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Abstract. This paper describes our work on applying stereo vision to
the control of a car or car-like mobile robot, using cheap, low-quality
cameras. Our approach is based on line segments, since those provide
significant information about the environment, provide more depth in-
formation than point features, and are robust to image noise and colour
variation. However, stereo matching with line segments is a difficult prob-
lem, due to poorly localized end points and perspective distortion. Our
algorithm uses integral images and Haar features for line segment extrac-
tion. Dynamic programming is used in the line segment matching phase.
The resulting line segments track accurately from one frame to the next,
even in the presence of noise.

1 Introduction

This paper describes our approach to stereo vision processing for the control
of a car-like mobile robot using low-quality cameras. The end goal of our work
is a mobile platform that can be viewed as expendable for applications such
as Urban Search and Rescue (USAR), necessitating inexpensive equipment. We
are working on making stereo vision an inexpensive and robust alternative to
the more expensive forms of sensing that are currently employed for robotic
mapping and exploration (e.g. high-resolution laser scanners). A focus on in-
expensive equipment also leads to the development of more broadly applicable
intelligent software solutions, compared to relying on expensive hardware to deal
with difficulties such as image noise.

The goal of all stereo vision processing is to produce dense depth maps that
can be used to accurately reconstruct a 3-D environment. However, our target
application imposes two additional constraints that make this problem more dif-
ficult. First, since the stereo system is intended for a mobile robot, the approach
must support real-time depth map extraction. Second, since we are using inex-
pensive equipment, the approach must be robust to errors such as noise in the
acquired images and the calibration of the cameras.

Most of the focus in stereo vision processing to date has been on point feature-
based matching. The most notable feature extraction methods are corner detec-
tion [1, 2], SIFT [3], and SURF [4]. Most point feature based stereo matching



relies on the epipolar constraint [5] to reduce the search space of the feature
matcher to a 1-D line. The epipolar constraint can be applied using the Essen-
tial or Fundamental matrix, which can be determined using several methods [5].

The problem encountered in attempting to employ these mechanisms under
conditions typical of USAR with inexpensive equipment is that cameras tend
to shake as the robot moves. Unlike the heavy equipment used in events such
as the Grand Challenge, inexpensive robots designed to be deployed in large
groups in expendable settings must be based on far less expensive materials. In
our USAR work, for example, we employ very cheap ($10) webcams mounted on
3mm aluminum sheet-metal tie, connected to a servo so that the stereo vision
mechanism can be panned. Under these conditions, even small changes in the
position of one camera relative to the second require the recalculation of the
epipolar lines, which can be an expensive and error-prone task during the op-
eration of the robot. While a more elaborate hardware setup would be another
solution, forcing the work to be performed on simple hardware not only makes
the solution more widely deployable, it demands a more robust and generally ap-
plicable solution that serves to advance the state of the art. In this case, solving
this problem using an inexpensive vision system demands a more robust feature
set that would be trackable over a larger 2-D search space.

These weaknesses led us to explore region-based stereo matching [6] to pro-
vide a more robust feature set. However, region segmentation proved to be a
difficult task in complex scenes under real-time constraints. In addition, regions
would not always form in a similar manner, making the hull signature matching
approach we employed prone to errors. The most important piece of information
gleaned from this work was that most of the information in a region was con-
tained on the boundary between two regions. This intuitively led to a shift in
our approach towards the extraction and matching of boundaries - in particular,
line segments. Though several authors have proposed methods for line segment
matching [7, 8], none could achieve the desired speed and accuracy needed for
our mobile robotics applications.

The line segment-based approach taken in this paper emphasizes the dual
requirements of real-time processing and robustness to camera jitter due to robot
movement. The latter requirement means that knowledge of the epipolar lines
in particular cannot be assumed, nor can we assume rectified stereo frames.
In addition, we allow the off-the-shelf webcams in our implementation to freely
modify the brightness and contrast of an image (typical of low-priced hardware),
and so we also cannot assume colour calibration.

