications infrastructure implemented for Multi-Agent Malicious

Behaviour Detection required flexible communications, suitable for a number of het-

erogeneous agents from multiple platforms. The goal was to enable agents to register

their interest in specific feature sets, alert types, or raw packets, to other agents

across the system. This allows Multi-Agent Malicious Behaviour Detection Agents to
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seek out the information needed to facilitate malicious multi-agent system behaviour

detection.

A few communications mechanisms were considered, such as .NET Named Pipes,

C Style Sockets, various shared memory mechanisms and the advanced message and

queuing protocol (AMQP). Early prototypes used .NET Named Pipes, but I found

certain aspects of the implementation of Named Pipes limiting. Multi-Agent Mali-

cious Behaviour Detection Agents required too much information about their fellow

agents to interact with them, such as each agent’s IP address, pipe naming conven-

tions and availability. In later implementations, .NET Named Pipes were replaced

with Rabbit MQ, an Erlang implementation of AMQP. Rabbit MQ provides a rich

set of desirable features for multi-agent communications. The greatest benefit of this

is interoperability of messaging irrespective of the implementation language of the

agent. While .NET Named Pipes have a simple interface, their simplicity is limited

to specific platforms. While it might be possible to enable UNIX-based agents to

communicate using .NET Named Pipes, it increases complexity and the solution may

lack stability. AMQP offers a specification designed to be interoperable.

5.4.1 AMQP: Communication Models

While it is beyond the scope of this thesis to provide a complete overview of

AMQP, I will discuss some relevant details with an emphasis on how I use AMQP

in the Multi-Agent Malicious Behaviour Detection system. For more information

regarding AMQP refer to springsource [2012]. RabbitMQ is a specific implementation

of AMQP, and their website provides detailed information on the AMQP protocol.
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RabbitMQ is a message broker, it accepts messages from producers and delivers

them to consumers. However, producers do not send messages directly to consumers.

Instead, producers send message to exchanges. Exchanges are responsible for ac-

cepting messages from producers and routing them to message queues, where each

message queue is associated with a consumer. Each consumer registers a message

queue with an exchange indicating what messages they are interested in using a bind-

ing key. Each time a producer publishes a message they assign it a routing key.

Exchanges then route messages depending on: the exchange type, the routing key

of the message, and the binding key of the consumers associated with the exchange.

The model is often referred to as a publish and subscribe model. Producers publish

messages and consumers subscribe to them. The exchanges manage the internals of

routing the published messages to the proper subscribers.

Exchanges route messages based on four predefined exchange types, namely: di-

rect, topic, fanout and headers. Direct exchanges route received messages directly

to any queues bound to the exchange where the message’s routing key is an exact

match to the queue’s binding key. Fanout exchanges can have multiple queues bound

to them, and will route all messages received by the exchange to all bound queues

regardless of the routing key of the message or binding key of the queue. Topic ex-

changes allow the binding keys from a queue to contain wild cards. The exchange will

deliver a message to all queues whose binding key matches the routing key while tak-

ing into consideration the wild card matches. Valid wild card characters at the time of

writing are # and *. # matches against zero or more dot-delimited words. * matches

exactly one word. For example, a binding key such as SQUARE.# would match any
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messages sent to a topic exchange whose routing key was SQUARE.RED.DARK or

SQUARE.BLUE but not CIRCLE.RED.DARK. Additionally, a binding key such as

SQUARE.*.DARK would match any messages sent to a topic exchange whose routing

key was SQUARE.RED.DARK or SQUARE.BLUE.DARK, but not SQUARE.RED.

LIGHT or SQUARE.DARK or CIRCLE.RED.DARK. This thesis does not make use

of the Header exchange type and it is therefore not discussed further.

There are a number of exchanges declared in the Multi-Agent Malicious Behaviour

Detection system. A set of topic exchanges provide Multi-Agent Malicious Behaviour

Detection Agents with the capability to publish information about what they have ob-

served on the network. Multi-Agent Malicious Behaviour Detection Agents subscribe

to the exchanges using appropriate binding keys to ensure they get the information

that is valuable to their particular role. While exchanges can be dynamically allo-

cated, the Multi-Agent Malicious Behaviour Detection system uses the following eight

primary exchanges:

Packet A very basic topic exchange allowing agents to subscribe to packets collected

by a Traffic Source Agent. Agents subscribe to packets using binding keys with

a source IP address, a source port, a destination IP address, a destination port

and a protocol. When subscribing to a Packet exchange, the subscribing agent

receives the raw packet data, starting from the IP layer header continuing down

to the application layer data. Binding keys should consist of the hexadecimal

string representation of each of the five elements making up the key. For exam-

ple, an agent that requires all TCP data between IP addresses 192.168.1.1 and

192.168.1.2 on port 80 binds a queue to the Packet exchange with binding key
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“ C4A80101.0050.C4A80102.*.06”. The IP addresses are represented as eight

characters, 2 characters per byte of the IP address. Port numbers are repre-

sented by 4 characters, 2 characters per byte, finally the protocol is represented

by 2 characters for a single byte. All exchanges in the Multi-Agent Malicious

Behaviour Detection system use a similar scheme for representing numbers as

byte strings.

PacketSummary This exchange is for agents that do not require the complete raw

packet. Agents publishing to this topic exchange provide a subset of the headers

for the packet or some small amount of feature information. For example, the

packet length. Subscribing to the Packet Summary exchange requires the exact

same binding key format as the Packet exchange binding keys. The exchanges

are different in the amount of data they accept from publishing agents and

provide to consuming agents. The Packet Summary is used when the packet

data is not required by the subscribing agent.

Alert A topic exchange agents use for publishing alerts generated by either behaviour

or rule based detection mechanisms indicating malicious or otherwise interesting

behaviour. Agents responsible for monitoring traffic for specific alert types can

publish using routing keys comprised of an alert ID, source IP address, source

port, destination IP address and destination port. For example, an agent can

subscribe to all alerts with alert ID 170, source IP address 192.168.1.1, source

port 80, destination IP address 192.168.1.2 and destination port 3089 using the

following binding key:“ 000000AA.C4A80101.0050.C4A80102.0C11”.
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Feature A topic exchange for publishing traffic features. Traffic features contain in-

formation about packets transferred between two IP addresses during a specific

session, typically described by a five tuple. The traffic features, as the name

implies, contain a set of features. For more information on traffic features refer

to 5.5.2. Agents can subscribe to the Feature exchange using a binding key

containing the five elements of the standard network five tuple: the client IP

address, the client port, the server IP address, the server port and the proto-

col. There are a couple of important differences between the Feature exchange

and the Packet exchange. First, the Packet exchange deals with single pack-

ets, whereas the Feature exchange deals with the features of a series of packets

between two IP addresses. This highlights the second difference. The Packet

exchange uses source and destination, since there is only one packet with a sin-

gle direction. Traffic features are described in terms of client and server. For

simplicity sake, the server is always the side of the communication with the

lowest port number. While this is not always the case, typically lower port

numbers indicate the server role in a session. An alternative implementation

involves setting the initiator of the session as the client, and the server as the

host that responds by sending back a packet, regardless of the port numbers.

Labelled The Labelled exchange is a destination for the features set after they’ve

been labelled by the Machine Learning Agents. Both Observer Agents and

Traffic Manipulation Agents are likely to subscribe to the Labelled exchange.

AgentControl All agents wishing to participate in the system subscribe to the

AgentControl exchange. The AgentControl exchange enables agents to broad-
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cast messages to one another. This exchange is designed to provide agents with

a mechanism to explore more complex behaviours. For instance, an agent might

signal other agents that it exists and what type of information it is interested

in receiving. An agent can also announce if it is shutting down. All agents

implemented in this research check the agent control exchange for messages as

part of their sense cycle. The exchange is fanout.

AgentLog When Agent logging is enabled, all Multi-Agent Malicious Behaviour

Detection Agents periodically publish their current status and some relevant

diagnostic information to the AgentLog exchange.

Protocol The protocol exchange is reserved for messages between network defenders

and protocol agents, although it could also be used for messages between any

agent in the system and a protocol agent. For example, the network defender

can request IP address to host name or host name to IP address resolution

using the Protocol fanout exchange. Any agents providing some protocol query

functionality subscribe to the Protocol exchange and handle messages using a

remote procedure call methodology. For an example relating to how DNS is

exploited by the Multi-Agent Malicious Behaviour Detection system see 5.5.5.

Filter Traffic Source Agents subscribe to the filter fanout exchange. The filter ex-

change enables agents to request specific types of traffic from Traffic Source

Agents. For example, if the system is intended to study only port 80 traffic, the

agent interested in the port 80 traffic can request that the filter be applied to all

incoming traffic via the filter exchange. Reducing the amount of uninteresting
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traffic passed through the system can improve the systems overall efficiency.

Filter requests are passed down as five tuples, similar to the topics passed to

the Packet exchange. The difference between the Packet and Filter exchange

is that, while Packet exchanges allow agents to subscribe to particular types of

traffic, Filter exchanges request that a particular type of traffic is not collected

at all. For example, an agent might also request that traffic from a particular

list of IP addresses is ignored, because the traffic is known to be benign.

5.4.2 AMQP Example Scenario

Having described the communications infrastructure, the following example demon-

strates how the agents described in Chapter 4 communicate with one another. The ex-

ample scenario consists of seven sessions, each containing 31 packets, passed through

a hypothetical Multi-Agent Malicious Behaviour Detection system. The example is

meant to clearly illustrate how information flows through the system. The sessions

contain a series of three DNS requests and responses, three HTTP sessions and a

Telnet session. The agents involved in this example include a Traffic Source Agent,

an Alert Source Agent, a HTTP Feature Source Agent, a DNS Feature Source Agent,

a Transport Layer Feature Source Agent, a Machine Learning Agent, an Observer

Agent and a Traffic Manipulation Agent. Figure 5.1 illustrates the agents in the

example scenario, as well as the exchanges they are subscribing or publishing to.

The following listing contains a tcpdump-style summary of the packets. All IP

addresses are private to ensure that no legitimate IP addresses associated with real

world machines were used in the example.
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Figure 5.1: Agents in an example scenario. The solid black lines indicate messages
published while broken lines indicate a subscription. Ellipses are exchanges and rect-
angles are agents. The horizontal solid lines connect all agents back to the Agent-
Control and Filter exchanges.

1. 192.168.0.1:1045 –>192.168.64.64:53 UDP: badguy.com

2. 192.168.64.64:53 –>192.168.0.1:1045 UDP: badguy.com is 10.1.1.1

3. 192.168.0.1:1046 –>10.1.1.1:80 TCP SYN

4. 10.1.1.1:80 –>192.168.0.1:1046 TCP SYN ACK

5. 192.168.0.1:1046 –>10.1.1.1:80 TCP ACK

6. 192.168.0.1:1046 –>10.1.1.1:80 TCP PSH: GET badguy.com/1400BytesOfBank

Details

7. 10.1.1.1:80 –>192.168.0.1:1046 TCP PSH RST

badguy.com/1400BytesOfBankDetails
badguy.com/1400BytesOfBankDetails
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8. 192.168.0.1:1047 –>192.168.64.64:53 UDP: benign.search.engine.com

9. 192.168.64.64:53 –>192.168.0.1:1047 UDP: benign.search.engine.com is 10.2.2.2

10. 192.168.0.1:1048 –>10.2.2.2:80 TCP SYN

11. 10.2.2.2:80 –>192.168.0.1:1048 TCP SYN ACK

12. 192.168.0.1:1048 –>10.2.2.2:80 TCP ACK

13. 192.168.0.1:1048 –>10.2.2.2:80 TCP PSH: GET benign.search.engine.com/s

earch+example

14. 10.2.2.2:80 –>192.168.0.1:1048 TCP ACK: 1460 bytes of search results

15. 192.168.0.1:1048 –>10.2.2.2:80 TCP ACK

16. 10.2.2.2:80 –>192.168.0.1:1048 TCP ACK: 1460 bytes of search results

17. 192.168.0.1:1048 –>10.2.2.2:80 TCP ACK

18. 10.2.2.2:80 –>192.168.0.1:1048 TCP ACK: 1460 bytes of search results

19. 192.168.0.1:1048 –>10.2.2.2:80 TCP FIN

20. 10.2.2.2:80 –>192.168.0.1:1048 TCP FIN ACK

21. 192.168.0.1:1049 –>10.3.3.3:23 TCP SYN

22. 10.3.3.3:23 –>192.168.0.1:1049 TCP SYN ACK

23. 192.168.0.1:1049 –>10.3.3.3:23 TCP ACK

24. 10.3.3.3:23 –>192.168.0.1:1049 TCP PSH: Generic Telnet Banner

benign.search.engine.com/search+example
benign.search.engine.com/search+example
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25. 192.168.0.1:1050 –>192.168.64.64:53 UDP: nastyperson.com

26. 192.168.64.64:53 –>192.168.0.1:1050 UDP: nastyperson.com is 10.1.1.1

27. 192.168.0.1:1051 –>10.1.1.1:80 TCP SYN

28. 10.1.1.1:80 –>192.168.0.1:1051 TCP SYN ACK

29. 192.168.0.1:1051 –>10.1.1.1:80 TCP ACK

30. 192.168.0.1:1051 –>10.1.1.1:80 TCP PSH: GET nastyperson.com/1400Bytes

OfBankDetails

31. 10.1.1.1:80 –>192.168.0.1:1051 TCP PSH RST

Packet 1, the first packet the Traffic Source Agent processes, is a DNS request for the

host name badguy.com. The Traffic Source Agent publishes the packet to the packet

exchange, where the packet is queued to both a DNS Protocol Agent queue and

a DNS Feature Source Agent queue. The DNS Protocol Agent caches the request

so that a network defender can potentially query for it later. The Feature Source

Agent generates a feature set for the DNS packet and tries to match the five tuple

belonging to the DNS packet to a cache of alerts received from the Alert Source Agent.

Depending on the mode of operation, classify all or classify just malicious traffic, the

the DNS Feature Source may label the feature set as DNS. For this example, I will

assume that the system is set to only label malicious traffic, and thus the unlabelled

feature set is published to the feature exchange. A Machine Learning Agent retrieves

the feature set from the the queue, and attempts to label it. Once labelled, the

nastyperson.com/1400BytesOfBankDetails
nastyperson.com/1400BytesOfBankDetails
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feature set is published to the Labelled exchange and both the Observer Agent and

the Traffic Manipulation Agent receive it.

The Traffic Source Agent processes Packet 2, a response to the DNS request for

badguy.com. The packet follows the exact same route as the first packet. DNS has

only one packet per feature set, so the DNS Feature Source Agent has published a

total of two feature sets.

The third, fourth and fifth packets are the TCP handshake resulting from the

connection attempt initiated when the client looking for badguy.com received a DNS

response. The packets are published from the Traffic Source Agent to the HTTP

Feature Source Agent. The HTTP Feature Source Agent initializes a new feature

set keyed on the five tuple {192.168.0.1, 10.1.1.1, 1045, 80, 6}, and the three packets

associated with the TCP handshake contribute to the feature set. The feature set

will remain in memory until it is timed out, a packet with the reset TCP flag set

(RST packet) is received, or the TCP connection is torn down by FIN packets. RST

packets are used in TCP sessions to indicate a session should be abandoned and is

used for a variety of reasons to terminate TCP sessions instead of a proper connection

tear-down using TCP FIN packets.

Packet 6 follows the same path as the TCP handshake into the feature set keyed

by {192.168.0.1, 10.1.1.1, 1045, 80, 6}. However, the Alert Source Agent, having also

processed the packet, fires an alert indicating that the packet is part of a malicious

attack according to the misuse detection system. The HTTP Feature Source Agent

receives a message from the alert exchange and matches it to the feature set resident

in memory. However, as the session has not timed out, closed or been reset, the
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feature set remains in memory.

Packet 7 resets the TCP connection associated with {192.168.0.1, 10.1.1.1, 1045,

80, 6}, once the HTTP Feature Source Agent receives packet 7 and matches the

packet to the feature set, the HTTP Feature Source Agent publishes the feature set.

A Machine Learning Agent receives the feature set and given that there is an alert

associated with the feature set the Machine Learning Agent trains with it.

When packet 8 and 9 (the DNS request and response for benign.search.engine.com)

are captured by the Traffic Source Agent, they follow through the system in exactly

the same way as the DNS request and response for badguy.com. These produce

two feature sets for a Machine Learning Agent as well as a cached entry in the DNS

Protocol Agent for benign.search.engine.com. To recap, each packet is published from

the Traffic Source Agent to the DNS Feature Agent and DNS Protocol Agent. The

DNS Feature Agent immediately generates a feature set for each packet and publishes

them to the Machine Learning Agent.

Packets 10 through 20 represent a standard HTTP session where a client performs

a GET request to benign.search.engine.com containing two generic search terms. The

server at IP address 10.2.2.2 responds with packets 14, 16 and 18. All of the packets

in this session are published through the Feature Source Agent to the HTTP Feature

Source Agent, and stored in a feature set keyed with {192.168.0.1, 10.2.2.2, 1048, 80,

6}. Assuming each packet arrived within the timeout period, the feature set remains

with the HTTP Feature Source Agent until packet 20, when the second FIN in the

session is received.

The Traffic Source Agent processes packets 21 to 24 in a similar manner to packets
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10 through 20. However, the HTTP Feature Source Agent is not interested in these

particular packets, as they do not meet the port 80 or port 8080 heuristic. Instead,

the packets are published to a Transport Layer Feature Source Agent responsible for

handling TCP sessions. The packets contribute to a feature set keyed by {192.168.0.1,

10.3.3.3, 1049, 23, 6}. Notice, however, that there is no RST or FIN packet received

after packet 24 for this particular session. In this case the feature set will remain

in memory until, during a periodic check, the Transport Layer Feature Source Agent

recognizes that no packets for the session have been seen for some time and the feature

set times out. Once timed out, the feature set is published to the Machine Learning

Agents.

Packets 25 and 26 pass through the system again, just as previous DNS request

and responses.

The TCP handshake (27 to 29) contributes to a feature set keyed by {192.168.0.1,

10.1.1.1, 1051, 80, 6} in the HTTP Feature Source Agent. Packet 30 and 31 also

contribute to the feature set. Once the HTTP Feature Source Agent receives the

associated feature set, the feature set is published to the Machine Learning Agent.

Unlike the feature set keyed by {192.168.0.1, 10.1.1.1, 1045, 80, 6}, the feature set

keyed by {192.168.0.1, 10.1.1.1, 1051, 80, 6} was not matched by an alert provided by

the Alert Source Agent. When the Machine Learning Agent receives feature set keyed

by {192.168.0.1, 10.1.1.1, 1051, 80, 6} it attempts to classify it and finds that with

significant confidence the feature set is similar to the feature set keyed by {192.168.0.1,

10.1.1.1, 1045, 80, 6}. It publishes a labelled feature set and the network defender

is notified via the Observer Agent. The network defender is asked by the system
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to examine the session. The network defender uses the misuse detection signature

referenced by the label in the feature set, and sees the misuse detection signature

is supposed to match on GET requests to the host name badguy.com, and that the

signature identifies traffic ex-filtrating banking data. The network defender can verify

the DNS cache for the entries that have recently resolved to 10.1.1.1, and finds the

host names nastyperson.com and badguy.com. Additionally, the network defender

could examine the contents of the GET requests and look for similarities.

Notice that there is a substantial difference between how the Machine Learning

Agent identifies something as potentially malicious and how the network defender

notices something malicious. A misuse detection signature was written by a network

analyst who noticed that GET requests for badguy.com were malicious. This is a rel-

atively easy feature for a human network analyst to observe and then communicate

to a machine via a human readable misuse detection signature. The Machine Learn-

ing Agent does not look for the same features. Instead the Multi-Agent Malicious

Behaviour Detection system translates the features of a session into a format that is

suitable for a machine learning algorithm to process. In this example, those features

are elements like the average packet length, number of packets in the session, pres-

ence of a reset, and entropy of a URL - all features that human security analysts are

less likely to recognize. The Machine Learning Agent then matches what it thinks is

malicious and grounds the results of the match to a misuse detection signature that

approximates its hypothesis that the network defender can understand.
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5.5 Implemented Agents

This section describes Multi-Agent Malicious Behaviour Detection Agent imple-

mentations based on the seven agent roles discussed in Section 4.5. Figure 5.2 il-

lustrates the variety of agents implemented to validate this work. I will discuss two

Traffic Source Agents: the Pcap Live Traffic Source and the Pcap File Traffic Source.

I will describe the Feature Source Agents, specifically the Transport Layer Feature

Source, the HTTP Feature Source, the DNS Feature Source and all of the supporting

feature related code. I will provide details related to the implementation of Machine

Learning Agents. I will present an example Alert Source Agent, the Unified Alert

Source Agent. I will describe two Protocol Analysis agents, the DNS Agent and the

HTTP Agent. I will introduce implementation of four Traffic Manipulation Agents,

the DNS Manipulation Agent, the HTTP Manipulation Agent, the Contact Agent,

and the Dynamic Firewall Agent. I will provide details of three Observer Agent Im-

plementations, the Experimenter Agent, the Logger Agent and the Network 3D User

Interface.
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Agent

AlertSource

FeatureSource

ProtocolAnalysis

TrafficSource

DynamicFirewall

TrafficManipulation

LoggerAgent

UnifiedAlertSource

MultiPacketFeatureSource

DNSFeatureSource

TransportLayerFeatureSource

HTTPFeatureSource

DNSProtocolAgent

HTTPAgent

PcapFileTrafficSource

PcapLiveTrafficSource

DNSManip

HTTPManip

Figure 5.2: Inheritance diagram for the various Multi-Agent Malicious Behaviour
Detection Agents.

Significant effort was made throughout the implementation of the Multi-Agent

Malicious Behaviour Detection system to ensure that tasks were divided out to

autonomous agents capable of existing independent of other agents in the system.

This multi-agent concept is strictly adhered to by enforcing an inheritance hierarchy,

with each component of the system descending from the Agent abstract class (Ap-

pendix A.2). Figure 5.2 shows a variety of agents implemented throughout this work.

Throughout this section I will discuss implementation challenges with many of the

agents in Figure 5.2.
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5.5.1 Traffic Source Agent Implementations

TrafficSource

PcapFileTrafficSource PcapLiveTrafficSource

Agent

Figure 5.3: Inheritance diagram for the Traffic Source Agents.

As described in Section 4.5.1, Traffic Source Agents are tasked with ingesting raw

traffic and publishing it out to Multi-Agent Malicious Behaviour Detection Agents.

Traffic Source Agent implementations take advantage of the open source project

SharpPcap to read packets from either the network interfaces on the host machine or

from previously recorded network traffic. SharpPcap is available from Gal [2012]. Ef-

fectively, SharpPcap provides an interface into the winpcap drivers for the Microsoft

.NET programming framework.

Pcap Live Traffic Source (Appendix A.3) is an implementation of a Traffic Source

Agent that reads packets in real time from network interfaces on host machines. In

order to mitigate the network speeds, all packets are read into a First-in, First-out

queue as quickly as the SharpPcap framework drivers allow. Packets are pulled out of
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the queue and a limited amount of processing is performed to enable publishing the

packets to various destinations for Feature Source Agents (Section 4.5.2) to consume.

The queue is monitored to ensure it does not take up too much memory: if the queue

becomes too large, new packets are no longer inserted and are discarded instead.

Discarded packets are reported to a log. The queue will grow and shrink as the

saturation of the network medium changes, and when less traffic is on the network

the processing has time to catch up. This introduces the potential for delays in

delivery of packets to Feature Source Agents. Given the nature of the work, such

delays are difficult to avoid.

Pcap File Traffic Source (Appendix A.3) is an implementation of a Traffic Source

Agent that reads previously recorded packet captures. Packets can be read from a

previously recorded traffic file at a great speed, which could overload the system with

packets. The Pcap File Traffic Source attempts to keep this manageable through

a simple timing mechanism is used to introduce an artificial delay between packet

reads. Beyond its use in avoiding flooding the system, this artificial delay can also

be used to test the Multi-Agent Malicious Behaviour Detection system under various

hypothetical network saturation conditions.

The Pcap File Traffic Source can also be used to introduce artificial malicious

multi-agent system traffic, perhaps previously recorded on another network, into the

Multi-Agent Malicious Behaviour Detection system by running in parallel with a Pcap

Live Traffic Source. Feature Source Agents receive the packets through the AMQP

server on the Packet exchange (Section 5.4.1) and will not differentiate between traffic

sources. A mix of Traffic Source Agents can increase the Multi-Agent Malicious
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Behaviour Detection system’s exposure to various traffic types while still protecting

the host network.

0 2 4 6

dir & type protocol label

client IP server IP

client port server port packet length

Table 5.1: Serialized packet summary message. The first row marks byte offsets. The
alternating shading marks field boundaries.

Both Traffic Source Agent implementations publish packets in two formats, as

packet summaries and full packets. The format of a packet summary is illustrated in

Table 5.1. The packet summary is intended to have a small footprint for performance

considerations, consisting of only 20 bytes. The packet summary contains enough

information to match it with existing sessions in the Multi-Agent Malicious Behaviour

Detection system (client IP and port, server IP and port, and protocol). It also

includes a field for a label, should the packet have been matched to an alert message

(Section 5.5.4), and the length of the packet. Packet summaries are useful to Multi-

Agent Malicious Behaviour Detection Agents that are not concerned with the packet

payload. For example, Observer Agents may display flows of data on a user interface,

but do not require the packet payload to do so. Full packet messages, illustrated

in Table 5.2, are a copy of the packet data from the IP layer down through the

application layer. A time stamp, extracted from the winpcap driver, is added to the

front of the full packet message.
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0 2 4 6

arrival time seconds

arrival time microseconds

packet byte data (variable length)

Table 5.2: Serialized full packet message. The first row marks byte offsets. The
alternating shading marks field boundaries.

5.5.2 Feature Source Agent Implementations

My implementation of the Multi-Agent Malicious Behaviour Detection framework

required a variety of Feature Source Agents to process some of the features available in

network traffic. The inheritance relationships among these are illustrated in Figure

5.4. Recall, Section 4.5.2 identified the challenge associated with identifying the

number of packets sufficient for deriving relevant features to send to other Multi-Agent

Malicious Behaviour Detection Agents. In this research, the problem of estimating

a useful number of packets is handled by a heuristic that divides sessions into three

categories: UDP, TCP and DNS. The advantage to the three chosen categories is

that they can be swiftly identified with very little processing requirements. Sessions

that are identified as TCP are considered complete when a proper TCP connection

tear-down is observed, a RST packet is seen, or there is a significant delay from the

last packet seen. The delay is heuristically chosen as a multiple of the average round

trip time of packets in the session. All traffic on port 53 is presumed to be DNS,

and only one packet per session is used for deriving features. UDP sessions rely on

a timeout only, but the timeout is aggressive compared to the TCP session timeout,

fixed at 30 milliseconds.
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FeatureSource

MultiPacketFeatureSource DNSFeatureSource

Agent

TransportLayerFeatureSource HTTPFeatureSource

Figure 5.4: Inheritance diagram for the Feature Source Agents.

In addition to the dividing of traffic into UDP, TCP and DNS for determining an

appropriate strategy for ending sessions, Feature Source Agents were implemented

to extract additional features for DNS and HTTP traffic. With respect to session

length, HTTP is treated the same as TCP. To facilitate feature extraction for different

session types, features are split across four classes of feature objects (Figure 5.5),

whose implementations are described in Appendix A.4. Each Traffic Features class

represents a single feature set, as described in Section 4.5.2. The Traffic Features

class contains a limited number of features available in all session types processed

by Multi-Agent Malicious Behaviour Detection, the server IP address, the client IP

address, the server port, the client port, the protocol, and the time since the last

connection between the client and server IP addresses was observed.
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TrafficFeatures

TransportLayerFeatures DNSFeatures

HTTPFeatures

Figure 5.5: Inheritance diagram for feature items.

Given that every feature set object inherits from the Traffic Features base class,

each feature set is uniquely identified by a key, consisting of 14 bytes from the the

protocol, client IP, server IP, client port and server port. For the purposes of this

work, the client IP is assumed to be the IP address associated with the higher of the

two port numbers in a given connection. When a Traffic Feature is passed between

Multi-Agent Malicious Behaviour Detection Agents, it is serialized into a message

whose structure is illustrated in Figure 5.3. The first row in the figure indicates the

byte positions for each field.

The Transport Layer Features class extends the Traffic Features class and adds

the additional features for sessions of packets, as described in Table 3.1. The format

of the Transport Layer Features is illustrated in 5.4. Transport Layer Features are

passed between Multi-Agent Malicious Behaviour Detection Agents to describe UDP
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0 2 4 6

feature type protocol label

client IP server IP

client port server port ticks since last connection

start time seconds

start time milliseconds

end time seconds

end time milliseconds

Table 5.3: Serialized Traffic Feature message. The first row marks byte offsets. The
alternating shading marks field boundaries.

0 2 4 6

feature type protocol label

client IP server IP

client port server port ticks since last connection

start time seconds

start time milliseconds

end time seconds

end time milliseconds

mx md data cnt q3 data cnt

max data max data AB max data BA req sck BA

max seg AB max seg BA min seg AB min seg BA

max data IP mx data IP AB mx data IP BA mx data IP AB

mean segment size mean data control AB

variance data control BA

total packets total packets AB

Table 5.4: Serialized Transport Layer Feature message. The first row marks byte
offsets. The alternating shading marks field boundaries.

and TCP sessions, with the exception of DNS.

The feature sets described so far are numerical values that can be extracted and

tracked with relative ease. Some of the more complex values, such as the mean

segment size or the variance of the data control bytes are slightly more complex for

Feature Source Agents to keep track of. However, there are a variety of mechanisms

for tracking such values using techniques [Ling, 1983; Chan et al., 1983].
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Features of DNS traffic are derived by the DNS Feature Source Agent and stored

as DNS Features objects. Since DNS features are derived from single packets, the

DNS Feature Source Agent does not require the logic to track multiple packets, and so

inherits directly from the Feature Source Agent. Equally, the DNS Features objects

do not require the additional features in the Transport Layer Feature class and so

inherits directly from the Traffic Features class with the addition of those features

described in Table 4.1. One of the DNS features extracted from the DNS packets,

are the host name features. The host name features are extracted as two distinct

features. Each DNS packet should contain a host name query. That host name is

a string of characters that the domain name service is asked to resolve to an IP

address. Also, the record data portion of a DNS response contains strings the can be

exploited for features. In order to derive numerical values from the host name I’ve

introduced a Network String Features object. The Network String Features object will

consume any string of bytes and return a serialized message of features. Table 5.5

illustrates the features extracted by a Network String Features object, and Table 5.6

illustrates the format of serialized Network String Features. To simplify data passed

through the system, each class of features is designed to produce feature sets with

a consistent number of features. However, DNS responses and requests can contain

a variable number of host names and record data. Instead of providing individual

features for each host name or record data, the DNS Feature Source Agent combines

all of the host names into one string and all of the record data strings into a second

string and extracts two sets of Network String Features to include in DNS Feature

sets. Table 5.7 illustrates a DNS Feature message, as it would appear when passed
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between Multi-Agent Malicious Behaviour Detection Agents.

Network String Features

Distinct Bytes The number of distinct byte values in a collection of
strings.

Minimum Byte Value The smallest byte value in a collection of strings.
Maximum Byte Value The largest byte value in a collection of strings.
ASCII Capital Count The number of ASCII capital letters in a collection of

strings (byte values between 65 and 90).
ASCII Lower Case Count The number of ASCII lower case letters in a collection of

strings (byte values between 97 and 122).
ASCII Digit Count The number of ASCII digits in a collection of strings (byte

values 48 to 57).
Length The total length of all of the strings combined.
Segment Count The number of strings in the collection of strings.

Table 5.5: Features extracted from string in HTTP and DNS packets.

0 2 4 6

distinct bytes byte max & min upper count lower count

ascii digit count total length segments

string entropy

Table 5.6: Serialized Network String Features message. The first row marks byte
offsets. The alternating shading marks field boundaries.

The HTTP Feature Agent also takes advantage of the Network String Features

object to extract the additional features described in Section 4.2. In order to extract

the various fields, the HTTP Feature Source Agent first looks for identifiers that indi-

cate that there is likely an HTTP header in the session, such as GET, POST, HEAD,

PUT, DELETE or HTTP. For the sake of efficiency, the Feature Source Agent only

examines the first few bytes of the first packet in each session to make a determination.

If one of the identifiers are found, the Feature Source Agent will try to parse specific

header request or response fields. Fields include the User-Agent, Via, Referrer, Host,

Cookie, Server, Location, and Set-Cookie. Additionally, the agent attempts to locate
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0 2 4 6

feature type protocol label

client IP server IP

client port server port ticks since last connection

start time seconds

start time milliseconds

end time seconds

end time milliseconds

identifier flags

question count answer count name server # additional rec. #

DNS name (serialized NetworkStringFeatures)

record data (serialized NetworkStringFeatures)

Table 5.7: Serialized DNS Feature message. The first row marks byte offsets. The
alternating shading marks field boundaries.

the URL. As with DNS, the string features are combined into Network String feature

sets. There are three unique string sets for each broader HTTP session feature set:

the URL features, the request field features and the response field features. Table

5.8 shows the structure of the serialized HTTP features message. Notice how the

message is considerably larger than the other feature set messages described to this

point. Serializing the messages helps to reduce the amount of congestion the message

cause for the AMQP communications infrastructure (Section 5.4.1).

As described in section 4.5, Feature Source Agents provide a layer of abstraction

between raw packets and the features that other agents in the system are interested

in. As such, the agents are often part of more complex agents. All feature sources

are derived from the FeatureSource abstract class. For more implementation details

of the individual features classes see Appendix A.4.
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0 2 4 6

feature type protocol label

client IP server IP

client port server port ticks since last connection

start time seconds

start time milliseconds

end time seconds

end time milliseconds

mx md data cnt q3 data cnt

max data max data AB max data BA req sck BA

max seg AB max seg BA min seg AB min seg BA

max data IP mx data IP AB mx data IP BA mx data IP AB

mean segment size mean data control AB

variance data control BA

total packets total packets AB

hdr counts url features (serialized NetworkStringFeatures)

user agent hdr field (serialized NewtorkStringFeatures)

via hdr field (serialized NetworkStringFeatures)

referer hdr field (serialized NetworkStringFeatures)

host hdr field (serialized NetworkStringFeatures)

cookie hdr field (serialized NetworkStringFeatures)

server hdr field (serialized NetworkStringFeatures)

location hdr field (serialized NetworkStringFeatures)

set cookie hdr field (serialized NetworkStringFeatures)

Table 5.8: Serialized HTTP Feature Message. The first row marks byte offsets. The
alternating shading marks field boundaries.
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5.5.3 Machine Learning Agent

As discussed in Section 4.5.3, I chose to leverage a series of existing machine

learning algorithms implemented by Saffari et al. [2010]. Those algorithms are On-

line Random Tree, Online Random Forest, Online LaRank, Online Multi-Class Linear

Programming Boost, and Multi-Class Gradient Boost. There are a number of exist-

ing machine learning packages that I could have potentially used for this research,

including Waffles [Gashler, 2011] or WEKA [Hall et al., 2009]. The reason for choosing

Saffari et al. [2010] over another machine learning package was the focus on streaming

classifiers provided by the implementations in Saffari et al. [2010].

