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Abstract

Using teams of autonomous, heterogeneous robots to operate in dangerous envi-

ronments has a number of advantages. Among these are cost-effectiveness and the

ability to spread out skills among team members. The nature of operating in dan-

gerous domains means that the risk of loss is higher—teams will often lose members

and must acquire new ones. In this work, I explore various recruitment strategies

for the purpose of improving an existing framework for team management. My ad-

ditions allow robots to more actively acquire new teams members and assign tasks

among other robots on a team without the intervention of a team leader. I evalu-

ate this framework in simulated post-disaster environments where the risk of robot

loss is high and communications are often unreliable. My results show that in many

scenarios, active recruitment strategies provide significant performance benefits.
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Chapter 1

Introduction

1.1 Introduction

The goal of this research is to develop a framework for managing teams of robots

operating in dangerous domains, that allows individuals to actively search for useful

robots that support or complement a team’s skills, while doing immediately useful

work on the task at hand. These two goals must be balanced: time spent actively

searching means less work is being performed, and vice-versa. In this research, I

explore a range of recruitment strategies in order to maximize the performance across

robotic teams in dangerous domains as a whole, and examine the balance between

searching for new teammates and performing useful work.

This chapter will begin by defining technical terms that will be used throughout

this thesis. Following this, I will present the motivation for my research as well as a

brief overview of my approach. I will then describe the problem domain in which I

evaluate my implementation. Lastly, I will present my research questions and outline

1



2 Chapter 1: Introduction

the organization of this thesis.

1.2 Terminology

The following are some technical terms that will be used throughout my thesis.

• Heterogeneous robots—My work is specifically concerned with differences in

locomotion, sensing, and ability to affect the environment [Koes et al., 2005;

Gunn and Anderson, 2015], insofar as they affect the types of tasks that a

robot is able to perform. Robots in my work will also differ in computational

capacity, although they will be assumed to be running the same software, albeit

in different configurations to account for on-board processing limitations.

• Task—For the purposes of this research, a task is a single instance of physical

work that a robot can complete. Example tasks include putting out a fire,

disarming a bomb, or cleaning up a toxic waste spill. In my work, most tasks

are completed only by a single robot [Krieger and Billeter, 2000; Gunn and

Anderson, 2015; Kiener and Von Stryk, 2007], rather than requiring the efforts

of multiple robots at the same time [Dos Sos and Bazzan, 2011; Matarić et al.,

1995]. My approach allows sequential tasks contributing to an overall goal to

be completed by any number of robots, but I avoid direct parallelism, with the

exception of a special type of task where robots in my work are required to

physically exchange useful resources (Section 4.3.2.2).

• Role—A role in my work is defined by the tasks that a robot fulfilling that role

is expected to be able to complete [Gunn and Anderson, 2015]. For example,
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a robot fulfilling a firefighting role should be able to put out fires and navigate

through debris while locating victims. As in previous work [Gunn and Anderson,

2015], roles in my work act as a stereotype to provide fast reasoning about a

robot’s abilities, avoiding the need to inquire about a robot’s specific skill set

unless absolutely necessary.

• Team—For the purposes of my research, I define a team as a group of robots

who have (possibly imperfect) knowledge of the team’s membership and its

abilities, and share a common overall purpose. Teams actions are directed by

a single leader (one particular role), who assigns tasks to the other members,

among other responsibilities. A robot by itself is considered to be the leader of

its own single-robot team, regardless of its suitability for that role. My work

features multiple teams in large environments, and they are expected to work

together non-competitively in order to complete a common goal [Krieger and

Billeter, 2000; Pitonakova et al., 2014]. While to be effective in a dangerous

domain a team must consider the value and risk to individual members posed

by tasks, team members in my work are non-selfish [Dutta and Sen, 2003]. For

example, a team member cannot refuse a task on the grounds that it may result

in self-destruction. While multiple real-world agencies providing robots (e.g.,

for a mining operation or minefield clearing) might be concerned if the risk

of destruction was not amortized equally among providers, that is outside the

scope of this thesis.

• Recruitment—In my work, recruitment is a task that takes the form of a request

for assistance (as in previous work [Gage and Murphy, 2004]), either from a
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specific robot or from anyone available. This request can be satisfied via an

active search for help (at which time little or no immediately useful work is

done) or concurrently with another useful task, at the cost of lessening the

chances of a successful request. Robots in my work are expected to cooperate

as much as possible and will generally accept recruitment requests except when

they are prevented from doing so by the environment (e.g., communication

issues) or a lack of skills or resources on their part. It is also important to

note that recruitment in my work, unlike in many others [Gage and Murphy,

2004; Mathews et al., 2011], may necessitate a physical search since desired

robotic agents may not be immediately available or in communications range.

Recruitment in my work is a means for a team to acquire new skills, either

temporarily or more permanently, so that useful work can be performed that

could not be otherwise completed, or that would otherwise be completed less

adequately.

1.3 Motivation

Cooperative efforts between agents with common goals often yield better results

than independent efforts [Gage and Murphy, 2004; Long et al., 2005]. This is true for

both humans and robots, and is largely due to parallelism and specialization. Paral-

lelism allows agents to complete multiple tasks at the same time, and specialization

is useful because it means that no agent needs to be a jack-of-all-trades—the team

overall will possess all of the skills necessary to complete a set of tasks.

In heterogeneous teams, certain robots will have skills or hardware that their
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teammates may not [Koes et al., 2005; Parker, 1998]. The need for specialization

arises for many reasons—it may be too costly to provide every member of a team

with the same equipment given the value of the work, and equipment that is not

always needed may increase design and control complexity of robots [Brooks, 1986].

Both of these factors are exceptionally relevant in dangerous domains such as Urban

Search And Rescue (USAR, Section 1.5.1) or ordnance disposal, where damage and

destruction is to be expected [Murphy et al., 2000; Carlson and Murphy, 2005]. In

such domains, losses can be reduced by spreading risk out over more robots [Howard

et al., 2006; Carnegie, 2007], and similarly by associating risk inversely proportionally

to the value of particular types of equipment. That is, cheaper robots should be risked

more often. This approach is also beneficial because it also results in robots that are

parsimonious in design and control, as fewer abilities means greater simplicity.

The disadvantage of this approach is that when losses do occur—either through

damage, or robots becoming lost or otherwise separated from the team—the overall

performance of the team may be decreased due to the loss of some special skill or

ability. To counter these situations, replacement robots must be available—this is

necessary in dangerous environments since all robots would eventually become dis-

abled, destroyed, or lost. Such replacement robots might be individuals released into

the environment at a later time, previously lost members finding new teams, or even

vestigial teams that have too few members to function usefully. Any team must be

prepared to integrate replacement members into its existing structure. A team must

also recognize when such robots are actually needed. Adding any new member makes

the team more of a challenge to coordinate and communicate with, and makes the
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team more unwieldy to move through the environment while keeping members close.

Gaining a member must be weighed against the overhead that member creates. The

effort needed to find and integrate replacements must also be balanced with that of

doing useful work in the domain.

The adaptation necessary on the part of a team to accept new member(s) is sim-

ilarly reflected in the requirements for replacement robots. Robots that are released

into the environment individually, or those that become lost from their team, must

recognize their situation and act on it. Such action may involve encountering or seek-

ing out other teams to join, or forming a new team that would then grow and adapt

by encountering other robots or teams over time [Gunn and Anderson, 2015]. Teams

can similarly balance skills by shifting members between one another, or merging.

A secondary advantage of joining new teams in this way is an indirect exchange of

information, since new members bring knowledge with them [Gunn and Anderson,

2015; Krieger and Billeter, 2000].

The problem of maintaining adequate team members interacts with the prob-

lem of adequately distributing tasks among members of a team (this distribution is

commonly referred to as task allocation). Because of the continual changes in team

membership dictated by dangerous domains, robotic teams will not often have an

ideal combination of skills [Gunn and Anderson, 2013]. This means that when a task

needs to be assigned to some member of a team, it may have to be assigned to a

robot not ideally skilled in completing it. Tasks might take longer because of this,

or produce lower-quality results. Some tasks might also be completely beyond the

capabilities of any current team member. The fact that a task cannot be properly
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assigned to a robot because no one is well-suited to perform it, however, can be used

as an indicator that new robots need to be acquired.

In these situations, robots can expend varying levels of effort towards locating

other robots that have desired skills. More active approaches that involve physical

searches may yield faster results at the expense of immediately useful work. Passive

approaches, such as those that rely on chance encounters with others as a conse-

quence of performing normal work, will result in more useful work being performed,

but may lessen the chances of successfully locating desired robots. These varying

levels of recruitment effort form a spectrum with passive strategies on one end and

active approaches on the other. Strategies in the middle of this spectrum would con-

tain elements of both extremes, such as simply being aware of potential recruitment

opportunities in the distance, rather than actively seeking them out.

There is significant motivation for allowing robots to recruit one another. Much

like in human-human interaction, asking someone to lend a quick favour can be ben-

eficial to one party while not overly inconveniencing another. In workplace environ-

ments, employees are also posted or transferred more permanently so that their skills

can be put to better use more consistently.

