Proceedings of the 2004 IEEE
Conference on Roboetics, Automation and Mechatronics
Singapore, 1-3 December, 2004

Practical Ego-motion Estimation for Mobile Robots

Shawn Scharer

Jacky Baltes John Anderson

Department of Electronic and Computer Engineering Department of Computer Science Department Of Computer Science

University of Manitoba
Winnipeg, Canada
schaerer@ee,umanitoba.ca

Abstract— Accurate ego-motion estimation is a difficult prob-
lem that humans perform with relative ease. This paper describes
two methods that are used in conjunction to estimate the ego
motion of an intelligent autonemous vehicle from viston alone.
First, a cross-correlation method is used to select 2 promising
patch in the image. The optical flow information for this patch
is used to determine linear and angular velocity of the intelligent
autonomous vehicle. Lines in the inage are then used to provide
an estimate of the ego motion of the vehicle. The gradient of the
line as well as the distance to the line allow the computation of
current wheel velocities. Both methods have been implemented on
real robots and have been tested in a treasure hunt competition.
These methods greatly improved the exploration as well as
accuracy of the generated maps of the environment.

1. INTRODUCTION

An intelligent vehicle expected to perform autonomously in
any rich domain requires many skills: for example, it must
be able to accurately identify objects in the environment that
affect its activities, plan paths using the information it has
about the world, and be able to alter those paths in the face
of changes in the environment. In order to do any of this
with any accuracy, however, the mobile robot must be able
to have estimates of its own motion in the world (i.e., its
ego motion) - in particular, its own translational and rotational
velocities with respect to the eavironment. This basic skill
supports all higher-level motion-planning activities, and these
cotrespondingly suffer if ego-motion estimation is done poorly
and/or inefficiently.

In the domain of small mobile robots (for example mail
delivery robots in an office), researchers most often rely on
odometry information to as a basis for ego-motion estimation.
Most commonly, shaft encoders are used to measure wheel
velocities. This approach works well in simple environments
where a small amount of wheel slip is tolerable and can be cor-
rected for (such as an indoor environment with a carpet. Where

errors cannot be perfectly compensated for, however, they -

compound, and eventually the robot’s estimation of its own
position is incorrect enough that path planning and following
cannot ensue. The compound nature of this error makes the
reliance on simple methods such as shaft encoders ineffective
in complex domains such as uneven territory or where surfaces
are unstable or slippery, making this an unreasonable approach
to the development of general-purpose intelligent autonomous
vehicles.

Shaft encoders are by no means the only method used for
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estimating motion: other forms of internal sensing such as
accelerometers, gyroscopes, inertia navigations systems, or too
some extent GPS are also used. Although these approaches are
not susceptible to errors introduced by wheel slip, the required
additional sensors increase the cost of intelligent autonomous
vehicles, sometimes very significantly so. The use of a camera
as a tool for motion-estimation, however, does not necessarily
require the use of additional equipment: any sort of visual
sensing on the part of the robot already requires a camera, and
most intelligent autonomous vehicles also carry at least one
camera to gather and/or relay data about their environment
back to humans. The motivation for the research described
in this paper is to allow practical method for ego-motion
estimation using the camera{s) that are likely already fitted
to the intelligent autonomous vehicle.

We have developed two approaches that operate in conjunc-
tion using information from a camera mounted on the mobile
robot in order to estimate its ego motion. The first approach
uses the optical flow of small patches in the view of the camera
to determine translation and rotation from the previous to the
current view. This approach is gencral in nature and does not
rely on any specific features of the image itself. The second
approach uses real or virtual lines to determine translation
and rotation by measuring how the robot moves in relation to
lines detected in the image. Since these two approaches rely
on different information in the image, they are complimentary.

This paper describes both of these approaches in detail (Sec-
tions II1, IV, and V) , as well as detailing their implementation
and deployment on mobile robotic hardware. In order to ex-
amine the effectiveness of these approaches, we chose a small
mobile robot platform with limited computational abilities
and where ego-motion estimation was solely performed using
vision, as opposed to supplemented with specialized hardware.
Following this, we describe preliminary results demonstrating
the effectiveness of the described methods in Section VI We
begin with a review of previous work in this area.