We describe two algorithms designed for these conditions, involving fast line
segment extraction and two-frame line segment matching. The fast line segment
extraction makes use of integral images to improve the performance of gradient
extraction, as well as provide an edge representation suitable for binary image
segmentation. Line segment matching is achieved using a dynamic programming
algorithm, with integral images providing fast feature vector extraction.

We begin by introducing existing methods for line segment based stereo pro-
cessing, and then describe our algorithms in detail. This is followed by some



initial results that have been generated using the described line segment based
method.

2 Related Work

This section describes existing line segment extraction and matching algorithms.
The term Line segment extraction refers to the process of identifying boundaries
between image regions, and grouping the points into a line segment feature.
Matching is the process of identifying the new location of a previously observed
feature given some change in the position of the cameras.

The extraction of line segments can be approached using either global or
local methods [9]. Both methods rely on identifying boundary pixels using one
of several methods of edge detection (for more information refer to [10]).

Most global line segment extraction algorithms are extensions of the gener-
alized Hough transform [11]. In the generalized Hough transform each boundary
pixel votes for candidate lines in the Hough space accumulator. Once all bound-
ary pixels are processed, a search is done in the accumulator to find peaks that
exceed a threshold number of votes. This Hough transform is used to extract
infinite lines, but many methods have been presented [11, 12] to deal with the
extraction of line segments with start and end points. The primary difficulty
involved with global line segment extraction algorithms is that they are com-
putationally expensive, and can generate imaginary lines formed by textured
surfaces.

The simplest form of local line segment extraction uses chain coding [13].
Chain code values represent the location of the next pixel in the chain using
either a 4 or 8 connected neighbourhood. The boundary is followed starting from
an initial edge point (generally the top-leftmost point in the chain) and followed
until the chain returns to the start. Noise can be filtered from the chain code
using a median filter over the connection direction. The final chain code is then
examined for line segments by finding runs of equal value neighbour connections.
Local line segment methods are more sensitive to noise in the image, and so most
recent work focuses on joining small segments into larger segments [11, 9].

Line segment matching is generally considered to be a more difficult problem
than interest point matching. Although it seems simple to view line segments as
simply a connected start and end point, the problem is that end points on line
segments tend to be very unstable due to noise in the image [8]. The two primary
features of a line segment that are used for matching are the colour information
around the line segment, and the topology of line segments. Bay et al. [8] used
colour information from points three pixels to the left and right of a line seg-
ment to generate histograms. The histograms from the two candidate lines were
normalized, and the distance between them was calculated using the Euclidean
distance between histogram bins in the defined colour space. The colour infor-
mation produced soft matches [8], reducing the number of potential matches. By
applying the sidedness constraint [8], the incorrect matches were filtered out to
produce the final set of matched lines. The use of colour information was limited



to situations where the capture devices produced very consistent colour output.
In the more common situation, colour information varies greatly between the im-
ages [14] due to automatic brightness and contrast corrections differing between
the capture devices.

If colour information is ignored, then matching must be based on the topol-
ogy of the images. Hollinghurst [14] defined a set of rules for topological match-
ing that includes initial matching and refinement operations. Using geometric
constraints, initial matches are generated based on overlap, length ratio, orien-
tation difference, and disparity limit. The initial matches are refined by applying
constraints that either support or suppress a potential match. Matches are sup-
pressed if they match multiple line segments, and if they violate the sidedness
constraint. Support is generated by collinearity and connectivity, including par-
allelism, junctions at endpoints, and T-junctions. These constraints are applied
to the initial matches until only supported matches remain.