Machine Learning Agents were implemented in C++ and interface directly with

the source code provided by Saffari et al. [2010]. The Machine Learning Agents

subscribe to the Features exchange and consume feature sets from the various Feature

Source Agents, including the Transport Layer Feature Source, HTTP Feature Source

and the DNS Feature Source. The various feature sets are illustrated in Tables 5.4,

5.7, and 5.8.

One Machine Learning Agent is instantiated for each feature set type, since differ-

ent feature sets contain different numbers and types of features. Given the machine

learning algorithms in Saffari et al. [2010] operate on vectors of data represented by

float values, each feature set is transformed from a mixed type representation to a

vector of floats suitable for the machine learning algorithms. If the received feature

set has not been previously labelled, the Machine Learning Agent attempts to classify

the feature set. If the received feature set has been previously labelled, the feature set

is used to train the machine learning algorithm. Additionally, after training on the
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labelled feature set, the machine learning algorithm attempts to classify the feature

set. The feature set is reclassified to give the Machine Learning Agent a chance to

associate a series of confidence values to each feature set it sees.

It is important to Multi-Agent Malicious Behaviour Detection that each feature

set is classified, even if it was previously assigned a label by an external misuse

detection system, such as Snort. Central to Multi-Agent Malicious Behaviour Detec-

tion is the idea that malicious multi-agent systems attempt to mimic benign traffic.

The confidence values assigned during classification are exploited to identify mali-

cious multi-agent system communications that are similar to benign traffic, where

the highest confidence class is benign but the second or third highest confidence class

is malicious.

The confidence values for each class are normalized, such that the sum of all

confidence values is 1.0. After classifying a feature set, the Machine Learning Agents

publish the feature set with the top five confidence values and associated labels for

network defenders and other Multi-Agent Malicious Behaviour Detection Agents to

exploit.

Classes are based on the Snort Signature IDs, where each Snort signature ID can

be tied back to a type of malicious multi-agent system behaviour, such as beaconing,

denying, propagating, ex-filtrating, updating, and mimicking (Section 1.5.4).

5.5.4 Alert Source Agent Implementations

Section 4.5.4 discusses the design of Alert Source Agents, and describes the re-

liance on external misuse detection to provide context for network defenders. In this
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research, Snort was chosen as the external misuse detection engine. Snort provides

a flexible grammar for describing network activity, applicable to detecting malicious

multi-agent system traffic. In particular, the Sourcefire VRT certified rules provide a

reference value that can be used to get further information about what specific net-

work activity an alert is designed to detect. In this section I will discuss Unified Alert

Source Agents. Unified Alert Source Agents integrate Snort into the Multi-Agent Ma-

licious Behaviour Detection system and publish messages providing the signature ID,

source IP, destination IP, source port, destination port and protocol for Multi-Agent

Malicious Behaviour Detection Agents to ingest. The published messages are then

matched to sets of features: any feature set derived from a session that produced a

hit in Snort is assigned a label representing the Snort signature ID.

AlertSource

UnifiedAlertSource

Agent

Figure 5.6: Inheritance diagram for Alert Source Agents.

Table 5.6 illustrates the Alert Source Agent inheritance hierarchy. A Unified Alert
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Example Key: 000000AA.C4A80101.0050.*.*
Alert ID Source IP Source Port Destination IP Destination Port
000000AA C4A80101 0050 * *

Table 5.9: Alert Source Routing Key: all messages where alert ID is 170, the source
IP is 192.168.1.1 and the source port is 80.

Agent is a C# implementation of an Alert Source Agent that reads Snort unified

alert files and publishes the alerts to the Multi-Agent Malicious Behaviour Detection

system. Snort unified alert files are binary, as opposed to ASCII, formatted files

containing 64 byte blocks of data for each alert a Snort process generates in response to

some network traffic. The 64 byte block contains a variety of data including the Snort

signature ID, a time stamp as well as the source and destination IP addresses, the

source and destination ports and the protocol for the traffic associated with the alert.

Unified Alert Source Agents exploit the existing Snort misuse detection capabilities,

providing the Multi-Agent Malicious Behaviour Detection system an interface into

Snort. Appendix A.6 contains the documentation for the Alert Source and Unified

Alert Agent implementations. The C# classes were implemented with extendability

in mind. For the purposes of the evaluation described in Chapter 6, the Unified Alert

Source is the only implemented C# Alert Source. However, its implementation is

based on an abstract base class, AlertSource, that can be extended in future work

to provide the Multi-Agent Malicious Behaviour Detection system with additional

sources of external misuse or anomaly detection.

Unified Alert Agents publish alerts for other Multi-Agent Malicious Behaviour

Detection Agents to subscribe to (see 4.5). Unified Alert Agents use the Topic mes-

saging model (Section 5.4.1), where the routing key is devised of five words separated
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by dots (see Table 5.9 for an example). First word is an alert ID, followed by a source

IP address, a destination port, a destination IP address and a destination port. Note

that all fields are represented by hex strings, for example the IP address 192.168.1.1

is represented by the string C4A80101. Depending on their requirements, agents can

subscribe to any combination of the five features.

In the context of an operating Multi-Agent Malicious Behaviour Detection system,

an external Snort process is loaded with a rule set that identifies some malicious

multi-agent system behaviours, such as beaconing or propagating (Section 1.5.4).

The Snort process generates alerts and writes them to a unified alert file. A Unified

Alert Source Agent monitors the unified alert file for changes, and parses new alerts

as the Snort process writes them to the unified alert file. The Unified Alert Source

Agent then publishes the alerts into the Multi-Agent Malicious Behaviour Detection

system. Multi-Agent Malicious Behaviour Detection Agents then match the alert

messages from the Unified Alert Source Agent to feature sets derived by Feature

Source Agents.

Snort operates at the packet level: it provides some functionality for operating on

sessions, but the session mechanism is not currently enabled for this implementation of

the Multi-Agent Malicious Behaviour Detection system. A single session will generally

consist of multiple packets, and each of those packets could potentially generate a

Snort alert. Additionally, a single packet could potentially match multiple Snort

rules. With respect to multiple alerts on a single packet, Snort will only generate

one alert per packet. Therefore, care must be taken in determining what rules to

deploy to ensure that the most relevant Snort rule fires on a packet if multiple rules
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can potentially fire. Also, if several rules fire across a session, only the most relevant

one should be added to the matching feature set that will ultimately be published for

Machine Learning Agents. I use a general heuristic for determining which alerts out

of a set will be matched to a feature set. Snort rules are ordered such that when two

rules match a single packet, the most relevant rule (where relevance is measured by

how accurately the rule identifies malicious communications) fires with the highest

precedence. When multiple alerts fire on a single session, malicious rules are given

precedence over benign rules. For example, if a rule designed to identify all HTTP

fires on the first packet in a session, but then a subsequent packet in the same session

triggers a malicious detection rule, the malicious detection rule gets precedence and

the HTTP rule is ignored.

Network defenders take advantage of Snort signature ID’s by comparing output

from the Machine Learning Agents, and the associated traffic to validate if the Ma-

chine Learning Agent has identified novel malicious multi-agent system communica-

tions. The more autonomy the Multi-Agent Malicious Behaviour Detection system

achieves, the less reliance there will be on the human network defender to validate its

findings. However, at this point human validation is still an important step to ensure

proper and safe functioning. Given that the raw output of the Machine Learning

Agents is not very meaningful to the network defender, the Snort rules provide a

mechanism for the network defender to better understand why the Machine Learning

Agent made a particular classification. Also, the network defender can work out why

the Snort rule did not fire on the original traffic, but was classified as traffic similar

to traffic that typically fires on a specific Snort rule.
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5.5.5 Protocol Analysis Agent Implementations

Section 4.5.5 outlined the requirement for a set of Protocol Analysis Agents ca-

pable of providing network defenders with contextual information to support their

analysis. For this research I implemented two such agents, the DNS Protocol Agent

and the HTTP Agent. Figure 5.7 illustrates the inheritance relationship between the

Protocol Analysis Agents described here and the Agent base class.

Monitoring DNS traffic Mockapetris [1987a,b] is important in determining network

behaviour and is often exploited by malicious multi-agent system (Section 4.5.5). The

DNS Protocol Agent is responsible for interpreting DNS traffic and maintaining a

history of DNS activity. Whenever network defenders wish to perform analysis on

traffic, they can query the DNS Protocol Agent in real-time to retreive information

about recent DNS queries and responses.

ProtocolAnalysis

DNSProtocolAgent HTTPAgent

Agent

Figure 5.7: Inheritance diagram for Protocol Analysis Agents.

DNS Protocol Agents subscribe to all port 53 traffic from Traffic Source Agents.
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Recall from 5.5.1 that agents can subscribe to topics using keys composed of source IP,

source port, destination IP, destination port and protocol. DNS Protcol Agents sub-

scribe to UDP traffic using the following AMQP topics: *.0035.*.*.11 and *.*.*.0035.11.

The packets are published through the Packet exchange (Section 5.4.1) to the DNS

Protocol Agent’s packet queue. DNS Agent pull the port 53 UDP traffic out of the

incoming packet queue and begins the process of pulling out relevant information

for further analysis. The DNS protocol employs a simple compression mechanism,

whereby portions of the domain name are not repeated in a single message. Instead

of repeating a domain name, RFC1035 defines a method to replace repeated sections

with pointers to the first spot where the domain name appears in the message. While

the mechanism reduces network congestion, the pointers are not helpful for analysis.

The DNS Protocol Agent removes all compression and stores the DNS requests and

responses into custom structures to simplify requests from network defenders for in-

formation regarding DNS activity. Network defenders can request a list of host names

that have resolved to a specified address, a list of IP addresses that have been asso-

ciated with a specified host name or a history of requests that a specified IP address

has made.

The DNS Protocol Agent maintains a cache of the last ten resolutions per host

name and IP address pair. The network defender can take advantage of that infor-

mation to discover instance of repeated DNS requests, such as might be the case in

malicious multi-agent system beaconing activity, or a flood of bogus DNS requests as

in malicious multi-agent system denial attack.

HTTP Protocol Agents attempt to maintain some information about various web-
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pages that clients on the protected network have visited. If the Multi-Agent Malicious

Behaviour Detection indicates that there is suspicious HTTP activity (by classifying

some HTTP feature set as related to a malicious multi-agent system) the network

defender can look up webservers associated with the HTTP activity Fielding et al.

[1999]. This allows the network defender to see the names of webpages, documents

retrieved, or URLs. The HTTP Protocol Agent parses the HTTP headers to extract

the relevant fields and then keeps a history of the field values per webserver observed.

At the moment, the interaction is relatively primitive. The network defender submits

a web server name and the HTTP Protocol Agent returns a structured list of header

field values it has observed. However, future work is planned to extend the capabilities

of the HTTP Protocol Agents.

Implementing Protocol Agents is complex, as it requires that the developer un-

derstand enough about the protocol in question to parse out important information.

However, since the goal of a Protocol Analysis Agent is to extract information rele-

vant to the network defender as opposed to providing complete protocol functionality,

heuristics can help to reduce the amount of work and knowledge required by the de-

veloper. For example, an SMTP Protocol Analysis Agent could attempt to extract

just the email addresses it sees in the traffic, as opposed to attempting to parse the

entire email.

Future work is also planned to develop Protocol Analysis Agents that are designed

specifically to parse malicious multi-agent system communication protocols. For ex-

ample, a Protocol Analysis Agent that can recognize and parse Conficker (Section

1.2.2) communications could provide a network defender with an indication of what
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the malicious multi-agent system is attempting to achieve on the network.

5.5.6 Traffic Manipulation Agent Implementations

Section 4.5.6 described a number of scenarios for Traffic Manipulation Agents.

Many of these involve crafting artificial packets. SharpPcap (Section 5.5.1), in addi-

tion to capturing packets, enables Traffic Manipulation Agents to place packets back

into the network. The DNS Manipulation Agents, and HTTP Manipulation Agents,

implemented as part of this thesis are both responsible for accepting requests from

either network defenders or other Multi-Agent Malicious Behaviour Detection Agents

to insert packets. The Dynamic Firewall Agents interface with network firewalls

to block connections. The inheritance diagram for Traffic Manipulation Agents is

shown in Figure 5.8. While I group Dynamic Firewall Agents with Traffic Manipula-

tion Agents, since they do not actually insert packets, they inherit directly from the

Agent abstract class.
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TrafficManipulation

DNSManip HTTPManip

Agent

Figure 5.8: Inheritance diagram for Protocol Analysis Agents.

Communications between the Multi-Agent Malicious Behaviour Detection Agents

and Traffic Manipulation Agents follow the Remote Procedure Call model (RPC).

This model, in the context of AMQP, is described by springsource [2012]. Multi-

Agent Malicious Behaviour Detection Agents are responsible for creating anonymous

callback queues. When an agent would like to request action from a Traffic Manip-

ulation Agent (such as adding or removing a filter, responding to a DNS request, or

closing an HTTP connection), a message is sent with a property set to the name of

the callback queue as well as a unique identifier for the request. The Traffic Manip-

ulation Agent will process the requests as they are read from the request queue and

send responses to the queue named in the request from the Multi-Agent Malicious

Behaviour Detection Agent. The reply contains the request identifier linking it back

to the original request. While multiple Multi-Agent Malicious Behaviour Detection
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Agents may publish their requests to a single queue read by a Traffic Manipulation

Agent, the agent will respond to each Agent’s unique queue. The response consists

of a status identifying if the action was carried out.

DNS Manipulation Agents subscribe to a packet insertion queue, where messages

are sent by other Multi-Agent Malicious Behaviour Detection Agents and network

defenders. The messages contain a DNS request packet, as well as a desired response

IP address. The DNS Manipulation Agent then crafts a UDP DNS response packet

that complies with RFC 1035 and attempts to insert it back into the network. If the

Multi-Agent Malicious Behaviour Detection system is fast enough, the DNS packet

will reach the requesting machine before the local DNS server can respond. The client

then uses the DNS Manipulation Agent’s response instead of the actual response. The

key to the success of this lies in the specification of RFC 1035, which states that the

client making a DNS request should only accept the first legitimate response and

ignore all other responses. In effect, the DNS Manipulation Agent is performing a

DNS spoofing attack [Yan et al., 2006; Steinhoff et al., 2006]. However, the attack

is on behalf of the network defender to interact with a malicious multi-agent system.

Faking DNS packets is relatively easy, since DNS operates over UDP and UDP is a

stateless connection. All one has to know to insert a UDP packet is the IP addresses

and ports involved, assuming the application layer is equally simple to mimic.

HTTP Manipulation is more difficult than DNS manipulation, given that TCP

connections maintain some state using Sequence and Acknowledgement numbers.

However, HTTP is often abused by malicious multi-agent system. Manipulating the

data the victim sends out can help protect the client or elicit responses from the ma-



200 Chapter 5: Multi-Agent Malicious Behaviour Detection Implementation

licious multi-agent system, while minimizing the risk to the protected network. The

HTTP Manipulation Agent accepts requests to terminate connections. An agent or a

network defender can send a message with the last observed packet to the HTTP Ma-

nipulation Agent and it will craft a RST packet by determining the next appropriate

Sequence and Acknowledgement numbers and sending RST packets to the client and

server involved in the offending TCP connection. Additionally, HTTP Manipulation

Agents accept URLs and craft the packets necessary to make a web request on behalf

of a client machine in the network. Given a URL the HTTP Manipulation will per-

form a DNS lookup, initiate a TCP connection to the server, create an HTTP GET

request, and capture the response.

Dynamic firewall agents are slightly different from the previous two types of Traffic

Manipulation Agents. They do no actually insert packets. However, they do modify

traffic flow in the network by blocking IP addresses and ports in response to threats

to the network. Multi-Agent Malicious Behaviour Detection Agents can send three

predefined message types to Dynamic Firewall Agents (see Table 5.10). The messages

have varying message and field lengths depending on the desired action. Each message

begins with a single byte describing the message type. While only three message types

are defined here, the single byte provides for 255 possible messages. The Dynamic

Firewall will ignore all message with a value other then 1, 2 or 3. The first type of

message, designated by a 1, is the add filter message. The message type is followed

by 7 fields; a 4 byte request ID, a 2 byte Multi-Agent Malicious Behaviour Detection

Agent ID, a 1 byte protocol, a 4 byte source IP address, a 2 byte source port, a 4

byte destination IP address, and a 2 byte destination port. The fields are all treated



Chapter 5: Multi-Agent Malicious Behaviour Detection Implementation 201

Add Filter Message
Type Req ID Agent ID Proto Src IP Src Port Dest IP Dest Port
1 byte 4 bytes 4 bytes 1 byte 4 bytes 2 bytes 4 bytes 2 bytes

Remove Filter Message
Type Req ID Agent ID Filter ID
1 byte 4 bytes 4 bytes 4 bytes

Check Filter Message
Type Req ID Agent ID Filter ID
1 byte 4 bytes 4 bytes 4 bytes

Table 5.10: Multi-Agent Malicious Behaviour Detection Agent To Dynamic Firewall
Agent messages.

as unsigned integers. The second message type, designated by message type 2, is the

remove filter message. Removing a filter requires 4 fields, the first three are similar to

the add message, a 1 byte message type, a 4 byte message ID, and a 4 byte Contact

Agent ID. The final field is the ID of the filter to be removed. Finally, the Multi-

Agent Malicious Behaviour Detection Agent can send a message to verify that the

requested filter still exists. The Multi-Agent Malicious Behaviour Detection Agent

sends a message identical to the remove filter. However, with a message type set to

3, and waits for a response as to whether the filter with the specified ID still exists.

Dynamic Firewall Agents send reply messages to the Multi-Agent Malicious Be-

haviour Detection Agent requests (see Table 5.11). In each case, Dynamic Agents

send responses to the exchange bound to the queue identified by the Multi-Agent

Malicious Behaviour Detection Agent ID sent in the third field of the agent’s mes-

sage. The full response message consists of 3 fields. The first is a message type,

which will always be set to 1, indicating a response to a previous request. The second
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Dynamic Firewall Response
Type Req ID Response Code
1 byte 4 bytes 2 bytes

Table 5.11: Dynamic Firewall Agent response message.

Figure 5.9: Example of a Multi-Agent Malicious Behaviour Detection Agent with ID
A0000001 requesting to add a filter blocking all traffic from 192.168.1.1 port 80 to
192.168.1.76 port 1024.

field is a 4 byte request id, so that the Multi-Agent Malicious Behaviour Detection

Agent can reliably match each response with a previous request. Finally, 2 bytes

indicate the response code of the message. A response code of 0 indicates failure,

while a response code greater than 0 identifies the rule ID that was either added or

removed. Figure 5.9 illustrates a request by a Dynamic Firewall agent to add a filter

to block traffic. The Dynamic Firewall Agent here is implemented specifically for the

standard firewall deployed on Mac OSX Lion. I am confident that the existing code

can be modified to interface with a number of different firewall and operating system

combinations.
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5.5.7 Observer Agent Implementations

A central feature of the Multi-Agent Malicious Behaviour Detection framework is

interaction with network defenders. To validate this research I implemented three Ob-

server Agents that enable human-machine interaction: Logger Agent, Experimenter,

and Network 3D User Interface. Each of these agents serves a specific purpose with

respect to human-machine interaction.

5.5.7.1 Logger Agent

The Logger Agent monitors all of the log messages, as well as many other messages

produced by agents while the Multi-Agent Malicious Behaviour Detection system

is running. The Logger Agent subscribes to the Feature, Labelled, AgentControl,

and AgentLog exchanges. When agents write to any of these exchanges, the Logger

Agent formats the message into an ASCII string and writes it to a file. Each agent will

periodically publish a log message to the AgentLog exchange (Section 5.4.1). Each log

message contains a time stamp, the agent’s unique id, the agent’s control state (ready,

running, paused, terminated, or complete), and other agent-specific information. For

example, Traffic Source Agents include the number of packets published, packets

published per second, and the number of megabits of traffic published per second.

A human network defender (or other agents) can review the log files produced by

the Logger Agent to support malicious multi-agent system behaviour analysis, can

monitor the log file in real time when a graphical user interface is not available, or

can use it to debug Multi-Agent Malicious Behaviour Detection Agents.
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Figure 5.10: The main window of the experimenter.

5.5.7.2 Experimenter

The Experimenter provides network defenders a mechanism for running repeatable

experiments with a set of agents, a predefined configuration, and pre-recorded network

traffic. Figure 5.10 shows the user interface. The top quarter of the interface displays

the unique IDs of agents participating in the trial. For example, AS-b7f43a987ebc4aba

is an Alert Source Agent. The colour of the boxes containing the agent IDs represents
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the agent’s current state: yellow for ready, green for running, blue for paused, red for

terminated, and purple when done processing all input. Below the agent ID boxes

are buttons to send various messages to the AgentControl exchange, to start a trial,

pause a trial, reset a trial, or terminate a trial. If the number of packets for the

trial is known beforehand, the first progress bar shows how many packets have been

processed. Following that are boxes for various trial characteristics, including the

number of packets processed, the number of feature sets processed, the number of

feature sets labelled by an alert source agent, the bandwidth of the packet manager

in megabits per second, and the bandwidth in packets per second. Next is a progress

bar displaying the ratio of alerts received so far, if the total number of alerts in the

trial is known. Below the second progress bar are the training and test errors of

the Machine Learning Agents participating in the trial. Finally, there is a text box

displaying a list of trial configurations and buttons to add, remove, and begin trials.

Each experimental trial depends on an xml configuration file that sets out the pa-

rameters of the trial. It indicates what agents are required for the trial, the directory

for any agent-specific files, the AMQP server details, the location of the pre-recorded

network traffic, the agent logging interval, and other minor settings. Once launched,

the experimenter ensures that each agent that should be involved in the trial launches

successfully, and periodically checks on the agents to ensure they are properly pro-

cessing traffic. The experimenter uses the logging messages as a heartbeat and parses

the information in the log files to determine the status of the agents.

The experimenter has been a valuable tool for validating the Multi-Agent Mali-

cious Behaviour Detection system in Chapter 6. The complete documentation for the
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experimenter can be found in Appendix A.2.

5.5.7.3 Network 3D User Interface

While the Logger Agent enables network defenders to monitor agents, and the

Experimenter enables some limited interaction between the Multi-Agent Malicious

Behaviour Detection system and network defender for evaluating the autonomous

parts of the system, the Network 3D User Interface is intended to be the operational

interface for shared discovery of malicious multi-agent systems. The interface is a

prototype, and I regularly modify the interface to account for new features. As such,

it is complete for the purposes of this thesis, but will need ongoing modification as

future work unfolds.

The Network 3D User Interface was written using Microsoft XNA Game Studio.

It uses the DirectX 3D libraries to take advantage of the GPUs available on modern

graphics cards to draw a 3D representation of the network the Multi-Agent Malicious

Behaviour Detection system is deployed in. Figure 5.11 illustrates an example of this

user interface displaying traffic.

Each machine in the network is drawn as a sphere. Spheres of the same colour

represent machines belonging to the same logical network. Each sphere is labelled

with an IP address and, if a Protocol Analysis Agent has identified a host name, the

most recent host name associated with the IP address. Packets are drawn on the user

interface using 2D particles. A particle is a small 2D image (jpeg, gif, png, or other)

that can be drawn quickly into a 3D scene. Each particle represents 10 packets. As

machines in the network interact with each other, it is visible on the user interface as
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Figure 5.11: The main window of the Network 3D User Interface.

streams of particles between the spheres.

On the top right of the interface is a series of spinning tori. Each torus represents

a Multi-Agent Malicious Behaviour Detection Agent. A torus performs a partial

rotation each time the interface receives a message from an agent. The speed with

which the torus rotates gives the network defender a rough idea of how much work

each agent is performing. If a torus stops moving all together, the agent is either no

longer running, or the agent is no longer publishing any messages to exchanges the

interface is subscribed to.

Clicking on agents or machines opens a menu listing interactions that the network

defender can take. For example, adding a machine to a whitelist, or querying a

Protocol Analysis Agent for information about an IP address. The items in the menu

depend on the type of agent, or the machine clicked on.
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A window across the bottom of the interface displays notifications from the various

agents, and can also be used to stream a dump of the network traffic or agent logs.

The network defender is also capable of navigating around the network by focusing

on a single machine or free flying around the 3D environment. When focused on a

single machine, the interface allows the network defender to orbit around and zoom

in and out using the machine as a centre. When free flying, the network defender can

move the focus up, down, left, right, in and out. The movement is similar to what one

would expect in a flight simulator. The movement through the 3D interface enables

the network defender to focus in on areas of interest in the network.

As mentioned earlier, this user interface represents ongoing work. Human-machine

interaction is important to validating this research, and further improving this user

interface is an important area of future research.

5.6 Summary

This chapter described many aspects dealing with an implementation of the Multi-

Agent Malicious Behaviour Detection framework. At this point, those wishing to

replicate or extend this system should have enough information to do so (in conjunc-

tion with the relevant appendices referred to throughout this chapter). The imple-

mentation here is used to validate the Multi-Agent Malicious Behaviour Detection

design detailed in Chapter 4 in a series of experiments described in the next chapter.

The series of experiments (and the analysis of the results of those experiments) are

designed to evaluate the Multi-Agent Malicious Behaviour Detection approach and

answer the research questions posed in Chapter 1.
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Evaluation

6.1 Overview

In order to validate the Multi-Agent Malicious Behaviour Detection framework

implementation described in Chapter 5, I devised three sets of experiments. The first

set is intended to provide a demonstration of the framework’s capability of learning to

classify benign traffic. This experiment evaluates a number of different machine learn-

ing algorithms in the process. The experiment also allows the system to demonstrate

its capability of processing network traffic at a reasonable speed, and tests the coop-

eration of agents to achieve reasonable classifications of network traffic. The second

set of experiments focuses on the human-machine discovery task, and uses datasets

consisting of both malicious and benign traffic. The malicious traffic is woven into

benign traffic at several benign-to-malicious ratios. This experiment allows the ex-

amination of how the proportion of malicious traffic impacts the system’s ability to

make effective recommendations to network defenders. The last set of experiments

209
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passes a full set of network traffic that emulates a higher education establishment’s

network traffic, with a large amount of various malicious attacks blended in. The final

experiment approximates a real world network detection task, and the Multi-Agent

Malicious Behaviour Detection implementation attempts to identify malicious traffic

using the classify only malicious technique as described in Session 4.5.3.

In the next section I describe the shared portions of the methodology for all ex-

periments. For each set of experiments I will outline the purpose, discuss experiment-

specific methodology, provide descriptions of the network traffic (test datasets), and

the results of the experiments. A discussion of the results will follow each experiment.

Further analysis of these results will then follow in Chapter 7.

6.2 Experimental Environment

In the following subsections, I will describe three aspects of the experimental

environment:

1. The physical machines that supported the experiments.

2. The types of agent implementations deployed for the experiments.

3. The network traffic processed in the experiments.

6.2.1 Physical Hardware

All experimental trals were performed with agents divided across three physical

machines. Network connectivity was enabled by a commodity router providing a

single class C network. The physical hardware consisted of a desktop PC (Blackhole),
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Blackhole Reddwarf Ionstorm Nebula

Platform WRT320N Desktop PC Mac Mini Dell Precision
M6400

OS DD-WRT v24-sp2 Win 7 Pro SP1 OS X 10.7.2 Win7 Pro SP1
CPU BCM4716 354 Mhz Q6600 2.4 GHz Core2 Duo 2.0 GHz Q9300 2.54 GHz
Cores 1 4 2 4
RAM (GB) 0.03 4.00 2.00 8.00

Table 6.1: Hardware available for experiments.

a Mac Mini (Reddwarf ), a Dell laptop (Ionstorm) and a Linksys router (Darknebula).

The specifications for the hardware are described in Table 6.1.

6.2.2 Agents

Each experimental trial involved a subset of the following impemented agents,

already described in Chapters 4 and 5:

• Packet Manager Agent

• Unified Alert Source Agent

• Machine Learning Agent

• Logger Agent

• Experimenter Agent

The Packet Manager Agent, Unified Alert Agent, Logger Agent and Experimenter

Agent resided on Blackhole, while the Machine Learning Agents resided on Reddwarf.

Ionstorm hosted a dedicated RabbitMQ AMQP server version 2.7.1 to handle all

inter-agent communication.
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6.2.3 Network Traffic

Traffic for all experimental trials was generated using a Breaking Point appli-

ance [Wright et al., 2010; Tarala, 2011]. The Breaking Point appliance generates

network traffic to simulate a variety of network traffic loads, simulated users, and

network protocols [Beyene et al., 2012]. The Breaking Point appliance is designed

specifically to stress test network security solutions by introducing malicious traffic

into the generated network traffic. The Breaking Point enables the seamless introduc-

tion of malware traffic through Strike Packs, which are intended to weave malicious

attacks into the benign network traffic. One such appliance is capable of generat-

ing 120 Gpbs of simulated traffic to test network infrastructure, such as firewalls,

intrusion detection system, web servers, and routers. The platform has been used

by a number of private companies, banks, and telecoms including Yahoo, EUCOM,

Korea Telcom, the University of Wisconsin, Cisco, Northrop Grumman UK, and Ju-

niper. Case studies for all of the previous mentioned institutions are available on the

BreakingPoint website [BreakingPoint Systems, 2012].

I generated four distinct sets of traffic for validating the Multi-Agent Malicious Be-

haviour Detection implementation, with the goal of providing consistent traffic types

to validate the system’s capability to identify both malicious and benign sessions.

6.2.3.1 Benign Traffic Set 1

Benign Traffics Set 1 consists of 1.06 gigabytes of network traffic with the following

breakdown of application protocol types: 7.02% Telnet, 68.21% generic HTTP, 3.78%

Yahoo Mail, 2.85% SSH, 9.71% Gmail, 4.72% DNS, and 3.71% NNTP. All of the
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Benign Traffic Set 1 packets were IP over Ethernet, with a total of 5801533 packets.

At the transport layer the traffic is made up of 5282291 TCP packets and 519242

UDP packets. The remaining packets were ignored, and consisted of mostly ICMP.

Benign Traffic Set 1 was generated with a limited set of protocols. While none of

the protocols are specifically attributed to multi-agent systems per se, they are proto-

cols that are often exploited by malicious multi-agent systems, and they are popular

protocols one would expect to be seen used by a variety of users in a typical net-

work environment. These non-malicious protocols share some of the same behaviours

one would expect from malicious multi-agent systems, such as beaconing (DNS and

NNTP), exfiltrating (Gmail and Yahoo Mail), and updating (HTTP). Classifying sim-

ple benign traffic that shares some of the same behaviours as malicious multi-agent

systems is an important first step in validating the Multi-Agent Malicious Behaviour

Detection system to show that the traffic can be later whitelisted if required.

6.2.3.2 Benign Traffic Set 2

Benign Traffic Set 2 consists of 1.05 gigabytes of network traffic with the follow-

ing breakdown of application protocol types: 5.32% Telnet, 53.20% generic HTTP,

1.76% Yahoo Mail, 1.97% SSH, 7.53% Gmail, 3.85% DNS, 3.75% Oscar IM, 1.69%

GTalk, 4.98% IRC, 0.2% BitTorrent Tracker, 1.69% BitTorrent Peer, 0.31% Face-

book, 1.21% Netflix streaming video, 2.30% OSCAR file transfer, 6.44% eDonkey,

and 4.09% NNTP. All of the Benign Traffic Set 2 packets were IP over Ethernet, with

a total of 5735045 packets. At the transport layer the traffic is made up of 5239869

TCP packets and 1097331 UDP packets. The remaining packets were ignored, and
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consisted of mostly ICMP.

Benign Traffic Set 2 has the same protocols as Benign Traffic Set 1, with the addi-

tion of some benign multi-agent system traffic. Peer-to-peer traffic, such as eDonkey

and BitTorrent, represent multi-agent systems that beacon to trackers to receive

locations for peers and then download chunks of files (update), and share informa-

tion from the local machine (exfiltrate). Effectively, a bittorent network performs

all of the tasks that a typical malicious multi-agent system does. Identiifying such

networks supports the validation of the Multi-Agent Malicious Behaviour Detection

implementation. Chat protocols are often abused by malicious multi-agent systems

for communicating command and control. For that reason I included some OSCAR,

GTalk, and IRC traffic in the sample in small amounts to mimic malicious multi-

agent system communications. Social networks, such a Facebook, support a number

of functions that are comparable to what one might expect from a multi-agent system.

6.2.3.3 Benign Traffic Set 3

Benign Traffic Set 3 consists of 2.12 gigabytes of network traffic with the follow-

ing breakdown of application protocol types: 4.77% Telnet, 48.15% generic HTTP,

3.09% Yahoo Mail, 2.59% SSH, 6.52% Gmail, 3.30% DNS, 3.57% Oscar IM, 3.55%

GTalk, 5.04% IRC, 0.2% BitTorrent Tracker, 3.63% BitTorrent Peer, 0.24% Face-

book, 2.70% Netflix streaming video, 2.34% OSCAR file transfer, 5.91% eDonkey,

and 4.61% NNTP. All of the Benign Traffic Set 2 packets were IP over Ethernet, with

a total of 5735045 packets. At the transport layer the traffic is made up of 5239869

TCP packets and 1097331 UDP packets. The remaining packets were ignored, and
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consisted of mostly ICMP.

Benign Traffic Set 3 is a larger version of Benign Traffic Set 2. It was generated

with the same general profile, and is included in order to ensure that the results of

trials on Benign Traffic Set 2 can be repeated on a second similar dataset.

6.2.3.4 Malicious Traffic Set

The Malicious Traffic Set was generated by using a Breaking Point network profile

in combination with a series of strike packs. The Higher Education network profile

generates a variety of application level traffic typical of a college or university campus

network. In addition to the default profile, I added a few additional chat protocols

and online social network protocols to mimic the behaviours one might find in a

multi-agent system. Malicious traffic was woven into the Malicious Traffic Set by the

Breaking Point appliance. The Malicious Traffic Set contains a total of 3.4 gigabytes

of traffic.

The traffic contains a variety of benign multi-agent traffic, as in the first three data

sets. The volume of malicious attacks introduced is intended to represent malicious

multi-agent systems propagating through various exploits, updating by retrieving

malicious documents, beaconing through DNS lookups to malicious domains, denial

of service attacks, and various attacks that mimic a number of protocols. The volume

is important to match the characteristics of malicious multi-agent systems. The goal

of this data set was to provide a rich set of malicious traffic that could be manipulated

to represent malicious multi-agent system communications. The traffic set is relatively

safe, and could be passed through the system with relatively little risk of infecting
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machines involved in the experiments.

6.3 Benign Traffic Experiments

6.3.1 Purpose

The first set of experiments is intended to demonstrate my framework’s capability

of performing the passive tasks described throughout this thesis; that is: read network

traffic, distribute the features of the traffic to other agents, and label traffic based on

the derived features. Additionally, the experiments are intended to validate the claim

that an online machine learning algorithm is capable of classifying both benign multi-

agent and single agent traffic based on provided features, and achieve accuracy similar

to a signature-based misuse detection system. The experiments are also intended to

show that the architecture can perform the task described fast enough to interact

with live traffic, validating that the architecture is usable for traffic manipulation as

described in the Chapter 4.

