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Abstract
In highly complex domains such as disaster rescue, today’s mo-

bile robots simply do not have the ability to perform successfully
on their own. Human teleoperation is strongly relied upon, but
this also has problems: humans suffer from cognitive overload
and have difficulties in constructing a representation of the space
around a robot given information from its senses. In this paper
we describe an approach to multi-robot control for such environ-
ments that focuses on combining the limited abilities of modern
autonomous control systems together with human control. At the
center of this approach is a pair of software agents running on
each robot: one to recognize problems in the environment from the
perspective of a robot, and another to mediate the interaction be-
tween a robot and a human controller. The intent of this approach
is to allow a human to better control a team of robots, being inter-
rupted only when the situation demands. We describe the imple-
mentation of this approach using simulated Pioneer robots, and
evaluate the approach in comparison to autonomous and teleoper-
ated mobile robots in a rescue domain.

1. Introduction

Urban search and rescue (USAR), the exploration of
damaged or collapsed urban structures in search of disas-
ter victims, is both a major potential application of AI tech-
nology and a current challenge problem for researchers in
AI and robotics. USAR is an extremely difficult task for an
autonomous mobile robot to perform adequately given the
current state of the art in robotics and robotic control tech-
nology. The environment is difficult to maneuver within,
and unpredictable in that even a known building layout may
have changed dramatically during the associated disaster.
Basic robotics skills such as localization are strongly af-
fected (for example, mobile debris causes wheel slippage,
leading to more severe errors from wheel encoders), and
sensing is much more difficult than any standard indoor do-
main. The wide range of skills necessary for adequate per-
formance, coupled with the unpredictability of the domain
lead most existing efforts to rely heavily on human teleop-
eration of robotic units (including those whose use at the

World Trade Center was widely publicized [6, 7]).

This reliance on teleoperation can also be seen in cur-
rent research. Like other challenge problems such as robotic
soccer, USAR research is evaluated in controlled conditions
using a physical testbed (e.g. the NIST testbed [11], where
the goal is to provide a map to the locations of human vic-
tims within an area of debris representing a collapsed struc-
ture). While these domains have been described as simplis-
tic compared to real-world USAR [12], the vast majority
of entries to such competitions are teleoperated. For ex-
ample, at both AAAI-02 in Edmonton [4] and IJCAI-03 in
Acapulco [5] we were one of only two entries running fully
autonomously.

Beyond a desire as AI researchers to advance AI itself,
there are good reasons behind a desire to avoid pure tele-
operation. Casper and Murphy, for example, describe the
operator fatigue that occurs very quickly in real-world res-
cue situations, and the associated errors in both control and
in recognizing visual cues [6, 7]. There are also signifi-
cant problems with providing situational awareness (that is,
a functional mental view of the space within which a robot is
operating) to a human operator, and teleoperators also suffer
from cognitive overload in terms of processing information
[2]. Cognitive overload not only requires information pre-
sentation to be very selective, but strongly limits the number
of robots that can be controlled by an individual.

We are interested in providing functional intelligent con-
trol to a team of mobile robots. Given the difficulty of oper-
ating within this domain, the state of the art in robotic con-
trol technology, and the problems associated with pure tele-
operation, a combination of the two approaches (commonly
known as ateleautonomousapproach) is warranted. Ideally,
an intelligent control mechanism should support a blend of
teleoperation and autonomy that is blended as seamlessly as
possible, allowing a teleoperator to focus attention on the
problems that require the most assistance. A teleoperator
should ideally only be interrupted when context suggests it
is worth doing so; at the same time, the actions of any robot
operating autonomously should be able to be overridden by

1



an operator at any time.
We have developed an approach to blending teleoper-

ation and autonomous control in behaviour-based mobile
robotic robots [15]. This consists of three sets of facili-
ties. First, a schema-based [1] autonomous control system
for navigation and mapping that allows robots to perform
autonomously (subject to the associated limitations that a
domain as difficult as this one places). Second, support for
direct teleoperation of robots, including a joystick-based in-
terface as well as the ability to exert control at a higher level
by setting waypoints. Finally, facilities for blending auton-
omy and teleoperation appropriately for each robot. These
consist of a mediation agent that allows the blending of the
desires of both teleoperator and robot for low-level robotic
control, and an intervention recognition agent for recog-
nizing both problematic (e.g. agent is stuck) and helpful
(e.g. potential victim found) situations in which the opera-
tor should be interrupted.