Despite the broad range of strategies that can be employed across the recruitment

spectrum, existing approaches do not cover much of this breadth. Almost all work

on recruitment embraces strategies from the active end of the spectrum ([Dos Sos

and Bazzan, 2011; Gage and Murphy, 2004; Mathews et al., 2011]). At the time of

writing, there is only one previous work [Gunn and Anderson, 2015] I am aware of

that uses passive recruitment as it is defined in my thesis. Although there is work
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that explores coalition formation between agents [Dutta and Sen, 2003; Van De Vi-

jsel and Anderson, 2004], these works focus on highly abstract domains that make

comparison to more realistic systems, as well as classification in terms of recruitment,

difficult. There is also currently little or no research that incorporates elements of

both extremes. A separate issue is that much work focusing on team management or

recruitment has done so from a theoretical standpoint, with a focus on efficient team

management without considering the complications that arise in real-world scenarios

such as robot losses, equipment failure, or unreliable communications.

Our lab’s prior work [Gunn and Anderson, 2015] has relied entirely on passive

strategies, by using encounters between teams (including single robots) to continually

re-balance membership as opposed to trying to recognize when more active recruit-

ment might be necessary. There are times when the need for this type of recruitment

is recognizable: robots may be overwhelmed with too many tasks, robots may be

repeatedly tasked with activities to which they are not well suited, or team leaders

may find it necessary to search extensively to find the skills necessary to allocate a

task.

Once active recruitment is available, balancing this activity with pursuing useful

individual work is also important: if a robot is exclusively working on recruitment,

other tasks that it could be completing must wait or be done by others. To consider

this balance, my work includes a middle ground: communicating recruitment needs

while not tasking a robot solely with recruitment. This allows a robot to interleave

the performance of useful work with recruitment. The difference between this and

merely taking advantage of chance encounters is that in the former approach, robots in
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the distance could be actively investigated, rather than only attempting to enhance a

team or divide skills between them when they are encountered in close proximity. The

likelihood of performing such an investigation is then proportional to the importance

of the recruitment opportunity and that of the other tasks the robot has.

1.4 Approach

My work expands on previous research [Gunn and Anderson, 2015], which resulted

in a framework for team management and task allocation for dangerous domains. In

this framework, teams and individual robots had the ability to recruit others and

integrate them, both individually and from existing teams, in order to create more

effective teams overall. This was done in the context of team rebalancing and might

involve recruiting only one member wholesale swapping of many individuals between

teams. However, this approach was entirely reactive—that is, team membership

changes could only occur as a consequence of encountering other robots or teams.

My thesis research improves this framework by incorporating additional elements

of team management to more actively seek out new robots when necessary, while

balancing work performed on team management with productive work in the robots’

domain.

Like prior work [Gunn and Anderson, 2015], I assume the existence of multiple

teams (including lost single robots or replacements), and that encountering these

will allow team re-balancing. However, I also take advantage of opportunities for

active recruitment by being able to task robots specifically with searching for and

recruiting others with particular skills, either temporarily without changing their
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team membership, or permanently by inducting them into the team. Similar to this

work, I also take into account a number of factors particular to domains such as

Urban Search and Rescue (e.g., communication can be sporadic and unreliable due

to interference and damaged infrastructure), but my framework is intended to be

applicable to a broad range of domains. The fact that my approach is intended to

handle degraded communication, for example, does not preclude the possibility of

using my framework in domains where communication functions properly.

In addition to supporting a passive team management strategy for comparison

(that of [Gunn and Anderson, 2015]), my implementation supports two different

modes of recruitment: concurrent recruitment, whereby robots perform tasks while

also broadcasting recruitment requests as needed (thus still allowing useful work to

be completed), and active recruitment, whereby robots performing recruitment tasks

do so while ignoring other outstanding tasks, at the cost of performing little or no

immediately useful work.

All robots in either a concurrent or active recruitment configuration are able to

recruit other robots, and can be recruited themselves. A recruitment request takes

the form of a wireless broadcast requesting a specific skill. The success of such a

request is dictated by factors such as the availability of suitable recruits, success rates

of potentially sporadic wireless communications, and other considerations that will

be described in detail in Chapters 3 and 4.

Recruitment requests in my implementation take one of two possible forms. Per-

manent role-level recruitment is requested in situations where it is determined that a

team needs someone to fill a particular role. This type of recruitment does not involve
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a specific task, and the robot that agrees to this request changes teams to join the

recruiting one, filling the desired role and avoiding the need for another (possibly less-

suited) team member to fill that role instead. The other form of recruitment in my

approach is task-level recruitment, which is used in situations where a team requires

only a single task to be completed, and lacks the ability to complete the task ade-

quately with its current members. By allowing robots to be recruited temporarily for

a specific task by another team, that team can temporarily gain the abilities of a robot

without the overhead of managing that robot long-term. This is also advantageous

in that it prevents other teams from having their skill set permanently diminished.

This, of course, assumes that the recruited robot can make its way back to its team,

since that team likely continued to move during the robot’s absence. Robots might

refuse such requests in cases where the task to be carried out is physically far enough

away that the robot might not be able to reliably return to its own team. Robots may

also refuse requests to avoid being recruited back and forth (i.e., thrashing), since this

oscillation may prevent useful work from being completed. These and related issues,

and the manner in which my framework addresses them, are discussed in detail in

Chapter 3.

The next section provides an outline of my evaluation domain, the simulation

environment, and the types of robots and abilities featured in my example implemen-

tation.
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1.5 Evaluation

The following is a description of the problem area around which I have chosen to

focus my implementation, the specific simulation environment developed to evaluate

my work, and the robots that operate in this environment.

1.5.1 Urban Search and Rescue

Urban Search and Rescue (USAR) is a domain in which a collapsed structure is

explored to locate and extract human casualties. Such environments are extremely

dangerous to victims and rescuers alike due to the risk of further collapse, limited

breathable atmosphere (e.g., dust or toxic gases), or fire. A well-known example

of this domain is the aftermath of the September 11 attacks. In such scenarios,

rescue operations may take several days depending on the severity of the disaster

[Murphy et al., 2000]. USAR rescuers will also make use of trained dogs to locate

casualties, although there are risks that a dog may get caught by the collar when it

is carrying sensors or video equipment [Ferworn et al., 2006] that would be useful to

survey the area. Additionally, rescue dogs are also not always available and tire easily

[Statheropoulos et al., 2015].

Another solution involves the use of robots that are remotely operated by workers

outside of the immediate disaster zone [Murphy et al., 2000]. Teleoperated teams

of rescue robots have been used in real-world scenarios and such systems are often

extremely difficult to use [Casper and Murphy, 2003]. Teleoperation of remote vehicles

in general has been studied previously and it is well-known that operators are often

plagued by a lack of situational awareness and any delays in the control loop between
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the user and robot are highly problematic [McGovern, 1991; Sheridan, 1992]. Casper

[2002] notes the particular difficulties with situational awareness in USAR, especially

due to the fact that the fine coating of dust makes it difficult to differentiate objects in

the environment, requiring additional cognitive effort to process. Potential solutions

to these problems involve providing improved control interfaces [Baker et al., 2004;

Kadous et al., 2006] or using robots that posssess increased levels of autonomy in

order to lighten the user’s cognitive load [Crandall and Goodrich, 2002].

In spite of work improving human control of robots, full robot autonomy remains

the ultimate goal. There are many good reasons to perform autonomously in this

domain rather than relying on human operators: intelligent systems do not suffer from

the same situational awareness limitations and do not tire cognitively or physically

[Wong et al., 2004]. Using autonomous robots also avoids issues that arise when

accommodating human operators. For example, Casper and Murphy [2002] noted

that rescue robotics operators were required by contemporary safety guidelines to

move far enough away from a disaster zone that wireless communication with robots

became difficult. Communication delays in general also limit the applicability of these

solutions to other domains where distance is even more of a factor (e.g., applications

of this technology in space).

An attractive aspect of autonomous processing is its potential applicability to

other domains. If autonomous solutions can be successful for problems of this diffi-

culty (i.e., robotic USAR), then it should ultimately be deployable to a broad range

of more conventional problems.

The framework I will describe in Chapter 3 is specifically concerned with dynamic
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teams of autonomous robots operating in dangerous environments. As robots in

these environments fail as a result of the hazards that are present, remaining robots

must be prepared to adapt and dynamically adjust their roles within these teams

in order to compensate for these losses, so that useful work can still be performed.

The challenging nature of USAR makes it an ideal candidate for evaluation. Because

the necessary equipment and robotic hardware (not to mention the challenges of

building a realistic post-disaster mock-up) would be prohibitively expensive, I will be

conducting my work in simulation. This will allow me to abstract away details that are

not relevant to my framework (such as vision processing or sensor fusion), while also

providing a level of repeatability and greatly reducing the amount of time it would take

to run these experiments in the real world. It is worth mentioning that USAR research

involving physical robots also performs many abstractions, such as simplified victims

[Kadous et al., 2006; Tunwannarux et al., 2008] or debris [Kitano and Tadokoro, 2001].