6.3.2 Methodology

In order to test the accuracy of a variety of machine learning algorithms, a total

of five machine learning agents were selected based on the algorithm implementations

provided in Saffari et al. [2010]. The algorithms are Online Random Tree, Online

Random Forest, Online LaRank, Online Multi-Class Gradient Boost, and Online

Multi-Class Linear Programming Boost (Sections 3.3.6, 4.5.3, and 5.5.3 ).

The Multi-Agent Malicious Behaviour Detection implementation was trialled on
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Benign Traffic Sets 1, 2, and 3. The benign traffic experiments consist of a total of

60 trials, 20 trials for each of the three benign data sets. For each of the three data

samples, one of four testing vs. training ratios was used: 1:9, 1:3, 1:1, and 3:1. The

different ratios are intended to simulate the Alert Source Agents’ capability to label

network traffic. Higher testing ratios simulate poorer performance on the part of

an Alert Source Agent and higher demands on Machine Learning Agents to classify

unlabelled traffic, given the smaller ratio of training samples available for learning.

While the exact individual trial set-ups were not repeated, by repeating the same

machine learning algorithms on different testing vs. training ratios with the same data

sets, I hypothesized that the results would show a gradual change in performance.

Further, by repeating the machine learning and testing vs. training ratios on different,

but somewhat similar data sets, over a total span of 60 trials, any equipment failures

or anomalies in the performance of the Multi-Agent Malicious Behaviour Detection

implementation would be obvious in the results.

In order to generate labels for the traffic, I wrote Snort signatures capable of

identifying each of the traffic types in the sample. In each trial Snort processes the

traffic sample with a set of Snort signatures to generate a Unified Alert log. The

Experimenter Agent then sends messages out to each individual agent on the agent

control channel announcing a trial has commenced. The Packet Manager begins

processing packets from the sample traffic file at a rate of between 20-50 mbps. The

speed was chosen specifically to represent a small business, or modern residential

internet connection. Given the modest hardware available for these experiments,

a residential or home network speed was deemed a reasonable goal. The Unified
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Alert Agent begins processing the Unified Alerts and publishing them to an alerts

exchange for the other agents. The Packet Manager Agent passes traffic up to one of

two Transport Layer Traffic Sources, one for UDP and one for TCP. The Transport

Layer Traffic Sources derive features from the traffic and check for labels from the

Unified Alert Source, labelling feature sets if labels are available. Then the Transport

Layer Traffic Source Agents publish the labelled traffic to the features exchange.

Machine Learning Agents receive the features, determine whether to test or train

on each sample feature set, and broadcast the results to a Labelled traffic exchange.

Periodically, each agent publishes a log message, and the Logger Agent collects all

the log messages and writes them to disk.

UDP features are automatically timed out by the Transport Layer Feature Sources

after a fixed number of milliseconds (700) of no observed packets matching the session.

700 milliseconds was chosen heuristically. Smaller values tended to prematurely end

several UDP sessions, while larger values added unnecessary delay. TCP features are

only published if a complete TCP close is observed in traffic, requiring both a client

packet with the TCP FIN flag set and a server packet with the TCP FIN flag set.

6.3.3 Performance Evaluation

The results of each trial were measured against three criteria.

First, the accuracy of the Machine Learning Agents was measured across the trials

for each training and testing ratio and compared with the other Machine Learning

Agents. Two measures of accuracy were considered: the overall accuracy across

all available testing samples, and a periodic measurement of accuracy over subsets
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of 1% of the tested samples. The periodic accuracy measurements account for the

online machine learning algorithms’ capability of continual adaptation over time. The

standard deviation across the 100 1% intervals is also compared as an indicator of

the fluctuation of the Machine Learning Agents’ performance.

Second, I examine what feature sets provided the most difficulty for the classifica-

tion process, with the goal of validating the systems capability of identifying unusual

traffic. The traffic is intended to simulate real world network traffic, where protocols

are rarely evenly distributed. For example, the typical network might contain ten

times more HTTP traffic than SSH traffic. By looking at the classification accuracy

at the individual protocol level, I can determine if the Machine Learning Agents are

capable of learning to identify traffic with few samples, as well as resisting a bias to

traffic with large sample counts.

Finally, I measure the time taken from the moment a feature is published to the

moment the Machine Learning agent classifies the feature set. The measurement de-

pends on the time stamps provided by the Logger Agent, as it will write out each

feature set published by the Packet Manager, and each labelled feature set published

by the Machine Learning Agent. By comparing the mean, standard deviation, min-

imum and maximum delay, I can demonstrate the system’s capability to react to

traffic quickly enough to manipulate traffic in a meaningful fashion.

The next three sections describe the data samples and the results of the trials run

on each sample.
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6.3.4 Benign Traffic Set 1

Trials 1 to 20 involved passing Benign Traffic Set 1 through a Snort process with

the following Snort rules developed to label the traffic:

alert tcp any 80 <>any any (content: “yahoo” , nocase; msg: “Ya-

hooMail”; sid: 1;)

alert tcp any 80 <>any any (content: “Cookie:”; content: “gmail”, no-

case; within: 100; msg: “GMail”; sid: 2;)

alert tcp any 80 <>any any (flags: SA; msg: “HTTP”; sid: 3;)

alert udp any 53 <>any any (msg: “DNS”; sid: 4;)

alert tcp any 22 <>any any (flags: SA; msg: “SSH”; sid: 5;)

alert tcp any 23 <>any any (flags: SA; msg: “TELNET”; sid: 6;)

alert tcp any 119 <>any any (flags: SA; msg: “NNTP”; sid: 7;)

6.3.5 Results

The charts in Figures 6.1 to 6.4 show the accuracy of each of the Machine Learning

Agents on Benign Traffic Set 1, where each point is the accuracy achieved over the last

1% of samples tested. All of the Machine Learning Agents perform well at the start

of the test, as the clients in the network begin by making a variety of DNS requests

in preparation for connecting to various services. In each chart there is a significant

dip in performance after 20% of the traffic has been sampled. This demonstrates the

algorithms adjusting to the variety of additional protocols in the traffic. Note that

some of the algorithms take a significant amount of time to regain their accuracy.

In particular, the Online Random Tree consistently performs poorly throughout the
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Figure 6.1: Accuracy results on Benign Traffic Set 1. Trained on 90% and Tested on
10%. The y-axis represents the test accuracy.

trials. It is also worth noting that as the training to testing ratios shift toward

fewer training samples, most of the Machine Learning Agents demonstrate dips in

performance. For example, there is a dip in accuracy of the Online Multi-Class

Linear Programming Boost Agent just after 50% of the samples have been processed

in the 1:1 and 1:3 ratio charts. The charts indicate that while Online Multi-Class

Gradient Boost, Online LaRank and Online Random Forest are the most resistant

to changes in the traffic texture and the training to testing ratio, Online LaRank

appears to have the most robust accuracy.

Table 6.2 shows the accuracy and standard deviation across the trials at the vari-

ous ratios, and includes the 99th, 75th, and 50th sample accuracy. The values are very

telling as to how each of the Machine Learning Agents are capable of maintaining a

consistent accuracy. The LaRank Agent has both a high accuracy and a consistent

standard deviation, while Online Multi-Class Linear Programming Boost shows an

increase both standard deviation and a decrease in performance. The LaRank Agent
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Figure 6.2: Accuracy results on Benign Traffic Set 1. Trained on 75% and Tested on
25%. The y-axis represents the test accuracy.
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Figure 6.3: Accuracy results on Benign Traffic Set 1. Trained on 50% and Tested on
50%. The y-axis represents the test accuracy.

appears to perform the best on Benign Traffic Set 1. However, according to accu-

racy and standard deviation both the Online Multi-Class Gradient Boost and Online

Random Forest are competitive.

Table 6.3 breaks down the classification accuracy across the different protocols in

the traffic. Given that individual samples were randomly chosen for the purposes of

testing or training while maintaining the target ratio, the mean samples column is
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Figure 6.4: Accuracy results on Benign Traffic Set 1. Trained on 25% and Tested on
75%. The y-axis represents the test accuracy.

9:1 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.8922 0.9655 0.9965 0.9828 0.9990
Stdv 0.0427 0.0189 0.0019 0.0120 0.0007
99th pct 0.8982 0.9857 0.9919 0.9777 1.0000
75th pct 0.8635 0.9837 1.0000 1.0000 1.0000
50th pct 0.8106 1.0000 1.0000 0.9980 1.0000

1:3 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.7700 0.9850 0.9872 0.9830 0.9992
Stdv 0.0884 0.0104 0.0094 0.0121 0.0055
99th pct 0.6836 0.9905 0.9863 0.9853 1.0000
75th pct 0.6707 0.9983 1.0000 1.0000 1.0000
50th pct 0.5795 0.9991 1.0000 0.9991 1.0000

1:1 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.9182 0.9763 0.8860 0.9817 0.9990
Stdv 0.0323 0.0151 0.0818 0.0135 0.0040
99th pct 0.8949 0.9882 0.9978 0.9851 1.0000
75th pct 0.8778 1.0000 1.0000 1.0000 1.0000
50th pct 0.8560 0.9996 0.9301 0.9996 1.0000

3:1 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.8257 0.9818 0.8784 0.9772 0.9978
Stdv 0.0604 0.0139 0.0845 0.0172 0.0016
99th pct 0.7031 0.9941 0.9991 0.9842 1.0000
75th pct 0.7184 1.0000 0.9709 0.9994 1.0000
50th pct 0.9179 0.9826 0.9500 0.9997 0.9991

Table 6.2: Comparison of the accuracy of the five Machine Learning Agents when
trained on Benign Traffic Set 1 at various training:testing ratios.
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provided to show how many samples the algorithms encountered on average of each

protocol for testing. The results help to identify where specific agents broke down in

their capability to identify specific protocols. Note that across all of the trials, the

LaRank agent is the only Machine Learning Agent capable of distinguishing Yahoo

Mail traffic from the other protocols. The LaRank agent’s success in distinguishing

Yahoo Mail from other protocols, when few Yahoo Mail samples are available, demon-

strates the LaRank algorithm’s capability to learn to classify traffic with few training

samples present. Most of the Agents, with the exception of LaRank, were very poor

at identifying SSH, and only Online Multi-Class Linear Programming Boost could

compete with LaRank with respect to the classification of Telnet traffic. The per-

formance on classification of SSH traffic may have been impacted by encryption, as

many encrypted and compressed protocols have similar features (Section 3.8). DNS

and HTTP made up the most feature sets, and each of the Agents could identify the

traffic with relatively good accuracy. Consider that while Online Multi-Class Gra-

dient Boost performed with a very high accuracy across all samples, it performed

poorly against protocols with limited sample availability.

Table 6.4 shows the latency. The latency on Benign Traffic Set 1 does not ap-

pear to show any specific pattern, as the ratio of training to testing samples changes.

However, it should be noted that the standard deviation across all trials varies wildly.

Also, there are a number of instances where the minimum latency is negative, indi-

cating strange behaviour on the part of the Logger Agent. The negative values will

be further discussed in section 6.3.11. The latency with the Online Random Tree

and Online Random Forest have relatively higher maximum latency than the other
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Mean ORT ORF OMCLPBoost OMCGBoost LaRank
9:1 Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 4 0.0000 0.0000 0.0000 0.0000 1.0000
Gmail 560 0.8545 0.8998 0.9891 0.8602 0.9982
HTTP 19889 0.9444 0.9840 0.9961 0.9980 0.9988
DNS 28064 0.8658 0.9757 1.0000 0.9977 0.9991
SSH 43 0.0000 0.0000 0.6154 0.0000 0.9697
Telnet 671 0.5446 0.1074 0.9052 0.0772 0.9971
NNTP 0 0.0000 0.0000 0.0000 0.0000 0.0000

Mean ORT ORF OMCLPBoost OMCGBoost LaRank
1:3 Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 11 0.0000 0.0000 0.0000 0.0000 0.8750
Gmail 1321 0.4097 0.8324 0.9948 0.8438 0.9977
HTTP 46925 0.7606 0.9987 0.9738 0.9979 0.9995
DNS 66337 0.8035 0.9984 0.9998 0.9995 0.9990
SSH 107 0.0000 0.0000 0.6724 0.0000 0.9891
Telnet 1547 0.0000 0.2097 0.8795 0.0085 0.9993
NNTP 0 0.0000 0.0000 0.0000 0.0000 0.0000

Mean ORT ORF OMCLPBoost OMCGBoost LaRank
1:1 Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 22 0.0000 0.0000 0.0000 0.0000 0.7037
Gmail 2592 0.9153 0.8483 0.9934 0.7627 0.9985
HTTP 92339 0.9533 0.9958 0.7205 0.9963 0.9989
DNS 130309 0.8998 0.9891 0.9990 0.9998 0.9994
SSH 215 0.0000 0.0000 0.8111 0.0000 0.9427
Telnet 3040 0.7054 0.0171 0.9864 0.0462 0.9966
NNTP 0 0.0000 0.0000 0.0000 0.0000 0.0000

Mean ORT ORF OMCLPBoost OMCGBoost LaRank
3:1 Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 34 0.0000 0.0000 0.0000 0.0000 0.9412
Gmail 3880 0.2061 0.7719 0.9905 0.6097 0.9959
HTTP 137188 0.7101 0.9935 0.7014 0.9950 0.9972
DNS 194209 0.9272 0.9973 0.9997 0.9970 0.9984
SSH 319 0.0863 0.0000 0.5382 0.0000 0.9719
Telnet 4500 0.5358 0.2074 0.9835 0.0000 0.9922
NNTP 0 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.3: Comparison of the accuracy achieved by each Machine Learning Agent
when trained on 90% of samples and tested on 10% of samples for Benign Traffic Set
1. Also an indicator of how many samples for each protocol the agent was tested on.

Machine Learning Agents. In this case, the mean latency is likely the best indicator

of the performance of the agents, as it gives at least some indication of whether an

agent has any chance of receiving a message in time to manipulate traffic. With the

more accurate Machine Learning Agents, the maximum latency was between 1 and 6
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Latency (9:1) ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 7315.8328 1235.3161 338.1691 695.4499 913.1492
Stdv 9153.3032 1651.4664 617.3855 1000.2255 1251.8602
Min -9.0000 -35.0000 -19.0000 -19.0000 -17.0000
Max 29076.0000 4895.0000 2886.0000 3878.0000 4154.0000

Latency (3:1) ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 3705.6160 2633.5824 184.8015 273.7871 1386.2404
Stdv 5335.6552 3771.8771 283.2198 385.3007 1936.6638
Min -10.0000 -11.0000 -68.0000 -39.0000 -19.0000
Max 16308.0000 11788.0000 1315.0000 1778.0000 6161.0000

Latency (1:1) ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 764.1758 1274.3003 1233.6562 1275.0440 653.9160
Stdv 1050.1528 1665.4100 1706.3531 1707.4604 941.2019
Min -33.0000 -12.0000 -91.0000 -83.0000 -8.0000
Max 3456.0000 5143.0000 5290.0000 5585.0000 3414.0000

Latency (1:3) ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 1877.3860 2797.5988 278.6633 611.3509 1016.9046
Stdv 2698.3398 3987.3828 425.2116 869.7252 1370.3494
Min -30.0000 -280.0000 -20.0000 -44.0000 -41.0000
Max 8162.0000 11234.0000 2499.0000 3772.0000 4504.0000

Table 6.4: Comparison of the latency of the system from the time the Logger Agent
receives a feature to the time the Logger Agent receives an associated label from
the Machine Learning Agent, when trained on 90% of samples and tested on 10% of
samples for Benign Traffic Set 1. All latency values are in milliseconds.

seconds, which is not fast enough to manipulate traffic in a meaningful way. However,

the mean values show some promise, as values between 0 to 300 milliseconds are more

reasonable. I will return to these results in section 6.3.11.

6.3.6 Benign Traffic Set 2

Trials 21 to 40 processed the Benign Traffic Set 2, and used the following Snort

rules to initially label the traffic:

alert tcp any 80 <>any any (content: “yahoo”, nocase; msg: “YahooMail”;

sid: 1;)
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alert tcp any 80 <>any any (content: “Cookie:”; content: “gmail”, no-

case; within: 100; msg: “GMail”; sid: 2;)

alert tcp any 80 <>any any (content: “GET /announce?peer id=”; msg:

“BitTorrent Tracker”; sid: 3;)

alert tcp any 80 <>any any (content: “facebook”, nocase; msg: “Face-

book”; sid: 4;)

alert tcp any 80 <>any any (content: “netflix”, nocase; msg: “Netflix”;

sid :5;)

alert tcp any 80 <>any any (flags: SA; msg: “HTTP”; sid: 6;)

alert udp any 53 <>any any (msg: “DNS”; sid: 7;)

alert tcp any 22 <>any any (flags: SA; msg: “SSH”; sid: 8;)

alert tcp any 23 <>any any (flags: SA; msg: “TELNET”; sid: 9;)

alert tcp any 119 <>any any (flags: SA; msg: “NNTP”; sid: 10;)

alert tcp any any <>any ![80,53] (content: “BitTorrent protocol”, nocase;

msg: “BitTorrent Peer”; sid: 11;)

alert tcp any any <>any any (pcre: “/[A-Za-z]{12}/”; content: “—00—1.0”;

within: 10; msg: “eDonkey”; sid: 12;)

alert tcp any any <>any any (content: “OFT2”; content: “Cool FileXfer”;

within: 100; msg: “Oscar File Transfer”; sid: 13;)

alert tcp any 5190 <>any ![80,53] (msg: “OSCAR”; sid: 14;)

alert tcp any 5222 <>any ![80,53] (msg: “GTALK”; sid: 15;)

alert tcp any 6667 <>any ![80,53] (msg: “irc”; sid: 16;)

alert tcp any 443 <>any any (content: “netflix”, nocase; msg: “Netflix”;
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Figure 6.6: Accuracy results on Benign Traffic Set 2. Trained on 75% and Tested on
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sid: 17;)

6.3.7 Results

The charts in figures 6.5 to 6.8 are similar to the results in figures 6.1 to 6.4. Each

of the Machine Learning Agents achieves 100% as the traffic starts out, but as more
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protocols are introduced, the performance of all algorithms suffers after 20% of the

samples are processed. However, after 40% of the trials, all of the algorithms appear

to settle back to to a relatively high accuracy compared to the period between 20%

and 40% of samples. Even the Online Random Tree appears to perform much better

with an increase in the variety of protocols available in the traffic to label. As with

the first dataset, the Online LaRank Agent outperforms the other Agents, especially
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9:1 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.9797 0.9866 0.9961 0.9819 0.9969
Stdv 0.0135 0.0089 0.0016 0.0124 0.0064
99th pct 0.9958 0.9957 0.9936 0.9657 1.0000
75th pct 0.9958 0.9979 1.0000 1.0000 0.9979
50th pct 1.0000 1.0000 1.0000 0.9979 0.9979

3:1 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.9017 0.9809 0.9947 0.9808 0.9960
Stdv 0.0360 0.0124 0.0023 0.0125 0.0049
99th pct 0.9319 0.9864 0.9891 0.9820 1.0000
75th pct 0.9074 0.9982 1.0000 0.9982 0.9991
50th pct 0.9628 0.9982 1.0000 0.9991 0.9982

1:1 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.9723 0.9818 0.9929 0.9774 0.9941
Stdv 0.0156 0.0118 0.0096 0.0148 0.0062
99th pct 0.9732 0.9843 0.9977 0.9770 0.9991
75th pct 0.9852 0.9995 0.9995 0.9986 0.9945
50th pct 0.9981 0.9991 1.0000 1.0000 0.9949

1:3 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.9696 0.9737 0.9526 0.9738 0.9899
Stdv 0.0177 0.0168 0.0398 0.0175 0.0087
99th pct 0.9799 0.9799 0.9994 0.9802 0.9966
75th pct 0.9975 0.9950 0.9994 0.9988 0.9963
50th pct 0.9901 0.9978 0.9997 0.9985 0.9969

Table 6.5: Comparison of the accuracy of the five Machine Learning Agents when
trained on Benign Traffic Set 2 at various training:testing ratios.

near the end of the trial when it appears as though all the other drop in accuracy

again.

Table 6.5 shows various values for each trial’s Machine Learning Agent classifica-

tion accuracy. With the exception of the Online Random Tree, when the training set

is large the Machine Learning Agents operate at close to 100% accuracy, but as the

training set get smaller, each Agent’s performance degrades, with Online Multi-Class

Linear Programming degrading the most of the four highest performing agents. The

LaRank agent continues to maintain the lowest standard deviation, which is very

encouraging given the high accuracy of the results. The Online Random Tree per-
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Mean ORT ORF OMCLPBoost OMCGBoost LaRank
9:1 Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 0 0.0000 0.0000 0.0000 0.0000 0.0000
Gmail 532 0.9981 0.8583 0.9942 0.8901 0.9947
BitTorrent Track 14 0.0000 0.0000 0.0000 0.0000 1.0000
FaceBook 1 0.0000 0.0000 0.0000 0.0000 0.0000
Netflix Stream 9 0.0000 0.0000 0.0833 0.0000 0.8750
HTTP 18116 0.9944 0.9985 0.9984 0.9979 0.9958
DNS 26775 0.9974 0.9993 1.0000 1.0000 0.9994
SSH 14 0.0625 0.0000 0.0769 0.0000 0.8947
Telnet 628 0.1646 0.3565 0.8619 0.0571 0.9968
NNTP 0 0.0000 0.0000 0.0000 0.0000 0.0000
BitTorrent Peer 0 0.0000 0.0000 0.0000 0.0000 0.0000
eDonkey 214 0.6550 0.9579 0.9292 0.9194 0.9234
Oscar File 0 0.0000 0.0000 0.0000 0.0000 0.0000
Oscar IM 460 0.8137 0.9350 0.9891 0.8656 0.9673
GTalk 0 0.0000 0.0000 0.0000 0.0000 0.0000
IRC 103 0.4643 0.7228 0.9626 0.7476 0.8913
Netflix Auth 2 0.0000 0.0000 0.0000 0.0000 0.5000

Mean ORT ORF OMCLPBoost OMCGBoost LaRank
3:1 Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 1 0.0000 0.0000 0.0000 0.0000 0.0000
Gmail 1218 0.9894 0.8143 0.9886 0.8284 0.9968
BitTorrent Track 38 0.0000 0.0000 0.0000 0.0000 0.9189
FaceBook 4 0.0000 0.0000 0.0000 0.0000 0.7500
Netflix Stream 22 0.0000 0.0000 0.0000 0.0000 0.8571
HTTP 42703 0.8531 0.9984 0.9976 0.9983 0.9940
DNS 63165 0.9458 0.9993 1.0000 1.0000 0.9990
SSH 34 0.0789 0.0000 0.0000 0.0000 0.9259
Telnet 1538 0.4404 0.0303 0.8058 0.0000 0.9968
NNTP 0 0.0000 0.0000 0.0000 0.0000 0.0000
BitTorrent Peer 0 0.0000 0.0000 0.0000 0.0000 0.0000
eDonkey 495 0.8580 0.9038 0.9412 0.9306 0.9186
Oscar File 0 0.0000 0.0000 0.0000 0.0000 0.0000
Oscar IM 1076 0.9573 0.9146 0.9869 0.8692 0.9587
GTalk 0 0.0000 0.0000 0.0000 0.0000 0.0000
IRC 235 0.6724 0.8650 0.9512 0.5940 0.9348
Netflix Auth 7 0.0000 0.0000 0.0000 0.0000 1.0000

Table 6.6: Comparison of the accuracy achieved by each Machine Learning Agent
when trained and tested with a 9:1 and 3:1 ratio of samples for Benign Traffic Set 2.
Also an indicator of how many samples for each protocol the agent was tested on.

formed significantly worse than the other four agents. The difference in performance

between the Online Random Forest and the Online Multi-Class Gradient Boost is not

significant with respect to overall classification accuracy.

Table 6.6 and Table 6.7 provide a much more detailed look at exactly how well

each of the agents performs against the available protocols. The very first thing
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that stands out in these tables is that the uneven distribution of the traffic makes a

significant impact on each Machine Learning Agent’s capability to classify the traffic.

In many cases, while the protocol existed in the traffic, there was not enough samples

for the Machine Learning Agents to distinguish between the underlying protocol and

the encompassing protocol. For example, when the training to testing ratio was 1:3,

LaRank consistently classified the 9 instances of Facebook traffic as HTTP. Note that

during that particular trial there were only 5 training samples of Facebook. However,

when the training to testing ratio was 1:1, LaRank correctly classified three instances

of Facebook as Facebook and the fourth as HTTP, after training on only 9 samples.

Yahoo Mail also proved to be problematic, as there were not enough training samples

for any of the Agents to successfully distinguish them from other traffic. However,

for the purposes of these trials, it is clear that the Machine Learning Agents - and

specifically the LaRank-based agent - are capable of classifying traffic even when only

a relatively small number of samples are available, such as the case with Facebook,

where a 75% accuracy was achievable with only 13 out of 429405 Facebook samples,

and the one error identified the encompassing protocol.

Next, consider the latency of the system as described in Table 6.8. The latency

of the system is somewhat more stable on the second dataset. It is clear from the

table that there is a difference in the latency, whereby both the Online Random Tree

and the Online Random Forest based Agents introduce more latency overall than the

other three Machine Learning Agents. The standard deviation of the delays is still

fairly high. However, it appears as though the Online Multi-Class Gradient Boost

Machine Learning Agent is the fastest to provide feedback from a feature once it is
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Mean ORT ORF OMCLPBoost OMCGBoost LaRank
1:1 Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 3 0.0000 0.0000 0.0000 0.0000 0.2500
Gmail 2403 0.4820 0.8904 0.9857 0.8233 0.9962
BitTorrent Track 85 0.0000 0.0000 0.0000 0.0000 0.7553
FaceBook 7 0.0000 0.0000 0.0000 0.0000 0.7143
Netflix Stream 40 0.0000 0.0286 0.0000 0.0000 0.9545
HTTP 83859 0.9989 0.9978 0.9870 0.9972 0.9927
DNS 123819 1.0000 0.9999 0.9999 1.0000 0.9969
SSH 68 0.0000 0.0000 0.0000 0.0000 0.9630
Telnet 2973 0.0269 0.0506 0.9817 0.0014 0.9923
NNTP 0 0.0000 0.0000 0.0000 0.0000 0.0000
BitTorrent Peer 0 0.0000 0.0000 0.0000 0.0000 0.0000
eDonkey 989 0.9263 0.8890 0.9244 0.8938 0.9249
Oscar File 0 0.0000 0.0000 0.0000 0.0000 0.0000
Oscar IM 2092 0.3971 0.9180 0.9898 0.6899 0.9625
GTalk 0 0.0000 0.0000 0.0000 0.0000 0.0000
IRC 472 0.4594 0.6017 0.9386 0.3612 0.8562
Netflix Auth 11 0.0000 0.0000 0.0000 0.0000 0.7778

Mean ORT ORF OMCLPBoost OMCGBoost LaRank
1:3 Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 5 0.0000 0.0000 0.0000 0.0000 0.0000
Gmail 3573 0.8932 0.5842 0.9885 0.6531 0.9894
BitTorrent Track 128 0.4122 0.0000 0.0000 0.0000 0.4839
FaceBook 10 0.0000 0.0000 0.0000 0.0000 0.0000
Netflix Stream 56 0.1667 0.0000 0.0000 0.0000 0.9200
HTTP 124724 0.9840 0.9962 0.8832 0.9942 0.9869
DNS 184495 0.9931 1.0000 0.9996 1.0000 0.9951
SSH 102 0.0092 0.0000 0.0204 0.0000 0.9579
Telnet 4453 0.0031 0.0000 0.9931 0.0000 0.9879
NNTP 0 0.0000 0.0000 0.0000 0.0000 0.0000
BitTorrent Peer 0 0.0000 0.0000 0.0000 0.0000 0.0000
eDonkey 1449 0.6504 0.9090 0.9120 0.8951 0.8225
Oscar File 0 0.0000 0.0000 0.0000 0.0000 0.0000
Oscar IM 3106 0.9186 0.6340 0.9823 0.6902 0.9559
GTalk 0 0.0000 0.0000 0.0000 0.0000 0.0000
IRC 694 0.0029 0.2934 0.8812 0.0670 0.8046
Netflix Auth 16 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.7: Comparison of the accuracy achieved by each Machine Learning Agent
when trained and tested with a 1:1 and 1:3 ratio of samples for Benign Traffic Set 2.
Also an indicator of how many samples for each protocol the agent was tested on.

published by the Packet Manager Agent. The latency values here are discouraging

though, as the delay indicates that the system will take on average on the order of

hundreds of milliseconds to respond, and at worst, even with the fastest Machine

Learning Agent, 1 to 3 seconds. The impact of these results will be discussed further

in 6.3.11
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Latency ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 3728.4230 572.5233 746.8941 322.8444 222.0206
Stdv 4680.2973 856.9494 1400.6809 564.3380 335.4822
Min -14.0000 -20.0000 -14.0000 -24.0000 -18.0000
Max 13980.0000 3210.0000 6112.0000 3106.0000 1821.0000

Latency ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 2217.7676 888.8405 331.7433 142.0648 308.8558
Stdv 3228.7942 1292.8086 566.7469 206.7968 429.1985
Min -69.0000 -14.0000 -31.0000 -204.0000 -46.0000
Max 9446.0000 4557.0000 2780.0000 1243.0000 2332.0000

Latency ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 1287.4807 496.5020 176.3526 154.6487 429.1113
Stdv 1797.6638 741.0095 280.8980 257.7050 569.9073
Min -4.0000 -19.0000 -25.0000 -82.0000 -15.0000
Max 5784.0000 2969.0000 1484.0000 1336.0000 2220.0000

Latency ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 671.8078 506.7669 167.5678 213.8990 275.1889
Stdv 975.3876 688.6729 277.5858 307.9939 409.0836
Min -21.0000 -17.0000 -113.0000 -21.0000 -17.0000
Max 3292.0000 2566.0000 1544.0000 1462.0000 1880.0000

Table 6.8: Comparison of the latency of the system from the time the Logger Agent
receives a feature to the time the Logger Agent receives an associated label from the
Machine Learning Agent, when trained on various training:testing ratios for Benign
Traffic Set 2. All latency values are in milliseconds.

6.3.8 Benign Traffic Set 3

Trials 41 to 60 involved the Benign Traffic Set 3 and the same Snort rules used

for the previous experiment.

6.3.9 Results

The charts in Figures 6.9 to 6.12 are the most dynamic so far and demonstrate how

well the Machine Learning Agents compensate over time to the changing nature of the

traffic. The trend for the first 10% of the traffic is similar to the first 20% of the traffic

in the previous trials. Each of the Machine Learning Agents is capable of identifying
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Figure 6.9: Accuracy results on Benign Traffic Set 3. Trained on 90% and Tested on
10%. The y-axis represents the test accuracy.
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Figure 6.10: Accuracy results on Benign Traffic Set 3. Trained on 75% and Tested
on 25%. The y-axis represents the test accuracy.

the DNS accurately as the clients prepare to begin other various protocol connections.

As with the previous trials, the Machine Learning Agents recover somewhat after a

period (as demonstrated at the 20% mark in the charts). However, after continuing

to run accurately until roughly 40% of the samples have been processed, the Online

Random Forest, Online Random Tree, and Online Multi-Class Linear Programming

Boost show a significant degrade in performance. The Online Multi-Class Gradient
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Figure 6.11: Accuracy results on Benign Traffic Set 3. Trained on 50% and Tested
on 50%. The y-axis represents the test accuracy.
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Figure 6.12: Accuracy results on Benign Traffic Set 3. Trained on 25% and Tested
on 75%. The y-axis represents the test accuracy.

Boost Agent also degrades somewhat. However, the LaRank manages to maintain a

relatively high level of accuracy with a couple of dips at both 70% and 90%.

The overall accuracy of each of the Machine Learning Agents is comparable to the

trials on Benign Traffic Set 2 (see Table 6.9). As with previous trials, the LaRank

Machine Learning Agent has a consistently higher overall accuracy as well as a smaller

standard deviation. While at the 99th, 75th and 50th percentile, the other Machine
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9:1 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.9699 0.9740 0.9773 0.9805 0.9970
Stdv 0.0088 0.0082 0.0063 0.0095 0.0021
99th pct 0.9586 0.9551 0.9472 0.9654 1.0000
75th pct 0.9770 0.9919 0.9897 0.9931 0.9988
50th pct 0.9942 0.9988 0.9989 0.9942 1.0000

3:1 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.9493 0.9790 0.9813 0.9802 0.9961
Stdv 0.0144 0.0077 0.0060 0.0099 0.0038
99th pct 0.9293 0.9621 0.9482 0.9675 1.0000
75th pct 0.9493 0.9830 0.9903 0.9888 0.9995
50th pct 0.9644 0.9951 0.9985 0.9981 0.9990

1:1 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.9676 0.9661 0.9868 0.9778 0.9944
Stdv 0.0108 0.0116 0.0044 0.0113 0.0030
99th pct 0.9431 0.9428 0.9612 0.9689 0.9988
75th pct 0.9750 0.9802 0.9928 0.9844 0.9975
50th pct 0.9881 0.9973 0.9963 0.9975 0.9965

1:3 ORT ORF OMCLPBoost OMCGBoost LaRank

Accuracy 0.9620 0.9683 0.9840 0.9710 0.9884
Stdv 0.0113 0.0113 0.0179 0.0151 0.0058
99th pct 0.9297 0.9555 0.9930 0.9659 0.9885
75th pct 0.9696 0.9772 0.9985 0.9865 0.9944
50th pct 0.9940 0.9980 0.9987 0.9968 0.9937

Table 6.9: Comparison of the accuracy of the five Machine Learning Agents when
trained on various training to testing ratios for Benign Traffic Set 3.

Learning Agents may have a marginally higher accuracy rate, their relatively higher

standard deviations and lower overall accuracy indicate that their performance is not

as reliable as the LaRank Machine Learning Agent.