In this paper, we focus on the facilities we have de-
veloped for blending teleoperation and autonomy appropri-
ately. We describe these facilities and their implementation,
and describe the results of an evaluation of the performance
of these facilities on simulated Pioneer robots. This eval-
uation includes both the efficacy of the approach at both
locating victims and general environmental coverage in do-
mains of varying complexity, as well as the efficacy of the
approach under varying operator loads. Before all this, we
begin with a brief review of related literature.

2. Related Literature
The most well-known early work in combining teleop-

eration and autonomy is that of Arkin and Ali [2]. Arkin
and Ali describe two approaches for teleautonomy with re-
spect to multiple robots. Both of these are schema-based
[1] approaches, where behaviours (wander, avoid, etc. ) are
encoded in the form of motor schemas, which are activated
by perceptual schemas (defining perceptual items of inter-
est) and interact at run time to produce output to robot ef-
fectors. The first approach has the operator’s control (input
from a joystick) as a behaviour that influences the robots’
effectors just as any internal behaviour does. The second
approach for teleautonomy involves having the operator act
as a supervisor. The operator has access to the behavioural
parameters of the society (e.g. the low level gains of each
motor schema). The operator could effect the emergent be-
haviour of the society as a whole by adjusting individuals’
behavioural parameters. This work is limited by its simple
blending and effect on an entire group of agents at once, but
showed the utility of a teleautonomous approach. Blend-
ing an operator’s desires as a schema along with the robot’s
desires was also implemented in the control of a teleau-
tonomous hummer [3], but shares the same limitations of
Arkin and Ali’s original approach.

Crandall et al. [9] present the notion ofneglectin tele-
operated robots. They describe neglect as the amount of
time during which the robot is not receiving some sort of
instruction. They show that this down time can hinder per-
formance, and can be due to the operator turning his or her
attention away, or from delays between issuing commands
and the robot receiving those commands. They also de-
scribe a robot control system consisting of a set of robot
behaviours and a user interface for controlling the robots.
Their systems use five levels of autonomy ranging from
fully autonomous to dormant. However, they do not de-
scribe an implementation in their work to show that any
balancing has been implemented.

Trividi et al. [14] designed a system that is intended to
allow robotic units to recognize traffic collisions and other
accidents. This system is strictly a laboratory design and
years away from being deployable, but makes use of teleau-
tonomous robots that can form a perimeter around a colli-
sion. These robots specialize in forming a perimeter, and the
remote operation provides very basic instructions to guide
the robots to form perimeters around specific areas. This
application of teleautonomy demonstrates the potential to
have equipment constantly monitoring an area without the
full attention of an operator, but is extremely simplistic: the
robots have one purpose, and can achieve that fairly sim-
ply through a polygon forming algorithm where each robot
takes the role of a point on the polygon. The operator sup-
plies only location guidelines for the polygon forming activ-
ity, and the balance between autonomous ability and remote
control has been fixed as well.

Murphy and Sprouse [13] describe a strategy for mixing
robot and human control in the USAR domain by assigning
a different search task to the operator than to an autonomous
robot. The robot would perform a systematic search of an
area, covering the entire area by splitting the area into sec-
tions and applying its senses to each section. The operator
then performed the semantic search; in this case the operator
directed the robot to semantically similar areas of interest.
Murphy et al. [8] describe a paradigm for automating victim
detection by a mobile robot, while the operators controlled
the robot’s navigational system. They implement their strat-
egy on a three-unit society architecture, where the robot, hu-
man and an Intelligent Assistant Agent together composed
the society.

3. Design and Implementation
In our approach to blended teleautonomy, robotic agents

are implemented using a schema-based [3] architecture with
behaviours suitable for autonomous performance (naviga-
tion, mapping, victim identification) in USAR environ-
ments. Commands can be accepted from a teleoperator via
a joystick facility for low-level direction of a selected indi-
vidual robot, or via setting high-level waypoints. Central
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Figure 1: Overview of the components of the robot control
system. Arrows indicate communication between compo-
nents.

to this approach are two software agents running on each
robot: a mediation agent is used to appropriately blend the
commands from a teleoperator with a robot’s autonomous
processing, while an intervention recognition agent recog-
nizes situations in which an operator should be informed
that intervention on his or her part is required (see Figure 1).
These two components are described in the remainder of
this Section. Peripheral components, such as a user inter-
face, are also necessary and are described fully in [15].