Additionally, highly detailed simulations are not strictly necessary for experiments

involving dynamic teamwork and would not serve as a direct comparison with prior

techniques in the same way that my implementation does. The following two sections

outline major features of my implementation environment and the robots I will be

using in my study.

1.5.2 Environment

The implementation of my framework (described in Chapter 4) and its evaluation

(described in Chapter 5) make use of the Stage simulator Gerkey et al. [2003]. My

experiments require the robots to locate as many human victims as possible in a given
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time period. Since my work does not focus on visual identification of humans, I use a

simulated object perceivable as a human by a robot with the appropriate perceptual

ability. There are also objects of human appearance (false victims), in order to

confuse robots without adequate perception—this is the same level of abstraction

used in [Gunn and Anderson, 2015] and allows comparison with this work.

1.5.3 Robot Types and Abilities

The types of robots in my implementation reflect the need for heterogeneity in

dangerous domains. Robots in my approach vary in sensing, locomotion, and com-

putational abilities.

The first three types of robots in my approach form a three-tiered system similar

to previous work [Gunn and Anderson, 2015; Carnegie, 2007; Howard et al., 2006].

The least capable of these robots has limited sensing and locomotion abilities, and

frequently needs to request assistance from its more-capable teammates. A more

advanced robot exists which possesses excellent sensing capabilities and improved

computational strength. The third kind of robot in this framework is larger, slower,

and computationally more powerful than the previous two types of robots. Due to

their increased computing power and memory, their ideal role is as team leaders.

Leaders can traverse debris on their own but have limited sensing capabilities.

To further investigate how recruitment facilities affect the performance of het-

erogeneous robot teams, I have also implemented a highly-specialized robot which is

capable of clearing debris. The environments in my evaluation will contain significant

debris, making it more difficult for robots to navigate efficiently. There is also the
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risk that a robot may become stuck on a piece of debris, rendering it unable to move.

The robots in the three-tiered system mentioned above will require the services of

the debris-clearing robot in order to improve team performance in situations where

debris is problematic to the current tasks at hand.

The next sections describes the research questions this thesis will aim to answer.

1.6 Research Questions

The following are research questions that I will answer using the approach and

evaluation I have described in previous sections.

1. To what degree does the use of various recruitment strategies im-

prove or hamper the overall performance of teams of heterogeneous

robots in dangerous domains? To answer this question, comparisons of

team performance (number of victims located, percentage of environment cov-

ered) for three different recruitment strategies (passive, concurrent, and active)

will be examined in several randomly generated USAR configurations. Chapter

5 describes these environments and how they are generated.

2. What factors (e.g., availability of replacement robots, wireless relia-

bility, probability of robot failure) determine the recruitment strategy

that should be used in a given situation? Since my evaluation will ex-

amine different combinations of these factors, it will be possible to build a list

of criteria for determining optimal recruitment strategies in different scenarios

where these factors are known.
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3. Which recruitment strategies, if any, result in overall best perfor-

mance of teams of heterogeneous robots if wireless reliability levels

are not known? Robots operating in environments with unknown levels of

wireless communication success can adopt an initial recruitment strategy, and

then adopt new strategies as time progresses and more is learned about the envi-

ronment. Where communication with the outside world is possible, replacement

robots released later on could be pre-configured with this new knowledge.

1.7 Thesis Organization

The remaining chapters of my thesis are outlined as follows.

• Chapter 2: Related Work–Reviews literature relevant to this work, such as

various recruitment approaches as well as work which features robots aware of

their own abilities and the abilities of others. I also provide a description of a

framework which forms a starting point for my work.

• Chapter 3: Methodology–This section provides a description of the recruit-

ment spectrum, types of recruitment and relevant strategies, and how my frame-

work implements these concepts.

• Chapter 4: Implementation–Discusses how I have implemented my frame-

work in an USAR domain, and provides detailed descriptions of the robots,

skills, and tasks that enable me to evaluate my framework.

• Chapter 5: Evaluation–Describes the experiments I have used to evaluate

my framework, and the results I have obtained by doing so.



18 Chapter 1: Introduction

• Chapter 6: Conclusion–Uses my results to answer the research questions I

have outlined in the previous section, and provides directions for future work.



Chapter 2

Related Work

The core focus of my thesis is the development and evaluation of a framework

which allows robots to recruit the assistance of other robots in a distributed manner

in dangerous environments. As mentioned in Section 1.3, previous work does not cover

a wide variety of recruitment strategies, and many of these works do not take into

consideration the challenges that may arise with multiple robots even when hardware

functions perfectly (e.g., a robot that has fallen out of communications range).

This chapter describes related background work and compares and contrasts it to

my own. I divide previous work into a number of categories. The first category deals

with dynamic team formation, which is the core of my thesis. In these works, robots

operate in teams and dynamically adjust membership based on the requirements of

the work at hand. (Although there is a growing body of research exploring the for-

mation of human-robot teams [Dias et al., 2006; Johnson et al., 2008] such works

are outside the scope of this thesis.) Foraging is a well-known multi-robot domain,

where robots are responsible for collecting resources and returning them to one or

19
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more home bases, and I discuss approaches that explicitly use recruitment techniques

to do so. Self-interested agents can also use recruitment strategies, but do so com-

petitively without the inherent assumption of mutual cooperation. Works involving

grouping and assembly often use recruitment facilities to create formations or form

useful groups for completing tasks later on in a coordinated fashion. The final section

of this chapter deals with recruitment among heterogeneous robots whereby robots

will ask other robots for assistance in completing tasks, without the explicit use of

teams.

2.1 Dynamic Team Formation

The underlying concept behind my work is team formation and maintenance. This

is a broad area of study and there are many strategies for maintaining and forming

teams to accomplish goals. In this section I describe previous work where team

membership can vary. That is, robots may leave or accept new members at any time

according to membership rules (e.g., a robot not heard from after a certain amount of

time may be considered to have left the team [Gunn and Anderson, 2015], or teams

may be purposefully divided in order to satisfy physical constraints [Dasgupta and

Cheng, 2015]).

Kiener and Von Stryk [2007] presented a task allocation framework for teams

composed of highly heterogeneous and specialized robots. They demonstrated their

approach with a wheeled Pioneer robot and a humanoid robot, whose task was to

follow a ball down a hallway and then kick it into a goal. By recognizing and pooling

their unique capabilities, the two robots were able to complete their task much more
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efficiently than either robot would be able to do alone. This is similar to my own

research, but different in significant ways. Most importantly, my work is scalable

to more complex applications—the work mentioned here only featured two robots

and does not include facilities for managing larger teams or more diverse roles. My

approach also involves a higher number of tasks with varying priorities at many

different locations, meaning that suitable task allocation or recruitment decisions are

not immediately apparent to any agent, unlike the work cited above. Additionally,

the tasks that were demonstrated in this work were well-defined at the outset of the

robots’ mission, while the robots in my work are able to discover tasks on their own

without any prior knowledge.

Dasgupta and Cheng [2015] described a framework for dynamically dividing up

a team of robots into smaller sub-teams to navigate around arbitrarily-shaped ob-

stacles. It is based on the concept of weighted voting games, where every agent is

assigned a weight and a course of action is determined by the group of agents whose

total weight exceeds a given threshold [Elkind et al., 2007]. Upon encountering an

obstacle, the robots divide themselves into a number of sub-teams and each group

circumnavigates the obstacle. After the sub-teams clear the obstacle, they merge

into a larger team. While the idea of maintaining formation around obstacles is well-

explored concept (e.g., [Balch and Arkin, 1998; Fredslund and Mataric, 2002]), the

approach given by Dasgupta and Cheng [2015] makes improvements that result in

faster robot decision-making and fewer numbers of sub-teams. My own framework

supports aspects that are similar to this work in that it allows robots to leave existing

teams and form new ones, and also supports the possibility of previously separated
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robots becoming integrated into a team (either the same one or a different one) later

on. The work done by Dasgupta and Cheng [2015], however, is specifically concerned

with the division of teams from a spatial context to satisfy physical constraints, i.e.,

navigation around obstacles. In contrast, the framework I have developed uses team

management strategies for the purpose of acquiring skills to complete specific tasks.

I also evaluate my approach in more challenging scenarios (e.g., robot failures and

unreliable communication) than those presented in the aforementioned study.

Gunn and Anderson [2015] developed a dynamic team management framework for

teams of heterogeneous robots operating in dangerous environments. Their frame-

work was evaluated in a simulated USAR environment, although it is intended to be

applicable to a wide range of challenging domains. Robots in their approach were

responsible for locating and identifying human casualties and performing team main-

tenance duties as required. The challenging environmental conditions (debris, com-

munication failures, and robot losses) necessitated the introduction of replacement

robots, and existing robots were expected to integrate them (as well as previously

lost robots that were rediscovered) into their existing team structures as appropri-

ate. The heterogeneous nature of the robots in this work meant that as robot losses

occurred, skills were lost. A major limitation of this work is that robots did not

have the ability to explicitly search for robots possessing needed skills: only chance

encounters with other robots could be used to bolster a team’s abilities. My thesis

work uses this framework as a starting point for the development of active recruit-

ment strategies which address this limitation. I also introduce new robot mechanics

(such as victim-identification markers and debris-removal equipment) to evaluate my
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approach. The framework developed by Gunn and Anderson [2015] forms an integral

part of my work and is described in more detail in Chapter 3.