Given the larger volume of traffic, and therefore higher number of instances of

each individual protocol, the Table 6.10 and 6.11 are fairly good measures of the

true underlying performance of the Machine Learning Agents with respect to the

specific protocols involved. First, the LaRank Machine Learning Agent is capable of

identifying more protocols, for example in the 1:3 ratio trials only LaRank is capable of

identifying instances of BitTorrent Tracker, FaceBook, Netflix Streaming, and SSH.
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Mean ORT ORF OMCLPBoost OMCGBoost LaRank
Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 2 0.0000 0.0000 0.0000 0.0000 0.0000
Gmail 1076 0.9964 0.9198 0.9981 0.9520 0.9952
BitTorrent Track 37 0.0000 0.0000 0.0000 0.0000 0.7812
FaceBook 2 0.0000 0.0000 0.0000 0.0000 0.5000
Netflix Stream 15 0.0000 0.0000 0.0000 0.0000 1.0000
HTTP 35900 0.9985 0.9996 0.9980 0.9992 0.9974
DNS 45086 1.0000 0.9999 1.0000 1.0000 0.9984
SSH 29 0.0000 0.0000 0.0000 0.0000 0.9375
Telnet 2045 0.1314 0.2144 0.3619 0.4741 0.9976
NNTP 219 0.0000 0.0000 0.0000 0.0000 0.9318
BitTorrent Peer 0 0.0000 0.0000 0.0000 0.0000 0.0000
eDonkey 612 0.8054 0.9480 0.9535 0.9503 0.9642
Oscar File 424 0.7404 0.8867 0.8916 0.8685 0.9715
Oscar IM 1375 0.8158 0.9527 0.8503 0.9362 0.9883
GTalk 0 0.0000 0.0000 0.0000 0.0000 0.0000
IRC 130 0.8889 0.5812 0.8522 0.5944 0.9549
Netflix Auth 11 0.0000 0.0000 0.1111 0.0000 1.0000

Mean ORT ORF OMCLPBoost OMCGBoost LaRank
Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 3 0.0000 0.0000 0.0000 0.0000 0.6000
Gmail 2560 0.3817 0.9245 0.9858 0.9543 0.9969
BitTorrent Track 75 0.0000 0.0000 0.0000 0.0000 0.8333
FaceBook 6 0.0000 0.0000 0.0000 0.0000 0.6000
Netflix Stream 36 0.0000 0.0000 0.1064 0.0000 1.0000
HTTP 84978 0.9615 0.9992 0.9996 0.9989 0.9963
DNS 106789 0.9975 0.9994 0.9999 1.0000 0.9979
SSH 58 0.0000 0.0000 0.0159 0.0000 0.8644
Telnet 4873 0.3127 0.4372 0.4450 0.4966 0.9982
NNTP 516 0.0000 0.0000 0.0000 0.0000 0.9082
BitTorrent Peer 0 0.0000 0.0000 0.0000 0.0000 0.0000
eDonkey 1430 0.7507 0.9474 0.9591 0.9449 0.9546
Oscar File 1028 0.5963 0.8185 0.9076 0.8723 0.9510
Oscar IM 3183 0.8876 0.9479 0.9401 0.9175 0.9894
GTalk 0 0.0000 0.0000 0.0000 0.0000 0.0000
IRC 303 0.3586 0.5605 0.8702 0.5724 0.9444
Netflix Auth 25 0.0000 0.0333 0.0000 0.0000 0.9259

Table 6.10: Comparison of the accuracy achieved by each Machine Learning Agent
when trained and tested with a 9:1 and 3:1 ratio of samples for Benign Traffic Set 3.
Also an indicator of how many samples for each protocol the agent was tested on.

The Online Random Tree identified almost a third of the Netflix Authentication

traffic, whereas LaRank achieved a 0.9294 accuracy. The high overall accuracy in the

previous Table is misleading, as there are several protocols that make up less than

one percent of the total traffic. While the other Machine Learning Agents perform

marginally better when the trials contain a higher training-to-testing ratio, it is clear
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Mean ORT ORF OMCLPBoost OMCGBoost LaRank
Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 8 0.0000 0.0000 0.0000 0.0000 0.5000
Gmail 4970 0.7267 0.8941 0.9887 0.8756 0.9966
BitTorrent Track 156 0.0000 0.0000 0.0000 0.0000 0.7927
FaceBook 13 0.0000 0.0000 0.0000 0.0000 0.6364
Netflix Stream 71 0.0000 0.0000 0.0556 0.0000 0.9701
HTTP 166687 0.9918 0.9989 0.9971 0.9981 0.9946
DNS 209885 1.0000 0.9996 1.0000 1.0000 0.9972
SSH 111 0.3273 0.0000 0.0259 0.0000 0.9483
Telnet 9555 0.2795 0.0000 0.7037 0.4508 0.9977
NNTP 1026 0.0000 0.0000 0.0000 0.0000 0.8526
BitTorrent Peer 0 0.0000 0.0000 0.0000 0.0000 0.0000
eDonkey 2814 0.7591 0.9432 0.9516 0.9469 0.9340
Oscar File 2059 0.6602 0.8092 0.9109 0.8199 0.9237
Oscar IM 6225 0.8928 0.8293 0.9837 0.9083 0.9779
GTalk 0 0.0000 0.0000 0.0000 0.0000 0.0000
IRC 574 0.9035 0.5694 0.8120 0.5630 0.8967
Netflix Auth 54 0.1111 0.0000 0.1064 0.0000 0.9286

Mean ORT ORF OMCLPBoost OMCGBoost LaRank
Samples Accuracy Accuracy Accuracy Accuracy Accuracy

Yahoo Mail 11 0.0000 0.0000 0.0000 0.0000 0.0000
Gmail 7426 0.8455 0.9550 0.9931 0.7902 0.9910
BitTorrent Track 230 0.0302 0.0000 0.0000 0.0000 0.7545
FaceBook 20 0.0000 0.0000 0.0000 0.0000 0.6000
Netflix Stream 102 0.0000 0.0000 0.0187 0.0000 0.8286
HTTP 248273 0.9988 0.9978 0.9708 0.9964 0.9887
DNS 312352 1.0000 0.9998 0.9999 1.0000 0.9945
SSH 170 0.0000 0.0000 0.0000 0.0000 0.9024
Telnet 14289 0.0214 0.0931 0.9725 0.3724 0.9951
NNTP 1522 0.6214 0.0000 0.7247 0.0000 0.5276
BitTorrent Peer 0 0.0000 0.0000 0.0000 0.0000 0.0000
eDonkey 4196 0.7109 0.9276 0.9389 0.9303 0.8783
Oscar File 3050 0.5100 0.7069 0.9204 0.7914 0.8570
Oscar IM 9345 0.6819 0.8664 0.9864 0.7693 0.9565
GTalk 0 0.0000 0.0000 0.0000 0.0000 0.0000
IRC 879 0.3382 0.2714 0.7670 0.0195 0.8436
Netflix Auth 81 0.2740 0.0000 0.0000 0.0000 0.9294

Table 6.11: Comparison of the accuracy achieved by each Machine Learning Agent
when trained and tested with a 1:1 and 1:3 ratio of samples for Benign Traffic Set 3.
Also an indicator of how many samples for each protocol the agent was tested on.

that the LaRank Machine Learning Agents consistently outperform the other Agents

on the majority of the protocols in the dataset.

The latency for trials against the third dataset (see Table 6.12) are more reasonable

than trials on the previous two datasets. The mean latency for the Online Multi-Class

Linear Programming Boost Agent, the Online Multi-Class Gradient Boost Agent and
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Latency (9:1) ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 611.5935 111.1225 69.8101 95.6712 68.4617
Stdv 1238.8644 211.3884 115.5285 169.3938 115.8913
Min -7.0000 -92.0000 -19.0000 -48.0000 -13.0000
Max 6012.0000 1788.0000 982.0000 1395.0000 1016.0000

Latency (3:1) ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 128.9026 126.6612 59.5506 92.1296 78.1454
Stdv 255.5385 269.2828 110.1525 157.9010 178.9009
Min -42.0000 -64.0000 -33.0000 -55.0000 -46.0000
Max 2183.0000 1940.0000 1182.0000 1033.0000 1640.0000

Latency (1:1) ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 118.8334 119.6691 69.1219 63.8907 512.8731
Stdv 221.5795 273.6477 124.8616 110.9605 1154.5060
Min -11.0000 -280.0000 -21.0000 -13.0000 -78.0000
Max 1853.0000 1996.0000 1101.0000 845.0000 5132.0000

Latency (1:3) ORT ORF OMCLPBoost OMCGBoost LaRank

Mean 148.7560 82.3473 82.0179 66.5392 82.8989
Stdv 361.3350 139.2186 166.3209 114.4430 144.7549
Min -32.0000 -34.0000 -302.0000 -47.0000 -23.0000
Max 2791.0000 1222.0000 1265.0000 986.0000 1193.0000

Table 6.12: Comparison of the latency of the system from the time the Logger Agent
receives a feature to the time the Logger Agent receives an associated label from the
Machine Learning Agent, when trained on various training:testing ratios for Benign
Traffic Set 2. All latency values are in milliseconds.

the LaRank Agent are all below 100 milliseconds aside from the 1:1 ratio trials for

LaRank, where the Mean jumps to 512 milliseconds. The maximum latency is also

reasonable - closer to 1 second - with only a couple of instances of maximum values

over 3 seconds. At this point, it is not clear if the latency is directly due to the

Machine Learning Agent, or something subtle with the way the Logger Agent is

pulling messages from the AMQP server. I will discuss further in section 6.3.10.
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6.3.10 Latency Experiments

It is important to support the claim that the architecture performs tasks quickly

enough to manipulate traffic in an online environment. The latency results presented

up to this point are discouraging. While there were instances where the Traffic Ma-

nipulation Agent reacted in milliseconds, other runs experienced seconds of delay.

Additionally, some of the trials experienced negative latency. A major requirement

of the Traffic Source Agent is providing an interface for higher level programming

languages to manipulate low level packet structures to enable efficient analysis and

the capability to insert modified packets back into the network with low latency.

In order to determine the source of the latency I performed a series of exper-

iments involving a Traffic Manipulation Agent, an Alert Source Agent, a Feature

Source Agent, and a Machine Learning Agent. The task for the agents was relatively

simply. An application makes a series of DNS requests to one of five DNS servers

located in different parts of the world. The host names are randomly chosen from four

lists consisting of: malicious domain names, random domain names, educational in-

stitution domain names, and whitelisted domain names. Signatures exist for a subset

of those domain names identifying them as belonging to the lists above. The Machine

Learning Agent uses feedback from the Alert Source Agent to classify the various do-

main name requests as either malicious or benign. When a malicious domain lookup

is identified, the Machine Learning Agent broadcasts the identification to the other

participating agents, and the Traffic Manipulation Agent, on receiving a tip that a

malicious DNS request was made, attempts to respond to the request with a crafted

DNS response packet before the DNS server specified in the request.
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Server Latency

DNS Server A 15 ms
DNS Server B 100 ms
DNS Server C 15 ms
DNS Server D 32 ms
DNS Server E 25 ms

Table 6.13: Initial testing to determine the average latency for DNS lookups to various
DNS servers. DNS Server A belongs to the local internet service provider.

After some initial testing I determined that the average DNS request/response

latency for the chosen DNS servers varied between 15 to 100 milliseconds, which

appeared to be dependent on the location of the DNS server, where the local internet

service provider’s DNS server responded the fastest at 15 milliseconds. Table 6.13

shows the various average latency calculated over 1000 DNS requests each.

The goal of the experiments was to determine the source of latency and optimize

the system so that it had a reasonable chance of manipulating DNS traffic quick

enough to eliminate malicious DNS requests. In each experiment the DNS application

primes the system by making 80 DNS requests that the Alert Source Agent triggers

on. Then the DNS application makes 1000 DNS requests choosing host names from

one of the four lists previously mentioned. Each list has a 25% chance of being chosen

as the source of the host name for the next DNS request.

Initial results were similar to the previous experiment results discussed in Section

6.3. However, the simplification of the experiment demonstrated that very often the

Traffic Manipulation Agent would be roughly 2000 milliseconds late with the crafted

response packet. Further testing revealed that two packet buffers were impacting the

capability of the system to respond in a timely manner. First, the Snort intrusion
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Experiment Packets Inserted Average Latency Standard Deviation

Experiment 1 328 7.7866 ms 3.1830 ms
Experiment 2 305 7.8393 ms 3.1670 ms
Experiment 3 313 8.0639 ms 3.2493 ms
Experiment 4 275 8.2036 ms 3.2275 ms
Experiment 5 311 8.4469 ms 3.1228 ms

Table 6.14: Latency results for five DNS manipulation experiments.

detection system has a buffer that captures a set amount of packets before passing

them up to the detection component of the engine. This often introduced a delay

of several hundred milliseconds. When very low rates of traffic were passed through

the system the delay was consistently 1000 milliseconds as the traffic would eventu-

ally expire from the buffer. The second packet buffer existed on the Traffic Source

Agent. A similar buffer in winpcap would also delay packets until a specified thresh-

old was reached before passing them up to the main processing loop of the Traffic

Manipulation Agent.

By modifying thresholds on those buffers, and through various other code effi-

ciency improvements the system was capable of triggering on malicious DNS requests,

and inserted crafted DNS replies in under 13 milliseconds. Table 6.14 shows the la-

tency for five DNS manipulation experiments. In all five experiments, each time the

Machine Learning Agent indicated that there was a malicious DNS request, the Traf-

fic Manipulation Agent was capable of inserting a DNS response before any of the

DNS servers, including the local internet service provider’s DNS server, could reply

to the DNS request.

The experiments described above demonstrate that the architecture is capable of

responding to incidents in network traffic quick enough to insert modified packets
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back into the network.

6.3.11 Discussion

There are several issues worthy of discussion here. First, does the architecture

perform the described tasks by reading network traffic, distributing features to agents

and labelling traffic based on the derived features? The trials were performed on an

accurate representation of network traffic. The only manipulation of the traffic was

performed by the agents in the system at rates of between 20 to 50 mbps, which is

a reasonable network speed. The system operated with a distributed set of agents

and the features distributed to the other agents were verified against the pcap files to

ensure they accurately represented the traffic. The trials do in fact validate the first

claim.

Second, do the experiments support the claim that a machine learning algorithm

can learn to classify traffic based on traffic labelled by misuse detection? The perfor-

mance of the Machine Learning Agents demonstrates that the choice of the algorithm

is important for achieving a high level of accuracy in this domain. While the liter-

ature reviewed for this thesis claim very high performance accuracy in a number of

domains for the algorithms tested, it is clear that the LaRank Machine Learning agent

distinguished between the protocols more reliably than the other Machine Learning

Agents in a number of trial scenarios. I am confident that the trials confirm that the

Machine Learning Agents in this system are suitable for classifying network traffic in

an online environment for malicious behaviour discovery.

Third, does the architecture perform the tasks quickly enough to manipulate traffic
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in an online environment? Initially the trial results were not clear on this point. While

there were certainly instances where a Traffic Manipulation Agent could react within

milliseconds of a feature set being published and subsequently classified by a Machine

Learning Agent, there were obviously several scenarios where a delay of seconds would

be too slow to manipulate the session in question. However, after analyzing the

initial results, follow up experiments (See Section 6.3.10) demonstrated there are

significant opportunities for improving the reaction times of the Agents in the system

and optimizing system parameters. Given that the Logger Agent was required to

read every feature, label and log message sent from every agent in the system and

then write them to disk, there are several places where lag could have occurred. For

example consider the instances were the delay was reported by a negative number.

I can only assume that at some point in the system the Logger Agent could not

keep up with the incoming feature messages, and while the feature messages queue at

the AMQP feature exchange piled up, it was capable of clearing the relatively fewer

messages in the labelled exchange.

In summary, I am confident that the the trials performed validate the capabilities

of the system.

6.4 Focused Behaviour Experiments

6.4.1 Purpose

The last experiment focused on testing the Multi-Agent Malicious Behaviour De-

tection system’s capability to label benign traffic. The following experiments are
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targeted at validating the Multi-Agent Malicious Behaviour Detection implementa-

tion’s ability to identify repeated behaviour by malicious software agents, and the

effect on the system’s capability to identify malicious behaviour when the ratio of

benign-to-malicious traffic changes.

6.4.2 Methodology

One of the outcomes of the first set of experiments was the dominance of the

LaRank Machine Learning Agent when classifying benign traffic. While it would be

possible to use a variety of Machine Learning Agents, for the purposes of validating

my framework, additional agents would require a number of additional experiment

trials that are unlikely to outperform the same trial setups with the LaRank Machine

Learning Agent alone. Therefore, the following experiments rely on only LaRank Ma-

chine Learning Agents. Otherwise, the same Agents were used in these experiments

as previous experiments, with the addition of HTTP Feature Source Agents for pro-

cessing HTTP traffic and DNS Feature Source Agents for processing DNS traffic.

As new techniques are developed for Machine Learning Agents, these trials can be

repeated to evaluate the new Machine Learning Agents against the LaRank Machine

Learning Agent.

All the traffic samples for the following trials were derived from the Malicious

Traffic Set (Section 6.2.3). More details for the traffic samples are described with

each trial description below. The traffic samples are passed to Snort 2.9.1.2 with the

Sourcefire VRT Certified Rules snapshot 2919 from February 2, 2012. The rule set

contains 6128 unique snort rules. I used the default Snort configuration packaged
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with the Sourcefire VRT Certified Rules. The resulting unified alert file was used as

the misuse detection component of the system, with the rule hits translated to classes

for the Machine Learning Agent.

Traffic passes through the system of agents in a similar manner as that described

in Section 6.2, with the addition of features generated by both the DNS and HTTP

Agents.

6.4.3 Performance Evaluation

The primary method for evaluating the performance of the system was the accu-

racy of the Machine Learning Agents given by the number of malicious instances of

traffic identified divided by the total number of malicious traffic samples of a spe-

cific type identified by Snort. Additionally, the number of recommendations that the

system makes for suspicious traffic is an indicator of how well the system has gen-

eralized the features of the malicious behaviours. The system is designed to direct

network defenders to traffic that appears suspicious given that it is similar to some

malicious traffic identified by the misuse detection engine. However, if too many

traffic instances are identified as similar to the true malicious traffic, the network

defender will be unable to verify the suspicious traffic. Additionally, a large number

of recommendations is indicative of false positives.

6.4.4 Malware Update Detection

Several SMTP traffic sets were engineered from the larger Malicious Traffic Set

described earlier by extracting all port 25 traffic, which included almost exclusively
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SMTP traffic. Among the traffic the misuse detection system identified eight unique

instances of an attack that triggered an alert from Snort rule ID 19724. The details

of the rule are below:

alert tcp $EXTERNAL NET any -> $SMTP SERVERS 25 (msg: “POL-

ICY attempted download of a PDF with embedded Flash over smtp”;

flow: to server, established; content: “cmVhbQ”; fast pattern: only;

pcre: “/cmVhbQ[opqr][A-Za-z0-9 \x2f]/s”; reference: bugtraq, 35759;

reference: bugtraq, 44503; reference: cve, 2009-1862; reference: cve, 2010-

3654; reference: url, blogs.adobe.com/psirt/2009/07/potential adobe

reader and fla.html; classtype:policy-violation; sid: 19274; rev:1;)

Based on the existing sessions, the engineered traffic is intended to emulate a

malicious multi-agent system attempting to download an update using SMTP from

a malicious server. A total of five SMTP traffic sets were derived by first extracting

the malicious sessions from the original SMTP traffic sample, and then blending

different amounts of the malicious network traffic sessions back into the SMTP traffic.

Malicious traffic sessions were inserted at random points into the SMTP traffic sample.

The details of the datasets are provided in the first four rows of Table 6.15. Total

Sessions identifies the total number of traffic sessions in the dataset. Identified SMTP

shows the number of sessions that the Alert Source Agent identified as SMTP. The

number of labelled SMTP sessions was fixed in advance such that the Alert Source

Agent would only identify some of the SMTP traffic. This was done to verify that

the Machine Learning Agents could learn to distinguish benign SMTP from malicious

traffic. The Unlabelled row indicates the number of sessions that were not labelled by

blogs.adobe.com/psirt/2009/07/potential_adobe_reader_and_fla.html
blogs.adobe.com/psirt/2009/07/potential_adobe_reader_and_fla.html
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SMTP1 SMTP2 SMTP3 SMTP4 SMTP5

Total Sessions 72079 55557 52807 50607 50112
Identified SMTP 10011 10011 10011 10011 10011
Unlabelled 60066 45046 42546 40546 40096
Misuse Identified Malicious 22022 5500 2750 550 55
ASA Identified Malicious 2002 500 250 50 5
MLA Identified Malicious 21984 6112 3549 987 436
MLA Verified 21424 5230 2538 246 10
MLA Recommend 560 882 1011 741 426
Verified/Total Malicious 0.9728 0.9509 0.9229 0.4473 0.1818
Recommend/Total Malicious 0.0254 0.1604 0.3676 1.3472 7.7454

Table 6.15: Results of experiments to identify malicious software agent updating
behaviour in SMTP network traffic.

the Alert Source Agent. Misuse Identified Malicious indicates the number of sessions

that the Snort misuse detection engine identified as malicious using the Snort rule

19274 detailed above.

The Alert Source Agents were set to add labels to only 10% of the sessions iden-

tified as malicious by the misuse detection engine. This effectively provided 10% of

the malicious traffic as training data, leaving the other 90% for testing. For each

dataset, the number of feature sets labelled as malicious by the Alert Source Agent

is identified by the ASA Identified Malicious row.

6.4.5 Results

In the cases where the malicious traffic made up more than 5% of the total traf-

fic, and the Alert Source Agent identified 0.47% of it as malicious, the Multi-Agent

Malicious Behaviour Detection implementation performed fairly well. The system

achieved over 90% detection accuracy. The number of recommendations remained
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relatively low, given the number of sessions processed. Manually verifying the traf-

fic sessions identified as suspicious, but not verified by the misuse detection engine,

would still require significant effort from the network defender. However, as fewer

and fewer malicious sessions were identified, the system made more recommendations

relative to the number of actual malicious instances. In dataset SMTP 5, only 10

malicious sessions were positively identified, while the system recommended 426 for

further analysis. Note, however, that the 426 recommended did not overlap with the

55 instances of malicious traffic identified by the misuse detection system. For the

detection of this particular updating behaviour, the Multi-Agent Malicious Behaviour

Detection implementation would require that somewhere between 0.009% and 0.47%

of the traffic was identified as malicious by the misuse detection system.

6.4.6 Malware Propagation

The following experiment involve network traffic containing three unique malicious

attacks identified by the following Snort misuse detection rules:

alert tcp $EXTERNAL NET any -> $HOME NET $HTTP PORTS (msg:

“SQL union select - possible sql injection attempt - GET parameter”; flow:

established, to server; content: “union”; fast pattern; nocase; http uri;

content: “select”; nocase; http uri; pcre: “/union\s + (all\s + )?select\s

+ [\̂ /\ \] + from \s+[\̂/\\]+/Ui”; metadata: policy security-ips drop,

service http; classtype:misc-attack; sid: 13990; rev: 8;)

alert tcp $EXTERNAL NET any -> $HOME NET $HTTP PORTS (msg:

“WEB-MISC Generic HyperLink Buffer Overflow attempt”; flow: to server,
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established; content: “GET ”; nocase; isdataat: 1450, relative; pcre:

“/GET \x2f[\̂r\n]{1450}/”; reference: bugtraq, 13045; reference: bug-

traq, 14195; reference: cve,2005-0057; reference: cve,2005-0986; classtype:

attempted-user; sid: 17410; rev:1;)

alert tcp $EXTERNAL NET $FILE DATA PORTS -> $HOME NET any

(msg: “SPECIFIC-THREATS Microsoft Office Excel MergeCells record

parsing code execution attempt”; flow: to client, established; flowbits:

isset, file.xls; file data; content: “|E5 00 32 00 06 00 04 00 04 00 00

00 04 00 00 00 04 00 05 00 00 02 00 00 00 00 02 00 04 00 02 00 02

00|”; fast pattern: only; reference: bugtraq, 43652; reference: cve,2010-

3237; reference: url, technet.microsoft.com/en-us/security/bullet

in/MS10-080; classtype: attempted-user; sid:20130; rev:1;)

Each of the attacks represent a malicious software agent’s attempt to propagate

to additional hosts and mimic common protocols (e.g. HTTP). The dataset was

generated by extracting port 80 traffic from the Malicious Traffic Set. To emulate

varying degrees of malicious behaviour the malware attacks were randomly dispersed

throughout the set of benign HTTP traffic to form five HTTP datasets. The first

three rows of Table 6.16 provide details of the traffic samples. The structure of the

table is similar to Table 6.15, except that the last seven rows are repeated for each

emulated malicious software agent propagation type, signified by the Snort Signature

ID of the associated Snort rule. Roughly 20% of the original HTTP traffic was labelled

as HTTP by the Alert Source Agent.

The goal of the trial was to identify how much malicious HTTP traffic was required

technet.microsoft.com/en-us/security/bulletin/MS10-080
technet.microsoft.com/en-us/security/bulletin/MS10-080
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HTTP1 HTTP2 HTTP3 HTTP4 HTTP5

Total Sessions 273085 156562 137125 121582 118084
Identified HTTP 23544 23544 23544 23544 23544
Unlabelled 235417 129487 111817 97687 94507

Snort Signature 20130

Misuse Identified 51788 12947 6468 1287 121
ASA Identified 4708 1177 588 117 11
MLA Identified 51819 13381 6943 2230 836
MLA Verified 51343 12788 6525 1214 97
MLA Recommend 476 593 590 1016 739
Verified/Total Malicious 0.9914 0.9877 0.9822 0.9433 0.8016
Recommend/Total Malicious 0.0091 0.0458 0.0912 0.7894 6.1074

Snort Signature 17410

Misuse Identified 51788 12947 6468 1287 121
ASA Identified 4708 1177 588 117 11
MLA Identified 51655 12994 6673 1812 224
MLA Verified 51257 12581 6157 1163 95
MLA Recommend 398 413 516 649 129
Verified/Total Malicious 0.9897 0.9717 0.9519 0.9036 0.7851
Recommend/Total Malicious 0.0077 0.0319 0.0798 0.5043 1.0661

Snort Signature 13990

Misuse Identified 51788 12947 6468 1287 121
ASA Identified 4708 1177 588 117 11
MLA Identified 52138 13647 7155 2077 623
MLA Verified 51163 12586 6194 1087 30
MLA Recommend 975 1061 961 990 593
Verified/Total Malicious 0.9879 0.9721 0.9576 0.8446 0.2479
Recommend/Total Malicious 0.0188 0.0819 0.1486 0.7692 4.9001

Table 6.16: Results of experiments to identify malicious software agent propagating
over HTTP.

for the Multi-Agent Malicious Behaviour Detection implementation to distinguish be-

tween benign HTTP and malicious HTTP propagation. The feature set for HTTP

provides additional features over the TCP feature sets used in the previous exper-

iments (118 to 25 respectively), providing additional features to Machine Learning
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Agents, which should in turn increase classification accuracy. Table 6.16 shows the

results of these trials.

6.4.7 Results

The Multi-Agent Malicious Behaviour Detection implementation maintained a

high classification accuracy in the first four HTTP datasets for each of the three

malicious HTTP propagation traffic types, maintaining over 90% accuracy with the

exception of signature ID 13990 on HTTP dataset 4. Even the fifth dataset, where

the labelled malicious samples were 0.009% of the total traffic (11/118084), the Multi-

Agent Malicious Behaviour Detection implementation achieved 80% and 78% accu-

racy for signature ID 20130 and 17410. The recommendations stayed fairly steady

across all of the trials, indicating that some traffic consistently shared similar features

to the malicious traffic. This is to be expected, since HTTP is commonly exploited,

and used for a variety of applications. The 17410 traffic resulted in a low number of

recommendations, which signifies a high likelihood that the recommendations actu-

ally indicate a variation on the original malicious traffic, or benign traffic that is very

similar to the malicious behaviour.

6.4.8 Malware over UDP

This experiment is intended to demonstrate the Multi-Agent Malicious Behaviour

Detection’s performance in identifying propagation behaviour from malicious software

agents over UDP. The datasets were derived from all of the UDP traffic contained

in the Malicious Traffic Set, amounting to almost 500 megabytes of traffic. The
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malicious traffic chosen to represent propagation over UDP were identified by the

following Snort signatures:

alert udp any any -> any 69 (msg: “TFTP GET filename overflow at-

tempt”; flow: to server; content: “|00 01|”; depth: 2; isdataat: 100, rel-

ative; content: ¡‘|00|”; within: 100; metadata: policy balanced-ips drop,

policy security-ips drop, service tftp; reference: bugtraq,22923; reference:

bugtraq, 36121; reference: bugtraq, 5328; reference: cve, 2002-0813; ref-

erence: cve, 2009-2957; reference: nessus, 18264; classtype: attempted-

admin; sid: 1941; rev: 14;)

alert udp any 4000 -> any any (msg: “EXPLOIT ICQ SRV MULTI/SRV

META USER overflow attempt”; flow: to server; content: “|05 00|”;

depth:2; content: “|12 02|”; within: 2; distance: 5; byte test: 1, >, 1

, 12, relative; content: “|05 00|”; content: “n|00|”; within: 2; distance: 5;

content: “|05 00|”; content: “|DE 03|”; within: 2; distance: 5; byte test:

2,>, 512, -11, relative, little; reference: cve,2004-0362; reference: url,

www.eeye.com/html/Research/Advisories/AD20040318.html; classtype:

misc-attack; sid: 2446; rev: 11;)

Both signatures represent overflow attempts, that could provide the attacking

malicious software agents with elevated privileges to facilitate propagation. Given the

large number of traffic sessions, blending in the malicious traffic was not as exact as

in the previous experiments. The unique malicious sessions identified were extracted

from the original network traffic and blended into a set of just UDP traffic with a

www.eeye.com/html/Research/Advisories/AD20040318.html
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UDP1 UDP2 UDP3 UDP4 UDP5

Total Sessions 1937729 1424022 1318629 1214085 1190567
Identified UDP 237594 237594 237594 237594 237594
Unlabelled 1631789 1165011 1069157 974117 952737

Snort Signature 1941

Misuse Identified 249919 78684 65329 13057 1298
ASA Identified 22782 7139 5939 1187 118
MLA Identified 690754 477888 463605 335570 254054
MLA Verified 246878 76485 63106 11725 712
MLA Recommend 443876 401403 400499 323845 253342
Verified/Total Malicious 0.9878 0.9721 0.9660 0.8980 0.5485
Recommend/Total Malicious 1.7760 5.1015 6.1305 24.8024 195.1787

Snort Signature 2446

Misuse Identified 499839 157367 65329 13057 1298
ASA Identified 45564 14278 5939 1187 118
MLA Identified 496472 154972 64193 12660 1279
MLA Verified 496267 154799 63980 12439 1170
MLA Recommend 205 173 213 221 109
Verified/Total Malicious 0.9929 0.9837 0.9794 0.9527 0.9014
Recommend/Total Malicious 0.0004 0.0011 0.0033 0.0169 0.0840

Table 6.17: Results of experiments to identify malicious software agents propagating
over UDP.

goal of achieving roughly 4:10, 2:10, 1:10, 2:100, and 1:1000 malicious-to-benign traffic

ratios. However, the traffic was not split evenly, resulting in more malicious TFTP

traffic than ICQ traffic. The Alert Source Agent was set to identify roughly 10% of

the malicious traffic with a label associating it with either Snort signature 1941 or

2446. Table 6.17 shows the details of the traffic and has the same general format as

Table 6.16.
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6.4.9 Results

The Multi-Agent Malicious Behaviour Detection implementation was able to de-

tect the malicious TFTP traffic consistently, with the accuracy decreasing slightly

until UDP dataset five, where the accuracy drops from 0.8980 to 0.5485. However, the

Multi-Agent Malicious Behaviour Detection implementation makes an overwhelming

number of recommendations for suspicious traffic. In the first dataset, the Multi-

Agent Malicious Behaviour Detection implementation flags almost twice as many

sessions as the misuse detection system, and by the fifth UDP dataset it flags almost

200 times more sessions than the misuse detection system. The number of false pos-

itives would surely overload a network defender, significantly lowering the value of

the system’s capability to identify the truly malicious traffic. For UDP dataset 1,

the network defender would have to determine which of the 690754 classified samples

were actually malicious (246878) and which were likely false positives (443876). The

multitude of false positives here is likely due to the similarity of the traffic across the

chosen feature set. The false positives are an indication that the feature set does not

contain enough features for the machine learning algorithm to distinguish between

the malicious and the benign traffic. As discussed in Section 3.7, there are a variety

of potential features to choose from for identifying malicious communications. While

the subset of features I have chosen were identified in the literature as sufficient for

tracking malicious communications, they were not sufficient for the traffic here. I will

discuss this further in Chapter 7.

The Multi-Agent Malicious Behaviour Detection implementation identifies the

malicious ICQ traffic with a high accuracy across all five datasets, achieving over
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90%. Also, unlike many previous experiments, the number of recommendations stays

at a relatively manageable level. The ratio between recommended session and verified

malicious sessions stays low, indicating that either there is another protocol in the

traffic that has very similar features to the malicious ICQ traffic, or there is a second

variation of the malicious ICQ traffic in the dataset.

6.4.10 Exfiltrate, Beacon, and Update

The following experiment involved the extraction of all TCP traffic from the Ma-

licious Traffic Set (1.805 gigabytes), and the blending of three unique malicious be-

haviours into the resulting set to simulate communications between agents in a ma-

licious multi-agent system. The malicious behaviours were chosen to represent bea-

coning over IRC, exfiltrating as in a P2P protocol, and updating by downloading an

infected PDF document (Section 1.5.4). Effectively, the actual malicious behaviours

that exist in the Malicious Traffic Set are multiplied to simulate the collaboration

between malicious software agents. Instead of a few instances of each malicious be-

haviour, as in the original Malicious Traffic Set, the derived set contains several

thousand instances of each. As malicious software agents attempt to communicate to

their peers or superiors, the Multi-Agent Malicious Behaviour Detectionsystem learns

to identify more and more instances. The following signatures identified the malicious

traffic in the original dataset:

alert tcp $EXTERNAL NET any -> $SMTP SERVERS 25 (msg: “POL-

ICY attempted download of a PDF with embedded Flash over smtp”;

flow: to server, established; content: “cmVhbQ”; fast pattern: only;
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pcre: “/cmVhbQ[opqr][A-Za-z0-9 \x2f]/s”; reference: bugtraq, 35759;

reference: bugtraq, 44503; reference: cve, 2009-1862; reference: cve, 2010-

3654; reference: url, blogs.adobe.com/psirt/2009/07/potential adobe

reader and fla.html; classtype: policy-violation; sid: 19274; rev: 1;)

alert tcp $HOME NET any -> $EXTERNAL NET 6666:7000 (msg: “CHAT

IRC channel join”; flow: to server, established; content: “JOIN ”; fast pattern:

only; pcre: “/\̂s*JOIN/smi”; metadata: policy security-ips drop; classtype:

policy-violation; sid: 1729; rev: 8;)

alert tcp $HOME NET any -> $EXTERNAL NET any (msg: “P2P Bit-

Torrent transfer”; flow: to server, established; content: “|13|BitTorrent

protocol”; depth: 20; metadata: policy security-ips drop; classtype: policy-

violation; sid: 2181; rev: 4;)

The exact number of sessions for each type of malicious traffic are provided in

Table 6.18. The traffic blending evenly distributed the malicious traffic into TCP

datasets 3, 4, and 5. However, in datasets 1 and 2, the blending technique failed to

blend in the malicious PDF downloading traffic. While this particular distribution was

not intended, it does provide an indication of the performance of the implementation

when there are very few malicious malware samples in a large dataset. I direct

the reader back to Section 6.4.4 for an example of detecting the update behaviour

on larger datasets. When labelling the traffic, the sessions were labelled as TCP,

signature 2818, signature 1729, signature 19274, or not labelled at all. Given the

volume of TCP traffic, and the number of protocols present in the traffic, the label

blogs.adobe.com /psirt/2009/07/potential_adobe_reader_and_fla.html
blogs.adobe.com /psirt/2009/07/potential_adobe_reader_and_fla.html
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TCP1 TCP2 TCP3 TCP4 TCP5

Total Sessions 6474197 4518359 4096511 3632366 3527921
Identified TCP 703267 703267 703267 703267 703267
Unlabelled 5502110 3724126 3340501 2918551 2823601

Snort Signature 2181

Misuse Identified 1548918 538718 193391 38676 3861
ASA Identified 140388 55739 17581 3516 351
MLA Identified 1571642 721868 389044 170660 62180
MLA Verified 692431 198380 41703 5795 224
MLA Recommend 879211 523488 347341 164865 61956
Verified/Total Malicious 0.4470 0.3682 0.2156 0.1498 0.0580
Recommend/Total Malicious 0.5676 0.9717 1.7961 4.2627 16.0466

Snort Signature 1729

Misuse Identified 1408595 463191 193391 38676 3861
ASA Identified 128400 35219 17581 3516 351
MLA Identified 1303506 512294 449934 188974 37095
MLA Verified 537936 77783 47085 5449 116
MLA Recommend 765570 434511 402849 183525 36979
Verified/Total Malicious 0.3819 0.1679 0.2435 0.1409 0.0300
Recommend/Total Malicious 0.5435 0.9381 2.0831 4.7452 9.5776

Snort Signature 19274

Misuse Identified 346 112 193391 38676 3861
ASA Identified 32 8 17581 3516 351
MLA Identified 4803 1617 182884 38215 4987
MLA Verified 84 4 178947 36873 3560
MLA Recommend 4803 1613 3937 1342 1427
Verified/Total Malicious 0.2428 0.0357 0.9253 0.9534 0.9220
Recommend/Total Malicious 13.8815 14.4018 0.0204 0.0347 0.3700

Table 6.18: Results of experiments to identify malicious software agent propagating
over TCP behaviour.

of TCP traffic was applied to various distinct protocols. Effectively, the TCP traffic

label acted as a catchall type of classification. The results highlight the importance of

choosing a representative list of features capable of distinguishing one type of traffic

from another. I will discuss the impact of the chosen features more in Chapter 7.