3.1. Mediation Agents

A mediation agent is responsible for smoothly integrat-
ing the operator’s commands with those of a robot’s au-
tonomous control system. While previous approaches have
focused on blending operator instructions directly with in-
structions from an autonomous controller, our approach is
more flexible, allowing the agent to intelligently evaluate
instructions before blending to ensure that instructions are
safe and appropriate to execute. To blend autonomy and
teleoperation appropriately, a mediation agent is capable of
reasoning about commands that have been sent to the robot
from the human operator. Some commands may be fol-
lowed to the letter, while others integrated with the robot’s
own desires or completely refused. The latter allows the
vetoing of actions that would put the robot in danger in-
advertently, such as being told to move forward when the
operator is not necessarily aware the robot is on the edge of
a drop. There may certainly be cases where putting a robot
at risk may be deliberate (i.e. the value of information ob-
tained is worth the potential loss of the robot), and so it is
also possible for a mediation agent to allow the operator’s
commands to be unquestioned.

A mediation agent operates in one of five modes that
are set by a human operator. The most complex of these
is Weighted Teleautonomy, intended to be the ”normal”
mode in which agents operate, where the mediation agent
observes the current system, and weights inputs from the

teleoperator’s interface and the autonomous control system.
The user interface provides a slide control allowing a base
ratio to be set. This sliding autonomy setting is only one
component affecting the weight of autonomy vs. teleop-
eration, however - commands are also examined in their
execution context and weighted based on effect, as will
be explained shortly. In contrast to this weighted mode,
Fully AutonomousandFully Teleoperatedmodes simply set
the weight of one of the two sources to a zero value. In
addition to these, we have developed two modes that al-
low a human operator to have more detailed control. In
Manual Behaviour Weight Modification, the operator man-
ually defines the internal weights an agent places on its
behaviours, allowing the operator to alter how the robot
runs autonomously, while inManual Behaviour Switch-
ing, the operator can switch through the behaviours that
are implemented for the autonomous robot, and the robot
runs autonomously using only the chosen behaviour. To-
gether, these allow the subsumption of previous approaches
to teleautonomy within a single architecture.

An instance of the mediation agent runs on each robot
platform on a team and actually serves as the main con-
trol loop on the robot. It signals the perceptual system to
refresh currently perceived information, requests an action
vector from the robot’s autonomous control system, and if in
a mode where an operator is participating, retrieves exterior
control signals. These are passed to thecommand evaluator,
a symbolic system that is responsible for identifying com-
mands whose execution is dangerous or counter-productive
in the current execution context. This is done by predict-
ing the position of the robot if the command were executed,
and whether that position would leave the robot in a nega-
tive situation from the standpoint of the knowledge in the
command evaluator. Once commands are adjusted they are
further blended depending on the degree of autonomy set
by the operator if the weighted teleautonomy control mode
is being used. This results in a control vector that is inter-
preted and sent to the robot’s actuators.

The ideal command evaluation system would have
enough knowledge to deal with any potential situation in
USAR. Given the breadth of this problem, however, com-
plete knowledge is unreasonable to expect. We are currently
expanding our knowledge engineering efforts in this area,
but have implemented knowledge for two particular situa-
tions that are intuitively useful in the USAR domain: mov-
ing too near an obstacle (which would potentially get the
robot stuck or damaged through contact) and moving away
from a potential victim. The evaluation in Section 4 is based
on this knowledge.

3.2. Intervention Recognition

Appropriately balancing operator instructions and au-
tonomous abilities is only one part of this overall approach;
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the other major component is the recognition of situations
where operator intervention is required, in order to min-
imize the cognitive demands on the operator. Recogniz-
ing when robots require operator intervention in this ap-
proach requires examining specific situations in the form of
an intervention recognition agent. The intervention recog-
nition agent is ultimately responsible for indicating when
the balance between autonomy and teleoperation of agents
should be changed, by requesting a change of control from
the operator (the infrastructure exists in this implementation
for requesting assistance from other robots as well, but we
have not yet implemented code in the autonomous control
mechanism to deal with handling requests for such assis-
tance). The intervention recognition agent performs its task
through the use of a knowledge base estimating the degree
of likelihood that a robot can or should carry on its current
course of activity. An instance of the intervention recogni-
tion agent runs on each individual robot platform, analyz-
ing the robot’s perceptions, identifying specific scenarios
indicative of the need for operator intervention, and sepa-
rating these from the situations where progress is still likely
without intervention. The intervention recognition agent is
designed in an extendable manner so that specific scenarios
of interest can be encoded in a knowledge-based fashion,
resulting in a system that can be used in a wide range of
environments.