2.2 Recruitment in Robotic Foraging Tasks

Robotic foraging involves the use of multiple robots to collect resources in a dis-

tributed fashion and return those resources to a central home base. There is a signifi-

cant amount of research into this topic [Matarić, 1997; Song and Vaughan, 2013; Lein

and Vaughan, 2009; Shell and Mataric, 2006]—it is a popular area of study due to

the fact that there are many analogous real-world applications. For example, robots

could be used to gather fruit from orchards, harvest wheat from fields, or remove

litter from public areas. Foraging algorithms are often inspired by biological systems

such as bees [Tereshko and Loengarov, 2005] or ants [Garnier et al., 2007; Song et al.,

2012]. The works described below involve robotic foraging tasks where recruitment

is used; that is, robots will not only collect resources but will also guide other team-

mates to locations where resources are known to be plentiful in order to maximize

foraging efficiency.

Krieger and Billeter [2000] modeled ant-like food foraging tasks using a team of

homogeneous robots. In this work, parameters such as team size, food distribution,

and whether or not recruitment was used, were varied to determine how these fac-

tors influenced the performance of a robotic team during a food foraging task. The

experimenters measured the “energy level” of the robotic nest, which was diminished

by robot efforts and incremented with every food item returned to the base. In one

experimental configuration, robots could use recruitment by leading an inactive robot
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from the home base to the location of a known food item. When this recruitment

function was enabled, there was a significant increase in the minimum nest energy

levels compared to when recruitment was not used. Additionally, robots who were in-

clined to be less active otherwise spent more time doing useful work when recruitment

was used. In these cases, recruitment was beneficial because it reduced the amount of

time that a robot had to spend actively searching on its own for food. The result was

that nest energy levels did not drop as low as they would have had recruitment not

been used. One of the main differences between this work and my own is that in this

study, robots could only recruit each other at the home base. Redirecting or recruit-

ing an actively searching (or even lost) robot was not possible in this study. Such a

feature would be useful in more realistic, larger settings where there is a real risk of

robots becoming lost or resources are spread more widely and thus harder to find.

My work specifically addresses these situations and assumes that resources, tasks,

or robots may be significantly spread out, and robots may be required to perform

extensive searching in order to locate them.

Additional work [Pitonakova et al., 2014] has endeavoured to discover under what

conditions recruitment is beneficial for foraging tasks involving resources of differ-

ent value. In this study, several different sizes and values of resources were placed

in a large simulated environment, while the number of robots and their recruitment

approach was varied. Two different types of experiments were conducted: one with

communicating robots that actively recruited others to known resource locations, and

another with robots that did not communicate or recruit each other. No single strat-

egy (i.e., either recruitment or no recruitment) was successful in all cases. Robots
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performing recruitment did better than individualist robots in cases where resources

were rare or difficult to locate, and recruitment helped to lessen congestion around

popular locations like the home base. The study also found that recruitment was un-

necessary (and even detrimental to performance) if resources were abundant, difficult

to find in short periods of time, when information regarding resources was unreliable,

or when the cost of communication equipment would outweigh the potential gains of

any collected resources. While this work explores the use of homogeneous robots for

a single task type, my research involves the use of heterogeneous robots for multiple

tasks that are inherently different and thus require different hardware or capabilities.

My work takes this into account by equipping robots specifically for different tasks,

such that no single robot can perform every task (making recruitment more neces-

sary). Interestingly, the experimenters in this study used a toroidal environment (i.e.,

one that wraps back around on itself) in their simulations, precluding the possibility

that robots can become lost by wandering too far away from a central home base.

Despite the large simulation area this contributes to a lessened degree of realism; my

simulated environments are both finite and bounded, making it much more likely that

robots could become lost.

2.3 Self-Interested Agents

Self-interested agents are those that are generally only concerned with meeting

their own goals and do not consider the goals of other agents to be as important.

In the context of multi-agent systems, this means that robots are designed to take

advantage of or not return favours for other robots [Sen and Dutta, 2002; Dutta
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and Sen, 2003; Van De Vijsel and Anderson, 2004], or otherwise are motivated by

concepts such as shame [Gage and Murphy, 2004], as opposed to operating under the

assumption that all robots should behave cooperatively as much as possible even if

this results in an unfair workload distribution. This section describes previous work

where agents use recruitment and also exhibit a measure of self-interest.

Dutta and Sen [2003] conducted active recruitment simulations among individual

self-interested, heterogeneous agents in a highly abstract domain. In this work, a

number of generic “tasks” exist, and each agent has exactly one task type at which it

is more proficient than the others. Any agent may ask for help from another agent,

but only reciprocal agents will potentially agree to these requests, if it is determined

(either by asking other trustworthy agents or through the potential recruit’s own

experience) that the requesting agent is likely to return the favour eventually. The

second type, selfish agents, do not lend help under any circumstances. Dutta and

Sen [2003] showed that as agents interact and learn about one another’s behaviours,

selfish agents effectively become shunned and reciprocal agents perform better—due

to their cooperative behaviours—than they would individually. van de Vijsel and

Anderson [2005] improved upon this work by adding additional levels of realism, such

as a 2D grid environment and randomized agent properties such as speed, trust level

towards other agents, and honesty regarding an agent’s own ability to complete a

task. Additionally, agents did not possess perfect memory and were made to ran-

domly forget task details. Despite these challenges, the agent model proposed by Van

de Vijsel and Anderson outperformed the Dutta/Sen model [Dutta and Sen, 2003]

considerably. My own work assumes that agents are non-competitive and share a



Chapter 2: Related Work 27

common overall goal; therefore, robots will not refuse requests for help unless a lack

of resources (including proper equipment) prevents them from assisting. Additionally,

these works assume that all agents can complete all task types (albeit with varying

proficiency) while in reality certain agents may be completely incapable of performing

certain tasks. This is a key element in my work: robots may find themselves tasked

with jobs that they cannot complete on their own and will have no choice but to

request assistance from other robots.

Gage and Murphy [2004] demonstrated three recruitment models whereby un-

manned aerial vehicle (UAV) robots would attempt to recruit other ground-based

robots to perform investigations of certain areas of a simulated minefield. A greedy

approach (whereby the UAV would recruit the nearest idle robot), and a random

approach (whereby the UAV would recruit a random robot) were used as baselines to

compare against a third strategy, affective recruitment. Using this strategy, ground-

based robots had the ability to reject recruitment requests, at the cost of building

up shame. Each robot had a pre-defined shame threshold, and sufficient shame levels

would cause the robot to accept a recruitment request. Experiments showed that

the affective recruitment model resulted in the least UAV waiting times in situations

where communications were sporadic, and that affective recruitment resulted in the

least amount of wireless communications when many agents were available. This

study involved the use of a heterogeneous robot team with little task variety: all

ground-based robots were identical and were only recruited to perform a single type

of task. Thus, the closest available robot for a task was always the best recruitment

choice. In my own work, an ideal recruitment choice is not always apparent or avail-
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able. For example, searching for a distant robot with better skills may be a better

choice than settling for a moderately-equipped robot that is nearby. Like my work,

this system is tested against sporadic communication failures. However, Gage and

Murphy’s system does not take into account the possibility that some useful agents

may be out of wireless communication range. In these cases, searching mechanisms

much like the ones employed in my work would be useful when desired agents are

not immediately accessible. Additionally, recruitment in Gage and Murphy [2004]

was purely one-way; aerial robots were the only robots performing recruitment, and

only did so with ground-based robots. My work allows richer forms of interaction by

permitting any robot to potentially recruit another as needed.

Comi et al. [2014] proposed a framework for managing inter-agent trust in do-

mains containing self-interested agents. They prove that their agent model positively

influences the network of relationships between agents and also rewards agents which

exhibit positive behaviours (e.g., honesty and competency), as opposed to those that

behave aggressively or non-virtuously. This is accomplished by tracking a series of

metrics formed by agents’ (a) trust in receiving good work from another agent (reli-

ability), (b) feedback obtained regarding the performance of an agent relative to how

said agent promised it would perform (honesty), and (c), the competency of an agent

assessed by other agents, weighed by their own honesty values (reputation). This

model is intended to be used in more abstract scenarios (an example given was cloud

services [Comi et al., 2014]) and may not be applicable to physical settings involving

real robots in more challenging environments. Communication problems can lead to

outdated and/or limited knowledge regarding other robots, and although it is worth
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noting that this can still occur with abstract networked agents, it becomes much eas-

ier for a system of real robots to suffer from communication problems due to limited

communication range or hardware failures.

2.4 Recruitment-Based Grouping and Assembly

Grouping and assembly is an important aspect of robotic control because it has

a large number of real-world applications such as formation flying [Vásárhelyi et al.,

2014; Mahmood and Kim, 2014] or coordinated object pushing [Matarić et al., 1995;

Hu et al., 2011]. There is a large body of work on these topics, but few of them deal

with the use of recruitment to satisfy these goals. The works described below feature

robots or agents that use recruitment strategies to realize their formation or group.