260 Chapter 6: Evaluation

6.4.11 Results

The Multi-Agent Malicious Behaviour Detection implementation was unable to

consistently identify the malicious traffic from signatures 2181 and 1729, achieving

both low accuracy rates and high numbers of recommendations. The results indicate

that several TCP sessions share similar features, such that the Machine Learning

Agents could not distinguish between them well. Contrast to signature 19274 in

datasets 3, 4, and 5, where the Machine Learning Agents learned to make accurate

identifications of the traffic and maintain a fairly low recommendation amount. The

malicious PDF traffic likely contains unique values for some of the features extracted,

enabling more accurate classification.

6.4.12 Discussion

The focused behaviour experiments demonstrated the Multi-Agent Malicious Be-

haviour Detection implementations ability to detect some of the malicious traffic when

enough samples of the traffic was available, and the features were sufficient for the

Machine Learning Agents to learn to distinguish between the benign and malicious

traffic. By providing an HTTP Feature Source Agent, that is capable for deriving

additional features from HTTP specific traffic, the Machine Learning Agents could

achieve high levels of accuracy with a low level of recommendations, making it pos-

sible for a network defender to verify the recommendations from the system. The

small features sets, such as UDP and TCP, demonstrated poorer classification ability.

However, the SMTP propagation experiment shows that there is benefit to splitting

the traffic early on in the classification heuristically, for example by port number, to
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group together similar protocols. In all cases, it was clear that malicious behaviour

frequency must attain a specific repetition threshold in order for Machine Learning

Agents to have any chance to learn to classify them accurately. This is where arti-

ficially inserting malicious traffic back into the system via additional Traffic Source

Agents for training purposes (Section 5.5.1) shows promise for improving the Multi-

Agent Malicious Behaviour Detection’s performance.

6.5 Complete Higher Education Network

6.5.1 Purpose

This experiment was intended to test the system’s capability of identifying ma-

licious multi-agent system attacks without limiting the amount of malicious traffic

or the types of malicious traffic present. The primary difference from the first set of

validation experiments and this set of experiments is the presence of malware in the

traffic that is potentially unrecognizable to the misuse detection component of the

system. These experiments represent a more difficult scenario, where the machine

learning component works with the the other agents in the system to identify threats

to the network. To be more precise, this shows how the machine learning compo-

nent effects the detection capability of the system in a richer and more challenging

environment.
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6.5.2 Methodology

The methodology for this experiment is very similar to the previous experiment.

The agents deployed were the same as the previous experiment. The data sample

involved the entire Malicious Traffic Set, unmodified. In all previous experiments,

the system attempted to identify benign traffic as well as malicious traffic. However,

in this experiment, traffic was only labelled as malicious. The misuse detection en-

gine feeds in malicious alerts, and does not attempt to classify benign traffic. The

experiment tests the implementation’s ability to classify the traffic using confidence

values associated with each classification, to direct the network defender to the traffic

that is most likely an example of malicious behaviour. So, while every traffic ses-

sion will ultimately be classified as malicious, the confidence value will allow network

defenders to prioritize their attention. That is, they can focus their efforts on cases

where confidence is high, and reduce or eliminate consideration of low-confidence

cases. In principle, this should reduce the amount of traffic the network defender

must investigate in order to eliminate the false positives.

6.5.3 Performance Evaluation

The metric used to measure the results of this experiment was the number of traffic

sessions the Multi-Agent Malicious Behaviour Detection implementation classified as

suspicious and recommended for further analysis. This metric was supplemented with

manual verification of a subset of the suspicious traffic identified by the system. The

manual verification provides an indication of the success of real-world use of this

system (i.e. what it would be like with legitimate human intervention by a trained
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ASA MLA SigID Signature

29417 361844 579 RPC portmap mountd request UDP
8003 629485 1952 RPC mountd UDP mount request

Table 6.19: Summary of Alert Source Agent (ASA) labels and Machine Learning
Agent (MLA) classifications for UDP traffic (excluding DNS). The table only contains
data on snort signatures that fired more than 5 times on the dataset.

professional).

6.5.4 Full Data Set

In this experiment the dataset consisted of the entire 3418.12 megabytes of network

traffic generated for the Malicious Traffic Set. The traffic had a variety of malware

attacks woven into it, as described in Section 6.2.3. In total the misuse detection

engine identified 395 unique misuse detection alerts types.

6.5.5 Results

The UDP Transport Layer Feature Source Agent processed 487.39 megabytes of

UDP traffic and produced 1225410 feature sets. Of those feature sets, the Alert

Source Agent labelled 37439 with hits from the external misuse detection system.

The misuse detection system identified two attack types (see Table 6.19). A LaRank

Machine Learning Agent, subscribing to all UDP features, processed the 1225410

UDP features sets and classified each based on the 37439 alert labels, producing

1225410 labelled feature sets.

Figure 6.13 illustrates the distribution of confidence values the Machine Learning

Agent assigned to each labelled feature set. The Machine Learning Agent assigned
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Figure 6.13: Distribution of confidence values Machine Learning Agents assigned to
labelled feature sets derived from UDP traffic (excluding DNS traffic).

low confidence values to the majority of its classifications. This is an indicator to

the network defender that the results are not reliable, and likely consist of many false

positives. The low confidence values aid in addressing a weakness encountered earlier,

that of overwhelming the network defender with false positives (Section 6.4). This

provides the network defender with a mechanism to discard a large portion of traffic

alerts that are likely false positives.

Table 6.20 illustrates the total number of times the Machine Learning Agent asso-

ciated a feature set with a misuse detection rule. The misuse detection engine iden-

tified far fewer actual attacks, indicating either that the Machine Learning Agents

are over-generalizing or are finding many attacks that the misuse detection engine

has not. Table 6.19 shows the alerts that fired more than five times for the UDP

traffic, with the signature ID, the count, and the full alert message. Table B.1 con-

tains a summary of the signature IDs and counts for other rules that fired less than
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Total SigID Rule Name
342972 1952 RPC mountd UDP mount request
182359 579 RPC portmap mountd request UDP
30989 1941 TFTP GET filename overflow attempt
28181 2088 RPC ypupdated arbitrary command attempt UDP
27514 2256 RPC sadmind query with root credentials attempt UDP
1630 15302 DOS Microsoft Exchange System Attendant denial of service

attempt
1 2446 EXPLOIT ICQ SRV MULTI/SRV META USER overflow at-

tempt - ISS Witty Worm
1 648 SHELLCODE x86 NOOP

Table 6.20: Total number of feature sets associated with a specific rule by the LaRank
Machine Learning Agent.

five times. Those alerts that fired less than five times were unlikely to be learned

by the LaRank Machine Learning Agent, therefore I focused on those signature IDs

with at least five alerts. For all but signature IDs 1952 and 579, there were less than

five identified attacks. After manually parsing the traffic results, it was obvious the

Machine Learning Agent was producing many false positives. The performance of the

system on UDP traffic is discouraging, and reinforces the concept that in order to

learn to identify malicious behaviour, the system required sufficient training samples.

Given the low incidence of actual attacks, those training samples were not available.

The DNS Agent processed 305.89 megabytes of UDP traffic on port 53 and pro-

duced 2965999 feature sets. Of those features, the Alert Source Agent labelled

1483354 with hits from the external Snort misuse detection system. A Machine

Learning Agent processed the 2965999 DNS feature sets and classified each one based

on the 1483354 misuse detection hits, producing a total of 2965999 labelled feature

sets. Table 6.21 shows that the Alert Source Agent received alerts on almost every

single DNS response from the misuse detection system. When confronted with a
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ASA MLA SigID Signature

1482644 1803468 254 DNS SPOOF query response with TTL of 1 min. and
no authority

Table 6.21: Summary of Alert Source Agent (ASA) labels and Machine Learning
Agent (MLA) classifications for DNS traffic. The table only contains data on snort
signatures that fired more than five times on the dataset.

situation such as this, a network defender will likely think one of three things: the

network is under attack from a distributed denial of service attack by a malicious

multi-agent system, the misuse detection engine is generating a significant number

of false positives (in turn teaching the Machine Learning Agent to false positive on

the same traffic), or the misuse detection engine is correct and the Machine Learning

Agent is overgeneralizing.

The first hypothesis is plausible. Should a malicious multi-agent system attempt

a distributed denial of service attack (Section 1.5.4), the number of invalid requests

should be significantly higher than the number of valid requests that the network’s

DNS servers can manage. If the invalid requests are less than the typical number of

valid requests, the impact on the network is low, and the desired effect of denying

service is not achieved. In that case, the Multi-Agent Malicious Behaviour Detection

system should produce far more maliciously labelled feature sets than non-malicious

feature sets.

The other two hypotheses can be verified by performing checks on some of the DNS

traffic to see if it is malicious, and by checking the confidence values the Multi-Agent

Malicious Behaviour Detection system has applied to the feature sets. Figure 6.14

shows that, while the Machine Learning Agent classified the majority of the traffic as
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DNS spoofing, the confidence for every classification remained low. The DNS packets

in the Malicious Data Set generated by the Breaking Point contain features that

the external misuse detection system identifies as a spoofing attack, and in turn the

Machine Learning Agent learns that much of the DNS requests/responses are spoofs,

given that the spoof class is the only available class provided by the misuse detection

engine. The low confidence value aids in identifying issues with the underlying traffic.

The DNS results demonstrate the system’s reliance on an accurate misuse detection

system.

This is an interesting result, since while the classifications were based on a feature

specific to the traffic generation process, it has shown that the Multi-Agent Malicious

Behaviour Detection would in fact flag a malicious multi-agent system denial of service

attack should the system be flooded by DNS packets that were different from standard

DNS. The impact of distributed denial of service on machine learning for network

detection is worth further study, and I will discuss this further in Chapter 7.

The HTTP agent processed 819.70 megabytes of port 80 TCP traffic and produced

118129 feature sets. Of those features, the Alert Source Agent labelled 408 with hits

from the external misuse detection system. A Machine Learning Agent processed the

118129 HTTP feature sets, and classified each one based on the 408 misuse detection

hits, producing 118129 labelled feature sets. Table 6.22 shows the alerts where the

Alert Source Agent matched more than five misuse detection alerts to feature sets

and the resulting Machine Learning Agent classifications.

Figure 6.15 shows the distribution of confidence values for the various classifica-

tions. There are many low confidence classifications and relatively few high confidence
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Figure 6.14: Distribution of confidence values Machine Learning Agents assigned to
labelled feature sets derived from DNS traffic.

ASA MLA SigID Signature

47 804 10504 SHELLCODE unescape encoded shellcode
38 91 13990 SQL union select - possible sql injection attempt -

GET parameter
17 322 1394 SHELLCODE x86 inc ecx NOOP
16 83 648 SHELLCODE x86 NOOP
15 202 17410 WEB-MISC Generic HyperLink buffer overflow at-

tempt
12 365 20130 SPECIFIC-THREATS Microsoft Office Excel Merge-

Cells record parsing code execution attempt
12 922 7896 WEB-ACTIVEX AOL.PicEditCtrl ActiveX clsid ac-

cess
12 93789 17322 SHELLCODE x86 OS agnostic fnstenv geteip dword

xor decoder
10 318 10214 WEB-ACTIVEX Shockwave ActiveX Control Ac-

tiveX clsid access
9 361 1002 WEB-IIS cmd.exe access
8 34 19074 WEB-CLIENT javascript uuencoded noop sled at-

tempt

Table 6.22: Summary of Alert Source Agent (ASA) labels and Machine Learning
Agent (MLA) classifications for HTTP traffic. The table only contains data on Snort
signatures that fired more than 5 times on the dataset.
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Figure 6.15: Distribution of confidence values Machine Learning Agents assigned to
labelled feature sets derived from HTTP traffic.

classifications. Table 6.23 shows the alerts that were classified with a confidence of

0.90 or more. The results for the HTTP traffic, as with UDP, are plagued with

false positives. Manual inspection of the sessions identified by the Machine Learning

Agents showed that the Machine Learning Agent often classified benign web requests

as Web-ActiveX attacks. There were some instances where the Machine Learning

Agent identified what appeared to be a form of attack, however the overwhelming

number of false positives outweighs the few successful classifications. I will discuss

the issue of false positives more in Section 6.5.6.

The TCP Transport Layer agent processed 1805.14 megabytes of TCP network

traffic and produced 3584212 feature sets. Of those features, the Alert Source Agent

labelled 67874 with hits from the external misuse detection system. A Machine Learn-

ing Agent processed the 3584212 TCP feature sets and classified each based on the

67874 hits, producing 3584212 labelled feature sets. Table 6.24 shows the instances
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Total SigID Rule Name
6989 17322 SHELLCODE x86 OS agnostic fnstenv geteip dword xor de-

coder
335 7502 WEB-ACTIVEX tsuserex.ADsTSUserEx.1 ActiveX clsid ac-

cess
205 20650 WEB-PHP MyNewsGroups remote file include in layers-

menu.inc.php myng root
121 7896 WEB-ACTIVEX AOL.PicEditCtrl ActiveX clsid access
96 15098 WEB-ACTIVEX Microsoft Visual Basic FlexGrid ActiveX

function call access
49 8066 WEB-ACTIVEX Windows Scripting Host Shell ActiveX clsid

access
44 13830 WEB-ACTIVEX sapi.dll alternate killbit ActiveX clsid access
41 10214 WEB-ACTIVEX Shockwave ActiveX Control ActiveX clsid ac-

cess
34 15090 WEB-ACTIVEX Microsoft Visual Basic Charts ActiveX func-

tion call access
17 8375 WEB-ACTIVEX QuickTime Object ActiveX clsid access
17 20728 WEB-PHP WoW Roster remote file include with hslist.php and

conf.php
9 20130 SPECIFIC-THREATS Microsoft Office Excel MergeCells

record parsing code execution attempt
8 16591 SPECIFIC-THREATS EasyMail Objects ActiveX exploit at-

tempt - 2
5 20731 WEB-PHP TSEP remote file include in colorswitch.php

tsep config
3 1394 SHELLCODE x86 inc ecx NOOP
2 12280 WEB-CLIENT Microsoft Internet Explorer VML source file

memory corruption attempt
1 7934 WEB-ACTIVEX ftp Asychronous Pluggable Protocol Handler

ActiveX clsid access
1 18178 SPECIFIC-THREATS Mozilla browsers memory corruption si-

multaneous XPCOM events code execution attempt
1 10504 SHELLCODE unescape encoded shellcode

Table 6.23: Predictions where the Machine Learning Agent’s confidence is greater
than 0.90 on HTTP traffic.

were the Alert Source Agent added alert labels to more than 5 feature sets, and the

resulting frequency of which the Machine Learning Agent then classified sessions as
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ASA MLA SigID Signature

35407 1067073 2181 P2P BitTorrent transfer
32100 872697 1729 CHAT IRC channel join
208 243151 1394 SHELLCODE x86 inc ecx NOOP
17 8483 648 SHELLCODE x86 NOOP
10 26033 12802 SHELLCODE base64 x86 NOOP
8 11398 19274 POLICY attempted download of a PDF with embed-

ded Flash over smtp
6 1999 14737 NETBIOS DCERPC NCACN-IP-TCP host-

integration bind attempt

Table 6.24: Summary of Alert Source Agent (ASA) labels and Machine Learning
Agent (MLA) classifications for TCP traffic (excluding HTTP). The table only con-
tains data on snort signatures that fired more than 5 times on the dataset.

similar to the sessions that triggered the alerts. As with other protocols, the Ma-

chine Learning Agent tended toward many false positives. However, as Figure 6.16

illustrates, it often classified the feature sets with a very low confidence value. This

is as expected, as the number and variety of features used to classify the traffic is

likely insufficient to distinguish between the large variety of traffic that uses TCP as

a transport mechanism. As such, the Machine Learning Agent will train on a variety

of very similar feature sets that the misuse detection can distinguish between using

string matching.

Table 6.25 illustrates the variety of attacks over TCP, and and protocols available

for attacks. Attacks varied, and included attacks against IRC Chat, SMTP, Oracle,

Microsoft file transfers, and more.
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Figure 6.16: Distribution of confidence values Machine Learning Agents assigned to
feature sets derived from TCP traffic (excluding HTTP traffic).

6.5.6 Discussion

Given that, in the experiment above, Machine Learning Agents could only clas-

sify traffic using labels they have previously seen, and only malicious traffic was being

labelled, the Machine Learning Agents viewed all traffic as malicious and attempted

to match each feature set to the closest similar malicious traffic. This resulted in

an overwhelming number of false positives from the Machine Learning Agents. Each

labelled feature set was also assigned a confidence value. The confidence value is

intended to show that, while the Machine Learning Agent would label traffic as ma-

licious, a higher confidence value should indicate a higher likelihood that the traffic

matched the malicious traffic and was not just a false positive. While the Machine

Learning Agents produced many false positives, it also clearly indicated to network

defenders that it was not confident in its classifications. The confidence value helps

to guide the network defender to what is likely more important traffic to analyze. As
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Total SigID Rule Name
30596 1729 CHAT IRC channel join
19602 2181 P2P BitTorrent transfer
1206 20602 RSERVICES rlogin guest
1071 16524 FTP ProFTPD username sql injection attempt
937 604 RSERVICES rsh froot
543 18682 POLICY download of a PDF with OpenAction object
416 19280 POLICY attempted download of a PDF with embedded Flash over pop3
323 606 RSERVICES rlogin root
246 20601 RSERVICES rlogin nobody
234 2101 NETBIOS SMB Trans Max Param/Count DOS attempt
143 648 SHELLCODE x86 NOOP
121 19291 NETBIOS Microsoft LNK shortcut download attempt
86 17410 WEB-MISC Generic HyperLink buffer overflow attempt
80 20130 SPECIFIC-THREATS Microsoft Office Excel MergeCells record parsing code execution

attempt
68 14737 NETBIOS DCERPC NCACN-IP-TCP host-integration bind attempt
65 16543 WEB-CLIENT Microsoft Windows Media Player codec code execution attempt
39 6584 NETBIOS DCERPC NCACN-IP-TCP rras RasRpcSubmitRequest overflow attempt
33 20662 SPECIFIC-THREATS Dameware Mini Remote Control username buffer overflow
29 19551 POLICY self-signed SSL certificate with default Internet Widgits Pty Ltd organization

name
26 1394 SHELLCODE x86 inc ecx NOOP
20 19274 POLICY attempted download of a PDF with embedded Flash over smtp
13 12977 NETBIOS DCERPC NCACN-IP-TCP mqqm QMCreateObjectInternal overflow attempt
9 12800 SHELLCODE base64 x86 NOOP
9 17344 SHELLCODE x86 OS agnostic xor dword decoder
7 15930 NETBIOS Microsoft Windows SMB malformed process ID high field remote code execu-

tion attempt
7 7035 NETBIOS SMB Trans mailslot heap overflow attempt
6 12802 SHELLCODE base64 x86 NOOP
5 15199 NETBIOS SMB NT Trans NT CREATE param count underflow attempt
5 542 CHAT IRC nick change
4 2508 NETBIOS DCERPC NCACN-IP-TCP lsass DsRolerUpgradeDownlevelServer overflow at-

tempt
4 11945 NETBIOS SMB Trans2 OPEN2 maximum param count overflow attempt
3 16417 NETBIOS SMB Negotiate Protocol Response overflow attempt
3 18555 MISC VERITAS NetBackup java authentication service format string exploit attempt
3 11289 RPC portmap mountd tcp zero-length payload denial of service attempt
2 17668 POLICY download of a PDF with embedded JavaScript - JS string
2 20670 SPECIFIC-THREATS Asterisk data length field overflow attempt
2 15264 WEB-CGI Oracle TimesTen In-Memory Database evtdump CGI module format string

exploit attempt
1 12798 SHELLCODE base64 x86 NOOP
1 15255 ORACLE Secure Backup msgid 0x901 username field overflow attempt

Table 6.25: Predictions where the Machine Learning Agent’s confidence is greater
than 0.90 on TCP traffice excluding HTTP.

confidence values range from 0 to 1, the network defender can use their discretion to

investigate traffic with slightly lower confidence values with the goal of finding ma-

licious multi-agent system communication patterns that are different from those the

misuse detection engine has identified, but still somewhat similar. The system guides
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the network defender’s investigation, leading them from specific malicious instances

to more general behaviour patterns indicative of malicious multi-agent system com-

munications. However, the investigation is intended to be interactive (Section 4.4), so

when the network defender encounters false positives, it is important that they either

refine the misuse detection signatures that are associated with the false positives, or

write misuse detection signatures to white list certain similar behaviours. By feed-

ing back into the system the network defender influences the Multi-Agent Malicious

Behaviour Detection systems capability to provide valuable guidance.

The experiment demonstrated that the Machine Learning Agent performed poorly

when tasked with generalizing from specific attacks identified by misuse detection

to more general attacks. Instead it tended to overgeneralize and produce far too

many false positives. This makes a network defender crucial to analyze the results.

Even so, the number of false positives makes the task daunting on a network that

is under heavy attack, as in the case of the dataset used for this experiment. While

looking at each false positive would be impossible for a network defender, the system

provides a mechanism for the network defender to provide feedback into the learning

by observing a subset of the false positives and writing misuse detection signatures to

whitelist that traffic. Recall that no whitelisting was performed in this experiment,

as was done in earlier experiments. This experiment highlights the importance of

whitelisting well-known benign traffic.

Even taking into account the poor classification performance, the framework as

a whole did achieve its aim. The system agents generated a variety of feature set

types and shared that information with other agents in the system, enabling Machine
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Learning Agents to make recommendations to network defenders. The co-operation

between the agents was achieved successfully, and each network session was success-

fully matched to the misuse detection alert. Once the results where generated, I could

map the feature set back to a set of packets to verify the results.

There are a number of reasons to explain the poor classification performance. In

this experiment the system was not given a whitelist of traffic to classify as benign

(as in the classify all mode discussed in Section 4.5.3). Instead the system could

only classify each feature set as a malicious attack similar to what was previously

observed. The confidence of the classification was intended to offset this by indicating

to the network defender what classification were worth following up on. Additionally,

given that the traffic was generated by the Breaking Point to emulated real world

attacks, often each attack would occur less than five times. I’ve shown in the previous

experiment that the Machine Learning Agents could identify traffic with a low number

of instances. However, in the dataset provided for this experiment, it seems the

sheer number of low instance occurrences encouraged the Machine Learning Agents

to overgeneralize. Feature selection also plays an important role in classification.

While the Machine Learning algorithms chosen have been shown in this research and

other research[Saffari et al., 2010] to be capable of performing difficult classification

tasks, the features chosen during this implementation are not diverse enough to enable

reliable classification.
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6.6 Summary

The experiments described in this chapter demonstrate the capability of the Multi-

Agent Malicious Behaviour Detection implementation to process network traffic, de-

rive features from traffic, share the traffic with other agents, and perform classification

on the traffic to make recommendations to network defenders. The results show that

the Multi-Agent Malicious Behaviour Detection implementation is capable of accu-

rately identifying a variety of benign network traffic types, and is also capable of

identifying some types of malicious traffic accurately. However, it also identifies a

number of weaknesses in using machine learning for classifying network traffic, and

those will be further discussed in Chapter 7. The next chapter will described how

this research as a whole addresses the research questions, and will explore avenues of

future work pointed to by the evaluation described in this chapter.
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Findings and Recommendations

7.1 Overview

The research described in this thesis was undertaken to answer the research ques-

tions in Chapter 1. However, during my work toward answering those questions, I

have become aware that this research involves a wide variety of issues that were not

completely framed in those research questions. Issues I have dealt with in the course

of this research include:

• the difficulties of interacting with live malicious multi-agent systems,

• the limitations of various machine learning algorithms,

• the scope of feature selection,

• the difficulty of managing large amounts of false positives,

• and the complexity of human-machine interactions.

277
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In this chapter I will begin by discussing my findings and relating those back to the

research questions posed in Chapter 1. Following this, I will present the contributions

that this work offers to the research community. Finally, I will discuss future work

related to this research.

7.2 Findings and Analysis

Chapter 1 presented several research questions around which the work in this

thesis is focused. I will reiterate those questions here and discuss the results in my

design, implementation and experiment in light of these questions.

7.2.1 Research Question 1

How can advances in artificial intelligence, such as machine learning and multi-

agent systems, be applied to computer security to increase the success of detecting

and mitigating malicious multi-agent systems?

Machine learning has a role to play in supporting the detection of malicious multi-

agent systems. However, this research has demonstrated some weaknesses in current

machine learning algorithms that limit it to the role of an adviser to a trained net-

work defender. This research highlights the potential for existing machine learning

algorithms to classify and make recommendations that guide network defenders in

their investigations. As techniques in machine learning advance further, some of the

weaknesses (i.e. over-generalization and false positives), may be overcome by the al-

gorithms themselves, and the Multi-Agent Malicious Behaviour Detection framework

provides a methodology to evaluate those improvements.
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This research has also demonstrated a viable methodology for distributing work

between a group of collaborating agents, such that they achieve the shared goal of

classifying traffic in cooperation with existing misuse detection. I have demonstrated

that the multi-agent paradigm is applicable to network detection, and further pro-

vided a framework to support future research into multi-agent systems for network

detection. I have exploited advances in network communications, such as AMQP, to

support multi-agent communications.

To summarize, advances in artificial intelligence improve the accuracy with which

those systems can support network defenders in their attempts to detect and mitigate

malicious multi-agent systems. While machine learning is limited given the current

state of the art, improved techniques can be incorporated into my framework as they

are developed.

7.2.2 Research Question 2

Given that malicious multi-agent systems are expected to evolve, including chang-

ing their communications to adapt to target networks, how can advances in artificial

intelligence, such as machine learning and multi-agent systems, be used to improve

discovery of novel and/or evolving malicious multi-agent systems?

This research has shown that Machine Learning Agents and misuse detection

engines classify traffic using fundamentally different techniques. As malicious multi-

agent system communications change, the misuse detection engine signatures gradu-

ally stop alerting on the traffic. However, the Machine Learning Agents will continue

to alert on traffic similar to the traffic that used previously triggered misuse detection
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alerts. The labelled feature sets provide the network defender with a place to look

for the malicious multi-agent system communications that are no longer identified

through misuse detection. While false positives are expected, the labelled traffic still

provides a subset of the much larger body of network traffic that the network defender

would have to consider in their investigation. The Multi-Agent Malicious Behaviour

Detection system will not identify every malicious multi-agent system communication,

and certainly such a system is beyond the capabilities of current machine learning

or artificial intelligence techniques. However, by providing a technique to generalize

from specific instances of malicious multi-agent system communications, to unknown

ones, the Multi-Agent Malicious Behaviour Detection system provides a methodology

to discover evolving malicious multi-agent system communications.

Developing the Multi-Agent Malicious Behaviour Detection system as a multi-

agent approach enables network defenders to develop new techniques to adapt their

detection to changing malware communications. As was shown in Chapter 6, multiple

Machine Learning Agents, each with slightly different learning techniques, can be

deployed into the system to support various learning that may have more success

identifying some forms of malicious multi-agent system communication over others.

Additionally, new Feature Source Agents can support investigations where a malicious

multi-agent system communication is suspected to be mimicking a specific protocol,

and new features are required to distinguish between the benign and malicious sessions

(as with the HTTP Feature Source).
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7.2.3 Research Question 3

Given that the complexity of computer network security requires some level of

human expertise, how can a methodology involving a collection of semi-autonomous

Multi-Agent Malicious Behaviour Detection Agents improve the capability of net-

work defenders to detect and monitor sophisticated malicious multi-agent systems?

How can such a system limit the cognitive load on the network defenders while still

providing increasing value in malicious multi-agent system detection capability?

The Multi-Agent Malicious Behaviour Detection system provides a methodology

that supports collaborative human-machine detection and monitoring of malicious

multi-agent systems. The role of the Multi-Agent Malicious Behaviour Detection

agents is focused on recommending traffic for further analysis, given that it resembles

traffic identified by human network defenders as interesting (via signatures deployed to

a misuse detection system). The results of the experiments in Chapter 6 show that the

Multi-Agent Malicious Behaviour Detection can successfully identify malicious multi-

agent system behaviour, but suffers from a surplus of false positives. A confidence

value can alleviate some of the cognitive load on the network defender, by guiding

him or her to traffic that is more likely to contain malicious behaviour, based on its

resemblance to past malicious behaviour.

Note that the task of identifying and tracking malicious multi-agent systems is

difficult for even a trained network defender. So, while the Multi-Agent Malicious

Behaviour Detection implementation produces a number of false positives, it provides

an indicator that saves the network defender from searching through a much larger

amount of traffic. Consider that while searching for malicious multi-agent system
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communications in a broad collection of network traffic might seem like searching

for a needle in a haystack, the Multi-Agent Malicious Behaviour Detection system

effectively reduces the size of the haystack, and provides network defenders with a

mechanism to further reduce the size of the haystack by writing whitelisting signatures

to teach the Multi-Agent Malicious Behaviour Detection system to identify some

benign traffic.

The important aspect of the human-machine interaction is the mechanism for net-

work defenders to feedback into the learning of the Multi-Agent Malicious Behaviour

Detection system. When a network defender writes a misuse detection signature for a

traditional misuse detection engine, they are identifying specific traffic. When a net-

work defender writes a misuse detection signature and deploys it to a network with a

Multi-Agent Malicious Behaviour Detection system, the network defender will have

influenced the learning of the Multi-Agent Malicious Behaviour Detection and will

receive indicators from Multi-Agent Malicious Behaviour Detection system regarding

what other traffic is similar to the traffic they have just written a misuse detection

signature to detect.

I am not discouraged by the low accuracy shown in the results of the complete

higher education scenario (Section 6.5). Instead, the focus should be on the increase

in value the Multi-Agent Malicious Behaviour Detection system provides over just de-

ploying a misuse detection system. The Multi-Agent Malicious Behaviour Detection

system provides the capability to occasionally find malicious behaviour that misuse

detection systems do not. However, having a strong association to misuse detection

signatures, Multi-Agent Malicious Behaviour Detection system recommendations pro-
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vide more context than traditional anomaly detection. The system both reduces the

cognitive load of network defenders by guiding them to traffic that potentially contains

malicious communications, and adds value in malicious multi-agent system detection

capability by generalizing from specific misuse detection rules.

7.2.4 Research Question 4

What methods exist to ensure that as research in multi-agent systems and ma-

chine learning progress, those benefits are realized in computer network security and

employed against malicious multi-agent system detection?

The Multi-Agent Malicious Behaviour Detection framework, presented as part of

this research, ensures that a method exists for integrating new techniques for both

multi-agent systems and machine learning. I have demonstrated that Machine Learn-

ing Agents can be extended from the provided agent designs that are implemented

using C++ and C# classes. As machine learning algorithms are improved or de-

veloped, these can be incorporated into new Machine Learning Agents. Similarly, I

ensured that agent communications were implemented in an Agent base class, en-

abling additional agent types to be introduced by extending the Agent base class.

The ensures that agent prototypes can be rapidly developed and deployed into the

existing Multi-Agent Malicious Behaviour Detection system.

As demonstrated in Chapter 5, the entire system was implemented with exten-

ability in mind. Additionally, I have taken advantage of object-oriented practices to

abstract away unnecessary details from researchers wishing to develop new agents.

Dividing tasks between agents (i.e. intercepting traffic, crafting features, learning,
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etc.) enables developers to focus on improving specific parts of the framework without

having to know about the details of the other tasks.

7.3 Contributions

This research is of interest to many research communities, including machine learn-

ing, distributed artificial intelligence, user interfaces and human-machine interaction.

The contributions include:

1. A framework for Multi-Agent Malicious Behaviour Detection, that aids net-

work defenders in the detection, mitigation, and study of malicious multi-agent

system.

2. An extendable Multi-Agent Malicious Behaviour Detection implementation,

built from the ground up with object-oriented principles in mind, making it

possible to develop new agents using a variety of different programming lan-

guages and integrating those new agents into a population of existing agent

types.

3. A methodology that allows Multi-Agent Malicious Behaviour Detection Agents

to interact with malicious multi-agent systems, broadening the system’s expo-

sure to malicious multi-agent system behaviours, increasing the likelihood of

discovering novel behaviours.

4. A methodology that enables shared discovery of novel malicious multi-agent

systems between network defenders and semi-autonomous agents, by provid-

ing a mechanism for the Multi-Agent Malicious Behaviour Detection system to
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ground hypotheses to network defender expertise. Additionally, the system pro-

vides a feedback mechanism for human network defenders to communicate their

discoveries back into the Multi-Agent Malicious Behaviour Detection system.

5. Encouragement of further work in machine learning in this area by demon-

strating the value of machine learning algorithms in the context of computer

network security, and providing a mechanism to integrate new machine learning

algorithms into the existing system using Machine Learning Agents.

7.4 Future Work

There are a number of directions that future work in this area can profitably take.

Much of this worked has focused on building an architecture to support research in

multi-agent systems for computer security. Now that the architecture is available, it

can be built on for more interesting works. Here I will present a number of possible

extensions to this work that would be suitable for graduate, post-graduate, or even

undergraduate work.

7.4.1 User Interaction Study

For this study I was the sole source of security analytics for the experimental trials.

