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Abstract

Imitation learning is a powerful mechanism used by humans
and other creatures. In imitation learning, the actions of oth-
ers form the basis for desirable behaviour, and an imitation
learner must be able to recognize the outcomes of the actions
of others, understand how these relate to its own abilities,
and ultimately duplicate the final outcome of a series of ac-
tions. We are interested in supporting this type of learning in
general populations of robots, where a two important compli-
cations arise. First, physical variation between demonstra-
tor and learner may require the learner to carry out different
action(s) from the demonstrator to achieve the same results.
Second, since demonstrators’ skills may differ as much as
their physiology, agents must be able to compare the demon-
strations of a number of different individuals, in order to give
greater weight to better demonstrators. Being able to inte-
grate multiple demonstrations from different demonstrators
allows a learner to deal with these problems as well as en-
couraging the creation of more general behaviours, rather
than simply mimicking the actions of a single agent with no
ability to generalize. In this paper we describe an approach
to imitation learning based on global vision, which deals with
these problems.

Introduction
Imitation learning is a powerful mechanism, and evidence
of learning from the demonstrations of others can be seen
in primates, birds, and humans (Demiris & Hayes 2002;
Mataríc 2002; Billard & Mataríc 2000). From an AI per-
spective, this is attractive in part in dealing with the knowl-
edge acquisition problem: instead of programming a robot
for each individual task, robots should ultimately be able
to gather information from human demonstrations (Matarić
2000; Nicolescu & Mataríc 2003; Breazeal & Scassellati
2002). Similarly, in a multi-robot setting, robots should
be able to learn from one another’s behaviour (Ander-
son, Tanner, & Baltes 2004; Breazeal & Scassellati 2002;
Riley & Veloso 2001).

Mataríc describes imitation as “...a complex process ca-
pable of creating arbitrary new motor skills by composing
complex hierarchical combinations of primitives and other
already learned skills” (Matarić 2002). In this context, and
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in our work, primitives are the low level actions available
to the imitator, while behaviours are compositions of prim-
itive actions, allowing abstractions. In order to be able to
learn a new activity, a learning agent must be able to watch
a demonstration, relate the actions perceived in that demon-
stration to its own primitives, and put these primitives to-
gether into a behaviour that accomplishes the same objec-
tives as the original demonstrations.

Action recognition is an important part of this: in a re-
alistic domain, an agent benefitting from a demonstration
is shown another agent accomplishing the task involved,
rather than being told a sequence of primitives to be em-
ployed. The agent must be able to associate the visible ef-
fects of an action with the fact an action was performed, by
concentrating on the environmental changes caused by the
demonstrator (Crabbe & Dyer 2000; Calderon & Hu 2003;
Jenkins & Mataríc 2003).

If a demonstrator and observer have the same set of phys-
ical primitives, and accomplish these in the same way, then
the task from the observer’s perspective is to match the visi-
ble outcomes with those that would be achieved by the prim-
itives available, and deal with any errors in perception that
arise. Restricting imitation learning in this way is very lim-
iting to a robot expected to operate and interact with others,
however: a humanoid robot (or indeed, a human) demon-
strating a task may use the same basic movement primi-
tives (such as aforward motion) as a wheeled robot, but
accomplish those in very different ways, allowing a human
to step over or onto small obstacles, for example. An imita-
tion learner should be able to recognize the overall outcome
and accomplish that using its own primitives, and learn from
any physical type of demonstrator (Calderon & Hu 2003;
Billard & Matarić 2000; Billard & Dautenhahn 1999).

The abilities necessary to avoid assuming the same phys-
ical primitives or physiology are those necessary to promote
generality in learning. While it is possible to approximate
a demonstrator’s effects on the environment and accomplish
the same task, the easiest way of doing this is to duplicate
precisely the sequence of environmental changes the demon-
strator makes, with no added understanding of the task in-
volved. This is a form of overfitting, where no general abil-
ity or model is learned, but rather a set outputs that fit the
precise inputs the learner was shown. While the agent may
perform as well as the demonstrator, the lack of ability to



generalize will not allow it to transfer this learning to even a
slightly different situation.