H. RELATED WORK

Ego-motion estimation, the problem of determining the mo-
tion of a robot from a given a sequence of images taken during
the motion, is a very popular research area in computer vision.
Detecting motion across a series of images is a useful task
in many applications beyond its use in ego-motion detection,
from manufacturing to security, for example. While this is easy

921



for a human to do, it is a difficult problem to approach from
the standpoint of a computer program.

More formally, ego-motion estimation can be defined as de-
termining the translation and rotation parameters of a camera
view given two different views of a scene. This estimate is
usually based on unconstrained motion of a calibrated camera
with respect to a plane. In this case, there are eight parameters
to be determined.

Most approaches use the rigid world assumption where the
scene is considered static and all movement in the image is
due to the motion of the robot. In multi-agent domains such as
robotic soccer, this assumption does not hold true very often.
For a local vision robot, large movements in the image may
be due to other robots moving in the image as well.

Previous work in ego-motion estimation in computer vision
can be divided into two categories: those that pre-suppose
structuring (e.g. lines) in the image to use as a basis for
detecting movement, and those that do not. As an example of
the latter method, Stein et al. [1] propose a method that takes a
region of an image, and uses all pixels in the region to provide
support for a particular motion, Their method computes a
global probability distribution function for the whole image,
and is robust in the presence of many outliers. Stein reduces
the number of parameters to three: translation, pitch, and yaw.

As an example of a method attempting to exploit structure
in the image, Zhang [2]describes a methodology for estimating
motion and structure using line segments in an image . This
approach is based on the assumption that line segments overlap
in 3D space, which allows a reduction in the number of motion
parameters.

Szeliski andTorr [3]introduce geometric constraints early in
the structure reconstruction phase to improve the overall 3D
reconstruction resuits. This method takes advantage of the fact
that, the real world has many planer structures such as vertical
walls and flat ground planes and uses external geometric
constraints such as plane parallelism to reduce reconstruction
EITOIS. )

Sim and Dudek [5] utilize learned landmarks to estimate
robot position. Their method first attempts to visually detect
possible landmarks by looking for image features and then
atternpls to match these detected landmarks from a predefined
landmark database. Robot localization is preformed by match-
ing the detected landmarks to database landmarks and then
estimation robot position. A

Another example of exploiting structure for a image is from
Se, Lowe and Little [4] which developed a local vision based
SLAM algorithm by following visual scale invariant feature
transform (SIFT) landmarks in a arbitrary environment. To
estimate the ego-motion of the robot they match SIFT features
between frames and preform least squares minimization to
minimize the match errors, which yields a better 6 DOF ego-
motion and localization estimate.

While approaches in both categories have strong theoretical
foundations, there are also practical issues to be considered
when they are to be deployed on mobile robots. While
becoming more powerful, today’s embedded systems are still

Robot
Environmem

Fig. 1.
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Fig. 2. A simple example where it is impossible to determine the angular,
but not the linear velocity of a mobile robot. Since the relative orientation
and position of the line has not changed, the robot was moving in a straight
line.

limited compared to the powerful computers on which many
approaches are implemented and evaluated. Consequently,
most existing approaches are computationally too expensive
to be performed on an embedded controller in real-time.
The approach described in this paper uses a two parameter
model appropriate for more basic embedded systems mabile
robots. Given a fast camcra calibration routine and a fast
wall detection method, we are able to estimate the motion
on a small embedded system. The model used in our work
is described in the next Section, followed by the two specific
methodologies we combine in our implementation.

ITI. SYSTEM DESIGN

A high-level view of the model employed in our work
as shown in Figure 1. The mobile robot interacts with the
environment using actuators and receives feedback from the
environment via its sensors: in this case, visual feedback from
a CMOS camera.