There was no feedback from other potential security analysts. I would have liked to

perform a complete usability study for this system. The usability study would involve

recruiting a pool of subjects with varying expertise in network security. Each analyst

could be classified by their previous experience with security products such as Snort.
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Criteria would be devised for measuring the capability of analysts to identify threats

to the network, the cognitive load on the analysts as well as the impact a well devised

user interface has on the analysts understanding of the environment. Analogous work

on examining cognitive load on robotic teleoperators has been done [Wegner and

Anderson, 2006], and perhaps similar metrics could be employed. This research would

address the gap between the overall capability that intelligent multi-agent systems

such as this one provide, with the usability of those technologies in the real world

environment. Further emphasis would be put on the responsiveness and adaptability

of the system. Currently my implementation can communicate intention and analysis

through log files and the 3D representation of traffic in the network, while the analysts

communicate their intentions and analytics by updating and adding misuse based

signatures to the system in reaction to information gained from the system. A well-

designed user interface can encourage easier interaction between the analyst and the

agents in the system. A benefit of the interaction study would be the implementation

of a user interface that is intuitive to a variety of security analysts. The user interface

demonstrated here is sufficient for this research, but it could be improved. I would like

to explore ways of improving the interactions between agents and security analysts,

such as introducing a more immersible user interface that allows the analyst to feel

more “in control”. Traditional user interfaces often seem passive, and have a high

latency - where the analyst ends up watching as the malicious agents attack the

system as opposed to interacting with them. Depending on the scope of the study,

this work would be suitable for both masters and doctoral theses. Candidates for

the experiments could be taken from volunteers in undergraduate computer security
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courses, or from industry.

7.4.2 Live Traffic Study

In this work, I have discussed the collection of malware and the infection of a

protected virtual network for evaluating security systems. There are a number of

legal, ethical and time constraints preventing me from persuing those opportunities.

However, it is an obvious next step for proving the value of this work. Once some of

the constraints were worked out, malware collection would be possible in a number

of ways. For example:

Honeypot Tactics : Many researchers have aimed to set up honeypots in order to

attract malicious software. The honeypot is a monitored machine that is vulnerable

to attack. Such vulnerabilities may include no firewall, easy to guess passwords,

unpatched software, older operating systems, etc. Since there is a significant amount

of automated victim discovery, a honeypot has the potential to be compromised by

automated as well as supervised attacks. There are, however, several disadvantages

to honeypots. First, a large number of attacks require user intervention to initiate.

Many attacks are content delivery: with no one to access a document infected with

malware, the honeypot may never be infected. Second, once a honeypot is infected

it may participate in malicious behaviour. There are some ethical issues with respect

to allowing a machine to participate in malicious behaviour that may cause damage

to other systems. Third, honeypots require patience and the infecting malware may

not be readily identified, requiring a significant amount of work for it to be effective.

Deliberate Self Infection: By keeping informed of the latest zero day attacks
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through multiple sources, it is possible to identify websites hosting infected docu-

ments. For example, if a specific zero day attack involves redirecting hosts to a

website to download malicious software, and the website is reported in the analysis

of the zero day attack, a researcher could browse to the website intentionally in order

to become infected. This is a preferred method, since it requires no official request or

involvement with anti-virus vendors, and it also does not require waiting for someone

to attack a honeypot. It also has the additional advantage of allowing the research to

pick and choose which infections to go after, giving the researcher additional control.

Anti-Virus Companies : Anti-virus companies maintain scores of malware samples

for their own analysis. Zero Day malware may be difficult to obtain. However, samples

of older malware are likely obtainable if formally requested for research purposes.

There are a number of anti-virus vendors to which such requests could be made,

including McAffee, Norton, AVG, Avast, Microsoft Defender, Panda AV, Kaspersky

Anti-Virus, etc.

Cyber Underground : Finally, malware is obtainable by becoming familiar with

the cyber underground. By trolling forums and reading documentation, a researcher

can solicit malware samples from individuals who experiment with malware. There

are also publicly available malware development tools, such as Metasploit, that allow

customization of malware attacks to suit attacker needs. These tools can be used to

modify malware for research purposes.

Once infected, the researcher could study the interactions between live malware

and their virtual infrastructure. By extending the existing Multi-Agent Malicious Be-

haviour Detection system and evaluating its performance, this work would be suitable
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for graduate level projects, or even a masters thesis.

7.4.3 Abstract Behaviours

This work has focused on features of sessions. However, there is an opportunity

for hierarchies of machine learning agents learning from more abstract features of

network communications. Features derived from multiple sessions, especially from

sessions of different types whose individual interactions seem benign, but when con-

sidered together betray a pattern of malicious behaviour. Some of the limitations to

overcome are the potential explosion of available features when the features of several

sessions must be combined in an exponential number of combinations, deciding when

to combine features from different sessions, what sessions are most likely to improve

the systems capability to detect malicious behaviour, and the automation of those de-

cisions. It is sensible to consider combining the features of DNS and HTTP sessions,

as malware may first use DNS to identify where to send data and then send it over

HTTP. However, is it more efficient to try to identify the behaviours in isolation or

together, i.e. independent beaconing behaviour and the data ex-filtration behaviour

or a single behaviour identified as the two combined. This is a significant extension

of the current Multi-Agent Malicious Behaviour Detection system and is suitable for

a masters level thesis.

7.4.4 Broader Machine Learning Comparison

While I am confident that I have chosen some of the leading online machine learn-

ing algorithms to trial with the Machine Learning Agents, there is an opportunity
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to re-use this architecture to study emerging machine learning algorithms. The ar-

chitecture provides the flexibility to plug in new Machine Learning Agents, and then

compare their accuracy with other Machine Learning Agents. There are a number of

machine learning algorithm libraries available today, and the capability of integrating

language-agnostic agents enables the capability for relatively quick research studies

in Machine Learning, for example, for projects for undergraduate students.

7.4.5 Dynamic Feature Selection

In this research, the selection of features for inclusion in each feature set was static

once an agent was deployed. However, much research has been done in identifying

ideal feature selection to balance classification accuracy vs efficiency (Section 3.7).

One concept that I had considered as a logical extension to this work is the inclusion

of agents that are capable of deriving new features and dropping less valuable features

to improve accuracy while maintaining efficiency. While the machine learning algo-

rithms are effectively working out the value of particular features for classifying traffic,

including novel features automatically without outside influence from a Security An-

alyst could potentially benefit agents, making it possible for them to evolve. Initially

identifying features is manually intensive, and as far as I have read, while automated

mechanisms exist for identifying valuable features from a set of features, the task of

choosing a set of possible features is still a manual process in network security. This

extension is ideal for graduate level research, as it would require extensive research

in identifying existing methods for deriving features from traffic autonomously.
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7.4.6 Impact of Encryption on Classification

Encryption poses an issue with a number of network detection systems (Section

3.8). While I did not directly address the issue in this research, future work could

evaluate the impact of encryption on both standard misuse detection engine and

the Multi-Agent Malicious Behaviour Detection system. As mentioned in Section

3.8, some behaviours are likely to demonstrate similar observable effects whether

the data communicated are encrypted or not, so while the misuse detection engine

might not be able to detect the keywords it is looking for in a packet, the features

of the communications (e.g. number of packets, average size of packets, ports used,

frequency, etc.) might stay relatively stable. This work would be suitable for an

undergraduate project in computer security.

7.4.7 Impact of Distributed Denial of Service

The experiments in Section 6.5 highlighted the impact of a possible distributed

denial of service attack through DNS on the machine learning agents. This naturally

leads to the question of how a malicious multi-agent system might purposely impact

the Multi-Agent Malicious Behaviour Detection system by sending specific types of

traffic, such as distributed denial of service attacks, in an attempt to make the system

learn specific traffic patterns. The experiment showed that the Multi-Agent Malicious

Behaviour Detection system learned to classify the majority of DNS as malicious. A

further bit of research would consist of subjecting a deployed Multi-Agent Malicious

Behaviour Detection system to several different types of distributed denial of service

attacks and evaluating the impact on further classifications once the distributed denial
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of service is complete. Can a malicious multi-agent system impact the Multi-Agent

Malicious Behaviour Detection system such that it is less likely to identify malicious

multi-agent system communications at a later date?

7.4.8 Efficiency Improvements

The agents implemented in this system have been optimized to varying degrees.

However, I recognize that a somewhat naive approach I have taken is to divide the

work across individual agents as unique processes. While some of the agents employ

dispatch queues to take advantage of multiple cores on a host machine, I believe

there is a significant benefit to be gained by evaluating mechanisms to share host

resources. With six core processors becoming commonplace, there is more and more

to gain by coding agents to distribute their work evenly among the available cores.

Efficiency could also be gained in terms of how agents communicate, evaluating what

messages to drop when there is congestion, quality control, and other factors. It is

important to perform more research in identifying the bottlenecks in the system in

order to propose potential improvements. The system as it stands can evaluate the

throughput of alerts, features and packets, so any improvements in efficiency should

be immediately measurable, making it an ideal for undergraduate research.

Another avenue of improvement would be hardware cards designed for fast string

matching, and how to best take advantage of those cards to improve the system

throughput. Metrics to identify the overall cost per gigabyte of traffic processed and

classified could help to justify further research in multi-agent systems such as this

one for wider acceptance by the network security community.
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One of the advantages of employing autonomous agents is mobility, and there is

also significant future work in exploiting this ability. Agents could be designed to

recognize when the machine currently hosting them does not have the resources to

keep up with the agent’s resource demands. By maintaining a unique identifier in the

system, the agent could transfer its current state to a different machine, perhaps by

querying other agents in the system for their host specifications and current load and

choosing a suitable host to move to.

7.4.9 Trust Relationships Between Agents

There is a degree of implied trust across the agents in this research. While the

Alert Source agent can provide a degree of ground truth for the Machine Learning

Agents, when several Alert Source Agents are involved, there may be inconsistencies in

the generated alerts. There is also the possibility that some agents produce either false

positives or false negatives. My approach takes the view that the false positives and

false negatives should work themselves out to some degree, as the machine learning

algorithms involved have some built in resistance to mis-classifications. However, an

interesting extension to this work would be exploring the trust relationships that can

develop between agents. Alert Source Agents that consistently agree with each other

and the well trained Machine Learning Agents could be considered more trustworthy

then those that consistently disagree. This also adds the additional variable of status

quo, where introducing an agent that is capable of identifying threats that other

agents cannot may appear as untrustworthy if it consistently disagrees with other

agents, even though it is in fact identifying real or potential threats. On the other
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side of the equation is the agent that effectively runs off the rails and begins mis-

classifying a large percentage of benign traffic as malicious. Finally, there is the

potential for malicious intentions, where Agents are designed to deceive other agents

in the system by classifying traffic as benign when it provides their designer with a

particular advantage. Also, one can consider how the security analyst can incorporate

their trust evaluations of agents. Security Analysts may ignore the results of some

tools if they don’t agree with the analysts intuition. Providing a mechanism to blend

the human and automated trust evaluations is important for a system to perform

in the real world reliably. That particular element could be especially difficult to

evaluate. However, there are a number of studies related to trust in multi-agent

systems that can provide a basis for expanding on this work. Depending on the

depth of the study on trust relationships, this study could provide enough work for a

masters or doctoral level dissertation.

7.4.10 Security of Agents

In addition to implied trust across the agents, there is also the assumption that

malicious agents existing in the network will not attempt to attack the Multi-Agent

Malicious Behaviour Detection agents. Future work could focus on securing the com-

munications between agents in the system to ensure that malicious agents cannot

exploit the system. Some security measures already exist. For instance, each agent

must announce itself using a uuid. Those uuid’s are generated randomly at the mo-

ment, but they could be assigned from a registry so that only registered agents can

participate in the system. There is also the capability built into RabbitMQ to enable
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SSL encryption. Since all messages shared between agents are routed through the

AMQP server, encryption can be enforced for all communications. The source code

itself could contain potential security risks. Additionally, the impact of introducing

security measures could be evaluated. As communications are encrypted, one would

suspect an increase in latency and a decrease in overall performance of the agents.

However, as this research has not addressed security issues related to agents, such

studies would be interesting future work.

7.5 Conclusion

It is my hope that the success of this research encourages more research in mali-

cious multi-agent system detection, by providing a Multi-Agent Malicious Behaviour

Detection framework and implementation that can be extended by professional re-

searchers, graduate students and undergraduate students alike. The framework en-

ables researchers in machine learning to evaluate their algorithms in a complex dy-

namic domain, computer network security. Further, by demonstrating the benefits

of a multi-agent approach, and implementing robust multi-agent communications,

this work provides a platform to explore more complex interactions between Multi-

Agent Malicious Behaviour Detection Agents. I believe that intelligent agents still

lack the capability to perform all of the tasks required by network defenders au-

tonomously, requiring interactions with human network defenders. This research has

demonstrated that improving interactions between network defenders and the Multi-

Agent Malicious Behaviour Detection framework increases the detection capability of

both participants. If intelligent agents are not going to be capable of performing com-
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plex tasks in the near future, then the interactions of human network defenders and

intelligent agents will only become more important as a subject for future research.

Additionally, given that malicious multi-agent systems will continue to become more

sophisticated, it is important to frame the problem as competing multi-agent systems.

If researchers do not continue to leverage artificial intelligence (i.e. machine learning,

multi-agent systems, teleautonomy) to improve the capabilities of agents defending

networks, then malicious multi-agent systems will continue to wreak havoc on unpro-

tected networks, as malware writers have strong financial motivations to continue to

improve their work.



Appendix A

Multi-Agent Malicious Behaviour

Detection Implementation

Documentation

A.1 Overview

The following appendix provides the doxygen style documentation for the Multi-

Agent Malicious Behaviour Detection implementation in Chapter 5. The documen-

tation is provided here so that others can better replicate this work, and understand

the details of the implementation choices further than is appropriate to present in

the main body of the thesis. A motivating factor of this research is encouraging fur-

ther work in Multi-Agent Malicious Behaviour Detection. This framework provides a

potential starting point for researchers interested in exploring this research further.
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A.2 Agent

A.2.1 Agent Class Reference

This is the abstract base class for all agents in the multi-agent malicious behavior

detection system. This class provides the logic for connecting to and communicating

with other agents in the system. It also sets out the interface for uniquely identifying

agents, terminating agents graciously and interacting with the agent control channel.

Inheritance diagram for Agent:

Agent

AlertSource

FeatureSource

ProtocolAnalysis

TrafficSource

DynamicFirewall

TrafficManipulation

LoggerAgent

UnifiedAlertSource

MultiPacketFeatureSource

DNSFeatureSource

TransportLayerFeatureSource

HTTPFeatureSource

DNSProtocolAgent

HTTPAgent

PcapFileTrafficSource

PcapLiveTrafficSource

DNSManip

HTTPManip

Public Types

• enum ControlState

A list of basic states that an agent can be in at any given time. Complex agents

will maintain further state. However, each agent must at least be able to handle

transition between the Control States.



Appendix A: Multi-Agent Malicious Behaviour Detection Implementation
Documentation 299

Public Member Functions

• Agent (string host, int port)

The base constructor for all agents. Sets up a connection to an AMQP server to

communicate with other agents. Accepts a host and port number.

• virtual void init ()

The initialization method should be called before any agent begins it’s sense, plan

and act cycle. Initializes the agent’s ID as well as creating and binding to the

agent control channel.

• abstract bool sensePlanAct ()

The agent’s sense, plan, act cycle. This method should be invoked every cycle and

represents the agent’s capability to act autonomously. While there is no specific re-

quirement that the agent performs each part of the cycle (sense, plan, and act), any

class that extends the Agent ( p. 298) class should be able to operate autonomously

by executing this method indefinitely.

• virtual BasicDeliverEventArgs checkControlChannel ()

Each agent polls the agent control channel for messages broadcast from other

agents.

• virtual bool getTerminate ()

Determine if the agent should launch termination routines.

• virtual bool getComplete ()

Determine if the agent has successfully completed all prequisite termination rou-

tines.

• virtual void onTerminate ()
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Provides each agent with an opportunity to perform any necessary task before ter-

mination. This method will send a message indicating that it is about to terminate

and closes all communication channels.

• virtual void onReset ()

Provides each agent with an opportunity to perform any necessary tasks in order

to reset processing. After reset is completed the agent will return to a Set state, as

though it has just been launched.

• virtual void onPause ()

Provides each agent with an opportunity to perform any necessary task to suspend

processing. After executing pause routines the agent should no longer process data.

However, the agent should be capable of resuming processing from where is left off.

Data received while paused should be ignored.

• virtual void onStart ()

Provides each agent with an opportunity to perform any necessary tasks to enable

processing. Should enable processing from either the Set or the Paused states.

• void sendTerminate ()

Broadcast a message on the agent control channel indicating that all agents should

terminate.

• virtual void writeLog (object source, ElapsedEventArgs e)

Mechanism for producing basic log messages. Agents should re-implement the fol-

lowing method to produce more specific log messages. However, this method pro-

vides the basic information required for logging should logging be enabled. It will

also send the log message to the appropriate exchange.
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Public Attributes

• int loglevel

If logging is enabled, this value indicated the verbosity of the logs produced.

• string logmessage

Stores the current agent log information.

• string[ ] ControlState str = { ”Running”, ”Paused”, ”Set”, ”Terminated”,

”Complete” }

A map of strings for the control states.

Protected Attributes

• IConnection connection

A connection to an AMQP server.

• string AMQPHost

The IP address or host name of the AMQP server.

• int AMQPPort

The port number that the AMQP server is listening on.

• string agentType

A two letter string indicating the type of agent.

• string agentId

A unique id for an agent. Used when interacting with other agents.

• ControlState agentCntrlState

The current control state of the Agent ( p. 298).
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• System.Text.UTF8Encoding encoding

Instance of an encoder for writing messages and logs in UTF8.

Private Member Functions

• string GenerateId ()

Generate a Unique 19 character alphanumeric ID for each agent. The id consists

of 16 pseudo randomly chosen alphanumerics based on a guid concatenated with

the two characters of the agent type.

Private Attributes

• ConnectionFactory connectionFactory

Connection factory to support AMQP messaging between agents.

• IModel agentControlChannel

A channel for broadcasting and receiving messages to all agents.

• QueuingBasicConsumer agentControlConsumer

A consumer for control messages broadcast to all agents.

• System.Timers.Timer logTimer

If logging in enables, this timer indicates when a log message should be broadcast.
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A.3 Traffic Source

A.3.1 TrafficSource Class Reference

The TrafficSource (p. 303) abstract class is intended as a base class for objects

implementing traffic source agents. It depends on the PacketDotNet C# libraries to

provide an API for dealing with packet objects. The TrafficSource (p. 303) defines

several AMQP connections in order to deliver messages to other agents in the system.

Traffic source agents contain a traffic feature source by default, that is responsible for

deriving features from the traffic processed by the traffic source agent.

Inheritance diagram for TrafficSource:

TrafficSource

PcapFileTrafficSource PcapLiveTrafficSource

Agent
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Collaboration diagram for TrafficSource:

TrafficSource

Agent

FeatureSource

TransportLayerFeatureSource

 tcpFeatureSource_
udpFeatureSource_

MultiPacketFeatureSource

Public Member Functions

• TrafficSource (string host, int port)

Base constructor for any objects implementing a traffic source. Agent ( p. 298)

types that implement this abstract class will be identified as ”TS” agent types. The

constructor initializes a synchronized queue for managing captured packets and one

or more feature source agents to derive features from the incoming packets.

• override void init ()
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Initialize the packet and packet summary exchanges on the target AMQP server

for publishing messages. Also subscribe to the alert source exchange.

• override void onTerminate ()

When instructed to terminate the traffic source will process any packets remaining

in the packet queue, instruct the resident feature source agents to terminate, and

finally call the base class on termination routine.

• override void onReset ()

Clears out all of the existing structures, resets counters and instructs the resident

feature source agents to perform their on reset routines. When finished, it will

invoke the base class on reset routines.

• override void onPause ()

Instruct any resident feature sources to pause and call the base class on pause

routines.

• override void onStart ()

Instruct any resident feature sources to begin processing and invoke the base class

on start routines.

• override bool sensePlanAct ()

The agent senses packets from the capture device, updates its internal state repre-

sented by one or more traffic features agents, and then acts by publishing messages

for other agents to subscribe to.

• override BasicDeliverEventArgs checkControlChannel ()

In addition to checking the agent control channel also ensure that the feature

sources check their control channels.
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• abstract bool setupCaptureDevice ()

Any agents extending the TrafficSource ( p. 303) must define a mechanism for

setting up the capture device that will provide the packets for the source. When

implemented, this method should access the capture device, perform configuration

and start capturing packets.

• string getTopic (Packet packet)

Return the five tuple for this packet as an ASCII string topic. The topic consists

of five elements; the server IP, the server port, the client IP, the client port and

the transport protocol. All values should be hex strings, for example C4A80101.-

0050.CAA80122.0400.0006. The server is assumed to be the side of the connection

with the lowest port number.

• override void writeLog (object source, ElapsedEventArgs e)

Add the number of packets published, the number of features labelled, and the num-

ber of features published to the log message. Then pass it on to the parent class to

for transmission.

Public Attributes

• long packetsPublished

Number of packets published.

• long packetSummaryPublished

Number of packet summaries published.

• long featuresPublished

Number of features published.
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Protected Member Functions

• void receivePacket (RawCapture rawPacket)

TrafficSource ( p. 303) implementations are intended to invoke this method to

push packets into the packet queue. It abstracts away any requirement for the

abstract class to understand how packets are generated (e.g. by reading a file or

by capturing live traffic). The method expects packets formatted as PacketDotNet.-

RawCapture objects. The packets include all packet data from the link layer on.

Packets can be added to the packet queue asynchronously and are later processed

synchronously.

• bool checkPktSumFilters (byte[ ] packetSummary)

Compare this packet against a set of software filters. If the packet summary passes

the filter test this method returns true. Used primarily to identify when to publish

packet summaries for other agents in the system. When bandwidth is limited filters

are used to reduce the amount of traffic generated by the traffic source.

• bool checkPktFilters (byte[ ] packetSummary)

Compare this packet against a set of software filters. If the packet summary passes

the filter test this method returns true. Used primarily to identify when to publish

packets for other agents in the system. When bandwidth is limited filters are used

to reduce the amount of traffic generated by the traffic source.

Protected Attributes

• TransportLayerFeatureSource tcpFeatureSource

An instance of a Transport Layer Feature Source that maintains a set of features

for TCP sessions observed by the agent.
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• TransportLayerFeatureSource udpFeatureSource

An instance of a Transport Layer Feature Source that maintains a set of features

for UDP sessions observed by the agent.

• Queue packetQ

A queue of packets capable of queuing packets asynchronously and managing their

flow synchronously, such that packets are processed one at a time.

• IModel alertSourceChannel

A channel for communications with alert source agents.

• QueuingBasicConsumer alertSourceConsumer

Basic Consumer to consume messages from alert source agents.

• IModel packetChannel

A channel for publishing packet data to subscribing agents.

• IModel packetSummaryChannel

A channel for publishing packet summaries to subscribing agents.

• ICaptureDevice device

The device to capture packets on.

• LinkedList< SoftPktFilter > pktExchFilters

List of filters to apply to packets destined for the packet exchange.

• LinkedList< SoftPktFilter > pktSummaryExchFilters

List of filters to apply to packets destined for the packet summary exchange.
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Private Member Functions

• byte[ ] processPacket (PosixTimeval time, Packet packet)

Provide the feature source agent with access to a packet. This method acts primarily

as a wrapper for the feature sources process packet method.

Private Attributes

• PosixTimeval currentTime

A timestamp from the most recently observed packet.

• int udpfreq

Number of iterations before checking if any udp session should expire.

A.3.2 PcapLiveTrafficSource Class Reference

PcapLiveTrafficSource (p. 309) is an implementation of a traffic source agent

that captures packets from an ethernet card in promiscious mode. The agent is

intended to passively capture packets, preferably on a tap. It is not intended to

operate inline.
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Inheritance diagram for PcapLiveTrafficSource:

PcapLiveTrafficSource

TrafficSource

Agent
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Collaboration diagram for PcapLiveTrafficSource:

PcapLiveTrafficSource

TrafficSource

Agent

FeatureSource

TransportLayerFeatureSource

 tcpFeatureSource_
udpFeatureSource_

MultiPacketFeatureSource

Public Member Functions

• PcapLiveTrafficSource (int dev, string host, int port)

Create a traffic source that passively captures packets from a live capture device.

Devices on most machines are identified by a device ID. The constructor accepts

a device ID but does not attempt to access the device.
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• override void onTerminate ()

When the PcapLiveTrafficSource ( p. 309) is required to terminate, it closes the

capture device, and calls the parent class on terminate routines.

• override bool sensePlanAct ()

The agent’s sense, plan, act cycle. The cycle executes as long as the agent exists.

The agent senses packets from the capture device, adjust it’s internal state of traffic

flows and then acts by publishing messages for other agents to subscribe to.

• override bool setupCaptureDevice ()

Try to access the capture device using the device ID supplied at construction. If

the device is accessed successfully then a callback method is supplied to handle the

incoming packets. Packets will arrive asynchronously. However, as packets arrive

they are added to a queue so that they can be processed synchronously.

Private Member Functions

• void device OnPacketArrival (object sender, CaptureEventArgs args)

Since packet arrivals are not predictable, push them into a synchronous queue so

that the agent can process them when it has finished processing the previous packet.

This is the callback method supplied to the device during the call to setupCapture-

Device.

Private Attributes

• int deviceID

The network device identifier.
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A.3.3 PcapFileTrafficSource Class Reference

PcapFileTrafficSource (p. 313) is an implementation of a traffic source agent

that reads packets from pcap formatted files.

Inheritance diagram for PcapFileTrafficSource:

PcapFileTrafficSource

TrafficSource

Agent
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Collaboration diagram for PcapFileTrafficSource:

PcapFileTrafficSource

TrafficSource

Agent

FeatureSource

TransportLayerFeatureSource

 tcpFeatureSource_
udpFeatureSource_

MultiPacketFeatureSource

Public Member Functions

• PcapFileTrafficSource (string file, string host, int port)

Create a traffic source that reads from a predefined packet capture file. The con-

structor requires the file name to read from.

• PcapFileTrafficSource (string file, double pktDelayMS, string host, int port)
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Create a traffic source that reads from a predefined packet capture file. The con-

structor requires the file name to read from and a packet delay in milliseconds.

• override void onTerminate ()

On termination the PcapFileTrafficSource ( p. 313) closes its handle to the pcap

file and calls the parent class termination routines.

• override void onReset ()

On reset the PcapFileTrafficSource ( p. 313) closes its handle to the pcap file and

then reopens the pcap file by calling setupCaptureDevice. The agent also invokes

its parent class on reset routines.

• override void onPause ()

On pause the logging timer is stopped and the parent class on pause routines are

called.

• override void onStart ()

On start the logging timer is started and the parent class on start routines are

called.

• override bool sensePlanAct ()

The agent’s sense, plan, act cycle. The cycle executes as long as the agent exists.

The agent senses packets from the capture device, adjust it’s internal state of traffic

flows and then acts by publishing messages for other agents to subscribe to.

• override bool setupCaptureDevice ()

Setup a packet source from a previously captured pcap file. For offline analysis.

Especially useful when the various agents in the system are not capable of keeping
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up with live traffic. Also enables repeatable experiments.

• override void writeLog (object source, ElapsedEventArgs e)

Override the writeLog mechanism to add in details of the current packets per second

and megabits per second achieved by the pcap file traffic source. Also calls the parent

classes writeLog.

Private Member Functions

• void getNextPacket (object source, ElapsedEventArgs e)

A wrapper for managing packets read from the pcap file. This method can be used

as an event handler to enforce a specific packet rate. Grabs a packet and passes it

up to the parent class (TrafficSource) using the receivePacket method.

Private Attributes

• string pcapfile

Name of file containing pcap traffic capture.

• double packetDelayMS

Desired amount of time between packets read from the capture file.

• Stopwatch st

A timer for reading packets at the desired rate.

• double bytesPerInterval = 0

The Number of bytes processed this interval (used for logging).

• double packetPerInterval = 0

The Number of packets processed this interval (used for logging).
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A.3.4 PacketManagerAgent Class Reference

The Packet Manager Agent is standalone application that instantiates a traffic

source agent.

Collaboration diagram for PacketManagerAgent:

PacketManagerAgent

PcapFileTrafficSource

 trafficSource

TrafficSource

Agent

FeatureSource

TransportLayerFeatureSource

 tcpFeatureSource_
udpFeatureSource_

MultiPacketFeatureSource
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Static Public Attributes

• static PcapFileTrafficSource trafficSource

The traffic source instance.

Static Private Member Functions

• static void Main (string[ ] args)

Instantiate the traffic source instance and execute the sense, plan and act cycle

until a termination request is received.

A.4 Feature Source

A.4.1 TrafficFeatures Class Reference

The TrafficFeatures (p. 318) object maintains a list of features for a given five

tuple of traffic, where the five tuple is described by a server IP address, a server port,

a client IP address, a client port and a protocol. As packets are passed into the

TrafficFeatures (p. 318) object for a given five tuple, the features are updated to

reflect the new state for this particular flow of traffic.
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Inheritance diagram for TrafficFeatures:

TrafficFeatures

TransportLayerFeatures DNSFeatures

HTTPFeatures

Collaboration diagram for TrafficFeatures:

TrafficFeatures

RunningStat

 rs_

Public Member Functions

• TrafficFeatures (byte[ ] tuple)

The constructor for a TrafficFeatures ( p. 318) object uses the passed in five tuple
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to initialize the object. The tuple is represented by an array of bytes where bytes

0,1,2 and 3 are the client IP, bytes 4 and 5 are the client port, bytes 6,7,8 and

9 are the server IP, byte 10 and 11 are server port and byte 12 and 13 are the

protocol.

• TrafficFeatures ()

Default Constructor for an empty TrafficFeatures ( p. 318) object.

• byte[ ] getkey ()

Get the TrafficFeature’s 14 byte key, consisting of a 4 byte client IP address, a 2

byte client port, a 4 byte server IP address, a 2 byte server port and finally a 2

byte protocol value.

• virtual string getTopic ()

Return the five tuple for this TrafficFeatures ( p. 318) instance as a topic suitable

for publishing to an AMQP server. The topic consists of five elements; the server

IP, server port, client IP, client port and protocol. All values are represented as

hex strings. For example, a Traffic Feature where the server IP is 196.168.1.1,

the server port is 80, the client IP is 202.168.1.34, the client port is 1024 and the

protocol is TCP will return the topic string C4A80101.0050.CAA80122.0400.0006.

• virtual void updateFeatures (PosixTimeval time, Packet nextpacket)

As packets are passed into the Traffic Features instance this method updates the

features.

• virtual bool finished ()

A Traffic Feature by default does not contain logic to determine when it should

expire aside from the timeout. Any classes extending TrafficFeatures ( p. 318)
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should override this methods if they have internal logic that indicates a closed

connection (just as the FIN flag in TCP).

• virtual string toString ()

Creates a string representation of the TrafficFeatures ( p. 318) object.

• virtual byte[ ] toSerializedData ()

Creates a serialized byte array representing the features of the TrafficFeatures

( p. 318) object.

• virtual void deSerializeData (byte[ ] serialized)

Creates a TrafficFeatures ( p. 318) object instance from a serialized byte array.

Static Public Member Functions

• static byte[ ] generateKey (PacketDotNet.Packet packet)

A static method that enables the generation of 14 byte keys by copying the five

tuple out of a packet.

Public Attributes

• PacketDotNet.Packet lastPacket

The previous packet in the flow of packets. Used for some statistical calculations.

• long lastPacketTime

The time the last packet was received.

• System.Timers.Timer featureTimer

A timer that enables Traffic Features to age off if no packets are received for this

five tuple after a fixed interval.
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• UInt16 featureType

Any Traffic Feature that inherits from this class will set it’s own feature type for

serialization.

• UInt16 protocol = 0

The protocol of this traffic.

• UInt16 label = 0

A label assigned to this traffic.

• UInt16 pred = 0

A label assigned that may or may not agree with the original label.

• IPAddress clientIP

The ip address of the client.

• IPAddress serverIP

The ip address of the server.

• UInt16 clientPort = 0

The client port number.

• UInt16 serverPort = 0

The server port number.

• long ticksSinceLastConnection

The time since the last connection between the client and server participating in

the traffic.

• PosixTimeval starttimestamp

Time stamp for the first packet associated with this traffic.
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• PosixTimeval endtimestamp

Time stamp for the last packet associated with this traffic.

Protected Attributes

• byte[ ] key = new byte[14]

The key for this traffic feature object consists of a 4 byte client IP address, a 2

byte client port, a 4 byte server IP address, a 2 byte server port and a 2 byte value

for the protocol. The key contains 14 bytes in total.

• RunningStat rs = new RunningStat()

Maintain a set of running statistics for this Traffic Features instance.

A.4.2 TransportLayerFeatures Class Reference

TransportLayerFeatures (p. 323) maintains a list of features for a given five

tuple of traffic, extending on the features of the TrafficFeatures (p. 318) class. It

includes additional features derived from the IP, TCP and UDP headers. Features

are also maintained across several packets.
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Inheritance diagram for TransportLayerFeatures:

TransportLayerFeatures

HTTPFeatures

TrafficFeatures

Collaboration diagram for TransportLayerFeatures:

TransportLayerFeatures

TrafficFeatures

RunningStat

 rs_
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Public Member Functions

• TransportLayerFeatures ()

Default Constructor for a Transport Layer Features object. It sets the feature type

to 1 and calls the base class constructor.

• TransportLayerFeatures (byte[ ] tuple)

Overloaded constructor for a TransportLayerFeatures ( p. 323) object. It accepts

a five tuple as a byte array for a target session. It sets the feature type to 1 and

calls the base class constructor with the five tuple as an argument.

• override void updateFeatures (PosixTimeval time, Packet nextpacket)

As packets are passed into the TransportLayerFeatures ( p. 323) instance this

method updates the features.

• override bool finished ()

If both the client and server have sent packets with the TCP FIN flag set, return

true to indicate that the connection is closed and the features should be published.

• override string toString ()

Creates a string representation of the TransportLayerFeatures ( p. 323) object.

• override byte[ ] toSerializedData ()

Creates a serialized byte array representing the features of the TransportLayer-

Features ( p. 323) object. This method calls the base class’s toSerializedData and

then combines it with the serialized features of this features instance.

• override void deSerializeData (byte[ ] serialized)

Creates a TransportLayerFeatures ( p. 323) object instance from a serialized

byte array.
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Public Attributes

• const int serialSize = 116

Number of bytes in the message when serialized.

• byte maxDataControl = 0

Maximum number of data control bytes observed in a packet during the lifetime of

the traffic flow.

• byte medDataControlAB = 0

Median of data control bytes observed across all packets from client to server during

the lifetime of the traffic flow.

• byte q3DataControlAB = 0

Third quartile of data control bytes observed across all packets from client to server

during the lifetime of the traffic flow.

• ushort maxDataOnWire = 0

Maximum number of data bytes observed in a packet’s Ethernet PDU during the

lifetime of the traffic flow.

• ushort maxDataWireBA = 0

Maximum number of data bytes observed in a packet’s Ethernet PDU from server

to client during the lifetime of the traffic flow.

• ushort maxDataWireAB = 0

Maximum number of data bytes observed in a packet’s Ethernet PDU from client

to server during the lifetime of the traffic flow.

• ushort reqSackBA = 0
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If the end-point sent a SACK permitted option in the SYN packet opening the

connection, reqSackBA is 1; otherwise it is 0 (server to client)

• ushort maxSegmSizeAB = 0

Maximum segment size observed from client to server during the lifetime of the

traffic flow.

• ushort maxSegmSizeBA = 0

Maximum segment size observed from server to client during the lifetime of the

traffic flow.

• ushort minSegmSizeAB = ushort.MaxValue

Minimum segment size observed from client to server during the lifetime of the

traffic flow.

• ushort minSegmSizeBA = ushort.MaxValue

Minimum segment size observed from server to client during the lifetime of the

traffic flow.