The lack of ability to generalize will also result in an agent
that can never perform better than an imitator, since pre-
cise duplication involves following both positive and neg-
ative demonstrator actions. An extreme example would be a
demonstrator driving toward a soccer goal, and performing
pointless loops during the trip. An imitator seeing only this
demonstration would learn to approach the goal in exactly
the same way, wasting time with the same looping action by
not being able to see its redundancy.

We are interested in promoting generality and learning
better behaviours by learning from multiple demonstrators.
If the imitator in the example above were to observe the
looping demonstrator as well as other demonstrators that
simply drove in a straight line, the imitator could compare
all demonstrators’ performances and recognize the redun-
dancy. The imitator could simply ignore poor demonstra-
tions, or even better, could filter the demonstrators’ actions,
learning the good and ignoring the bad (here, ignoring the
loop and driving straight to the goal, while still acquiring
the relevant portions of the behaviour). Learning from mul-
tiple demonstrators in the latter fashion should enable the
imitator to learn the most efficient method for obtaining the
same major environmental effects common to the demon-
strators. Multiple demonstrators should also be able to assist
in overcoming the issues involved in physiological variation:
if a human going to a door by climbing stairs was the only
demonstration received, a wheeled robot would be unlikely
to successfully follow, whereas seeing a different demon-
strator take a nearby ramp would allow it to overcome this
difficulty.

Being able to learn from multiple demonstrators is partic-
ularly useful when a robot is a new addition to an existing
team. A new robot should be able to learn more quickly how
to optimally perform the tasks required by observing and
imitating all its teammates at the same time. If the team of
robots are all performing the same task, the imitator would
learn very quickly. If instead the robots are performing dif-
fering tasks, the imitator would learn all the tasks simultane-
ously, albeit likely more slowly than a single task (i.e. learn-
ing how to play offense, defense and goal in soccer). If a re-
placement robot was needed, it should be able to learn from
the robots that it was to replace, preserving the experience
that the original robot(s) have acquired.

A robot intended to learn in such a manner requires sev-
eral layers of functionality. First, it must be able to use
vision to associate the execution of primitives with their
effects on the environment. In any realistic environment,
agents will not associate their primitives by name or even
implement them in the same way, so an agent’s sole basis for
comparison is the set of its own primitives and their effects.
Second, an imitator must be able to observe the effects of
others’ actions over time in the form of individual demon-
strations, and relate them as closely as possible to its own
primitive actions. These are unlikely to be completely ex-
plained, both because of differing physiology and because
of errors in perception. Third, it must be able to build
sequences of these primitives into higher-level behaviours,

both so that these can be re-used elsewhere, but also so that
these can serve as a more general model of the activity it-
self. Finally, the agent must be able to integrate the demon-
strations from multiple demonstrators, to allow gaps due to
physiological differences to be filled, to allow the filtering
or discounting of agents that perform poorly, and to better
create a general model of the activity itself.

We have developed an approach to multi-agent imitation
learning that incorporates these four layers into an imitation
learner designed to learn from multiple demonstrators with
varied physiologies and skill levels. The domain in which
we are working is robotic soccer, and within this, our ini-
tial implementation involves getting an agent to learn to po-
sition itself and kick a ball into a soccer goal, after being
given multiple demonstrations by agents that differ in skill
and physiology. The demonstrations are provided via a cam-
era positioned at an oblique angle to the field and connected
to global vision software that supports tracking of both the
robot and the ball over time. The imitator is a wheeled robot,
while demonstrations are provided by three different robots:
one physiologically identical to the imitator, a smaller tank-
treaded robot, and a humanoid.

In our work, the imitator’s primitives are provided, but
their visual effects are initially unknown. Once the imitator
learns the visual phenomena associated with its own actions,
these serve as the means of relating a demonstrators actions
and ultimately learning the task demonstrated. The demon-
strators’ primitives are similarly hand-constructed, but differ
from the imitators in some respects due to physiology (e.g.
humanoid vs. treaded vs. wheeled motion). The atomic mo-
tor commands use as primitives here are ‘forward’, ‘back-
ward’, ‘turn left’, and ‘turn right’, which execute atomic
motor commands for a fixed time (a fraction of a second)
on the imitator, and perform analogous but physiologically
different actions on the demonstrator (e.g. a step in a given
direction for a humanoid).