As in most other related work, the sensors are used to
update the world model of the mobile robot - in our case,
its orientation and position. However, not all sensor feedback
is useful to update the world model uniquely. For example,
assume that a robot tracks parallel to a line as shown in
Figure 2. Given the image sequence, it is clear that the mobile
robot has traveled in a straight line, but it is not possible to
determine how far it has traveled. So, only information about
the angular velocity and position can be determined uniquely.

Most other systems use dead reckoning to supplement the
localization in this case. In our case, we wish to avoid relying
upon methods that can only be assumed to be correct under
restricted conditions (such as the use of shaft encoders). As
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Fig. 3. Ego Motion Estimation Using Optical Flow

an alternative, our system maintains an internal model of the
robot Lo support dead-reckoning style navigation.

In this approach, sensor feedback is used to update an
internal robot model, which models the behavior of the rabot
to the motor commands. This relationship changes drastically
over time: for example, since the batteries begin to lose their
charge after only a few minutes, the robot moves a much
shorter distance per unit time with a given motor setting as
time passes. The robot model allows the system to consider the
current reactions of the robot to different motion commands,
and is adapted when new location information becomes avail-
able.

As stated in Section I, our approach to ego-motion estima-
tion is based on two coordinating methods: one that does not
assume any structure in the image, and the other that does.
We correspondingly divide the description of these methods
into the two sections that follow.

IV. EGo MOTION ESTIMATION USING QPTICAL FLOW

In order to make ego-motion detection through visual feed-
back efficient for deployment on an embedded system, we
begin by considering pixels in only a limited range of the
image. We frack small windows (8*8 to 16%16) in the image,
and compute the optical flow within these windows to calculate
the ego motion,

When analyzing the differences between images to deter-
mine optical flow, the approach begins by using the current
model of the robot’s motion to determine the most likely
direction of the optical flow. The current motion of the robot
is classified into four classes: straight forward, straight back,
turn left, or turn right. Seven candidate patterns are generated
that favor detection in the estimated direction of motion.

For example, consider the two images depicted in Figure 3.
In this situation, commands recently sent to the robot were
intended 1o cause it to drive in a straight line. The system
therefore assumes that the scene depicted in the later (right-
most) image in the Figure should be shifted down relative to
the scene depicted in the earlier (leftmost) image in the Figure.
The system selects seven candidate patches 1o track which are
arranged above the center of the image. Here, these regions
have a good chance of appearing in the next image as patches
close to the bottom of the image. Conversely, choosing patches
on the bottom of the earlier image to track would not likely be

helpful, as there is a strong likelihood that those patches would
drop out of view. The candidate patches chosen for movement
intended to be straight back, turning left, and turning right are
similar to the ones shown in the example, but rotated by the
obvious angle (90 or 180 degrees).

After selecting the patches to examine, the candidate patch
with the largest cross-correlation difference is selected. The
motivation is that this patch is most easily distinguished from
the surrounding patches and thus the chance that it is tracked
successfully is increased.

We use a Mini-max search method to find the patch with
the largest cross-correlation difference. This is a useful and
efficient technique, since once the first minimum has been
established, the remaining candidate patches can be rejected
even if only one of the cross correlations is larger than the
current minimum. This is because the maximum of all cross
correlations for a singie patch is used. In the theoretical worst
case, selecting the patch requires the computation of 30 cross-
correlations. In practice, however, we found that this is rarely
necessary and that the Mini-max selection finishes quickly. In
the example, the red patch has the maximum minimum cross
correlation to the other six patches and is therefore selected.

Having found the patch with the greatest cross-correlation
difference, the system then finds a patch with a small cross
correlation in the next image. This is done by estimating
the optical flow and starting a search for the patch in the
neighborhood of the predicted position of the patch in the
new image.

The robustness of this method can be improved by tracking
more than one patch and by computing a best estimate given
the optical flow information for multiple patches. However,
this would greatly increase the computational cost of the
algorithm and its associated viahility on small embedded
sysiems. Therefore, we limited ourselves to tracking a single
patch.