• ushort maxDataIP = 0

Maximum number of bytes observed in a packet’s IP PDU during the lifetime of

the traffic flow.

• ushort maxDataIPAB = 0

Maximum number of bytes observed in a packet’s IP PDU from client to server

during the lifetime of the traffic flow.

• ushort maxDataIPBA = 0

Maximum number of bytes observed in a packet’s IP PDU from server to client

during the lifetime of the traffic flow.
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• ushort medDataIPAB = 0

Median of data bytes observed across all packet’s IP PDU from client to server

during the lifetime of the traffic flow.

• float meanSegmSizeAB = 0

Average segment size observed during the lifetime of the connection from client to

server calculated as the value reported in the actual data bytes field divided by the

actual data pkts reported.

• float meanDataControlAB = 0

Mean of data control bytes observed in packets from client to server during the

lifetime of the traffic flow.

• double varDataControlBA = 0

Variance of data control bytes observed in packets from server to client during the

lifetime of the traffic flow.

• int totalSegms = 0

Total segments observed during the lifetime of the traffic flow.

• int totalPkts = 0

Total packets observed during the lifetime of the traffic flow.

• int totalPktsAB = 0

Total packets observed from client to server during the lifetime of the traffic flow.

• int totalPktsBA = 0

Total packets observed from server to client during the lifetime of the traffic flow.

• LinkedList< ushort > dataIPLengthsABList = new LinkedList<ushort>()
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List of data IP PDU lengths observed from client to server.

• ushort[ ] dclAB = new ushort[256]

Total data control byte lengths from client to server.

• bool clientFin

Set to true when a packet from the client has the TCP FIN option set.

• bool serverFin

Set to true when a packet from the server has the TCP FIN option set.

A.4.3 DNSFeatures Class Reference

The DNSFeatures (p. 329) object derives a list of features for a given DNS

packet. It parses the entire DNS message, starting with the DNS header and then

each DNS record, including all queries, answers, name servers and additional records.

Combining the features of each record found in the message into a single set of features

for the DNS packet ensures the feature sets for each DNS packet remains a consistent

size.

Inheritance diagram for DNSFeatures:

DNSFeatures

TrafficFeatures
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Collaboration diagram for DNSFeatures:

DNSFeatures

TrafficFeatures

RunningStat

 rs_

NetworkStringFeatures

 rdata_
name_

Public Member Functions

• DNSFeatures (byte[ ] tuple)

Overloaded constructor for a DNSFeatures ( p. 329) object. Accepts an initial

thirteen byte key. The constructor sets the feature type to 2 and passes the key to

the base class constructor.

• DNSFeatures ()

Default Constructor for a DNSFeatures ( p. 329) object. It sets the feature type

to 2 and calls the base class constructor.

• void updateFeatures (DNSMessage dnsMessage, PosixTimeval time, Packet

nextpacket)
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As packets are passed into the DNS Features instance this method updates the fea-

tures. First the agent parses the DNS header, followed by all queries, answers,

name servers and additional records. Network String Features objects are instan-

tiated to track the features of the rdata and the name data. The base class (Traffic

Features) updateFeatures method is also invoked.

• override void updateFeatures (PosixTimeval time, Packet nextpacket)

Implements the base class update features method to ensure it adheres to the ab-

stract class requirements.

• override string getTopic ()

Append the feature type ”DNS” to the topic returned by a call the base class (-

TrafficFeatures) getTopic method. With the addition of DNS feature type, the

topic consists of six elements; the server IP, server port, client IP, client port,

protocol and feature type. All values are represented as hex strings. For example,

a DNSFeatures ( p. 329) instance where the server IP is 196.168.1.1, the server

port is 80, the client IP is 202.168.1.34, the client port is 1024, the protocol is

TCP and the feature type is DNS will return the topic string C4A80101.0050.CA-

A80122.0400.0006.DNS.

• override string toString ()

Creates and returns a string representation of the DNSFeatures ( p. 329) object.

• override byte[ ] toSerializedData ()

Creates a serialized byte array representing the features of the DNSFeatures

( p. 329) object.

• override void deSerializeData (byte[ ] serialized)
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Creates a DNSFeatures ( p. 329) object instance from a serialized byte array.

Public Attributes

• UInt16 identifier

Identifier created by the program to represent the query, used to match requests to

replies.

• UInt16 flags

The flag bits including the bits aa, tc, rd, ra, and z.

• UInt16 qCount

The number of questions in the DNS message.

• UInt16 aCount

The number of answers in the DNS message.

• UInt16 nsCount

The number of name servers in the DNS message.

• UInt16 arCount

The number of additional records in the dns message.

• NetworkStringFeatures rdata

Features of the rdata message contained in the dns message.

• NetworkStringFeatures name

Features of the name contained in the dns message.
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A.4.4 HTTPFeatures Class Reference

The HTTPFeatures (p. 333) object maintains a list of features for a given H-

TTP session. As new packets belonging to the given HTTP session are identified

an HTTPFeature instance can update its features provided the next packet in the

session.

Inheritance diagram for HTTPFeatures:

HTTPFeatures

TransportLayerFeatures

TrafficFeatures
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Collaboration diagram for HTTPFeatures:

HTTPFeatures

TransportLayerFeatures

TrafficFeatures

RunningStat

 rs_

NetworkStringFeatures

 urlFeatures_
responseFieldFeatures_
requestFieldFeatures_

Public Types

• enum RequestFieldsEnum

An enumeration of the list of HTTP request header fields to extract features from.

Public Member Functions

• HTTPFeatures (byte[ ] tuple)

Overloaded constructor for a HTTPFeatures ( p. 333) object that accepts a five

tuple. Sets the feature type to 3 and initializes place holders for a subset of request

header fields and response header fields. Also initializes dictionaries for all parsed
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request and response header fields. Features for strings of interest are parsed by

NetworkStringFeature objects. The five tuple provided to the constructor is passed

to the base class constructor.

• HTTPFeatures ()

Constructor for a HTTPFeatures ( p. 333) object. Sets the feature type to 3 and

initializes place holders for a subset of request header fields and response header

fields. Also initializes dictionaries for all parsed request and response header fields.

Features for strings of interest are parsed by Network String Feature objects.

• override void updateFeatures (PosixTimeval time, Packet nextpacket)

As HTTP packets are passed into the HTTPFeatures ( p. 333) instance, this

method updates the features.

• override string getTopic ()

Append the feature type ”HTTP” to the five tuple topic. The HTTP feature topic

consists of five elements; the server IP, server port, client IP, client port, protocol

and feature type. All values should be hex strings, except for the feature type. For

example 000000AA.C4A80101.0050.CAA80122.0400.HTTP.

• int extractHeaderField (byte[ ] data, int sindex, out string fieldname, out

byte[ ] fieldvalue)

Traverse a line of an http response or request to extract a header field. It expects

to see a ”field name”0x3A0x20”value”0x130x12.

• int extractMethod (byte[ ] data)

Traverse the first line of an http request to extract the method. It expects to see a

”method”0x20”url”0x20”http version”0x130x12.
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• override string toString ()

Creates a string representation of the HTTPFeatures ( p. 333) object.

• void prettyPrint ()

Creates a nicely formatted string that displays the session request and response

headers, as well as a subset of the session features.

• override byte[ ] toSerializedData ()

Creates a serialized byte array representing the features of the HTTPFeatures

( p. 333) object.

• override void deSerializeData (byte[ ] serialized)

Creates an HTTPFeatures ( p. 333) object instance from a serialized byte array.

Private Types

• enum ResponseFieldsEnum

An enumeration of the list of HTTP response header fields to extract features from.

Private Member Functions

• int extractResponseStatus (byte[ ] data)

Traverse the first line of an http response to extract the response status. It expects

to see a ”method”0x20”url”0x20”http version”0x130x12.

Private Attributes

• string[ ] HttpMethods = {”GET”,”POS”,”HEA”,”PUT”,”DEL”}

A list of HTTP methods to identify HTTP requests.
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• string[ ] HttpResponses = { ”HTTP/” }

A list of strings found in HTTP responses to identify packets containing an HTTP

response.

• string[ ] RequestFields = { ”User-Agent”, ”Via”, ”Referer”, ”Host”, ”Cookie”

}

A list of HTTP request header fields to extract features from.

• string[ ] ResponseFields = { ”Server”, ”Location”, ”Set-Cookie” }

A list of HTTP response header fields to extract features from.

• string method

The method extracted from the HTTP request.

• string url

The URL extracted from the HTTP request.

• NetworkStringFeatures urlFeatures

The features of the URL extracted from the HTTP request.

• NetworkStringFeatures[ ] requestFieldFeatures

The features of a subset of the header fields extracted from the HTTP request.

• NetworkStringFeatures[ ] responseFieldFeatures

The features of a subset of the header fields extracted from the HTTP response.

• string httpversion

The HTTP version extracted from the HTTP request or the HTTP response.

• string statusCode

The status code (200, 401, etc...) extracted from the HTTP response.
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• string status

The status extracted from the HTTP response.

• Dictionary< string, byte[ ]> requestHeaderFields

A collection of the header field names and values extracted from the HTTP request.

• Dictionary< string, byte[ ]> responseHeaderFields

A collection of the header field names and values extracted from the HTTP re-

sponse.

• bool requestHeader = false

Indicates whether an HTTP request header was identified in the session.

• bool responseHeader = false

Indicates whether an HTTP response header was identified in the session.

• byte numRequestHeaders

The number of fields found in the HTTP request header.

• byte numResponseHeaders

The number of fields found in the HTTP response header.

A.4.5 NetworkStringFeatures Class Reference

The NetworkStringFeatures (p. 338) object represents the interesting features

for the purposes of classifying the strings commonly found in protocols containing

ascii encodings. Examples include DNS and HTTP. Given a string of bytes Network-

StringFeatures (p. 338) will determine the values of various features like the length,

entropy and number of segments.
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Public Member Functions

• NetworkStringFeatures ()

Default constructor for creating a blank NetworkStringFeatures ( p. 338) object.

Primarily used to create a place holder for deserializing features sent across the

network.

• NetworkStringFeatures (byte[ ] str)

Constructor that accepts an array of bytes representing a string found in a network

protocol. The constructor extracts a subset of relevant features and stores them in

this NetworkStringFeatures ( p. 338) instance.

• byte[ ] toSerializedData ()

Creates a serialized byte array representing the features of the NetworkString-

Features ( p. 338) object.

• void deSerializeData (byte[ ] serialized)

Creates a NetworkStringFeatures ( p. 338) object instance from a serialized byte

array.

Public Attributes

• const int serialSize = 22

Number of bytes in the message when serialized.

• UInt16 byteDistinct

Number of distinct byte values in the string.

• byte byteMinVal



340
Appendix A: Multi-Agent Malicious Behaviour Detection Implementation

Documentation

Minimum byte value in the string.

• byte byteMaxVal

Maximum byte value in the string.

• UInt16 asciiCap

Number of ASCII capital letters (byte values 65-90) in the string.

• UInt16 asciiLow

Number of ASCII lower case letters (byte values 97-122) in the string.

• UInt16 asciiDigit

Number of ASCII digits (byte values 48-57) in the string.

• UInt16 len

Length of string in bytes.

• double entropy

The entropy of the string message.

• UInt16 segments

The number of segments the string contains (separated by ”/”,”.”,”:”,”;” or ”=”).

A.4.6 FeatureLabel Class Reference

Class used to represent labels for sets of features, typically provided by Machine

Learning Agents or Alert Source Agents. Since session keys only provide uniqueness

within a specific period, this class provides the capability to track labels applied to

the same session key over time, that may not represent a single session.
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Public Member Functions

• FeatureLabel (byte[ ] key, ushort label, PosixTimeval tv)

Create a Feature Label with a specific session key, label and timestamp.

• void addLabel (ushort label, PosixTimeval tv)

Add a new label for a session matching this session key.

• ushort getLabel (PosixTimeval start, PosixTimeval end)

Identify labels contained in the feature label list that are within a specific time

range, and have the lowest label number. Typically lower labels are reserved for

more specific classification (e.g. a label for Yahoo Mail should have a lower value

then HTTP, since the former is more specific).

Public Attributes

• byte[ ] key

A 14-byte session key.

• List< KeyValuePair < PosixTimeval, ushort > > labels

A list containing pairs of labels and timestamps indicating when the label is valid.

A.4.7 RunningStat Class Reference

This class provides an implementation of a running stats mean, variance and

standard deviation. This code is based on the code found at www.johndcook.-

com/standard deviation.html and based on work described in \citep{ling74stats} and

\citep{chan83stats}. I have modified the source code by porting it to C# and adding
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comments. The technique involves calculating the statistical values over a moving

window.

Public Member Functions

• RunningStat ()

Constructor initializes the number of values pushed into the formula to 0 and

returns a RunningStat ( p. 341) object.

• void Clear ()

Clears the number of values pushed into the formula back to 0.

• void Push (double x)

Push a value into the formula for calculating the running stats.

• int NumDataValues ()

Return the number of data values pushed into the running stats formula.

• double Mean ()

Calculates the current mean based on the running stats formula.

• double Variance ()

Calculates the current variance based on the running stats formula.

• double StandardDeviation ()

Calculates the current standard deviation based on the running stats formula.

Private Attributes

• int m n
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Number of values pushed into the running stats formula.

• double m oldM

The previous value of M from the running stats formula.

• double m newM

The current value of M from the running stats formula.

• double m oldS

The previous value of S from the running stats formula.

• double m newS

The current value of S from the running stats formula.

A.4.8 FeatureSource Class Reference

The FeatureSource (p. 343) abstract class is intended as a base class for objects

implementing feature source agents. The FeatureSource (p. 343) defines a channel

and queue for publishing features to other agents in the system. Feature source agents

are responsible for deriving features from traffic passed to it from a traffic source.
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Inheritance diagram for FeatureSource:

FeatureSource

MultiPacketFeatureSource DNSFeatureSource

Agent

TransportLayerFeatureSource HTTPFeatureSource

Collaboration diagram for FeatureSource:

FeatureSource

Agent

Public Member Functions

• FeatureSource (string host, int port)

Base constructor for any objects implementing a FeatureSource ( p. 343). The
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constructor sets the agent type to ”FS”, creates a channel for features, and initial-

izes a synchronized queue for managing features that are ready to publish.

• virtual int publishFeatures ()

Process the feature queue and publish all expired features out to subscribing agents.

• abstract void add (TrafficFeatures flow)

Abstract method, each agent implementing a FeatureSource ( p. 343) must pro-

vide a mechanism to add new features to the FeatureSource ( p. 343).

• override void onReset ()

On reset the feature source agent will clear out its current list of labels and expired

feature sets. It will also reset counters. Finally the parent on reset is invoked.

• override void onTerminate ()

Set the agents state to Complete and calls the parent on terminate routines.

Public Attributes

• Queue syncExpiredFeaturesQ

A Queue of feature objects that should be published and disposed of.

• Dictionary< byte[ ], FeatureLabel > trafficFeatureLabels

A dictionary containing labels collected from an Alert Source Agent ( p. 298).

• long featuresPublished

Counter to keep track of the number of features published.

• long featuresLabelled

Counter to keep track of the number of features labelled before being published.
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Protected Attributes

• IModel featureChannel

An AMQP channel for publishing features to subscribing agents.

A.4.9 MultiPacketFeatureSource Class Reference

The MultiPacketFeatureSource (p. 346) extends the FeatureSource (p. 343)

by providing the capability to maintain features across sessions of multiple packets.

Inheritance diagram for MultiPacketFeatureSource:

MultiPacketFeatureSource

TransportLayerFeatureSource HTTPFeatureSource

FeatureSource

Agent
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Collaboration diagram for MultiPacketFeatureSource:

MultiPacketFeatureSource

FeatureSource

Agent

Public Member Functions

• MultiPacketFeatureSource (string host, int port, PosixTimeval timeout)

Constructor for a MultiPacketFeatureSource ( p. 346). Initializes a structure

to maintain the traffic features and the connection history structure. Also sets the

timeout for feature sets.

• override void onTerminate ()

When instructed to terminate publish the remaining sessions in the traffic features

structure. The remaining features will time out quickly since no more packets are

processed after a terminate is received. Once all features are published the base on

terminate routines are called.

• abstract byte[ ] processPacket (PosixTimeval time, Packet packet)

Any agents implementing the MultiPacketFeatureSource ( p. 346) must provide
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a mechanism to process packets passed to it by a traffic source. The implementation

must include a time stamp, indicating when the packet was received and a copy of

the full packet.

• override void add (TrafficFeatures featureSet)

Add a new traffic feature to the dictionary of features currently being tracked,

indexed by the five tuple of the feature object. Also, update the connection history

if this feature represents a session that is not currently being tracked.

• int expireTrafficFeatures (PosixTimeval curr, bool sendFeatures)

Check existing feature sets against the time of the most recent intercepted packet.

If the difference between the current packets timestamp and the most recent packet

in the feature sets timestamp is greater then the timeout of the feature set place

feature set into a synchronized queue for expired features. The method performs

clean up necessary before features are published to other agents.

• PosixTimeval timevalDiff (PosixTimeval a, PosixTimeval b)

Utility method for determining the time difference between two PosixTimeval ob-

jects.

• override void onReset ()

On reset clear out the traffic features and connection history structures. Reset

some internal counters. Call the parent classes on reset routines.

Static Public Member Functions

• static byte[ ] normalizeKeyFromAlert (byte[ ] buffer)

Provided with a message from an alert source, this method will parse out and
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normalize the five tuple contained inside it, providing a key that can be used to

look up features.

• static PosixTimeval getTimeStampFromAlert (byte[ ] buffer)

Parse the timestamp from a Snort unified alert message. Used for matching alerts

to sets of features.

Public Attributes

• ConcurrentDictionary< byte[ ], TrafficFeatures > trafficFeatures

A structure that contains the current traffic features indexed by five tuple keys.

• int totalpackets = 0

Total number of packets processed by the traffic flow feature tracker.

• PosixTimeval timeout

The timeout specifies how long the feature set should be tracked before it is pub-

lished.

Protected Attributes

• Dictionary< byte[ ], DateTime > connectionHistory

A structure containing a history of all connections observed, indexed by five tuple

key.

A.4.10 TransportLayerFeatureSource Class Reference

The TransportLayerFeatureSource (p. 349) is an implementation of a Multi-

PacketFeatureSource (p. 346) that manages multiple TCP and UDP feature sets.
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Inheritance diagram for TransportLayerFeatureSource:

TransportLayerFeatureSource

MultiPacketFeatureSource

FeatureSource

Agent
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Collaboration diagram for TransportLayerFeatureSource:

TransportLayerFeatureSource

MultiPacketFeatureSource

FeatureSource

Agent

Public Member Functions

• TransportLayerFeatureSource (string host, int port, PosixTimeval time-

out)

This constructor invokes the MultiPacketFeatureSource ( p. 346) constructor.

• override bool sensePlanAct ()

The Transport Layer Feature source does not actively sense, plan or act. Instead

it relies on a Traffic Source Agent ( p. 298) to actively push in features that this

agent will react appropriately to.

• override byte[ ] processPacket (PosixTimeval time, Packet packet)
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Provides the agent with a mechanism to process packets passed to it by a traffic

source. The time stamp indicates when the packet was received.

A.4.11 DNSFeatureSource Class Reference

The DNSFeatureSource (p. 352) implements the abstract class FeatureSource

and is responsible for keeping track of multiple DNS features as the packets are passed

in from another agent.

Inheritance diagram for DNSFeatureSource:

DNSFeatureSource

FeatureSource

Agent
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Collaboration diagram for DNSFeatureSource:

DNSFeatureSource

FeatureSource

Agent

Public Member Functions

• DNSFeatureSource (string host, int port)

This constructor calls the FeatureSource constructor. It does not perform any

additional actions.

• override void add (TrafficFeatures feature)

When traffic features are added to the DNS Feature Source they are directly in-

serted into the expired features queue in preperation for being published. The agent

assumes that DNS packets consist of single packets, and ignores subsequent packets.

• override bool sensePlanAct ()

The DNS Feature source does not actively sense, plan or act. Instead it relies

on a Traffic Source Agent to actively push in features that this agent will react

appropriately to.
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• override void onTerminate ()

When instructed to terminate the agent will publish any features remaining in the

expired features queue, before calling the base class on Terminate routines.

A.4.12 HTTPFeatureSource Class Reference

The HTTPFeatureSource (p. 354) implements the abstract class MultiPacket-

FeatureSource and is responsible for keeping track of multiple HTTPFeatures (p. 333)

objects as packets are passed in from another agent.

Inheritance diagram for HTTPFeatureSource:

HTTPFeatureSource

MultiPacketFeatureSource

FeatureSource

Agent
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Collaboration diagram for HTTPFeatureSource:

HTTPFeatureSource

MultiPacketFeatureSource

FeatureSource

Agent

Public Member Functions

• HTTPFeatureSource (string host, int port, PosixTimeval timeout)

This constructor calls the MultiPacketFeatureSource constructor. It does not per-

form any additional actions.

• override byte[ ] processPacket (PosixTimeval time, Packet packet)

Process each packet as it’s passed up from some traffic source. Each packet either

adds an additional feature set for tracking or updates an existing set of features.

• override bool sensePlanAct ()

The HTTP Feature source does not actively sense, plan or act. Instead it relies

on a Traffic Source Agent to actively push in features that this agent will react
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appropriately to.

A.5 Machine Learning

A.5.1 MachineLearningAgent Class Reference

Implementation of an Alert Source Agent that classifies traffic using one of five on-

line classifiers. The available machine learning algorithms are designed to operate on

a stream of data samples, where the majority are unlabeled and require classification,

while a subset are already labeled and used to evaluate and update the classification.

Inherits Agent.

Public Member Functions

• MachineLearningAgent (std::string configFilename)

Construct a Machine Learning Agent instance. Load in the configuration of the

Machine Learning Algorithm from the provided configuration file.

• ∼MachineLearningAgent ()

Destroy all memory associated with the Machine Learning Agent.

• void init ()

Initialize the Machine Learning Agent. Call the Agent constructor, build the clas-

sifier, and subscribe to AMQP channels.

• void buildClassifier ()

Create a classifier capable of accepting a stream of data. The configuration file

may contain a link to an initial training set of data or some attribute for a pre
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trained classifier.

• void subscribeToFeatureSource ()

Subscribe to a feature source channel to consume feature source messages and apply

classifications to the traffic feature sets that arrive on the channel.

• void subscribeToLabelSource ()

Subscribe to a label source and consume labels from other alert source agents.

• void onTerminate ()

Termination routines, launched when a termination message is received on the

control channel.

• bool getNextLabel ()

Check if any new labels have arrived.

• boost::shared ptr < TrafficFeaturesDataItem > getNextDataSample ()

Consume the next message available from a feature source.

• boost::shared ptr < TrafficFeaturesDataItem > getNextTrafficFeature-

DataItem (boost::shared ptr< unsigned char > buf, int)

When a traffic feature set arrives, process it and return a pointer to a Sample

object, ready to send to the machine learning algorithm.

• boost::shared ptr < TrafficFeaturesDataItem > getNextDNSSample (

boost::shared ptr< unsigned char > buf, int)

When a DNS feature set arrives, process it and return a pointer to a Sample object,

ready to send to the machine learning algorithm.

• boost::shared ptr < TrafficFeaturesDataItem > getNextHTTPSample (

boost::shared ptr< unsigned char > buf, int)
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When a HTTP feature set arrives, process it and return a pointer to a Sample

object, ready to send to the machine learning algorithm.

• boost::shared ptr < TrafficFeaturesDataItem > getNextUDPSample (

boost::shared ptr< unsigned char > buf, int)

When a UDP feature set arrives, process it and return a pointer to a Sample object,

ready to send to the machine learning algorithm.

• boost::shared ptr < TrafficFeaturesDataItem > getNextTCPSample (

boost::shared ptr< unsigned char > buf, int)

When a TCP feature set arrives, process it and return a pointer to a Sample object,

ready to send to the machine learning algorithm.

• bool sensePlanAct ()

The agents sense, plan and act cycle. Will repeat the loop as long as it is able. With

each iteration it reads new messages from feature sources, updates it’s internal

state, makes plans based on the updated world model and then acts.

• void writeSampleTraining ()

Write out sample training data and labels. The machine learning package requires a

set of data to derive a series of characteristics for each machine learning algorithm.

I don’t train on the set produced here, but I do load it to setup the algorithm.

• void writeLog ()

Write out a log describing the current training and testing accuracy achieved by

the agent.
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A.5.2 TrafficFeaturesDataItem Class Reference

A C++ implementation of the traffic features object’s data members. This class

is used to deserialize traffic flow features originating from a Feature Source into an

object that agents implemented in C++ can manipulate.

Inheritance diagram for TrafficFeaturesDataItem:

TrafficFeaturesDataItem

DNSFeaturesDataItem TransportLayerFeaturesDataItem

HTTPFeaturesDataItem

Public Member Functions

• TrafficFeaturesDataItem (boost::shared ptr< unsigned char > buffer, int

features)

Construct a traffic features data item from a buffer of bytes consumed from a

feature source.

• ∼TrafficFeaturesDataItem ()

Destroy the feature source data item.

• std::string toString ()
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Create a string representing the values for this traffic feature.

• Sample const & getSample () const

Return a Sample object that was populated by the contents of this feature instance.

The machine learning algorithms used in this research require data sets containing

multiple Sample objects.

• void populateSample (const Hyperparameters &hp)

Populate a Sample object from the contents of this traffic feature instance. The ma-

chine learning algorithms used in this research require data sets containing multiple

Sample objects.

Public Attributes

• boost::shared ptr< unsigned char > featureBuffer

The serialized feature, used when retransmitting is required.

• unsigned short label

A label assigned to this traffic.

• unsigned short pred

A class prediction for this feature.

• int numfeatures

The total number of features this object represents.

• unsigned short featureType

the type of feature.

• unsigned short protocol
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the protocol value from the IP header.

• unsigned int clientIP

The ip address of the client.

• unsigned int serverIP

The ip address of the server.

• unsigned short clientPort

The client port number.

• unsigned short serverPort

The server port number.

• long ticksSinceLastConnection

The time since the last connection between the client and server participating in

the traffic flow.

• long starttimestampS

The time the first packet was received (seconds).

• long starttimestampMS

The time the first packet was received (milliseconds).

• long endtimestampS

The time the last packet was received (seconds).

• long endtimestampMS

The time the last packet was received (milliseconds).
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A.5.3 TransportLayerFeaturesDataItem Class Reference

A C++ implementation of the transport layer features object’s data members.

This class is used to deserialize transport layer features originating from a feature

source into an object that agents implemented in C++ can manipulate.

Inheritance diagram for TransportLayerFeaturesDataItem:

TransportLayerFeaturesDataItem

HTTPFeaturesDataItem

TrafficFeaturesDataItem

Collaboration diagram for TransportLayerFeaturesDataItem:

TransportLayerFeaturesDataItem

TrafficFeaturesDataItem
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Public Member Functions

• TransportLayerFeaturesDataItem ( boost::shared ptr< unsigned char >

buffer, int features)

Construct a transport layer features data item from a buffer of bytes consumed

from a feature source.

• ∼TransportLayerFeaturesDataItem ()

Destroy the transport layer features data item.

• void populateSample (const Hyperparameters &hp)

Populate a Sample object from the contents of this DNS traffic feature instance.

The machine learning algorithms used in this research require data sets containing

multiple Sample objects.

• std::string toString ()

Create a string representing the values for this traffic feature.

Public Attributes

• unsigned char maxDataControl

Maximum number of data control bytes observed in a packet during the lifetime of

the traffic flow.

• unsigned char medDataControlAB

Median of data control bytes observed across all packets from client to server during

the lifetime of the traffic flow.

• unsigned char q3DataControlAB
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Third quartile of data control bytes observed across all packets from client to server

during the lifetime of the traffic flow.

• unsigned short maxDataOnWire

Maximum number of data bytes observed in a packet’s Ethernet PDU during the

lifetime of the traffic flow.

• unsigned short maxDataWireBA

Maximum number of data bytes observed in a packet’s Ethernet PDU from server

to client during the lifetime of the traffic flow.

• unsigned short maxDataWireAB

Maximum number of data bytes observed in a packet’s Ethernet PDU from client

to server during the lifetime of the traffic flow.

• unsigned short reqSackBA

If the end-point sent a SACK permitted option in the SYN packet opening the

connection, reqSackBA is 1; otherwise it is 0 (server to client).

• unsigned short maxSegmSizeAB

Maximum segment size observed from client to server during the lifetime of the

traffic flow.

• unsigned short maxSegmSizeBA

Maximum segment size observed from server to client during the lifetime of the

traffic flow.

• unsigned short minSegmSizeAB

Minimum segment size observed from client to server during the lifetime of the

traffic flow.
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• unsigned short minSegmSizeBA

Minimum segment size observed from server to client during the lifetime of the

traffic flow.

• unsigned short maxDataIP

Maximum number of bytes observed in a packet’s IP PDU during the lifetime of

the traffic flow.

• unsigned short maxDataIPAB

Maximum number of bytes observed in a packet’s IP PDU from client to server

during the lifetime of the traffic flow.

• unsigned short maxDataIPBA

Maximum number of bytes observed in a packet’s IP PDU from server to client

during the lifetime of the traffic flow.

• unsigned short medDataIPAB

Median of data bytes observed across all packet’s IP PDU from client to server

during the lifetime of the traffic flow.

• float meanSegmSizeAB

Average segment size observed during the lifetime of the connection from client to

server calculated as the value reported in the actual data bytes field divided by the

actual data pkts reported.

• float meanDataControlAB

Mean of data control bytes observed in packets from client to server during the

lifetime of the traffic flow.

• double varDataControlBA
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Variance of data control bytes observed in packets from server to client during the

lifetime of the traffic flow.

• int totalPkts

Total packets observed during the lifetime of the traffic flow.

• int totalPktsAB

Total packets observed from client to server during the lifetime of the traffic flow.

• int totalPktsBA

Total packets observed from server to client during the lifetime of the traffic flow.

A.5.4 HTTPFeaturesDataItem Class Reference

A C++ implementation of the HTTP features object’s data members. This class

is used to deserialize HTTP features originating from a HTTP Feature Source into

an object that agents implemented in C++ can manipulate.

Inheritance diagram for HTTPFeaturesDataItem:

HTTPFeaturesDataItem

TransportLayerFeaturesDataItem

TrafficFeaturesDataItem
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Collaboration diagram for HTTPFeaturesDataItem:

HTTPFeaturesDataItem

TransportLayerFeaturesDataItem

TrafficFeaturesDataItem

NetworkStringFeaturesDataItem

 urlFeatures_
responseFieldFeatures_
requestFieldFeatures_

Public Member Functions

• HTTPFeaturesDataItem (boost::shared ptr< unsigned char > buffer, int

features)

Construct a HTTP features data item from a buffer of bytes consumed from a

feature source.

• ∼HTTPFeaturesDataItem ()

Destroy the traffic flow data item.

• void populateSample (const Hyperparameters &hp)

Populate a Sample object from the contents of this DNS traffic feature instance.

The machince learning algorithms used in this research require data sets containing

multiple Sample objects.

• std::string toString ()
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Create a string representing the values for this traffic feature.

Public Attributes

• unsigned char numRequestHeaders

The number of header fields in the http request.

• unsigned char numResponseHeaders

The number of header fields in the http response.

• NetworkStringFeaturesDataItem urlFeatures

Features of the url in the http request.

• NetworkStringFeaturesDataItem requestFieldFeatures [5]

A list of interesting request header field features (User-Agent, Via, Referer, Host

and Cookie).

• NetworkStringFeaturesDataItem responseFieldFeatures [3]

A list of interesting response header field features (Server, Location and Set--

Cookie).

A.5.5 DNSFeaturesDataItem Class Reference

A C++ implementation of the DNS features object’s data members. This class

is used to deserialize DNS features originating from a DNS Feature Source into an

object that agents implemented in C++ can manipulate.
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Inheritance diagram for DNSFeaturesDataItem:

DNSFeaturesDataItem

TrafficFeaturesDataItem

Collaboration diagram for DNSFeaturesDataItem:

DNSFeaturesDataItem

TrafficFeaturesDataItem NetworkStringFeaturesDataItem

 rdata_
name_

Public Member Functions

• DNSFeaturesDataItem (boost::shared ptr< unsigned char > buffer, int fea-

tures)

Construct a DNS features data item from a buffer of bytes consumed from a feature

source.
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• ∼DNSFeaturesDataItem ()

Destroy the DNS features data item.

• void populateSample (const Hyperparameters &hp)

Populate a Sample object from the contents of this DNS traffic feature instance.

The machine learning algorithms used in this research require data sets containing

multiple Sample objects.

• std::string toString ()

Create a string representing the values for this traffic feature.

Public Attributes

• unsigned short identifier

Identifier created by the program to represent the query, used to match requests to

replies.

• unsigned short flags

The flag bits including the bits aa, tc, rd, ra, and z.

• unsigned short qCount

The number of questions in the dns message.

• unsigned short aCount

The number of answers in the dns message.

• unsigned short nsCount

The number of name servers in the dns message.

• unsigned short arCount
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The number of answer records in the dns message.

• NetworkStringFeaturesDataItem rdata

Features of the rdata message contained in the dns message.

• NetworkStringFeaturesDataItem name

Features of the name contained in the dns message.

A.5.6 NetworkStringFeaturesDataItem Class Reference

A C++ implementation of the network string features object’s data members.

This class is used to deserialize Network String features originating from a feature

source into an object that agents implemented in C++ can manipulate.

Public Member Functions

• NetworkStringFeaturesDataItem ()

Default Constructor of a network string features to give it sensible default values.

• NetworkStringFeaturesDataItem (unsigned char ∗buffer)

Construct a network string features data item from a buffer of bytes consumed from

a feature source.

• ∼NetworkStringFeaturesDataItem ()

Destroy the network string features data item.

• std::string toString ()

Create a string representing the values for this traffic feature.
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Public Attributes

• unsigned short byteDistinct

Number of distinct byte values in the string.

• unsigned char byteMinVal

Minimum byte value in the string.

• unsigned char byteMaxVal

Maximum byte value in the string.

• unsigned short asciiCap

Number of ASCII capital letters (byte values 65-90) in the string.

• unsigned short asciiLow

Number of ASCII lower case letters (byte values 48-57) in the string.

• unsigned short asciiDigit

Number of ASCII digits (byte values 48-57) in the string.

• unsigned short len

Length of string in bytes.

• unsigned short segments

The number of segments the string contains (separated by ”/”,”.”,”:”,”;” or ”=”).

• double entropy

The entropy of the string message.
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A.6 Alert Source

A.6.1 AlertSource Class Reference

The abstract AlertSource (p. 373) is intended as the base class for agents de-

signed to publish alerts for subscribing agents in the system. This class provides

a channel and queue for publishing the alert messages. AlertSources publish alerts

using five tuple topics. The topics consist of a signature ID, the server IP address,

the server port, the client IP address and the client port. Agents subscribe to alerts

they are interested in using wildcarded topics. For example, an agent interested in all

alerts from IP address 10.2.64.111 to 192.168.1.1 would subscribe to .0A02406F.∗.-

C0A80101.∗.

Inheritance diagram for AlertSource:

AlertSource

UnifiedAlertSource

Agent
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Collaboration diagram for AlertSource:

AlertSource

Agent

Public Member Functions

• AlertSource (string host, int port)

Constructor for an AlertSource ( p. 373). Sets the agent type to ”AS” and calls

the base class constructor.