To deal with the problem of unstable endpoints, Zhang [7] measured the
amount of overlapping area in a given calibration. In his experiments, the ex-
trinsic calibration for the two cameras was unknown, and instead the essential
matrix was estimated by using rotated points on an icosahedron. He found that
given a set of matched line segments, the essential matrix could be estimated as
accurately as a calibrated trinocular system. The system did show that matched
line segments could be used to generate a depth map of the image. One prob-
lem is that there is no discussion of the line segment matching problem, and it
appears that pre-matched (possibly by a human operator) line segments were
used. As a result, it is difficult to predict how line segment-based stereo vision
will work in the presence of noise found in real-world images.

3 Implementation

This section describes our algorithms for line segment extraction and matching.
For simplicity and grounding, the method described in this paper will be applied
to 8-bit gray-scale stereo images of dimensions 320x240. The sample images used
to describe our work are shown in Fig. 1.

3.1 Line Segment Extraction

Our algorithm for line segment extraction is divided into five steps:

1. Integral Image Generation
2. Haar Feature Extraction
3. Gradient Thinning
4. Binary Segmentation
5. Overlap Clean-up

The integral image is an efficient data structure for extracting large amounts
of data from images in constant time. In an integral image, the value stored
in each pixel is the sum of all intensities in the area above and to the left of



Fig. 1. The left and right input images used in the description of the algorithm.

that pixel. This means that the sum of any rectangular subregion inside the
integral image can be extracted with only four table look-ups and three addi-
tion/subtraction operations.

The most practical application of integral images is to extract arbitrarily
sized Haar features from an image [15]. While there are several Haar features
that can be extracted from an image, this algorithm focuses on the vertical
and horizontal gradient features. During the Haar feature extraction stage of
the algorithm, the two gradient features are extracted at a kernel size of 4x4,
8x8, and 12x12 pixels. The values are cached into a look-up table to improve
performance during the matching stage. These features then provide the input
for both gradient thinning and dynamic program matching.

Fig. 2. The two main data structures used by the algorithm. Left, two Haar features
overlayed over the integral image from Fig. 1. Right, the encoding of the gradient of a
line using an edge cell.

The gradient thinning algorithm is based on the Canny method, with the
addition of the Haar feature gradients and an efficient data structure. The goal
of this method is to extract the peak gradients by keeping only the strongest



values along the gradient orientation. From the cached Haar features, one kernel
size is selected for thinning. A threshold based on the magnitude of the gradient
is initially applied to the pixels. Pixels exceeding the defined threshold are used
to activate an edge cell (EC).

The EC is an efficient data structure for storing gradient orientations, since
it allows binary comparisons of the gradient orientation. Each EC is a dual layer
ring discretized into 8 cells, allowing a resolution of π/4 per ring. The inner
layer is offset from the outer layer by a distance of π/8, and the combined layers
produce a π/8 resolution for the EC. The gradient orientation of each pixel
activates one cell in each layer of the pixel’s EC. Using this activation, the EC
can be quickly tested for a horizontal, vertical, or diagonal orientation with a
binary logic operation. ECs can be compared against each other using either
an equal operator, which returns true if both cell layers overlap, or a similar
operator, which returns true if at least one cell layer overlaps. The thinning
direction is determined by the EC activation, and only the strongest gradient
pixels along the thinning orientation are processed by the binary segmentation.

Binary segmentation is the core of the line segment extraction, and makes
use of the EC data structure described above. For each active pixel, the EC is
separated into two Split ECs (SEC) with the first containing the inner ring acti-
vation, and second containing the outer ring activation. The 8-neighbour binary
segmentation then tests each of the two SECs separately against its neighbours.
The binary test for the neighbour returns true if that neighbour EC is similar (at
least one cell overlaps) to the current SEC. The final result of the segmentation
is that each pixel is a member of two thinned binary regions, or line segments as
they will be referred to from now on. The overlapped line segments are useful,
but we generally prefer that each pixel only belong to a single line segment.