Mathews et al. [2011] demonstrated a system for homogeneous robotic formation

control, whereby robots would guide each other to specific positions to form chains,

stars, or any arbitrary shape by physically connecting with one another. Robots com-

municated using a combination of radio broadcasts and infrared messaging, allowing

the robots to communicate messages that included range and bearing information as

well. Using these communication methods, robots attempting to extend their current

formation (including formations consisting of only themselves) would recruit other

robots that were detected to be at convenient positions and orientations relative to

the recruiting robot. This system was validated using simulated and real robots. An

important difference between this work and my own is that this study focuses on

the use of recruitment solely to satisfy abstract formation tasks, and the framework

demonstrated is not extendable to other types of work. My work also operates under
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the assumption that desired robots may not be immediately available and supports

the use of physical searching in order to locate them.

Pinciroli et al. [2009] experimented with recruitment among heterogeneous agents.

In their approach, ground-based robots (“foot-bots”) were recruited and collected

underneath overhead flying “eye-bots” for the purpose of completing tasks on the

ground as a group. Foot-bots could be added or removed at any time, and they

reorganized themselves to ensure that all recruiting eye-bots controlled the required

number of foot-bots. As in Gage and Murphy [2004], recruitment was one-way; only

the eye-bots could recruit the foot-bots. While the recruitment approach used was

demonstrably effective in distributing foot-bots appropriately among the eye-bots, it

is difficult to evaluate how effective this approach would be in a more realistic setting

where robots (i.e., the foot-bots) would also be expected to complete tasks for the eye-

bots and therefore might not always be available for recruitment. My work addresses

the possibility that robots may be unable to perform requested tasks, necessitating

that a recruiting robot look elsewhere for help (and that there may be a significant

cost associated with searching).

2.5 Recruitment Among Heterogeneous Robots

While many of the approaches listed in previous sections deal with heterogeneous

robots, this section is specifically concerned with related work where robots do not

form explicit teams and differ enough in their skill sets that they cannot complete

all task types. For this reason, robots will frequently need to recruit other available

robots in order to complete those tasks.
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Dos Sos and Bazzan [2011] explored task allocation strategies for agents in sim-

ulated domains and presented an agent model called eXtreme-Ants. It is based on a

model called Low Communication Distributed Constraint Optimization (LA-DCOP)

[Scerri et al., 2005] which allocates tasks to agents in such a way that agents maximize

their usefulness given the resources they possess (i.e., the classic knapsack problem).

Key differences between eXtreme-Ants and LA-DCOP include (a) the former relies

on a probabilistic algorithm to decide whether or not to execute a task, greatly easing

computational requirements, and (b) eXtreme-Ants incorporates recruitment mech-

anisms inspired by those used by ants to recruit other ants to transport large food

sources as a group [Robson and Traniello, 1998; Hölldobler et al., 1978]. Experiments

showed that in abstract domains where the number and types of tasks remain static,

LA-DCOP out-performs eXtreme-Ants in terms of the number of tasks that are com-

pleted in a fixed time. However, in more dynamic domains where the number of tasks

can change (e.g., in a USAR domain a fire can spread from one building to several)

eXtreme-Ants demonstrated superior performance in terms of the number of tasks

that could be completed in a fixed time. My work features a similar recruitment

approach as used by Dos Sos and Bazzan [2011], but with the property that every

task can be completed by a single properly-equipped agent, i.e., no task requires the

attention of multiple robots. Thus, recruitment in my approach takes place when a

robot decides it cannot complete a task, and attempts to find another robot to do

it instead. This is different from how recruitment is used in Dos Sos and Bazzan

[2011] where agents recruit others to complete single tasks as a group. Additionally,

agent perception in this work was highly abstracted: by simply occupying the appro-
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priate space, agents automatically received knowledge of nearby tasks (e.g., victims

and their health status) by use of an abstract sensing facility. In my work I simulate

robot sensors that have comparatively limited sensing power, and the robots them-

selves differ in terms of how they sense the environment. Sensing itself in my work is

an allocatable (and recruitable) task.

Costa et al. [2012] demonstrate the use of recruitment in cooperative multi-robot

box pushing tasks. In this study, physical robots (either a pusher or a grasper) ex-

plored a small environment and were tasked with pushing boxes of various sizes and

weights to certain locations. Pusher robots only had the ability to push obstacles,

and graspers could both push objects and pick them up with an arm attachment.

When encountering an obstacle, robots attempted to move it either by pushing or

grasping, depending on their capabilities. Robots failing to move the obstacle using

either approach initiated a recruitment request based on the type of object. The

authors used an auction-based process whereby the nearest robot was most likely

to be recruited for the box-moving task. After a successful recruitment, the newly-

tasked robot and its recruiter would coordinate among themselves to move the box

together. Unfortunately, the authors make no mention of how their system handles

cases where two robots are insufficient to move a particularly large or heavy obsta-

cle. Additionally, there is no explanation provided for how the authors’ framework

deals with situations where a robot might be desired for recruitment by two different

robots at the same time. The fact that the authors assume robots have access to

perfectly reliable communication means that the system likely does not scale well to

more complex scenarios. My own framework is designed to handle conflicting recruit-
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ment requests—robots are able to accept multiple requests and execute the associated

tasks based on their importance. Furthermore, my framework is explicitly designed

to handle situations where communications are unreliable, and recovers gracefully

from situations in which robots suddenly fail to communicate or become disabled al-

together. Lastly, I assume that robots are often not in communications range of each

other at all. This means that in many cases, recruitment requests often cannot be

satisfied simply by broadcasting a message: robots will often need to perform physical

searches in order to find desired skills.

2.6 Autonomous Control and Navigation

In order to convey several aspects of the robotic control software used in the

example implementation of my work (Chapter 4), it is necessary to provide a brief

overview of some concepts used in autononmous navigation and control.

2.6.1 Schemas

A well-known approach for autonomous robotic control is the use of schemas [Arkin,

1987]: sensing and motion behaviours which interpret the environment and provide

real-time responses in a continual perception-action cycle.

Perceptual schemas are responsible for perceiving the environment and providing

data to motor schemas that control individual robot behaviours. For example, a

rescue robot’s human casualty detector perceptual schema would be used to detect life

signs while a separate obstacle detector schema locates nearby walls or debris. The

resulting sensor readings would be passed to move to casualty and avoid obstacles
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motor schemas.

Motor schemas are individual behaviours which adjust motor responses based on

the output of perceptual schemas. A major advantage of using motor schemas is that

their resulting motion vectors can be combined to yield more complex behaviours.

Using the above example, a robot’s move to casualty motor schema would generate an

attraction vector to a nearby casualty while its avoid obstacles motor schema would

generate a repulsive force away from nearby obstacles. The summation of these action

vectors would result in motion guiding the robot around obstacles towards a victim.

This process is depicted in Figure 2.1.

move to casualty schema 
generates attraction to 

target

avoid obstacles schema 
generates repulsive 

vector away from wall resulting action vector 
guides robot around 

wall

human victim

Figure 2.1: Two active motor schemas guiding a robot around an obstacle to a human

casualty. Adapted from Gunn [2011].

The framework I use as a starting point for my work [Gunn, 2011] makes heavy

use of perceptual and motor schemas to guide robot actions. I have also implemented

additional schemas to support my work. The schemas I use are described in Sec-

tion 4.4.
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2.6.2 Occupancy Grids and Frontiers

Robots in my work are responsible for maintaining a map of the environment.

To accomplish this, I rely on already-existing facilities implemented by Gunn [2011]

which make use of occupancy grid maps [Elfes, 1989]. An occupancy grid map is

a representation of an area where each grid cell represents a fixed square area of

space. In the existing implementation, each grid cell is assigned a value indicating

the confidence that the area represented by the cell is occupied, e.g., by debris or

other obstacle(s) [Gunn, 2011]. A simplified example of an occupany grid map is

shown in Figure 2.2.
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Figure 2.2: A simplified example of an occupancy grid. Higher numbers indicate

greater confidence of the presence of obstacles. Adapted from Gunn [2011].

Occupancy grids can be used to identify frontiers [Yamauchi, 1997], which are

boundaries between explored and unexplored areas (Figure 2.2). Therefore, directing

robot exploration efforts towards frontiers helps to augment knowledge of the envi-
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ronment more efficiently than random exploration. These facilities have already been

implemented in Gunn [2011], and appropriately-equipped robots are able to detect

frontiers and direct robot exploration efforts towards these locations (Section 4.3.1.2).
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Methodology

In this chapter, I describe the core methodology of my thesis. The main con-

tribution of my thesis is a framework implementing active recruitment facilities for

managing teams of heterogeneous robots in dangerous domains. This framework pro-

vides strategies which help compensate for robot losses and communication failures. It

does this by allowing robots to perform searches of varying degrees in order to acquire

new team members or delegate tasks to useful robots in a more distributed manner

without the direct involvement of a team leader. These search mechanisms have

trade-offs associated with them. More active strategies involving aggressive searches

should increase the likelihood of useful robots being found more quickly, but at the

cost of less immediately useful work being performed. Less active strategies will allow

robots to complete more work, but will lower the chances of encountering other use-

ful robots. I have implemented these strategies (issues and details related specifically

to the implementation of my methodology appear in Chapter 4) as additions to an

already-existing framework from our lab [Gunn, 2011], which I will henceforth refer

37
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to as the Gunn framework. This is a very large framework, and in order to adequately

describe my contributions, an explanation of the Gunn framework is required. I begin

this chapter by describing it in detail and the facilities it provides for handling task al-

location and team management in dangerous environments. Implementation-specific

details are discussed in Chapter 4.