• override void init ()

Initialize an AMQP channel and create a queue for publishing alert messages. Also

invokes the parent class init method.

• override void onTerminate ()

Close all communication channels and call the base class on terminate routines.

• override void onReset ()

Resets some internal counters and calls the parent on reset routines.

• override void writeLog (object source, ElapsedEventArgs e)

Appends some additional information to the log message and then calls the parent’s

writeLog routines.
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Protected Member Functions

• abstract string getTopic (byte[ ] buffer)

Any agent implementing AlertSource ( p. 373) must provide a mechanism for

generating a topic string from an alert message for publishing this alert to an

amqp server. The topic should consist of five elements; the alert ID, the server IP,

server port, client IP and client port. All values should be hex strings, for example

000000AA.C4A80101.0050.CAA80122.0400.

A.6.2 UnifiedAlertSource Class Reference

The UnifiedAlertSource (p. 375) is an implementation of an alert source agent.

It is designed to read Snort unified alert files and publish the alerts for subscription by

other agents in the system. The UnifiedAlertSource (p. 375) publishes alerts using

five tuple topics. The topics consist of the signature ID, the source IP address, the

source port, the destination IP address and the destination port. Agents subscribe to

alerts they are interested in using wildcarded topics. For example, an agent interested

in all alerts from IP address 10.2.64.111 to 192.168.1.1 would subscribe to .0A02406-

F.∗.C0A80101.∗.
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Inheritance diagram for UnifiedAlertSource:

UnifiedAlertSource

AlertSource

Agent

Collaboration diagram for UnifiedAlertSource:

UnifiedAlertSource

AlertSource

Agent

Public Member Functions

• UnifiedAlertSource (String alertFile, string host, int port)
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Constructor for a UnifiedAlertSource ( p. 375). Initialize the internal state to

”Constructed”, and call the parent class constructor.

• override void init ()

Initialize attempts to open a file stream where alerts are being written. Sets the

state to ”Initialized” if successful and ”Terminate” if the the agent fails to open

the file stream. Also calls the parent class init method.

• void readHeader ()

Attempt to read the 16 byte unified alert file header. If the stream is smaller then

16 bytes, the agent sets the state to initialized and tries again, assuming the file

header has not been written to the file yet. If less then 16 bytes are read, the agent

sets its state to initialized and will try again. If 16 bytes are read but they do not

contain the proper unified alert header bytes the agent sets the state to BadFormat

and halts execution. Finally, if 16 bytes are read and the header appears to be in

the right format, the state advances to ReadAlert.

• void readAlert ()

Attempt to read 64 bytes of data from the file stream. When in the state ReadAlert,

the agent assumes that the file pointer is at the beginning of the next alert to be

read. If 64 bytes are read, the state is advanced to Publish. If less then 64 bytes

are read, the agent resets the file stream point to where the alert record should be

and maintains the state of ReadAlert (so the agent will try to read the alert again).

If an exception is thrown during the attempted read the agent’s state changes to

BadFormat.

• void publishAlert ()

Generate a topic from the 64 byte unified alert message and then publish the 64
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bytes as a message to the Alert exchange. If successful the agent’s state is set back

to ReadAlert. If any exception occurs the agent’s state is set to BadFormat.

• override BasicDeliverEventArgs checkControlChannel ()

Overrides the standard check control channel so that the state of the agent can

be changed depending on the result of any message read from the agent control

channel.

• override void onTerminate ()

The unified alert agent’s termination routine. Closes the file stream and calls the

parent class termination routines.

• override bool getTerminate ()

Override the getTerminate method to base its decision on the agent’s state instead

of the terminate class member inherited from the parent class. Ensures the state

machine handles all of the agent’s transitions.

• override void onReset ()

When instructed to Reset the agent will close the unified alert file stream and reopen

it from the start, setting its state to ”Initialized”.

• override bool sensePlanAct ()

The sense, plan, act cycle. In this case it defines the finite state machine, per-

forming one action and checking the agent control channel for each cycle. When

running correctly the agent should transition from ”Constructed” to ”Initialized”,

and then loop between ”ReadAlert” and ”Publish”. A transition to ”BadFormat”

will terminate execution.

• byte[ ] normalizeKeyFromAlert (byte[ ] buffer)
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Extract a key from a unified alert message.

Public Attributes

• int blacklisted

A count of how many alerts were ignored.

Protected Member Functions

• override string getTopic (byte[ ] buffer)

Parse a Snort unified alert message and create a topic for publishing this alert to

an AMQP server. The topic consists of five elements; the source IP, source port,

destination IP and destination port and protocol. All values should be hex strings,

for example 000000AA.C4A80101.0050.CAA80122.0400.

Private Attributes

• UASState state

The current state of the alert source agent, as the agent is implemented as a finite

state machine.

• int bytesread = 0

The number of bytes read in the last read attempt.

• byte[ ] buffer = new byte[64]

A buffer of bytes to store unified alert message.

• FileStream fileStream

The stream where the alerts are being written.
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• string filename

The file name of the stream where alerts are being written.

• uint[ ] blacklist

An optional array of signature ids to ignore.

A.7 Protocol Analysis

A.7.1 ProtocolAnalysis Class Reference

The ProtocolAnalysis (p. 380) abstract class is intended as a base class for

objects implementing Protocol Analysis Agents. It depends on the PacketDotNet

C# libraries to provide an API for dealing with packet objects. ProtocolAnalysis

(p. 380) defines a source channel to accept incoming messages from a traffic source

agent, and a request channel to accept requests from other agents. Each Protocol

Analysis Agent (p. 298) must implement a process packet method to accept packets

from Traffic Source Agents.
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Inheritance diagram for ProtocolAnalysis:

ProtocolAnalysis

DNSProtocolAgent HTTPAgent

Agent

Collaboration diagram for ProtocolAnalysis:

ProtocolAnalysis

Agent

Public Member Functions

• ProtocolAnalysis (string host, int port)

Base constructor for any objects implementing the ProtocolAnalysis ( p. 380)

abstract class. Ensures the base class constructor (Agent ( p. 298)) is called an
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also sets the agent type to ”PA”.

Parameters

host The host name of the AMQP server to connect to.

port The port number of the AMQP server to connect to.

• override void init ()

This method calls the base class init, and then initializes both the source and request

channels to facilitate communications with other agents.

• override void onTerminate ()

Closes the source and request channel before invoking the base class on terminate

routines.

• abstract void processPacket (PosixTimeval time, Packet nextpacket)

Protocol Analysis Agents must implement a process packet method to handle in-

coming packets.

Protected Attributes

• IModel sourceChannel

A channel for receiving packets.

• IModel requestChannel

A channel for receiving requests.

A.7.2 Query Class Reference

Class to store query information from a DNS request or response.
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Inheritance diagram for Query:

Query

Answer

Public Member Functions

• virtual void print ()

Prints the relevant values for this DNS query.

Public Attributes

• string name

The host name contained by the DNS query.

• byte[ ] rawName

The raw bytes that make up the DNS query name.

• ushort type

The resource record type that should be returned for this query. For example: A,

MX, NS, PTR, etc.

• ushort class

The class of the associated query.
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• ushort errorCode

An error code if there is an error while processing the query.

A.7.3 Answer Class Reference

Class that extends the Query (p. 382) to add additional member storage for DNS

answer records. Note that the IP and data member fields are mutually exclusive.

Only one should contain a value depending on the answer type.

Inheritance diagram for Answer:

Answer

Query

Collaboration diagram for Answer:

Answer

Query
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Public Member Functions

• override void print ()

Given an answer record, print out the relevant values.

Public Attributes

• uint ttl

The time-to-live for this record, used for DNS caching.

• ushort dataLen

Length of the of the rdata contained in this record.

• IPAddress ip

The IP address corresponding to the query, if there is one.

• string data

The alphanumeric data corresponding to the query, if there is any.

• byte[ ] rawRdata

The raw bytes retrieved from the data section of the DNS record.

A.7.4 DNSMessage Class Reference

Represents a single DNS message and all of the records contained within it.
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Collaboration diagram for DNSMessage:

DNSMessage

Answer

 nameServers_
additionalRecords_

answers_

Query

 queries_ DNSFeatures

 features_

TrafficFeatures

RunningStat

 rs_

NetworkStringFeatures

 rdata_
name_

Public Member Functions

• DNSMessage (UdpPacket udppacket)

Given a PacketDotNet UdpPacket create a DNS message. Parse out the individual

records and store them in lists of Query ( p. 382) and Answer ( p. 384) objects.

• void parseQuery (Query query)

Given a query object, parse this object payload for a dns query starting from the

currOffset. When this method is called this objects currOffset should be pointed at

the len byte for the next query records.

• void parseRecord (Answer record)
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Parse a record from the currOffset position of this objects payload. Note that the

record should begin with a 4 byte ttl value. The record could be one of a number of

different types including an answer record, a name server or an additional record.

• void parsePayload ()

Parse a complete DNS Message payload. The constructor for this object will have

already parsed the DNS header. This method uses the information from the DNS

header to figure out how many Queries, Answers, Name Servers and Additional

Records there are, parsing each in turn.

• byte[ ] parseRawName ()

Method to parse out the raw bytes representing the query hostname.

• string parseHostname ()

This method can be called to parse out hostnames from a DNS message starting

at the currOffset. The method assumes that the len for the hostname is at the

currOffset and will handle cases where the len is greater then 192 (indicating a

back reference to a previous point in the udp payload).

• string parseBackReference (int offset)

Parse a back reference using a temporary offset that will not effect this objects

currOffset value. Very similar to the parseHostName method. Assumes that the

offset points at the len of the hostname to extract.

• void printHeader ()

Print the DNS Header.

• void printRecords ()

Print all the records stored in this DNSMessage ( p. 385).
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Public Attributes

• DNSFeatures features

The features associated with this DNS message.

• UInt16 identifier

Identifier created by the program to represent the query, used to match requests to

replies.

• UInt16 flags

The flag bits including the bits aa, tc, rd, ra, and z.

• byte qr

Value of the request/response flag extracted from the DNS header.

• UInt16 opCode

Operation code, indicates the service operation for this DNS message.

• byte aa

Flag indicating whether or not this is an authoritative answer.

• byte tc

Flag indicating whether or not truncation is enabled.

• byte rd

Flag indicating whether or not recursion is desired.

• byte ra

Flag indicating whether or not recursion is available.

• byte z
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Reserved bits that should be set to 0.

• UInt16 rCode

The return code set to 0 for successful responses and an error code otherwise.

• UInt16 qCount

The number of questions in the DNS message.

• UInt16 aCount

The number of answers in the DNS message.

• UInt16 nsCount

The number of name servers in the DNS message.

• UInt16 arCount

The number of additional records in the DNS message.

• Query[ ] queries

A list of query records parsed from this DNS message.

• Answer[ ] answers

A list of answer records parsed from this DNS message.

• Answer[ ] nameServers

A list of name servers parsed from this DNS message.

• Answer[ ] additionalRecords

A list of additional resource records parsed from this DNS message.

• const int DNSHEADERLEN = 12

Constant value used for skipping past the DNS header.
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Private Attributes

• byte[ ] littleEndianBytes = new byte[4]

A place holder for converting network byte order values (big endian) to host byte

order values (little endian)

• int currOffset

The current offset in the DNS message, used while parsing the records.

• byte[ ] payload

The complete DNS packet payload.

A.7.5 DNSProtocolAgent Class Reference

DNS Resolver Agent is an instance of a Protocol Analysis Agent. It gathers

information about DNS Messages received from Traffic Source Agents on the network

and provides other agents with the capability to analyze trends in DNS requests and

responses.
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Inheritance diagram for DNSProtocolAgent:

DNSProtocolAgent

ProtocolAnalysis

Agent
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Collaboration diagram for DNSProtocolAgent:

DNSProtocolAgent

ProtocolAnalysis

Agent

FeatureSource

DNSFeatureSource

 dnsFeatureTracker_

Public Member Functions

• DNSProtocolAgent (string host, int port)

Constructor initializes all the agent’s members, and creates a resident DNSFeature-

Source.

• override void init ()

Subscribes to a traffic source agent. The DNS Resolver agent will subscribe to all

TCP and UDP traffic with a source or destination port of 53, the standard DNS

port. Additionally, the agent will set up a DNS request queue to accept requests

from other agents for DNS information.
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• override void onReset ()

Clear out information cached about hosts and IP addresses the agent has observed

in traffic so far, then call the parent class on reset routines.

• override bool sensePlanAct ()

The sense, plan, act cycle receives DNS messages from a traffic source, extracts

DNS messages from the DNS Message Queue, then processes each message.

• void extractARecords (DNSMessage dns)

Find all the A records contained in a specific DNS Message and store them in the

IP/DNS Record dictionary.

• Answer[ ] processIPtoHost (IPAddress requestIp)

Accept an IP address from an Agent and return a list of hostnames (or the most

recent hostname) from the records stored in the dictionary.

• Answer[ ] processHosttoIP (string host)

Accept a host name from an Agent and return a list of answer records from the

records stored in the dictionary.

• override void processPacket (PosixTimeval time, PacketDotNet.Packet nextpacket)

Read a message from a Traffic Source Agent. Validate that the packet is a DNS

Message and insert it into the Queue of DNS Messages waiting to be processed by

the sense, plan, act cycle.

Protected Attributes

• QueuingBasicConsumer sourceConsumer
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Basic Consumer to consume messages from the traffic source.

• QueuingBasicConsumer requestConsumer

Basic Consumer to consume requests from other agents regarding IP addresses.

Private Member Functions

• byte[ ] ipsToHosts (byte[ ] requestBody)

Parse out a list of host names from a DNS Host request and return a response

containing the IP addresses that the host names have resolved to recently.

• byte[ ] hostsToIps (byte[ ] requestBody)

Parse out a list of host names from a DNS Host request and return a response

containing the IP addresses that the host names have resolved to recently.

• byte[ ] unknownRequest ()

Handle instances where we received an AMQPDNSMessageType that we do not

recognize. Return a message containing a AMQPDNSMessageType of Unknown-

Request.

Static Private Member Functions

• static void Main (string[ ] args)

Create an instance of a DNS Resolver Agent.

Private Attributes

• byte[ ] ipbuffer

1500 bytes buffer to temporarily store incoming packets.
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• Dictionary< IPAddress, Answer[ ]> ipDictionary

A queue to store incoming messages until they are processed.

• Dictionary< string, Answer[ ]> hostDictionary

Structure tp keep track of responses by the host Addresses.

• DNSFeatureSource dnsFeatureTracker

Keep track of DNS features.

A.7.6 DNSResolverClient Class Reference

The DNS Resolver Client accepts lists of either IP addresses or hostnames and then

makes requests out to DNS Agents for either a list of IP addresses that each requested

host name has resolved to recently or a list of Host names that each requested IP

addresses has been associated with recently.

Public Member Functions

• DNSResolverClient (string host, int port)

Constructor for the DNS Resolver client. It instantiates the connection to the -

AMQP server and sets up both the request Queue and the call back queue for

responses.

• void sendIPtoHostLookup (IPAddress[ ] ips)

Create a request message to send to DNS agents composed of a list of IP addresses.

The request will be stored locally until a response with the corresponding correlation

id is received.

• void sendHosttoIPLookup (string[ ] hosts)
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Create a request message to send to DNS agents composed of a list of host names.

The request will be stored locally until a response with the corresponding correlation

id is received.

• bool processIPResponse (BasicDeliverEventArgs ea)

Given an AMQP message containing the results of a IP address lookup, this method

will parse out the host names that have resolved to the IP addresses sent in the

request.

• bool processHostResponse (BasicDeliverEventArgs ea)

Given an AMQP message containing the results of a Host name lookup, this method

will parse out the IP addresses that this host names have resolved to sent in the

request.

• void processResponse ()

Attempt to get a response from the callback queue. Depending on the type of

response received perform the appropriate processing.

Static Private Member Functions

• static void Main (string[ ] args)

Create an instance of a DNSResolverClient ( p. 395).

Private Attributes

• ConnectionFactory connectionFactory

Connection factory to support AMQP messaging between agents.

• IConnection connection
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A connection to an AMQP server.

• IModel requestChannel

A channel for receiving packets.

• QueuingBasicConsumer responseConsumer

A consumer for consuming message from the callback queue.

• Dictionary< string, object > requests

A dictionary structure that store pending requests using correlation ids.

• string callbackQueue

The name of the callback queue to receive DNS responses.

A.7.7 HTTPAgent Class Reference

HTTP Agent is an instance of a Protocol Analysis Agent. It gathers informa-

tion about HTTP Messages received from Traffic Source Agents on the network and

provides other agents with the capability to analyze trends in HTTP requests and

responses.



398
Appendix A: Multi-Agent Malicious Behaviour Detection Implementation

Documentation

Inheritance diagram for HTTPAgent:

HTTPAgent

ProtocolAnalysis

Agent
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Collaboration diagram for HTTPAgent:

HTTPAgent

ProtocolAnalysis

Agent

FeatureSource

HTTPFeatureSource

 httpTracker_

MultiPacketFeatureSource

Public Member Functions

• HTTPAgent (string host, int port)

Constructor initializes all the agent’s members, and attempts to subscribe to a

traffic source agent. The DNS Resolver agent will subscribe to all TCP traffic with

a source or destination port of 80 and 8080, standard HTTP ports.
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Parameters

host The host name of the AMQP server to connect to.

port The port number of the AMQP server to connect to.

• override BasicDeliverEventArgs checkControlChannel ()

Instruct the resident HTTPFeatureSource to check its control channel before calling

the parent classes check control channel.

• override void init ()

Initialize the HTTP Agent by subscribing to a traffic source topic exchange for

packets to or from port 80 and 8080 with a protocol values of 6 (TCP).

• override void onTerminate ()

Ensure to invoke the resident HTTPFeatureSource on terminate routines before

calling the parent class on terminate routines.

• override bool sensePlanAct ()

Check for new HTTP packets and pass them up to the resident HTTPFeature-

Source. Also ensure that any closed HTTP session are published.

• override void processPacket (PosixTimeval time, Packet nextpacket)

Accept an HTTP packet and pass it up to any resident Feature Source agents.

Protected Attributes

• QueuingBasicConsumer sourceConsumer

Basic Consumer to consume messages from the traffic source.

• HTTPFeatureSource httpTracker
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A Traffic Flow Feature Tracker to maintain state on packets and flows observed by

the agent.

Static Private Member Functions

• static void Main (string[ ] args)

Create an instance of an HTTPAgent ( p. 411).

A.8 Traffic Manipulation

A.8.1 TrafficManipulation Class Reference

A base class providing the API for any agent that will manipulate intercepted

packets and send the modified packets.

Inheritance diagram for TrafficManipulation:

TrafficManipulation

DNSManip HTTPManip

Agent
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Collaboration diagram for TrafficManipulation:

TrafficManipulation

Agent

Public Member Functions

• TrafficManipulation (string host, int port)

Construct a Traffic Manipulation Agent The agent will pass the host and port to

its parent constructor to set up the connection to the AMQP server.

• override void init ()

Initialize a connection to the label source to receive labels from other agents in the

system.

• abstract PacketDotNet.Packet ModifyPacket (PacketDotNet.Packet spacket)

Each TrafficManipulation ( p. 401) agent must provide a routine that accepts a

packets, modifies the packet and returns a valid packet that will be sent in place

of the original packet. This is where the logic goes for deriving the new packet

contents.

• PosixTimeval sendPacket (PacketDotNet.Packet packet)
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Send a packet to the intended recipient. This packet will be modified from the

original one passed into the TrafficManipulation ( p. 401) Agent.

Protected Attributes

• IModel labelChannel

A channel for communications with machine learning agents.

• QueuingBasicConsumer labelConsumer

Basic Consumer to consume messages from machine learning agents.

A.8.2 DNSManip Class Reference

Modify DNS request and responses to elicit desired behaviour from malicious

software.

Inheritance diagram for DNSManip:

DNSManip

TrafficManipulation

Agent
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Collaboration diagram for DNSManip:

DNSManip

TrafficManipulation

Agent

A.8.3 HTTPManip Class Reference

The HTTP Manipulation agent modifies HTTP methods to mimic behaviour,

elicit responses from servers.
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Inheritance diagram for HTTPManip:

HTTPManip

TrafficManipulation

Agent

Collaboration diagram for HTTPManip:

HTTPManip

TrafficManipulation

Agent
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A.8.4 DynamicFirewall Class Reference

The Dynamic Firewall Agent is responsible for managing changes to the firewalls

of the various clients in the system to ensure that when traffic is being manipulated,

the target the traffic is being manipulated for doesn’t attempt further communications

with the remote machine.

Inheritance diagram for DynamicFirewall:

DynamicFirewall

Agent

Collaboration diagram for DynamicFirewall:

DynamicFirewall

Agent
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Public Member Functions

• void sendRule ()

Send a new rule to a client machine for inclusion in their current firewall setup.

• void readRules ()

Request a list of the current rules running on a client’s firewall.

• void removeRules ()

Remove a specific rule from a client’s firewall.

• void processRuleRequest ()

Process an incoming request from another agent to block traffic to a specific client.

Blocking is done based on some combination of the five tuple.

Protected Attributes

• IModel ruleChannel

A channel for communications with machine learning agents.

• QueuingBasicConsumer ruleConsumer

Basic Consumer to consume messages from machine learning agents.

Private Attributes

• List< String > firewallRules

Current list of firewall rules on the client.
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A.9 Observer

A.9.1 LoggerAgent Class Reference

A Logger agent is passive. It subscribes to various exchanges, collects messages

generated by the agents participating in the system and writes them out to a number

of different log files.

Inheritance diagram for LoggerAgent:

LoggerAgent

Agent

Collaboration diagram for LoggerAgent:

LoggerAgent

Agent
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Public Member Functions

• LoggerAgent (string host, int port, string featureFile, string logFile, string

labelFile)

Construct a Logger Agent intended to log features, label and agent logs. The agent

will pass the host and port to its parent constructor to set up the connection to the

AMQP server.

• override void init ()

Subscribe to the various exchanges required to receive the features, labels and logs.

The exchanges are ”Features”, ”Labelled” and ”AgentLog” respectively. Also at-

tempts to open the feature file, the label file and the log file for writing. Finally, it

starts the stop watch for generating millisecond log time stamps.

• override bool sensePlanAct ()

The sense plan act cycle consists of checking all incoming messages from each

subscribed source and writing them out to the log files.

• override void onTerminate ()

Ensure all the text writers flush their buffers before calling the parent classes on

terminate routines.

Protected Attributes

• IModel logChannel

A channel for subscription to logs from other agents.

• QueueingBasicConsumer logConsumer

Basic Consumer to consume logs from all agents.



410
Appendix A: Multi-Agent Malicious Behaviour Detection Implementation

Documentation

• IModel featureChannel

A channel for communications with feature source agents.

• QueueingBasicConsumer featureConsumer

Basic Consumer to consume messages from feature source agents.

• IModel labelChannel

A channel for communications with machine learning agents.

• QueueingBasicConsumer labelConsumer

Basic Consumer to consume messages from machine learning agents.

Private Member Functions

• void writeFeature ()

Checks the Feature exchange for queue’d features from one or more traffic sources,

deserializes the feature and writes it to disk as a UTF8 string.

• void writeLog ()

Checks the Agent Log exchange for queue’d log messages from any agent with

logging enabled and writes it to disk.

• void writeLabel ()

Checks the Labelled exchange for queue’d labelled features from one or more ma-

chine learning agents, deserializes the feature and writes it to disk as a UTF8

string.

Static Private Member Functions

• static void Main (string[ ] args)
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Create an instance of a Logger Agent.

Private Attributes

• TextWriter featureTW

Writer to write received features out to a feature log file.

• TextWriter logTW

Writer to write received logs out to an agent log file.

• TextWriter labelTW

Writer to write received labelled features out to a label log file.

• string featureFile

A file name to write features out to.

• string logFile

A file name to write logs out to.

• string labelFile

A file name to write labels out to.

• Stopwatch st

A stop watch to generate time stamps for the log, feature and label entries.

A.9.2 HTTPAgent Class Reference

HTTP Agent is an instance of a Protocol Analysis Agent. It gathers informa-

tion about HTTP Messages received from Traffic Source Agents on the network and



412
Appendix A: Multi-Agent Malicious Behaviour Detection Implementation

Documentation

provides other agents with the capability to analyze trends in HTTP requests and

responses.

Inheritance diagram for HTTPAgent:

HTTPAgent

ProtocolAnalysis

Agent
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Collaboration diagram for HTTPAgent:

HTTPAgent

ProtocolAnalysis

Agent

FeatureSource

HTTPFeatureSource

 httpTracker_

MultiPacketFeatureSource

Public Member Functions

• HTTPAgent (string host, int port)

Constructor initializes all the agent’s members, and attempts to subscribe to a

traffic source agent. The DNS Resolver agent will subscribe to all TCP traffic with

a source or destination port of 80 and 8080, standard HTTP ports.
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Parameters

host The host name of the AMQP server to connect to.

port The port number of the AMQP server to connect to.

• override BasicDeliverEventArgs checkControlChannel ()

Instruct the resident HTTPFeatureSource to check its control channel before calling

the parent classes check control channel.

• override void init ()

Initialize the HTTP Agent by subscribing to a traffic source topic exchange for

packets to or from port 80 and 8080 with a protocol values of 6 (TCP).

• override void onTerminate ()

Ensure to invoke the resident HTTPFeatureSource on terminate routines before

calling the parent class on terminate routines.

• override bool sensePlanAct ()

Check for new HTTP packets and pass them up to the resident HTTPFeature-

Source. Also ensure that any closed HTTP session are published.

• override void processPacket (PosixTimeval time, Packet nextpacket)

Accept an HTTP packet and pass it up to any resident Feature Source agents.

Protected Attributes

• QueuingBasicConsumer sourceConsumer

Basic Consumer to consume messages from the traffic source.

• HTTPFeatureSource httpTracker
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A Traffic Flow Feature Tracker to maintain state on packets and flows observed by

the agent.

Static Private Member Functions

• static void Main (string[ ] args)

Create an instance of an HTTPAgent ( p. 411).

A.9.3 MainWindow Class Reference

The ExperimentInterface gives an analyst a way to set up a series of experiments

and manages launching various agents.

Public Member Functions

• MainWindow ()

Initialization for the main window.

Protected Attributes

• IConnection connection

A connection to an AMQP server.

• string AMQPHost

The IP address or host name of the AMQP server.

• int AMQPPort

The port number that the AMQP server is listening on.
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Private Member Functions

• void Auto Start (object sender, ElapsedEventArgs e)

Broadcasts the start message to the control channel on an automated timer when

moving from the end of one trial to the start of the next one.

• void Click Start (object sender, RoutedEventArgs e)

Wired to the ”Start” button. Broadcasts the start message to the control channel

when the user clicks on the button.

• void Click Reset (object sender, RoutedEventArgs e)

Wired to the ”Reset” button. Broadcasts the reset message to the control channel

when the user clicks on the button.

• void Click Term (object sender, RoutedEventArgs e)

Wired to the ”Term” button. Broadcasts the terminate message to the control

channel when the user clicks on the button.

• void Click Pause (object sender, RoutedEventArgs e)

Wired to the ”Pause” button. Broadcasts the pause message to the control channel

when the user clicks on the button.

• void Click Add (object sender, RoutedEventArgs e)

Wired to the ”Add” button. Opens a dialog box allowing the user to add configu-

rations to the list of trials to be performed.

• void Click Remove (object sender, RoutedEventArgs e)

Wired to the ”Remove” button. Allows the user to remove the selected trial from

the list of trials to be performed.
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• void Click Connect (object sender, RoutedEventArgs e)

Wired to the ”Connect” button. Connects the the AMQP server and sets up the

first trial.

• void startTrial ()

Start a trial by connecting up to the AMQP server, launch all local agents and

broadcast the required messages to start remote agents. Start a timer to give agents

time to start up before broadcasting the ”Start” message to the agent control chan-

nel.

• void listenForAgents ()

Set up and launch that worker thread that will monitor the agents involved in the

trial.

• void DoWork (object sender, DoWorkEventArgs e)

This method is run on a worker thread to monitor the state of all of the agents

throughout the trial and periodically update the user interface. Once a terminate

message is received on the control channel the experimenter monitors the control

channel for each agent to announce that it has completed processing.

• void WorkerCompleted (object sender, RunWorkerCompletedEventArgs e)

When the trial is completed the experimenter continues to poll agents to ensure

that all agents shut down cleanly. Then this method will reset the user interface

in preparation for the next trial and invoke the startTrial method.

• void checkControlChannel ()

Check the agent control channel for control message broadcast by other agents,

such as ”Announce”, ”Terminate” or ”Complete”.
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• void checkLogChannel ()

Check for messages from the agent log exchange. Process any message received to

update the experimenter user interface.

• bool checkAgents ()

Check if all the agents have finished processing properly and announced a completed

state.

• bool checkProcesses ()

Check if the agent processed managed by this experimenter have exited.

Private Attributes

• ConnectionFactory connectionFactory

Connection factory to support AMQP messaging between agents.

• IModel agentControlChannel

A channel for broadcasting and receiving messages to all agents.

• QueueingBasicConsumer agentControlConsumer

A consumer for control messages broadcast to all agents.

• QueueingBasicConsumer agentLogConsumer

A consumer for loading messages broadcast by participating agents.

• LinkedList< Process > agentProcesses

A list of local processes managed by this experimenter.

• BackgroundWorker worker

A background working thread to manage agents so that the UI doesn’t lag.
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• LinkedList< string > agentIds

A list of the unique ids of all agent involved in a trial.

• LinkedList< string > agentState

A list of current states of agent involved in a trial.

• LinkedList< TextBox > agentBoxes

A textbox for each agent in the trial displaying their unique id.

• System.Text.Encoding enc

An encoding to convert arrays of bytes into UTF8 strings.

• Dictionary< string, Brush > stateColors

Colors available to identify agent states.

• int currentTrial

The current executing trial.

• long totalPackets

Total number of packets expected in a trial.

• long packetsProcessed

Total number of packets processed in a trial.

• long totalAlerts

Total number of alerts expected in a trial.

• long alertsProcessed

Total number of alerts published by alert sources in a trial.

• long featuresPublished
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Total number of features published during a trial.

• long featuresLabelled

Total number of features labelled during a trial.

• double pps

The packets per second achieved by Traffic Sources Agents associated with a trial.

• double mbps

The megabits per second achieved by Traffic Source Agents associated with a trial.

• double trainError

The training error for Machine Learning Agents associated with a trial.

• double testError

The testing error for Machine Learning Agents associated with a trial.

• bool finished = false

Indicates when all agents have completed their work and ready for the next trial.

Static Private Attributes

• static System.Timers.Timer startTimer

A timer to manage lag between the end of one trial and the start of the next to

give agents a change to shutdown.
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Malicious Data Set Rule Hits

The following tables illustrate the number of alerts the Alert Source Agents as-

signed to feature sets for the Malcious Data Set experiment. There is one table for

each traffic type, TCP, UDP, DNS, and HTTP. The table shows the number of alerts

generates (column ASA) and the Snort signature ID for the rule that fired against

the traffic (column SigID).

ASA SigID ASA SigID ASA SigID ASA SigID ASA SigID

1 10483 1 12609 2 2446 5 648 1 2092
1 15302 1 1941 1 2088 8003 1952 29417 579
2 2256 1 1277 1 1394 1 12626 1 17544

Table B.1: Summary of Alert Source Agent (ASA) labels on UDP traffic (excluding
DNS).
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ASA SigID ASA SigID ASA SigID ASA SigID ASA SigID

1482644 254 1 15991

Table B.2: Summary of Alert Source Agent (ASA) labels on DNS traffic.
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ASA SigID ASA SigID ASA SigID ASA SigID ASA SigID

1 16155 3 19444 1 15707 1 7864 1 16186
1 6684 1 6681 1 18304 1 18193 1 6509
1 6686 1 7942 1 18307 12 20130 1 19124
15 17410 1 16543 1 15104 16 648 1 19956
2 17648 1 16366 12 7896 1 17260 1 13823
1 17442 1 20651 1 15477 1 18931 1 20656
1 15362 2 13822 2 20641 1 20648 1 13971
1 20732 2 20728 1 20731 38 13990 1 19439
1 15687 1 15460 5 18682 1 15357 1 15462
1 9129 1 16586 1 17548 1 16392 1 4145
1 17103 1 18612 9 1002 1 15461 1 3148
1 16548 1 15861 1 8416 1 18299 1 17588
2 20820 1 8058 2 19177 1 20650 1 20654
1 20652 1 20657 1 19621 1 20663 1 20680
1 18333 3 15258 3 18685 1 15082 1 15107
3 15504 1 15506 1 15505 1 15499 1 16157
2 15469 1 15693 1 15517 1 5711 1 17344
1 15105 1 16560 1 15913 1 15854 4 18495
1 20647 1 20643 1 17075 8 19074 1 16591
1 16037 1 17654 3 17400 1 18301 1 17222
1 18264 1 16044 1 15305 1 15126 1 15116
1 15122 1 15109 1 15114 1 15157 4 16151
1 15540 1 15531 1 14656 12 17322 3 15306
1 17216 1 20137 1 16367 1 16231 1 15090
1 15098 1 19894 1 16412 1 14657 1 14645
2 17572 1 15094 1 16359 1 14262 1 8066
1 14643 1 2435 5 12280 17 1394 1 10162
1 7502 1 16426 1 15084 10 10214 1 13960
1 13828 1 13963 1 13980 1 16506 1 20584
1 13961 1 14255 1 18583 1 18613 2 13573
1 13474 1 3079 1 17232 1 17231 1 9625
5 8375 1 17220 1 12269 4 19174 1 7928
1 17421 1 7944 1 7958 1 7934 1 7938
1 15703 1 17385 1 13830 1 18178 2 15147
1 18296 1 17323 47 10504 1 12448 1 16482
1 18925 1 16555 3 3813

Table B.3: Summary of Alert Source Agent (ASA) labels on HTTP Traffic.
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ASA SigID ASA SigID ASA SigID ASA SigID ASA SigID

1 19444 2 2338 3 17410 35407 2181 17 648
2 4918 1 18472 1 2087 1 2253 1 11442
1 11945 1 1390 1 15527 2 16444 1 18509
1 10208 1 14725 6 14737 1 12977 1 2374
1 16524 1 18751 1 15264 32100 1729 2 15255
1 3697 1 18555 1 11289 3 560 1 3218
8 19274 2 19280 1 604 1 18682 2 2044
2 17668 1 2666 1 606 1 20602 1 20601
5 12800 1 15256 1 12069 1 2649 1 15504
2 17344 1 16709 1 542 1 19551 1 12082
1 12597 1 18807 1 18317 4 14782 4 7209
1 9132 1 9027 3 6584 1 3967 1 10018
2 3409 1 10024 1 20662 1 17322 1 16595
2 1866 2 20130 2 16543 208 1394 1 12489
1 13367 2 15213 1 15221 1 15206 2 15199
2 15930 1 7035 1 20440 1 20670 4 2508
1 2936 1 2101 1 8925 1 18512 1 16417
10 12802 3 12798 1 19291 1 10997

Table B.4: Summary of Alert Source Agent (ASA) labels on TCP traffic (excluding
HTTP).
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