For the purposes of encoding knowledge useful to
USAR, we have currently implemented three specific sce-
narios within the intervention recognition agent that we
have found to be useful. The simplest problem to address,
but the most common, is a robot becoming stuck or other-
wise immobile. The intervention recognition agent identi-
fies when the robot is stuck and signals the operator. A stuck
robot is defined as any robot that is sending instructions to
its actuators, but the actuators are not completing those in-
structions. If the robot’s actuators are receiving commands,
the robot will compare its current sensor readings to past
sensor readings attempting to distinguish if there is any ev-
idence supporting movement on the robot’s part. If there
is little or no evidence supporting movement within the last
few perceive-act cycles, the robot is declared stuck.

In addition to becoming stuck, robots can become lost or
unable to complete their goals. None of the components in
this approach contains an elaborate world model. However,
the robot’s autonomous control system is able to distinguish
certain objects (landmarks) in the environment uniquely us-
ing the robot’s sensors, and has limited ability for track-
ing such objects, which is used by the intervention recogni-
tion agent to support the identification of a lost or confused
robot. The robot’s autonomous control system remembers
how many times it has sensed a landmark and how much
time has elapsed since the last time it has sensed the same
landmark. An intervention recognition agent uses this infor-

mation to determine when a robot has returned to the same
location too often or when a robot has returned to the same
location too many times in a specified period of time. In
either case, the operator should be notified so that the robot
can be encouraged to explore different locations in the en-
vironment instead of spending too much time in the same
area.

The most crucial event that can occur in the USAR do-
main, however, is the detection of victims. Victim identifi-
cation is an extremely difficult task to perform well purely
autonomously [12, 8], and so is one of the primary reasons
why an operator would desire to be interrupted. In our ap-
proach, the intervention recognition agent is responsible for
identifying when an object in the environment resembles a
victim and notifying the robot’s operator. The intent is for
the operator to make a judgment whether a victim is at the
location, since any autonomous system is likely to make er-
rors in victim identification. An accurate model of victim
identification is not the focus of this work, and for the pur-
poses of evaluation, vision alone is used to identify objects
resembling victims by their color using a single perceptual
schema. For future deployment in competition, we intend to
supplement this by searching for shapes indicative of partial
human forms as well as other sensing such as heat detection.

When an intervention recognition agent identifies a situ-
ation that requires the operator to intervene, the operator is
notified through the user interface (described in more detail
in [15]). Briefly, the user interface contains a list of the cur-
rent available robots and their states. When an intervention
recognition agent identifies a situation where intervention is
desirable, it changes the state of the current robot, updating
the user interface. An operator working with the user inter-
face can see that the robot requires assistance, along with
a brief message describing the robot’s current state, and is
able to operate the agent by clicking on the robot’s tab on
the user interface.

Each robot’s intervention recognition agent is imple-
mented in Java as a package containing theintervention
eventobjects, theintervention recognitionobject and aper-
ception memoryobject. The perception memory stores
snapshots of the robot’s perceptions for the past five percep-
tual cycles as an array of perception instances. The percep-
tions stored in the perceptual memory do not attempt to cre-
ate a representation of the world other than the basic land-
marks described above: they are stored as raw perceptions
that the perceptual schemas can use to identify interesting
things in the environment.

There are three intervention event objects, polled regu-
larly by the intervention recognition object to inquire if the
state of the robot must be changed. These three objects
address each of the three important conditions described
above:confused identifier, stuck identifierandvictim iden-
tifier. Each of these event objects contains a link to the cur-
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rent perceptions of the robot via the perception class. The
stuck identifier object looks at the agent’s current coordi-
nates and compares them to the robot’s location four cycles
previous. If the current location and the location four cycles
ago are the same, and there is a movement instruction be-
ing sent to the robot with a speed higher than 0, the agent is
considered stuck. The victim identifier relies solely on the
victim perceptual schema mentioned previously, while the
confused identifier relies on counting the number of times
a robot has been within perceptual range of any given land-
mark (a perceptual schema for landmark identification must
be supplied for any domain in which the robot team is de-
ployed). If the count surpasses the threshold, the robot is
identified as confused. The system is extendible since new
intervention events can be coded as additional intervention
event objects.