This paper focuses on the approach we have developed
in terms of recognizing the actions of others and develop-
ing higher-level behaviours from demonstrations. We begin
by reviewing background work on imitation learning, and
then present the layers of functionality described above in
the model we employ. Following that, we describe the on-
going implementation of this work.

Background and Related Work
A number of important prior imitation learning projects have
already been cited above. Few of these are designed to deal
with multiple demonstrators, let alone demonstrators that are
physiologically different and different in skill levels. The ap-
proach presented in this paper is designed from the bottom
up to learn from multiple demonstrators that vary physically,
in underlying control programs, and skill levels. Our ap-
proach also differs from most prior work in that rather than
defining primitives abstractly (e.g. avoidance, following,
homing, aggregation, dispersion, navigation, foraging, and
flocking (Mataríc 2000; 2002)), we operate with the lowest-
level primitives possible given the design of the robot.

Some previous research has been performed involving im-
itating multiple demonstrators. The work of (Yamaguchi,



Tanaka, & Yachida 1997) allows agents on a team to imi-
tate teammates that are considered to be more skilled, and
in their absence, to learn from reinforcement learning. Our
work differs from this in that while demonstrators are com-
pared, the basis for this comparison is the actual behaviours
learned from each demonstrator, and elements of good be-
haviour can still be learned even from teammates that are not
well-skilled overall. (Price & Boutilier 2003) also used im-
itation learning with multiple demonstrators, coupled with
reinforcement learning. In that work, however, the imitator
extracts information about the demonstrators simultaneously
and combines it without comparing their abilities. While
this is a faster method of learning from multiple sources, it
allows poor demonstrators to have too strong an influence.

In addition, the problems involved in imitation learning
from multiple heterogeneous demonstrators are similar to
those encountered when deciding who to interact with in
a group of agents when a choice is available. This prob-
lem is explored in a soccer domain in (Anderson, Tanner, &
Baltes 2004), where reinforcement learning is used to create
a model of teammates, and is used to both select a pass-
ing target when options present themselves, and to allow an
agent to cover for others on a team that are known to be
weak. That work involved only keeping track of an agents
quality of performance, however, rather than attempting to
actually learn domain behaviour.

Finally, an area of research closely related to imitation
learning is traditional AI plan recognition. In classic plan
recognition, a sequence of actions performed by an actor
is used to infer the goals being pursued by that actor, and
the action sequence is organized into a plan structure (Kautz
1991). In contrast, much imitation learning work, includ-
ing this work, does not construct a formal plan structure, in
the sense of a contiguous sequence of operators, but instead
operates using a behaviour-based approach. Behaviours are
abstracted hierarchically and consist of compositions of be-
haviours and primitive actions, but are not constructed us-
ing a traditional planning algorithm. The imitator can use
its newly learned actions to achieve the same outcomes as
the demonstrator; however, it can also improvise by work-
ing with abstracted behaviours instead of just following a
detailed plan extracted from observing the demonstrator.
The techniques of observation and abstraction of observed
knowledge are analogous in both areas.

Methodology
An imitation learner dealing with multiple demonstrators
differing in physiology and skill must be able to recognize
the sequence of low-level actions of others through obser-
vation, abstract these to higher-level behaviours, reproduce
them using its own action primitives, and be able to deal
with differences in demonstrations from agents of different
skill and physiology. An overview of our approach to ac-
complishing these tasks is shown in Fig. 1.

In order to understand the actions of others, the agent must
have some basis, and in our approach, this is a model of ef-
fect constructed from the visual outcome of the agent’s own
low-level actions. This model is then used to convert the vi-
sual data stream into a sequence of the imitator’s own prim-

Figure 1: Imitation Learning Architecture

itive actions, to the degree this is possible given physiologi-
cal differences between demonstrators. These sequences of
imitator actions are then further abstracted and refined into
more meaningful behaviours to help the imitator learn how
its actions affect its environment. The subsections that fol-
low deal with these aspects of our approach.