V. EGO MOTION ESTIMATION USING LINES

This method described in the previous section is general-
purpose in that it does not assume any specific structuring
of the scenc in the images. However,. there is generally
information that can be obtained from a scene that can be
used to supplement the performance of a general method such
as this one. One of the most obvious and striking features
that appears in a wide variety of environments are lines. For
example, the edges between a wall and the floor form lines in
an image, as do the edges between walls themselves. While
in many cases walls are the most predominant source of lines,
lines also exist in terms of patterns on floors or walls (such
as the many lines shown in Figure 3).

Lines are thus a natural choice for a reasonably general
feature to attempt to take advantage of in order to improve
general-purpose ego-motion detection approaches such as that
presented above.

We explain this approach using the kinematics of a differ-
ential drive robot (summarized in Figure 4). Qur approach
depends on the assumption that the velocities of the right
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Fig. 5. Kinematic Mode! of a Differential Drive Robot

and the left wheel are constant during the time period for
which the velocities are to be estimated. This is necessary
since the approach uses the differences between the start and
end locations of the robot motions to derive values for the
wheel velocities, which is impossible if the wheel velocities
are not constant during the time period in question. In this
restriction were not made, the robot can perform any one of
an infinite number of possible movements and return to the
end location.

In order to motivate the analysis, consider the example
depicted in Figure 5. At time t0, the robot is at position
Py = (@40, Y10, B10), and a straight line {formed by a wall)
is in front of the robot. Let W;, be the point on the wall in
the center of the camera view of the robot at time #; and let
d;, be the distance between Py, and W,,. Let §;, be the angle
between the orientation of the robot 8, and the angle of the
wall &,,.

At time t1, the robot is at position Py, = (241,11, 00 ).
The distance d of the robot to the wall as well as the angle &'
between the robot and the wall will have changed.

The problem is to derive from this information the current
wheel velocities v, and v for the right and left wheel
respectively.

Given the kinematic model of the differential drive robot
(Figure 4), it is easy to see that:

Upr — g
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w

Since the width w of the robot is known, this allows us

Fig. 6. Determination of the linear velocity v of a differential drive robot
facing a wall

to compute the differcnce in velocities for the two wheels.
However, there is not sufficient information in the turn rate
alone to determine the average velocity.

We assign a coordinate system X’ with the origin at P and
the x-axis parallel to the line or wall. In this coordinate system,
the robot is at the origin and its orientation is &'.

We can then derive the distance from the robot to the closesi
point on the wall dw = sin#’ * d, allowing us to compute:

Ay = —{dw (t1) — dw (t0))

As can seen in Figure 6, the linear velocity of the robot
can be computed from its rate of turn and the offset in the
direction of the robot’s Ay,

;From a simple geometric relationship, we can compute the
radius of the circle r:

= ———_Ay’
sin(6% — 8]

The linear velocity is then equal to the length of the circle

segment (r * Af) divided by the time to cover this distance:

_Tx(0—61)
YT AL

In case the robot is facing the wall directly (i.e., & = 90°),
and the above equation yields the correct solution for the linear
velocity of the robot.

As can be seen in Figure 7, similar reasoning allows us 1o
compute the circle distance Ay’ from a given wall distance.

(From the figure, one can derive that:

c #h — 91
= gin ) —
dy ! 2
In this case:
. Go—f
A sin =g
Ay = Ay * ——-COS Qz‘g_ﬁ

The right and left wheel velocities can then be calculated
as:
2w+ 8w

v—8 xw
Uy 5 =

w = 2
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Fig. 7. Determination of the linear velocity v of a differential drive robot
with an arbitrary angle to the wall

As stated earlier, any straight line segment in the image
can be used as a guideline, allowing this method to be
broadly applicable. While source of lines were hypothesized
as walls in a typical indoor environment in the analysis above,
lines are present in many important environments. In robotic
soccer (and indeed, most human sports) lines are an important
element of play. Even in less structured examples, lines are
still present. In robotic rescue environments, for example, even
though most of a structure may be collapsed, lines still exist
in any remnant of standing wall, in debris with straight edges
(e.g. strewn papers, lumber or other structural components),
and in decorative patterns used in indoor environments. All of
these provide line segments that can be used to compute the
incremental focation of the robot.