4. Evaluation
In order to examine the performance of this approach, we

placed robots in a controlled simulated USAR environment
implemented using the Player/Stage simulation tool [10].
Player/Stage was chosen because it is widely used and al-
lows development of code that operates directly on Pioneer
robots. Each robot was a Pioneer II equipped with a differ-
ential drive, a SICK laser range scanner and a video (CCD)
camera with a wide angle lens. The environment used was
20m2, and for the purposes of experimental trials environ-
ments were generated and evaluated for equal difficulty and
for the purposes of repeatability. Environments were con-
structed for a desired degree of obstacle coverage (5%, 10%,
15%, and 20%), using50cm2 obstacles to construct impass-
able walls with openings between them in order to approx-
imate the structure of a collapsed building. Limits were set
on the number of open areas (max. 20) that were generated
as a result of this, their size (100cm2-300cm2) and the num-
ber of openings to each area (at most 3). Single obstacles
were then distributed throughout the environment to make
up the desired obstacle coverage. Obstacles were distributed
randomly except for two criteria. First, between every ob-
stacle and every open area there was a minimum distance
of 120cm, in order that multiple obstacles could not cluster
too closely to open areas, thereby reducing the likelihood of
creating areas of the environment that completely inacces-
sible. While inaccessible areas will of course occur in the
real world, for the purposes of producing comparable do-
mains we need to control for this. The distance between the
center of any two obstacles in the environment could also
not be less than 50cm, making it impossible for obstacles to
physically overlap more than a few centimeters.

After generating sample environments, the number of lo-
cal minima present was averaged, and environments were
rejected that had local minima counts that were off more
than a small range from that mean. Further, environments

were also made consistent in difficulty by hand-verifying
that there were no inaccessible areas of the domain, and that
open areas did not get generated in such a manner that they
formed hallways that were too narrow for the robot to phys-
ically occupy.

Each environment had 10 victims and 5 negative victims
(objects that from a distance appear to be victims). These
were distributed randomly except for a proviso that the dis-
tance between the center of any real or negative victim from
the next closest real or negative victim was at least 60cm.

For the purposes of the simulated environment, the vi-
sual schema for victim identification was implemented us-
ing colour blob detection, where it is possible to distinguish
between actual victims and objects that only resemble vic-
tims by their color (negative victims) when they are within
3m, while outside of3m both victims and objects resem-
bling victims are identified as objects of interest. While vic-
tim identification is not the focus of this work, this method
serves to force the robot to move within a close proximity in
order to make a victim identification, something that would
be expected in the real world.

Potential landmarks in the simulated environment were
labelled with bar codes that can be read using the laser range
finder. While this is not consistent with the real world, the
intent here was to allow a consistent and repeatable means
of marking landmarks in the world to examine the operation
of the confused identifier object.

Our evaluation of this approach is divided into two parts.
First, an evaluation of the performance of the blended
teleautonomous approach in comparison to autonomous and
teleoperated approaches under varying environmental con-
ditions, in order to demonstrate the utility of the approach
as environments become increasingly complex. Second, a
similar evaluation where the number of robots under con-
trol varies, in order to examine the benefits of the approach
in terms of allowing an operator to control a larger number
of robots effectively. Each of these evaluations is presented
in separate subsections.

4.1. Performance as Environment Complexity In-
creases

We examined the performance of the blended teleau-
tonomous approach based on the components described
in Section 3 in comparison to purely autonomous and
purely teleoperated implementations using the same inter-
face across varying degrees of obstacle coverage. In all
cases the same single human teleoperator was used. Exten-
sive results are detailed in [15]; because of space limitations
we present a subset of the results related to the coverage of
the environment by a team of three robots, the time robots
spent immobile, the number of victims found by a team of
robots and the number of interactions between the operator
and the control system.
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Figure 2: Average (n=5) environment coverage achieved by autonomous, blended teleautonomous and teleoperated robot
control in environments where 10% was covered in obstacles.

Figure 3: Average (n=5) environment coverage achieved by autonomous, blended teleautonomous and teleoperated robot
control in environments where 15% was covered in obstacles.
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Figure 4: Average (n=5) environment coverage achieved by autonomous, blended teleautonomous and teleoperated robot
control in environments where 20% was covered in obstacles.