Understanding the Visual Effects of Primitives
In our approach, the actual recognition and classification
of the actions of others in terms of the agent’s own primi-
tives is performed using Hidden Markov Models (HMMs),
trained to recognize the visual changes in the environment
manifested by the imitator’s own primitives across a se-
quence of visual frames. HMMs model sequences where
one aspect of the sequence is unobservable (hidden) and the
other aspect is directly observable (Rabiner & Juang 1986;
Yang, Xu, & Chen 1997). These have proven very useful in
the past for recognizing sequences of events that have un-
derlying stochastic elements (Rabiner & Juang 1986). In
this work, the observable stochastic element of the sequence
is the change in the imitator’s orientation and position from
state to state across visual frames, while the hidden stochas-
tic element is the error in the accuracy of vision. HMMs
are employed to compensate for this inaccuracy, resulting
in more accurate classification of the primitives from the
vision data than a simple comparison method. Recogniz-
ing primitives with Hidden Markov Models has been used
in related research, such as assembly tasks learned from hu-
man demonstration (Hovland, Sikka, & McCarragher 1996),
pointing to their potential utility in the area of imitation.

Vision in our implementation is provided byErgo (Fur-
gale, Anderson, & Baltes 2005), a system that allows a cam-
era to be placed at any angle, and recognizes the motions
of robots through patterns that require no predefined col-
ors. Packets of visual data from Ergo are analyzed using
a collection of Hidden Markov Models. Each HMM in the
collection is trained to recognize a single primitive action
performed by the imitator itself. Data for this training is
gathered by placing the robot on a soccer field to record
the vision data generated in response to executing individual
primitive commands, and separating these by primitive and
filtering out erroneous responses (e.g. if an infrared signal
is lost and a robot does not move in response to a ‘forward”
command).

HMMs are then trained offline using the Baum-Welch



re-estimation method (Rabiner & Juang 1986; Yang & Xu
1994), which adjusts the HMM parameters until no more
improvements in accuracy are made. This method is used
to iteratively re-estimate the HMM parameters based on the
probability that a partial observation sequence will end in a
particular state given the HMM (Yang & Xu 1994). Each
HMM will calculate the probability that the observation se-
quence matches the specific motor command it is trained to
recognize, and the primitive symbol (i.e. “forward”, “back-
ward”, etc) of the HMM with the highest probability will
be selected. The imitator can then use these HMMs to con-
vert the vision data into sequences of symbols, where each
symbol represents one of the imitator’s primitive motor com-
mands. Each primitive also records the average change in
the imitating robot’s position when that primitive is executed
by the imitator, which is also gathered during HMM train-
ing. This average change can then be used by the imitator to
help it predict what will happen if it executes one of these
primitives (the use of these predictions will be described
shortly).

Recognition: Matching Primitives to the Visual
Effects of Demonstrator Actions
After completion of the steps outlined above, the imitation
learner has a repertoire of primitives with a single, unique
HMM to provide a mapping between that primitive and its
visual outcome in the world. A primitive represents a sin-
gle motor command available to the imitating robot, and
the initial set of these forms the boundary of the vocabulary
for describing the actions of others. That is, agents in this
approach never learn primitives they cannot execute them-
selves. In order for an imitator to understand a demonstrator
in terms of its own capabilities, it must match its primitives
to the visual effects of the demonstrator. To do this, the im-
itator analyzes the stream of vision data provided by Ergo
during a demonstration, and converts this visual stream into
a sequence of primitives that approximate the demonstra-
tion.

This sequence of primitives is initially empty, and grows
as more of the visual sequence is processed by the HMMs
associated with each primitive. Each HMM calculates the
probability that its primitive will match with the start of the
remaining visual stream (that portion yet to be processed by
the HMMs). This match is based on the accuracy of approx-
imating the state change. The primitive that has the highest
probability of a match is appended to the end of the sequence
of imitator primitives being built to approximate the demon-
stration. As the primitive sequence expands, the amount of
the visual stream approximated by it increases, and thus the
start of the unprocessed visual stream is moved incremen-
tally down the stream (as shown in Fig. 2). The distance
moved is dependent on the size of the selected HMM, since
the start of the unprocessed visual stream is moved up to the
point in the stream where the HMM approximated the state
change.