There are two cases of overlap that need to be cleaned up to produce the
final result. The first clean-up step is the removal of any line segments contained
largely within another longer line segment. This is achieved by simply having
each pixel cast a vote for the longer of the two line segments for which it is a
member. Any line segment with a number a votes below a threshold is discarded.
The second clean-up step involves finding an optimal cut point for any partially
overlapping line segments. This is achieved by finding the point in the overlap-
ping area that maximizes the area of a triangle formed between the start of the
first line segment, the cut point, and the end point of the second line segment.
The overlapping line segments are then trimmed back to the cut point to pro-
duce the final line segment. Any line segments smaller than a defined threshold
are discarded at the end of this stage.

Fig. 3 shows the output of our line extraction algorithm. The result are
good line segments for stereo vision. However, more post processing could be
performed to improve the line segments and further reduce noise. A few examples
include merging line segments separated by noise, or extending end points to
junctions. These features await future implementation.



Fig. 3. The final line segments extracted by the described algorithm.

3.2 Dynamic Matching

The matching of line segments is a difficult task, since the end points are gener-
ally poorly localized and the segments can be broken into multiple pieces due to
noise in the image. In addition, some line segments may not be completely visible
in all images due to occlusion. To address these problems, a dynamic program-
ming solution is applied to the line segment matching problem. The dynamic
programming table consists of points from the source line segment, ls1, making
up the row header, and the points from the matching line segment, ls2, making
up the column header. The goal is to find the overlapping area that maximizes
the match value between the points of the two line segments. To compare the
points of two line segments, we return to the Haar features extracted earlier.
The match value for two point feature vectors, v1 and v2, is calculated as:

M =
∑

(sign(v1i) == sign(v2i)) ∗min(v1i, v2i)/ max(v1i, v2i)

Each insertion into the table involves selecting a previous match value from
the table, adding the current match value, and incrementing a counter for the
number of points contributing to the final result.

The insertion of the match values into the dynamic programming table re-
quires certain assumptions to prevent the table from becoming degenerative.
The assumptions are defined algorithmically using the variables, x for the cur-
rent column, y for the current row, Dp for the dynamic programming table, St
for the match sum table, Ct for the point count table, and M for the current
match value. The Dp value is generated from St/Ct and for simplicity any as-
signment Dp[x][y] = Dp[x− 1][y − 1] is actually St[x][y] = St[x− 1][y − 1] + M
and Ct[x][y] = Ct[x− 1][y − 1] + 1. With this in mind, the assumptions used to
generate the Dp table are:

1. If a line segment diverges from the center line, it cannot converge back to
the center line. This prevents oscillation in the line match, and is enforced
using the rules:



– if x = y then
Dp[x][y] = Dp[x− 1][y − 1]

– if x > y then
Dp[x][y] = best(Dp[x− 1][y − 1], Dp[x− 1][y])

– if x < y then
Dp[x][y] = best(Dp[x− 1][y − 1], Dp[x][y − 1])

2. No point in the first line can match more than two points in the second line.
This prevents the table from repeatedly using one good feature to compute
all matches, and is enforced by defining the behaviour of the best function
as:
– if Ct[x1][y1] > Ct[x2][y2] then

best(Dp[x1][y1], Dp[x2][y2]) = Dp[x2][y2]
– else if Ct[x1][y1] < Ct[x2][y2] then

best(Dp[x1][y1], Dp[x2][y2]) = Dp[x1][y1]
– else

best(Dp[x1][y1], Dp[x2][y2]) = max(Dp[x1][y1], Dp[x2][y2])

The best match value is checked in the last column for all rows with an
index greater than or equal to the length of ls2, or for any entries in Ct with a
count equal to the size of ls1. Once a best match value is found, a back trace
is done through the table to find the point matched that produced the best
match. The position difference between the matched points in ls1 and ls2 is
used to determine the disparity of the matched pixels. Linear regression is used
to find a slope for the disparity for all points in ls1. The best match value is then
recalculated using the disparity generated by the linear regression line, since the
best match value should be based on the final disparity match. The matching
process in repeated for all ls2 segments in the potential match set.