Figures 2, 3 and 4 show the performance of the three con-
trol systems in terms of area coverage over time for three of
the four categories of obstacle coverage (5% coverage was
similar enough to 10% coverage to omit, given space lim-
itations). Teleautonomous robots performed significantly
better than autonomous robots in terms of area coverage
across all degrees of obstacle coverage. We attribute this
performance to a human operator’s ability to recognize un-
explored areas of the environment quickly and guide robots
to unexplored areas more efficiently then the autonomous
control system could. Some unexplored areas were unlikely
to be found by the autonomous robots because of the unique
obstacle configurations in those unexplored areas. That is,
while we check to ensure the robot can physically fit in any
hallways formed, they may still be narrow enough that the
robot’s motor schema for avoiding obstacles would slow
down the robot’s progress. Teleoperated control performed
slightly better than blending control at the 15% and 20%
obstacle coverage levels (though it did not at 5% and 10%
obstacle coverage levels), since although the operator could
guide blending robots into unexplored areas, once a robot
was neglected (i.e. the operator shifted attention to another
robot) the autonomous portion of the blending control sys-
tem could guide the robot back to an explored area. This
happened less at lower obstacle coverage levels: since there
are fewer obstacles, there are fewer course changes neces-
sary for robots to go around them when operating without
benefit of an operator, and less likelihood of heading back

toward an area that an operator just steered the robot away
from.

The time each robot spent immobile with respect to au-
tonomous versus blending robot control (see Figure 5) is
another indication of the gains associated with blending au-
tonomy and teleoperation. Since the autonomous robots
employ behaviour-based control, they are susceptible to lo-
cal minima, often becoming stuck in difficult environments.
When robots got stuck in autonomous trials, they would
often remain stuck. In the blending trials, if a robot be-
came stuck, the operator was often able to free the robot.
Since the operator was notified by an intervention recogni-
tion agent whenever a robot became stuck, the operator was
often able to free the robot in a timely manner, reducing
the amount of time any particular blending robot spent im-
mobile. In the lower obstacle coverage trials (5% and 10%
obstacle coverage), robots became stuck less overall. More-
over, when robots did get stuck, they tended to get stuck less
severely, and therefore it was easy for the operator to get
the robot mobile again. In trials with higher obstacle cov-
erage, the robots would get themselves stuck in much more
complex ways, making it more difficult for operators to re-
lease them. In trials where the obstacle coverage was 20%,
the time spent stuck for the blending control system was
much higher, since robots were often difficult to get mobile,
leading to robots being abandoned. Blending operator in-
structions with the autonomous instructions contributes to a
significant increase in effectiveness of robots, which can be
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Figure 5: Average time in seconds spent immobile by environment difficulty, for blending and autonomous robot control.

observed by comparing the results of the autonomous trials
and the blending trials.

With respect to successful victim identification, we
found that the robots using blended teleautonomy had an
advantage over both teleoperated control and autonomous
control (see Figures 6, 7 and 8). At least a few victims in
any experimental scenario were reasonably out in the open
and easy enough to navigate to and find autonomously, and
both blending robots and autonomous robots could take ad-
vantage of this. Correspondingly, only very little attention
on the part of the operator was needed for blending robots.
Later on in the trials, when the victims in the open were
all located, the blending robots performed better then the
autonomous robots, because the operator could guide the
robots through the more difficult areas of the environment,
encouraging the team to cover more area and discover more
victims.

While there were cases (at the 15% and 20% obsta-
cle coverage levels) where purely teleoperated robots could
still outperform teleautonomous robots, there is a significant
overhead being paid for this in terms of operator interven-
tion and ultimately operator fatigue. Throughout all trials
performed, the teleoperated robots required many more in-
teractions to complete their task. This ranged from an aver-
age of 5.9 times more interactions than the blended control
system for 5% obstacle coverage, to 1.4 times the number of
interactions for 20% obstacle coverage (see Figure 9). Even
with the additional attention required by the more dense en-
vironments, the blending control system required less atten-
tion from the operator, which contributes to a lower cogni-
tive load.

4.2. Performance with Larger Teams
The results above illustrate the effectiveness of our ap-

proach as environments become more complex. Not only
can complex environments be covered more effectively
than using either solely autonomous or solely teleoperated
robots, but the number of human-robot interactions is sig-
nificantly decreased over the use of teleoperated robots. All
of the results above, however, use only three robots. To
supplement these results, we investigated the effects of in-
creasing team size, in order to examine the efficacy of the
approach where a heavier operator load was involved.