It is possible that a visual sequence converted into prim-
itive symbols by the HMMs will contain gaps, indicating
places where no primitive actions could sufficiently bridge
the state changes observed from the visual stream. This

Figure 2: Hidden Markov Models Classify Raw Demonstra-
tor Vision Data into Sequence of Primitives

would occur, for example, when the demonstrator performs
actions unavailable to the imitator as primitives, such as a
humanoid demonstrator stepping over the ball, when the im-
itator is a wheeled robot. Even if such gaps did not ex-
ist in a demonstration, using the full sequence on its own
would only allow the imitator to approximate the demon-
stration precisely (i.e. mimic the demonstrator). To be able
to generalize, fill in gaps that are left by physiological differ-
ences, and be able to learn from multiple demonstrator, these
primitive sequences are used to construct a more meaning-
ful abstraction of the demonstration using behaviours. This
process is detailed in the next section.

Predicting and Constructing Behaviours
Behavioursare defined in this work as sequences or abstrac-
tions of primitive sequences that also take environmental
changes into account, such as the position of the ball. Be-
haviours will have greater overall state changes than indi-
vidual primitives, and allow the agent to reason about and
recognize complex sequences of actions as a unit. At its
most basic, the sequence of actions recognized from a given
demonstration is a single behaviour, albeit a low level one
that precisely duplicates a single demonstration.

Abstractions supported by behaviours allow gaps in the
explainable visual sequence of a demonstration due to phys-
iological differences between the imitator and demonstrator
to be bridged. For example, consider the case where the imi-
tator is a wheeled robot, and the demonstrator is a humanoid.
If the demonstrator stepped over the ball, the resulting gap
could be approximated by the wheeled imitator through a
behaviour that drives around the ball. Our work only com-
pares the state change of behaviours to the gaps, using the
duration of behaviours to break ties when two or more be-
haviours have similar state changes. For example, one be-
haviour’s state change may cause the imitator to drive in a
straight line to a destination. A separate behaviour might re-
sult in the same state change, although in a different manner
(such as driving in a pointless loop before proceeding to the
destination). Since these two behaviours produce the same
final state changes, they can be compared, and the faster be-
haviour (the straight line behaviour) would be selected over
the slower one.

Some behaviours, rather than encompassing a range of ac-



tions, merely consist of repeated primitive actions: moving
forward a longer distance, or turning in a circle for exam-
ple. The difficulty with these behaviours is that there can
be any number of them based on the length of the repeti-
tive sequence. To limit this, we also defineparameterized
behaviours, similar to those of (Jenkins & Matarić 2003).
These accept a parameter to indicate the number of repeti-
tions of the repeated primitive action they abstract, and thus
allow a single behaviour to encompass any number of repeti-
tions. Repetitive behaviours can also represent the repetition
of behaviours as well as primitives.

At any point in time, an imitator will have abstracted a
given set of behaviours, each of which represent a combi-
nation of primitive actions and/or other behaviours. Since
the number of these combinations is essentially infinite, it is
necessary to keep the number of existing behaviours reason-
able by choosing to maintain only the most useful. To allow
this, we define apermanencyattribute for all behaviours. A
behaviour with a permanency attribute of zero is removed,
while exceeding an upper threshold allows the behaviour to
be considered permanent (i.e. it is no longer evaluated for
permanency).

The basic means by which a sequence of actions can
be recognized and stored as a behaviour has been detailed
above. Using this mechanism alone will only allow be-
haviours that exactly match the visual phenomena being ob-
served (i.e. exactly as the demonstrator did it), and may
leave gaps where matching is unsuccessful. To build truly
useful behaviours, an imitator must be able to explore its
options and also be able to consider how abstract behaviours
it has already learned could be used to deal with a new
demonstration. It must also be able to abstract behaviours
from lower level behaviours, not just primitive actions. To
do this, we use existing knowledge (primitive actions and
behaviours) to attempt topredict what should happen next
(i.e. what the imitator would do) given the observation of a
demonstration thus far.