3.1 The Gunn Framework

Before going into framework details, it is important to describe the major themes

embodied in the Gunn framework [Gunn, 2011] that are also central principles in

my own work, as these lead to particular design and implementation decisions. The

main concept underlying these works is that teams of heterogeneous robots working

in a dangerous environment may not always possess an ideal combination of skills for

the tasks at hand. To ensure that useful work can still be completed, robots may

be assigned tasks for which they are not well-suited. Robots may even be entirely

incapable of performing some tasks they are assigned. In the extreme case, a robot

that has strayed and become lost would be on its own and at least momentarily

responsible for any task that arose.

As robot losses occur due to the hazards of the domain, existing team members

must be prepared to fill in for missing roles. Robots must recognize which roles

they are best suited to fill and should rebalance themselves accordingly to ensure

that the most mission-critical roles within the team are occupied. Teams should also

be prepared to integrate newly discovered robots that are encountered, as well as

decide how to exchange useful members between teams when opportunities for such
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interactions arise.

These decisions become difficult due to the imperfect knowledge of team structure.

As robots become physically spread out (and potentially lost or damaged) and new

robots join the team elsewhere, no single robot will have perfect knowledge of the

team and its members. Unreliable wireless communication can further degrade team

knowledge as updates on team membership are lost or delayed. A robot may even

join a team and become lost again before information about the first membership

change reaches most members. Even accurate information regarding team structure

quickly becomes stale, and models of team structure will differ between robots.

The spread of robots across a distance coupled with sometimes rapid team changes

and stale information means that no single robot, no matter how able, can be counted

upon consistently to make accurate decisions. Decisions must be made in a central-

ized manner across a team, using the best local information available combined with

unreliable global information. Not all robots will have the same decision-making ca-

pabilities, however. The concept of leadership must exist in order to provide as much

useful global information as possible, and to serve as a source of decision-making to be

relied upon when information is lacking locally. Thus, teams in this framework have

leaders at all times—even a robot lost by itself serves as its own leader, even if it is

poorly suited to do so. This leadership role is ceded to the most able known member

available in the same way that other roles are shifted over time as team membership

changes.

Having described the basic themes involved, the following sections provide more

specifics on the components of the Gunn framework [Gunn, 2011] that are integral to



40 Chapter 3: Methodology

my work.

3.2 Attributes, Tasks, and Roles

Robots in this framework are heterogeneous; due to differing abilities, one robot

might not be able to complete some task as effectively as another robot. Some robots

may even be entirely unsuited for certain types of work. Every robot used in this

framework is described using a series of properties to represent its physical or compu-

tational characteristics or abilities. These are formally referred to as attributes and

they enable robots to have an estimation of their own abilities, as well as the abil-

ities of others. Example attributes might include a robot’s size or whether a robot

is equipped with sufficient computational capabilities to perform complex task allo-

cation (actual attributes used in my implementation are described in Section 4.3.1).

With this knowledge, robots can determine to what degree a particular task lies within

their capabilities (or the capabilities of another robot), or whether or not a robot with

known attributes can perform a task at all. These attributes can also be overridden

as robots lose resources or become damaged: for example, a firefighting robot would

track the estimated volume of chemical it carried, and this attribute would decrease

as fires are extinguished.

For the purpose of my thesis, a task is the smallest unit of work that a robot

can complete. Most tasks in this framework are meant to be completed by a single

robot, although more than one robot may be aware of a particular task at one time.

In my framework, multiple robots may individually contribute to a larger goal that

is divided into tasks (e.g., exploration). I also support the division of a task into
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multiple subtasks to a limited degree: one task in my framework (Section 4.3.2.2)

requires the physical exchange of resources between two robots, and this is divided

into two subtasks. In this situation, subtask division is fixed between only two robots

and does not change during execution.

Every robot maintains a priority queue (Section 3.6.1) of the tasks assigned to

(or discovered by) them, ordered by task importance. Intuitively, some tasks will be

more important than others. For example, a task for administering medical aid to a

critically injured human victim is more important than exploring the environment.

Robots might also be aware of outstanding tasks that are beyond their capabilities,

and robots must be able to recognize these situations. The actual tasks used in the

implementation of my framework are described in Section 4.3.2.

To deal with potential limitations in robot skills, every task in this framework spec-

ifies a suitability expression and a minimum requirements expression [Gunn, 2011]:

these are expressed in terms of the required attributes that are necessary to complete

a task. A minimum requirements expression describes the bare minimum attributes

that a robots must possess in order to perform a particular task. If a robot fails

to meet these requirements for a task, the robot is understood to be completely un-

suitable for it (although the lack of a sufficiently capable robot nearby may result

in the unsuitable robot being assigned the task regardless). A suitability expression

evaluates to a numeric value that is used to determine which, among several robots

who successfully meet the minimum requirements, is the most suitable robot for a

particular task. This provides an efficient method for deciding how to allocate tasks

among team members. Higher values indicate greater suitability, and a robot that
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fails to meet the minimum requirements for a task is understood to have a suitability

value of zero for that task. Although task suitabilities provide a means for a robot to

communicate how capable it is for a particular task, this framework provides roles as

a heuristic to simplify this process when assigning tasks (task allocation is described

further in Section 3.6.3).

Robot roles are defined by a collection of task types that a robot occupying that

role is expected to be able to complete [Gunn, 2011]. This is a useful shortcut for

determining if a robot can perform a particular task. If the role a robot occupies

contains a certain task type, it is assumed that the robot can perform that task and

possesses attributes that are appropriate for completing it. This may not be true if a

team suffers from skill deficits or communication problems have resulted in the robot

occupying a non-ideal role. A robot can also become damaged or run out of resources

(e.g., a medical robot running out of supplies, which would be reflected by a change

in that robot’s attributes). A robot occupying a certain role is still able to complete

other tasks that are not listed in its role description if required. Every task type in

a role has an associated weight describing how important that task is considered in

the context of that role. For example, a firefighter role will place a high weighting on

an extinguish fire task but a lower weight on a task for administering medical aid. A

robot must meet the minimum suitability requirements of all tasks contained in a role

in order to be considered suitable for that role. All roles contain a default idle task

that specifies an activity the robot should perform if the robot has run out of work

(Section 3.6.1). Additionally, all roles have a domain-dependent importance value

which is used to simplify the team maintenance process (Section 3.4) and the task
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allocation process (Section 3.6.3). The roles used in my implementation are described

in Section 4.3.3.

3.3 Imperfect Team Knowledge

Robots will periodically broadcast their presence to other team members to help

ensure that everyone has up-to-date knowledge regarding the current structure of

the team. Robots that have not been heard from after a given length of time are

considered to have left the team. The presence of unreliable wireless communication

poses difficulties for ensuring that robots have accurate knowledge regarding their

teammates, since communication failures can cause robots to miss membership up-

dates. This can lead robots to incorrectly assume that members have been lost or

have left the team. Subsequent rebalancing of roles can therefore cause robots to oc-

cupy non-optimal roles, or ones that are already unknowingly occupied. For example,

a team leader suffering from communication problems might be considered lost, and

a poorly-suited robot may decide to take its place. This incorrect balancing will be

remedied as better information becomes available.

3.4 Team Maintenance

As previously mentioned, this framework is intended to be used in environments

that pose significant risks to the robots operating in them. Teams are expected to

lose members, either due to damage or because some robots become stuck or lost. As

mentioned in Chapter 1, it becomes necessary to release replacement robots into the
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environment periodically, and existing teams should be prepared to integrate these

robots (and previously lost robots that were rediscovered) into their team if required.

Central to team maintenance in this framework is the concept of an ideal team.

The overall balance of skills required for a team to function well in a given environ-

ment should be defined at the outset (e.g., by humans), and this balance serves as a

goal for team maintenance. Due to the dangers of the domain it is expected that a

team will typically not match this definition except at the outset of a mission. The

ideal team definition is used as a guide when determining how to best restructure a

team or how potential new members should be integrated into the existing structure.

More formally, the ideal team definition is formulated as a list of desired robot roles,

the minimum and maximum number of robots that should occupy each role, and the

relative importance of the roles within the context of the entire team. An example

ideal team definition is shown in Figure 3.1: a single leader role with a high impor-

tance, one or two robots that can verify victims, and several small robots that can

explore the world.