With respect to both the identification of victims and the
coverage of the environment over time we found that in-
creasing the number of robots from teams of three to teams
of six and nine offered some improvement in performance.
At the 10% obstacle coverage level a team of three au-
tonomous robots required an average of seven minutes to
identify all 15 victims in the environment, while teams of
six and nine robots required approximately five minutes.
Blending robots also performed better with a larger team of
robots. However, the advantage for blending robots is much
less pronounced (see Figure 10). Increasing the obstacle
coverage level from 10% to 15% further increased the ad-
vantage gained by increasing the number of robots per team
(see Figure 11). On average a team of three autonomous
robots was unable to identify more than eight victims, while
a team of six robots could identify 12 victims and a team of
nine robots could identify close to 14 victims. Notice that
a team of nine autonomous robots performed better in the
earlier portion of the simulation (up to 15 minutes) then a
blending team of three robots and has performance com-
parable to a blending team of six robots. In all cases the
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Figure 6: Comparison of number of victims identified in teleoperated, autonomous, and blending experiments in environments
where 10% was covered in obstacles. All results are averages over 5 trials.

Figure 7: Comparison of number of victims identified in teleoperated, autonomous, and blending experiments in environments
where 15% was covered in obstacles. All results are averages over 5 trials.
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Figure 8: Comparison of number of victims identified in teleoperated, autonomous, and blending experiments in environments
where 20% was covered in obstacles. All results are averages over 5 trials.

Figure 9: Average (n=5) ratio of operator interactions (teleoperated/blended teleautonomous in environments with 5%, 10%,
15%, and 20% obstacle coverage.
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blending robots outperformed the autonomous robots with
equal team sizes.

With respect to environment coverage at the 10% obsta-
cle coverage level teams of six and nine robots performed
almost exactly the same, both reaching roughly 85% to
90% of the environment while teams of three robots could
only reach an environment coverage of approximately 80%.
Blending robots had a similar performance – however the
performance gained by increasing the number of robots was
more important with respect to how quickly the environ-
ment was covered as opposed to how much of the total
environment was covered (see Figure 12). Increasing the
obstacle coverage from 10% to 15% increased the perfor-
mance improvements. The blending robots clearly have an
advantage over autonomous robots (see Figure 13). Teams
of three robots were capable of covering an average of
roughly 33% of the environment, but increasing the number
of robots from three to six almost doubled the performance.
Increasing the number of robots from six to nine produced a
much smaller performance gain. The performance gain for
blending robots was substantial when increasing the num-
ber of robots from three to six but almost negligible when
increasing from six to nine.

Increasing the number of robots certainly increases the
performance of the robot teams. However, the performance
gain is more substantial when the number of robots in-
creases from three to six, and further increasing the number
of robots does not produce a significant amount of perfor-
mance increase (i.e. increasing the team size from six to
nine). In the cases described above, the performance gained
by increasing the number of robots per team is not linear:
as the number of robots increase, the performance gain de-
creases.

5. Future Work
There are a number of directions that future work in this

area can profitably take. In terms of immediate further ex-
perimentation, we are currently examining the efficacy of
this approach as the number of robots increases (prelimi-
nary results are presented above), both to examine how far
the benefits obtained can be pushed, and to help identify
future improvements that will allow the operator to better
control larger teams of robots. We are also working on ex-
tending the knowledge bases used by the software agents,
since the broader the range of situations these can recognize
and deal with, the better the performance of this approach
should be.

One of the most obvious extensions to this work is the ap-
plication of the blending control system on physical robots.
Since this work was done using the Player/Stage application
suite, all code written to control the simulated stage robots
is directly compatible with physical Pioneer mobile robot
platforms. However, the code used in this thesis was not

verified on a set of physical robots. Extending the blending
control system to work with other mobile robot platforms
is another goal of future work in this area. There are sev-
eral issues that have to be addressed if this system is going
to be applied to physical robots. First, on real robots, per-
fect localization is no longer a simple assumption. Odome-
try on real robots is likely to have at least some noise, and
that noise will be cumulative. The application of vision and
other sensor technology would have to be employed in or-
der to have useful localization. Another assumption that has
to be dealt with is the increase in sensor noise and environ-
ment complexity. Vision in particular will be a challenging
problem in a real robot compared to a simulated one, and
a more sophisticated method for handling errors will have
to be developed. The approach and much of the code writ-
ten for the simulated blending system will be applicable on
the physical robots, but the underlying infrastructure will
require much additional work.