Previously, while studying infants mimicking facial ex-
pressions, (Meltzoff & Moore 1997) proposed an underly-
ing system of body babbling, where babies practice move-
ment through self-generated activity, and (Demiris & Hayes
2002) developed a computational model based on this phe-
nomenon. They devised a system usingforward modelsto
predict the demonstrators behaviour. A forward model takes
as input the state of an object and a control command that is
to be applied to it, and predicts the next state. (Dearden &
Demiris 2005) also implement analogous forward models,
though they use Bayesian networks as the basis for them. In
this work, we adapt the concept of a forward model for pre-
diction to deal with integrating demonstrations from multi-
ple demonstrators.

In our approach, we employ the concept of a forward
model both as a predictive model, as well as the mechanism
to trigger the creation of new behaviours. After a prediction
is made, it is compared to the observed demonstrator action
at the next time step. When the model makes frequent, accu-
rate predictions about two primitives occurring in sequence
(or a primitive and a behaviour, or two behaviours), it will
trigger the creation of a new behaviour to represent this se-

quence.
The imitator maintains one main forward model for the

activity being learned, and this forward model contains be-
haviours it has learned from the demonstrations provided,
along with the primitives it started with. The imitator
also employs an additional separate forward model for each
demonstrator it observes. While imitating a demonstrator,
the imitator will update the forward model specific to that
particular demonstrator, and keeping these distinct allows
them to be used to compare the quality of demonstrators
when deciding which demonstrator skills to incorporate into
the main imitator forward model. Further details on the
process of a behaviour moving from the forward model for
an individual demonstrator to the imitator’s main forward
model are detailed in the next section.

The imitator’s forward model uses ann by n matrix to
keep track of which behaviours (or primitives) follow each
other in sequence, wheren is the total number of behaviours
and primitives (so a link from each behaviour/primitive to
each other one). Each element in the matrix corresponds to
the confidencethat the forward model has that a behaviour
(or primitive) will follow another (default confidence value
will be 1/(# of behaviours and primitives)). To make a pre-
diction of the demonstrator’s next action, the forward model
uses the last recognized behaviour/primitive, and looks up
that row in the matrix. The behaviour/primitive with the
highest confidence in that row is then predicted to occur
next (for this reason we call the matrix theprediction ma-
trix). The effects of the predicted behaviour/primitive are
applied to the imitator’s internal model of the current envi-
ronmental state, then compared at the next time step to the
state change (similar to the forward models used in (Demiris
& Hayes 2002)). If the prediction is correct, the confidence
value linking the two behaviours/primitives is increased, and
its permanency increased by a small factor, while if the pre-
diction is incorrect, it is decreased.

After a confidence value is modified, it is checked to
see if it has surpassed a threshold indicating that the fre-
quency of association merits creating a new behaviour. If
the confidence value is above the threshold, a new be-
haviour is created that represents the sequence of those two
behaviours. This leads to new behaviours containing se-
quences of smaller behaviours that are useful in sequence.
When a new behaviour is created, the confidence value
that triggered the creation is reset to the default value in
the prediction matrix. If the new behaviour contains sub-
behaviours, the new behaviour incorporates the sequence of
primitives from the sub-behaviours, but not the actual sub-
behaviour itself. The old sub-behaviour can be then be re-
moved from the forward model (if it is not used on its own
anymore), which assists in keeping the overall number of
behaviours manageable.

Dealing with Multiple Demonstrators
In order to deal with multiple demonstrators, we need to
be able to evaluate demonstrators’ performances relative to
each other. An imitator can then learn the most efficient be-
haviours used by the demonstrators. This results in the im-
itator building a unique repertoire of behaviours that should



be able to perform as well as the best demonstrators, with
the potential to outperform them. In addition to a unique
forward model for each demonstrator, as described above,
the imitator’s internal representation also maintains a rank
of the overall quality of each demonstrator.

The quality of a demonstrator is represented by itslearn-
ing preference, which is analogous to a learning rate. The
learning preference (or LP) is between 1 and 0, and used
when updating prediction matrix confidence values (if the
confidence value is to be increased, the amount to increase it
is multiplied by the LP before being applied). This makes a
good demonstrator (higher LP) increase the confidence val-
ues in its matrix faster, thus allowing the agent to learn new
behaviours more quickly from that demonstrator (and vice
versa for a poor demonstrator). When observing a demon-
strator or when the imitator is just choosing what it should do
next (if all the demonstrations are already over), the imitator
makes predictions witheach of its forward modelssimulta-
neously (all demonstrator forward models and the imitator’s
own main forward model). The imitator then updates the LP
of each demonstrator based on the accuracy of their forward
model predictions (increase for correct, decrease otherwise).