3.5 Role Changes

To ensure that a team of robots approximates the definition of an ideal team

as closely as possible given current membership, existing members of a team will

periodically perform a role switch check [Gunn, 2011]: after a domain-dependent

amount of time (with a random offset to prevent multiple members from changing

into the same role), each robot will evaluate their current role against their knowledge

of the current team structure. As previously mentioned, every role has an associated
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Team Leader

Explorer/Victim 
Scanner

Explorer

Role Name: Positions: Desired Number:

Min:           Max:

1

1 2

1 2 3 4

5 6 7 8

1                     1

1                     2

3                     8

Figure 3.1: An example of an ideal team definition containing three robot types.

Adapted from Gunn [2011].

importance value describing how critical the role is to the ideal team definition. When

determining which role (if any) a robot should switch to, the robot iterates through

all roles in the ideal team definition that are currently underfilled, and computes

a role score value, which is the sum of the robot’s suitability for that role and the

importance of the role to the ideal team definition. The robot switches to the role

with the highest role score and notifies its teammates of this change. If the highest-

evaluated role is the same as the robot’s current role, no change is made and no

notification takes place. An example description of a failure and the subsequent role

change is depicted in Figure 3.2.

It is important to note that a robot uses its own limited knowledge to evaluate

whether or not a role is currently underfilled in its team, and this knowledge may

be stale due to communication failures or rapid changes in team membership. In

such cases, role switch checks may lead to robots occupying sub-optimal roles. For
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Team Leader

Explorer/Victim 
Scanner

Explorer

Team Experiencing Failure Team After Role Adjustment

Team Leader

Explorer/Victim 
Scanner

Explorer

robot experiences 
failure

coloured bar 
indicates 

suitability for 
role

team meets the ideal team definition
robot changes roles to ensure that the team continues to match the ideal 

team definition

robot switches role to 
compensate for failure

Figure 3.2: An example of a team before and after a robot failure and subsequent

role change. Adapted from Gunn [2011].

example, a less-capable robot experiencing communication failures may determine

that its teammates are no longer available, and will switch to a team leader role to

which it is poorly-suited. In the case of severe communication failures, this can lead to

all (or most) robots occupying non-optimal roles. Role change announcements might

also be missed by some robots for the same reason; as a result, robots may incorrectly

be seen as occupying different roles by other members of the team. The danger and

communication disruption inherent in this domain dictate that such inconsistencies

will always be present. New information, subsequent role checks, and other elements

of this framework, however, help to ensure that knowledge is consistent enough among

team members to be useful.

The Gunn framework uses a specific equation for determining the best role that

a robot should switch to:
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W =



Dmin−N
Dmin

Ir if N < Dmin

Dmax−N
2Dmax

Ir if N ≥ Dmin ∧N < Dmax

Ir if N ≥ Dmax and robot is better suited.

(3.1)

When performing a role switch check, the suitability of a robot to switch into a

role is multiplied by W, a weighting that encourages robots to fill under-filled roles.

The importance of role r is denoted by Ir, and the number of robots in that role

is defined by N. The minimum and maximum number of desired robots in that role

(Section 3.4) are defined by Dmin and Dmax, respectively.

It was noted in [Gunn and Anderson, 2015] that for certain values, Equation 3.1

can influence role switches away from desired roles. A new formula was proposed by

Gunn and Anderson [2015] (Equation 3.2), and this formula is used in my framework.

W =



Dmin−N
Dmin

Ir if N < Dmin

Dmax−N−Dmin

Dmax−Dmin

1
2
Ir if N ≥ Dmin ∧N < Dmax

Ir if N ≥ Dmax and robot is better suited.

(3.2)

3.5.1 Losing and Gaining Team Members

The Gunn framework relies on wireless communication between robots to commu-

nicate instructions, results of tasks, or details about the environment [Gunn, 2011].

Communication occurs frequently to ensure that other robots and team leaders have

the most up-to-date knowledge possible. In an ideal case, robots on the same team

will always be in communication range of each other. The limitations of wireless mes-
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saging and interference from the environment [Carlson and Murphy, 2005; Murphy

et al., 2000] may not always allow this, however. It is assumed that if a given robot

has not been heard from after a period of time, the robot is no longer available and

is considered to be lost from the team. Therefore, there is a direct link between com-

munications reliability and the accuracy of a given robot’s view of its team structure.

Where communications are not working reliably, a robot is likely to have an incorrect

view of the current team structure, and in the case of severe failures may even as-

sume that it has become lost from its team entirely. Physical distance between team

members is also a factor since members beyond wireless communication range may

not directly receive all membership updates. However, such messages can be relayed

between robots to ensure the information spreads.

When two teams encounter each other as a result of normal work in the domain, it

provides the opportunity to rebalance team membership and recoup losses that may

have occurred in terms of lost robots or skills, via the rendezvous system. It is im-

portant to note that this only occurs as a result of chance encounters—robots in the

Gunn framework do not actively search for useful new teammates, regardless of the

perceived state of their team. This is a major limitation that my thesis work addresses

(Section 3.7). A team encounter [Gunn, 2011] begins with two robots A and B from

different teams directly observing one another. At this point, the robots exchange in-

formation regarding the structure of their teams. The most computationally-capable

robot (A) is selected to perform a team merge and redistribution process. This process

does not take place if neither robot is computationally suitable for the task. Robot

A then performs an internal process to determine how the robots on the two different
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teams should be distributed such that each team can best approximate the definition

of an ideal team. The resulting team distribution(s) will either be (1 ) two teams

possibly meeting the ideal team definition more closely, or (2 ) one team formed by

absorbing all members of both teams (this includes the case of encountering a single

stray robot). Once robot A determines a suitable distribution it communicates this

result to robot B. Both representatives are then tasked with instructing their team-

mates to change teams or roles as appropriate. Once the membership changes have

taken place the resulting team(s) continue with their regular tasks as assigned by the

team leader.

The distributed nature of team rebalancing actions (as well as other facilities such

as role switch checks, Section 3.5) means that there is potential for interference and

inconsistency. Unreliable communication also presents further challenges. For exam-

ple, it is possible that multiple pairs of robots encountering each other in disparate

locations might initiate separate team rebalancing negotiations, causing team mem-

bership conflicts. This can cause the complete breakdown of both teams. However,

the same facilities would also be used to reconcile these inconsistencies: physically

close robots would quickly join together and form new teams.

Similarly, role switches (Section 3.5) can occur at the same time as team rebal-

ancing without the knowledge of the team representative. Role switches might also

take place before an encounter without the knowledge of the future representative, or

might be missed entirely when communication fails. All of these situations can lead

to conflicts in role occupations that will ultimately have to be corrected in the future

by subsequent team encounters and role switch checks.
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3.6 Task Management

Robots in the Gunn framework are responsible for identifying and completing

tasks to the degree that their sensors or hardware allow them. Only robots with the

appropriate sensing abilities can discover certain types of tasks, and a robot’s ability

to complete a task is dictated by how well-equipped the robot is for that task. Task

completion is carred out according to task priority (Section 3.6.1) to ensure that the

most important tasks are completed first. To facilitate this, each robot maintains a

priority queue of outstanding tasks.

3.6.1 Task Queue

A robot’s task queue is an ordered backlog of tasks that remain for the robot

to complete [Gunn, 2011]. Tasks are inserted into the task queue by order of task

priority and time, i.e., the oldest, highest-priority task will be selected for completion

first. Upon completing a task the robot will remove the task from the queue and begin

execution on the next oldest, highest-priority task. Tasks can be inserted into the

queue in either of two ways: by the robot discovering a task on its own (Section 3.6.2),

or assignment by a team leader (Section 3.6.3).

It is possible that as a result of completing its assigned tasks a robot will have an

empty task queue. Recall from Section 3.2 that every role defines an idle task ; upon

completion of all outstanding tasks a robot will perform work on its idle task (for

example, a debris-clearing robot, in the absence of specific debris-clearing duties, will

perform a random walk and remove any debris that it encounters). The idle task has

the lowest possible priority and work on it will cease when other tasks are discovered
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or assigned by a team leader (Section 3.6.2 and Section 3.6.3).

The use of a queue to store outstanding tasks ensures that robots will complete

work on the most important tasks first. However, it is possible that while executing a

task a robot may become aware of another task that has a higher priority. The Gunn

framework supports task preemption: newly inserted tasks will take precedence over

currently-executing tasks that have strictly lesser priority. Robots perform regular

checks of their task queues to make sure there is not a more important task available

for completion. If a more important task is discovered the robot will immediately

halt work on the current task and begin execution of the higher-priority task. The

preempted task is re-inserted into the queue for execution later on. This allows,

for example, robots to halt exploration duties upon discovering a victim in need of

assistance. The process of task discovery and task allocation are described in the

next two sections.