In terms of the overall approach, the major planned ex-
tension of this work is to allow support from peer robots as
well as human operators. The potential for this is already
present in this approach in that an intervention recognition
agent has the ability to send requests for advice or assis-
tance to other robots and their agents. The mediation agent
was also designed so that it could be extended to include
instructions from peer robots instead of human operators.
We intend to extend the autonomous control mechanisms
to deal with requests for assistance or information from
other robots, and integrate consideration of other robots into
the knowledge bases used by the intervention recognition
agents and command evaluators. This will allow research
into the efficacy of making robots more proactive in terms
of assisting one another in this domain (even volunteering
information rather than being asked, for example).

In addition, there are opportunities for user modelling of
the operator (and for modelling other robots when those ex-
tensions are complete). The blending system described in
this research decreases the amount of risk to the robot, but
a persistent operator is still able to greatly effect the robot’s
resulting actions. If the agent could model the operator and
develop a level of trust, the decision of whether commands
are blended and to what degree could be influenced by how
much trust the robot’s control system has with a particu-
lar operator. Consider an inexperienced operator who unin-
tentionally persists in instructing the robot to perform very
risky tasks that are entirely avoidable, such as moving too
close to unstable ground. If the control system “knew” that
the operator was inexperienced, the robot might blend the
inexperienced operator’s instructions differently. Imagine
now that instead of an inexperienced operator, a malicious
operator may try to take advantage of robots and hinder
their progress for the operator’s own means. In either sit-
uation, whether the operator is inexperienced or malicious,
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Figure 10: Comparison of number of victims identified in autonomous and blending experiments with different numbers of
robots (3, 6 or 9) in environments where 10% was covered in obstacles. All results are average over 4 trials.

Figure 11: Comparison of number of victims identified in autonomous and blending experiments with different numbers of
robots (3, 6 or 9) in environments where 15% was covered in obstacles. All results are average over 4 trials.
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Figure 12: Average (n=4) environment coverage achieved by autonomous and blended teleautonomous robot control with
different numbers of robots (3, 6 or 9) in environments where 10% was covered in obstacles.

Figure 13: Average (n=4) environment coverage achieved by autonomous, blended teleautonomous and teleoperated robot
control with different numbers of robots (3, 6 or 9) in environments where 15% was covered in obstacles.
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the ability to model operators may have advantages. This
type of research could blossom into multi-agent research,
where robots keep track of operator reputations and share
their reputations to benefit all members of a society.

Since there was only a single human operator for this
research, the evaluation itself would benefit from a larger
study involving a range of operators. This would involve
recruiting a pool of subjects classified by experience with
tools such as robots or remote-controlled vehicles (it would
be useful to employ a psychological spatial-visualization
test as a tool for categorizing subjects by their skills at visu-
alizing remote situations). Additional criteria for measuring
cognitive load would also have to be devised to supplement
to the heuristic measurement used in this research. A us-
ability study could provide a large amount of insight into
the relationship between the human operator and the robot.
This could lead to improvements in blending by taking ad-
vantage of some of the natural ways that human operators
interact with robotic control software.

Finally, there is the opportunity for future work in user
interface development. A well designed user interface can
encourage easier interaction between the operator and a
robot team. The user interface employed here is sufficient
for this research, but it could be improved to be more opera-
tor friendly. It would be useful to experiment with changing
the user interface to try to increase the immersiveness and
allow the user to feel more “in control”. Traditional user in-
terfaces often seem passive, where the operator is watching
the robot perform instead of being immersed with the robot
in the environment.

6. Conclusion

This paper has described facilities for balancing auton-
omy and teleoperation effectively for a complex environ-
ment, Urban Search and Rescue. Further explanation of the
other components that make up a complete teleautonomous
navigation system (e.g. the user interface, the waypoint
manager, etc.) may be found in [15].

The experiments described in this paper demonstrate that
this approach, through blending autonomy and teleopera-
tion appropriately and notifying an operator when interven-
tion is desirable, can significantly improve the effectiveness
of a robot team. It is also evident that the blending of auton-
omy and teleoperation reduces the number of interactions
between the operator and a collection of robots while still
maintaining a comparable level of performance. The results
have shown the blending supported by our control mecha-
nism allows a human operator to more accurately control
a group of robots, and the system to find victims faster and
with fewer errors, than relying on autonomy or teleoperation
exclusively. We have also indicated a number of directions
for future experimentation and research.
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