The imitator also updates the LP based on the outcome of
a demonstrator’s predicted behaviours. To increase the LP,
a behaviour must result in the imitator (ordered from high-
est LP increase to lowest): scoring a goal, moving the ball
closer to the goal, or moving closer to the ball. The oppo-
site of these usefulness criteria decrease the LP (opposite
of scoring a goal would be scoring in the wrong goal). We
are using these criteria to shape and speed up the imitator’s
learning, a technique that has been shown to be effective in
other domains (Matarić 1997). Future work could shape the
learning less and examine how much could be learned under
those conditions. To shape the learning of the imitator to-
wards learning more efficient behaviours, we compare indi-
vidual behaviours in certain circumstances. Behaviours are
compared if they are predicted at the same time, and they
produce the same outcome. The behaviour that takes less
time has its permanency increased, and the other behaviour’s
permanency is decreased. This is only done for behaviours
considered useful by the above criteria (no sense learning
how to perform useless behaviours quickly).

Each demonstrator also has adecay rateassociated with
it. The decay rate for a demonstrator is simply1−LP , so a
good demonstrator has a low decay rate, and a bad demon-
strator has a high decay rate. The decay rate is used to en-
sure that the total collection of behaviours doesn’t grow to an
unreasonable size. The decay rate is applied to the perma-
nency attribute of all behaviours in the demonstrator’s for-
ward model at every prediction step. A good demonstrator’s
behaviours should be correctly predicted (and their perma-
nency increased) frequently enough that their increases in
permanency will overcome their decreases from decay rate.

When a demonstrator’s behaviour becomes permanent
(permanency past an upper threshold), it is permanentto the
forward model for that demonstrator, not permanent to the
imitator. Behaviours that achieve permanency within their
demonstrator specific forward models are copied into acan-
didate behaviour buffer. This candidate buffer is the final

Figure 3: The robots used in our implementation, imitator
on the right.

step for a behaviour to become permanent to the imitator’s
main forward model. Once in the buffer, a behaviour’s decay
rate becomes that of the imitator’s (which never changes),
and its permanency attribute is reset to the default value
(the midpoint between min and max values for permanency).
This equalizes the chance behaviours have of becoming per-
manent once they reach the buffer. The buffer acts as an
extension to the imitator’s main forward model, so the be-
haviours in it are added temporarily to the imitator’s predic-
tion matrix. If a behaviour becomes permanent in the can-
didate behaviour buffer, it is permanently added to the imi-
tator’s main forward model, and the demonstrator has its LP
increased. If a behaviour’s permanency drops below zero, it
is removed completely, and its demonstrator has its LP de-
creased.

Implementation
The implementation of the work described here is ongo-
ing, and is currently focussed on building the behaviour-
development routines described above. The robots em-
ployed in our implementation are shown in Fig. 3. The im-
itator employs a body constructed from Lego MindStorms,
while the three demonstrator types are a) identical to the im-
itator; b) a treaded 2” tank, differing greatly in both move-
ment and size, and c) a humanoid (Robosapien). The field
is a standard RoboCup E-League field (2.7 x 1.5 m), and
the hat patterns on the robots allow them to be tracked and
identified individually using vision by Ergo.

As described above, the first step in our approach is gath-
ering proper training data for each primitive to be used for
training the HMMs. The imitator is placed on the soccer
field and its movements are analyzed by Ergo and recorded
as a series of observation sequences. Each primitive is
recorded in a separate block of observations, and each time
a primitive action is carried out, the starting location and
orientation of the robot is randomly selected. Each primi-
tive is recognized by the changes it causes over time. The
changes that are important in this work are the changes in
x and y coordinates, and the orientation of the robot. Try-
ing to recognize primitives by focusing on a single variable



(i.e. just the x coordinate) is futile, as the changes to x, y,
or orientation are dependent on one another. Considering all
three at the same time is difficult, but HMMs can simplify
this. Using vector quantization over these variables of inter-
est provides meaningful training data, allowing the HMMs
to properly model the statistical nature of each primitive’s
visual effect. We chose to use the change between frames
to avoid the HMMs from learning specific patterns local to
certain areas of the field (i.e. learning the “forward” prim-
itive close to coordinate (0,0) would not allow recognition
of that same primitive near coordinate (500,500)). Focusing
on the change in the variables rather than their actual values
makes the set of HMMs more generalized and reliable for
recognizing primitives from vision.