To reduce the number of line segments that are compared, a few simple op-
timizations are performed. The primary filtering method is to only compare line
segments that have similar edge cell activations. A secondary filtering method is
to apply two different thresholds to the maximum search space. The first thresh-
old involves placing a bounding rectangle extended by the size of the search
space around ls1, with a second rectangle placed around ls2. If the two bound-
ing rectangles overlap, then the comparison continues. The second threshold is
done on a point-by-point basis, with points outside the search space receiving
a match value of zero. These simple optimizations greatly increase the speed of
the algorithm, making real-time performance achievable.

4 Experiments

To evaluate these algorithms, we performed intial testing using the well-known
Middlebury 2005 and 2006 datasets [16].

Using the 27 image pairs from the 2005 and 2006 Middlebury test set, the
algorithm described above has a matching accuracy of 71.8% + / − 11.5% for
matches within one pixel of error (See Fig. 4. If only unoccluded pixels are



Fig. 4. Left, depth map generated by the line segment matching algorithm. Right,
ground truth depth map from the Middlebury set. Depth maps have a small dilation
applied to improve visibility

considered (assuming that some form of occlusion detection has been added to
the algorithm) the accuracy rises to 78.8% + / − 10.0%. In addition, the line
segments cover an average of 7.0% + /− 2.4% of the image, providing far more
density than point matches.

The most important results, however, are observed in the environments in
which we intend to apply this work: unstructured robot control domains us-
ing low quality webcams. In such environments, the minimum and maximum
disparity in the horizontal and vertical directions are unknown. For the sake
of execution time, a +/− 80 pixel horizontal and +/− 20 pixel vertical dis-
parity limit are applied to 320x240 webcam images. The results are compared
qualitatively against a SURF [4] implementation, by examining the disparities
generated at neighbouring points.

Fig. 5 illustrates a single stereo image under these conditions. To demon-
strate performance on a sequence of images, we equipped an inexpensive robotic
platform (a large-scale plastic RC car) with a stereo-vision system consisting
of two webcams mounted on an aluminum bar, which was itself mounted on a
servo to allow camera panning. The image sequence in Fig. 6 shows the output
of our algorithm. The extracted line segments are robust and are particularly



Fig. 5. Top, left and right stereo web cam images. Bottom, line segment matching
disparity (left), SURF feature matching (right).

well-suited as matching features for stereo vision in this domain, since apart
from a depth map these also incorporate the first stage of object recognition.

The image sequence shows that the extracted line information includes crucial
areas of the image such as road markings or other vehicles.

5 Discussion

The method of line segment extraction described in this paper has been shown
in demonstration to produce good quality matches, and has proven its suitabil-
ity to real-world image sequences such as the ones from autonomous driving
vehicles. By combining integral images and dynamic programming it has been
shown that real-time processing rates are achievable using commodity hardware.
The matching algorithm also shows that good quality matching can be achieved
without the epipolar constraint. If exact calibrations are not required then it is
possible to build stereo camera rigs with the ability to converge the cameras and
focus on specific distances.

The immediate step in applying this work is to integrate it with our previ-
ous implementations of stereo vision-based USAR [17] to form a more robust
platform for this application.

We are also currently performing a larger empirical comparison using a mo-
bile platform under the real-world conditions depicted in Fig. 6. There are also
several improvements to both the line segment extraction and matching algo-



Fig. 6. Output of our algorithm on a sequence from an vehicle equipped with stereo
vision cameras

rithms being proposed for future development. These include improved gradient
extraction, using one of the methods evaluated by Heath et al [10]. The extrac-
tion algorithm is very robust, and therefore future development will focus on
merging line segments split by noise, and extending end points to meet at junc-



tions. The matching method must be improved to address inaccuracies when
dealing with repeated patterns, and occlusion boundaries. Repeated patterns
will require more of a global optimization over the matching values, rather than
the greedy method currently used.
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