VI. IMPLEMENTATION AND EVALUATION

We employ the techniques described above in a number of
different mobile robot platforms all based on small embedded
systems (see Figure 8). In recent years, we have developed
a variety of robotic platforms to support our research into
intelligent mobile robotics. Because we are interested in de-
veloping broad, adaptive approaches to solving hard problems,
we altempt as much as possible to force good performance to
be a result of the intelligence of our algorithms rather than due
to hardware that is specialized for the task at hand. To that end,
our robots use cheap, ofi-the-shelf components such as electro
motors and RC servos. The reliance on such components does
not allow the use of accurate odometry sensors through shaft
encoders, which in turn forces us to consider problems such
as that described here, using intelligent information processing
to handle what hardware cannot be generally relied upon to
do.

In order to evaluate these techniques, we used a series
of experiments to evaluate the effectiveness of these two
approaches using our small scale mobile robots. We used both
a robot employing a 33MHz 68332 based Eyebot controller,
and a robot using a 300MHz Intel XScale processor. was
limited to a 0.5 frames per second in its processing when
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Fig. 8. Intelligent Mobile Robots at the University of Manitoba

using ego motion estimation from the optical flow. The rescue
robot based on the 300MHz Intel XScale processor was able
to maintain 10 frames per second.

The experiment consisted of an playing surface with few
distinguishable landmarks (green carpet with markings of a
soccer ficld), five static obstacles and one treasure. The goal
of the experiment was for the robot to search the environment,
find the treasure, and to produce an accurate map of the
environment. The robots used estimates of 1ts ego motion from
both the optical flow and lines in the image.

Preliminary results of these experiments were encouraging.
Not only was the robot able to create more accurate maps,
but it also was more efficient at exploring the environment.
For example, the inaccuracies in the odometry meant that
the robots were driving around the environment in random
directions. Using the ego motion estimation, the robot followed
straight lines and 90 degree turns, making it feasible to
implement scarch patterns such as increasing squares around
a point. Overall, the robols were able to make better use of
their internal maps and would not repeatedly search the same
area of the environment.

VII. CONCLUSION

In this paper, we have presented two computationally effi-
cient methods to estimate the motion of a mobile robot from
an image sequence alone. The methods are based on general
optical flow supplemenied by the tracking of feature lines in
the image. They are complementary in the sense that the lines
are easier to track and provide better accuracy than the optical
flow, but the optical flow is applicable even if no lines are
found in the image. ‘

We have tesied our implementation in a treasure hunt sce-
nario. The object of the treasure hunt game is for the robot to
determine an accurate map of a simple environment consisting
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of lines, obstacles, and a treasure. Preliminary results of our
work are encouraging.

There is still, however, much room for future work. First,
the approach would be improved if the algorithms were made
more efficient for embedded processors, Despite attempting
1o optimize code, the robot based on the 33MHz processor
was limited to 0.5 frames/second using these approaches. The
300MHz robot was able to maintain 13 frames/second, enough
to be feasible for a domain where exploration is not intended
to be fast-moving, such as robotic rescue, but still somewhat
limited for a very fast-moving environment such as soccer.

In addition, the tracking of lines requires a calibrated camera
view and assumes that the lines are parallel to the ground
plane. We intend to extend this approach to three dimensional
environments.

Our ultimate intention is to allow robots to use optical flow
as part of more general algorithms for simultaneous localiza-
tion and mapping in unstructured and complex environments
such as collapsed buildings. In such environments, we believe
that odometry based on wheel motions, such as the use of shaft
encoders, provide little to no useful information. For example,
attempting to climb over a pile of rubble results in so much
wheel slippage, and the slippage itself is too unpredictable,
to even attempt to maintain an accurate position using these
methodologies.
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