For each observation sequence, the changes of x, y, and
orientation between frames is analyzed and filtered into
training data. This filtering is done to ensure that all train-
ing data used to train the HMMs is data where the robot is
actually performing the primitive, rather than missing the in-
frared command signal and merely sitting still. The actual
data used to train the HMMs is the unfiltered changes be-
tween frames, as this allows the HMMs to learn the nuances
of the vision server’s inaccuracies.

Each primitive has a single HMM dedicated to it. The
training data for a particular primitive is gathered together
after the initial filtering described above. This data set is
then used to train that primitive’s HMM. All of our HMMs
start with random initial state distributions and state transi-
tion probabilities. The observation probabilities are approx-
imated using the binary-split algorithm for vector quantiza-
tion on the training data. This algorithm divides the train-
ing data space into clusters, where each cluster represents
a codeword in a codebook. The codebook translates the
training data so that it can be used more easily to train the
HMM. As mentioned earlier, the Baum-Welch algorithm is
the training algorithm we use to iteratively re-estimate the
HMM parameters. An HMM’s training is considered suc-
cessful once the HMM can satisfactorily classify its primi-
tive from test data. The test data is generated by having the
imitator randomly execute a primitive while on the soccer
field. The set of HMMs are then checked to see how well
they classify the primitives generated.

Once the set of HMMs can properly classify the imitator’s
own movements, the imitation learning process can begin.
Demonstrator data is collected in much the same way as the
imitator’s data, though the demonstrators vary physiologi-
cally and in skill level. Once the raw data is collected, the set
of HMMs converts it into a sequence of primitive symbols,
which are then used by the imitator to interpret the demon-
stration in terms the imitator can relate to. The sequence
of primitives is further abstracted into more meaningful be-
haviours through predictions generated by the forward mod-
els.

Summary
This research is an effort to make imitation learning more
powerful by allowing the imitator to learn from many differ-
ent demonstrators, of varying skill, in a physical environ-
ment. The largest contribution we offer is a learning ar-

chitecture for imitation that will enable an imitator to sep-
arately model each individual demonstrator it is exposed to,
through the use of a unique forward model for each demon-
strator. An imitator can use this architecture to extract the
best behaviours from multiple forward models to construct a
unique forward model that encompasses the best of the origi-
nal models. The system we are working with consists of two
main modules: the set of primitives with HMMs that convert
visual data to a sequence of primitives, and the forward mod-
els where new behaviours are created. Since these two are
separate, any form of primitive recognition could be used to
create a sequence of primitives. Also, any types of primi-
tives should be able to be used to initialize the system, as
long as a system to recognize and convert those primitives to
a sequence is available. Though this system is currently lim-
ited to recognizing sequential behaviours, future work could
extend the system to recognize more complex behaviours
(such as simultaneously occurring behaviours performed by
one agent, or interacting behaviours performed by different
demonstrators).

Another important contribution of this work is a mecha-
nism for evaluating the skills of demonstrators relative to the
skill level of previously observed demonstrators, based on
vision in a physical environment, as opposed to prior work
such as (Anderson, Tanner, & Baltes 2004) which operated
only in simulation. Using a learning preference attribute
to represent the skill level of each demonstrator, the imi-
tator can learn from demonstrators of varying skills, with-
out being adversely affected by exposure to poorly skilled
demonstrators. This improves the overall quality of the im-
itator’s final repertoire of behaviours. Using real robots in
our experiments shows the potential for this system to be
used in real world scenarios. An imitator trained with this
system could predict its teammates’ behaviours, and act ac-
cordingly with no communication. Even if communication
was desired for more advanced teamwork, this system would
greatly decrease the amount of communication necessary.
The modeling of others could also be extended for opponent
modeling for developing countermeasures.
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