3.6.2 Task Discovery

Upon discovering an outstanding task (e.g., a victim in need of assistance) a robot

will evaluate its suitability for that task. If the robot meets the minimum suitability

requirements for the task and if the robot’s task queue is not already above some

domain-dependent threshold (the Gunn framework uses a maximum of 5 tasks), the

robot will insert the task into its queue. If either of these conditions is not met (i.e.,

the robot has a full task queue or is not suitable for the task), the robot will attempt

to inform the team leader of the existing task. Since only team leaders are able to

assign tasks, it is necessary for the robot to notify the team leader so that the task
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can be delegated to a suitable robot (my framework implements extensions allowing

non-leaders to assign tasks—see Section 3.9.1). It is important to note that such

messages may not actually reach a team leader (e.g., due to communication failures,

robot failure, or limited wireless range), in which case the corresponding task will

ultimately need to be rediscovered later on. The task assignment process is described

in the next section.

3.6.3 Task Allocation

It is the responsibility of the team leader to distribute assignments among team

members. This can be done in two ways [Gunn, 2011]. Initial attempts to assign

tasks use role heuristics to minimize the level of effort and communication (role-based

task assignment, Section 3.6.4). If this process fails, the team leader uses a more

expensive exhaustive task assignment process (Section 3.6.5). To avoid overloading

the wireless medium, leaders only attempt to assign a maximum of five tasks of each

type at one time.

The two different task assignment strategies are described in the following sections—

my own additions to these processes are described in Section 3.9.1.

3.6.4 Role-Based Task Assignment

The use of roles reduces the level of effort that is required for a team leader when

assigning tasks. Rather than attempting to exhaustively match assignee attributes

with those necessary for a specific task, leaders can use knowledge of the roles asso-

ciated with a task and the robots currently filling them to identify likely assignees
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[Gunn, 2011] (recall that roles are defined by a list of task types, Section 3.2). Since

robots may be occupying non-optimal roles, some of these potential assignees may

not, in fact, be able to complete the task. To assign a task the leader will form a

list of known robots on the team who occupy an appropriate role and simultaneously

send a message to each of these robots, requesting that they complete the specified

task at the appropriate location.

Robots receiving a task completion request consider the task type and their current

workload. If a receiving robot determines that the task is within their capabilities and

the robot has a sufficiently small workload (the Gunn framework uses a maximum

of five tasks), the robot will respond to the leader by indicating its suitability for

the task as well as the cost to complete the task. Cost is computed as a result of

a robot’s physical distance to the task location, since the Gunn framework assumes

that all tasks to be completed are physical ones (e.g., examine a victim, explore a

particular location, etc.). If either the robot has a full task queue or is not suitable

for the task, the robot will send a rejection response indicating it cannot complete

the task.

The leader waits two seconds to collect responses to the task completion request.

Any responses received outside of this window are ignored. Positive responses (those

containing task suitability levels and an associated cost) are processed and the leader

will send a confirmation message to the robot which indicated the highest suitability

for the task. In situations where multiple robots individually indicate the highest

suitability, the confirmation message is sent to the robot that indicates the lowest

task cost. Any robot who does not receive a confirmation message will not attempt
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to complete the task. The robot who receives the confirmation will add the task to

their queue and send an acknowledgement to the team leader, indicating that the

task has been successfully assigned. Upon receiving this acknowledgement, the leader

will consider the task assigned and will remove the task from its queue.

If the leader does not receive any suitability responses within the two second win-

dow (this includes responses that are all rejections, no responses at all, or a mix of

both), it will move to exhaustive task assignment (Section 3.6.5). This will also occur

if a leader sends an assignment confirmation to an assignee but does not receive an

acknowledgement indicating that the robot is now aware of the new task. This can

occur if the assignee falls out of wireless range or if wireless communications tem-

porarily break down. For example, an assignee may receive a confirmation message

and add a particular task to its queue as a result of a normal task assignment, but it

is possible that the team leader will not receive the assignee’s acknowledgement, caus-

ing the team leader to believe that the task was not successfully assigned. Another

robot may subsequently be assigned the same task, resulting in duplication of effort.

While this is mostly undesirable, there are potential benefits: two robots taking two

different paths to the same task location, for example, may result in additional useful

work being discovered.

Communication problems may also prevent a leader from receiving all transmit-

ted responses to a task completion request. Although this may result in the leader

ultimately making less-than-optimal task assignments, the leader can only make task

assignment decisions based on the perceived availability of other team members and

will attempt to make the best assignments possible based on its own knowledge. A
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leader may also receive no responses whatsoever, either due to communication prob-

lems or because no other robots are actually available. In either case, failure to assign

a task using this method results in using exhaustive task assignment as a fallback.

This process is illustrated in Figure 3.3.

3.6.5 Exhaustive Task Assignment

Because of the extra computational and communication effort required, exhaustive

task assignment is used only when role-based assignment fails [Gunn, 2011]. A team

leader does not use role heuristics when assigning tasks with this strategy—it simply

broadcasts a wireless message that can be heard by any member of the team. This

broadcast follows the same format as the task completion request in the previous

section, and responses and communication flow are identical. Thus, any robot from

the same team can respond to this message, and the leader will attempt to find an

ideal task assignment as outlined previously. If exhaustive task assignment for a task

fails, the team leader re-inserts the task into its queue for reassignment at a later

time.

I have now described all of the existing components necessary for an understanding

of my work. These mechanisms are highly distributed, and the difficulties of operating

in dangerous domains such as USAR dictate this since no single robot can be counted

on consistently. The remainder of this chapter focuses on describing the methodology

and various components of my own framework.
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Figure 3.3: Describes the transition from role-based task assignment to exhaustive

task assignment.
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3.7 The Active Recruitment Controller Framework

A major limitation of the Gunn framework is that it does not provide facilities for

actively acquiring robots with skills that a team may have lost due to the dangers of

the domain. The only existing mechanism is passive and is based on individual robots

from teams encountering one another. The purpose of my thesis is to develop and

evaluate more active strategies for recouping robot losses and acquiring skills when

needed, either temporarily or permanently. I have used the Gunn framework as a

starting point to develop my own framework, which I will henceforth refer to as the

Active Recruitment Controller (ARC) framework.

The ARC framework provides additions that are based on the concept of recruit-

ment as defined in Chapter 1. These additions provide facilities enabling active search

for useful robots in the domain and are manifested in two different types of requests:

role-level and task-level. Role-level recruitment (Section 3.9.2) is used to bring in

new skills to the team by inducting new members. In situations where robots are too

busy or otherwise incapable of performing a particular task, or a permanent member

is not desired, task-level recruitment (Section 3.9.1) is used to assign a task to an-

other robot (possibly from another team) without bringing that robot into the team.

Before describing these facilities, it is necessary to explain the range of effort that

robots can commit to their recruitment duties. I have discretized this range into three

recruitment strategies and describe them in the following section.
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3.8 The Recruitment Spectrum

Robots may expend varying degrees of effort toward recruiting other robots. Ag-

gressive strategies such as physically exploring an area for a desired robot are more

likely to yield beneficial results. The downside of such approaches is that while

searching in this manner, robots will not be able to perform other useful work (such

as assisting a human victim). Less active approaches, e.g., operating on tasks as

normal but broadcasting wirelessly for help, will result in more immediately useful

domain-related work being performed but will lessen the chances that a desired robot

will be found. Strategies that rely on random encounters with other robots represent

the minimum level of recruitment effort but maximize the amount of immediately

useful work that can be completed. Thus, there are trade-offs associated with dif-

ferent recruitment efforts and these strategies form a spectrum of effort with passive

approaches on one end and active ones on the other (Figure 3.4).

The ARC framework defines three different recruitment strategies along this spec-

trum: passive, concurrent, and active recruitment. Passive recruitment is the strategy

already used by the Gunn framework, since robots focus on performing immediately

useful work and rely only on chance encounters with other robots to rebalance roles

and acquire new skills (this process was described in Section 3.1). The following

sections describe the two mechanisms I have added on top of the existing passive

recruitment strategies to address limitations of the Gunn framework: concurrent and

active recruitment.
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Figure 3.4: The recruitment spectrum.

3.8.1 Concurrent Recruitment

The concurrent recruitment strategy aims to increase the likelihood of encounter-

ing useful robots in the domain while still maintaining a focus on completing useful

tasks. While the exact behaviours of robots in my implementation using this strat-

egy differ based on whether a robot is recruiting for a role or a task (Section 3.9),

the general process is the same: robots performing recruitment duties execute their

tasks as normal, with the exception of performing additional broadcasts to contact

and recruit other robots. Concurrent recruitment tasks are created either by a team

leader deciding that a missing role needs to be filled (Section 3.9.2) or by a robot

deciding on its own that it should recruit for a particular task (Section 3.9.1). In ei-

ther of these cases the robot ultimately tasked with the recruitment duty enables the

recruitment broadcast system (Section 4.5), which is responsible for handling commu-

nications with other robots for the purposes of finding a suitable robot. The nature of

these broadcasts and the resulting communication with other robots varies depending

on whether the robot is recruiting at a task or a role level. The sections on task-level

recruitment (Section 3.9.1) and role-level recruitment (Section 3.9.2) describe these

processes in detail.
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3.8.2 Active Recruitment

The goal of the active recruitment strategy is to maximize the likelihood of en-

countering useful robots, and it accomplishes this by placing an emphasis on searching

as opposed to the completion of outstanding tasks. Unlike concurrent recruitment, an

active recruitment search is a task itself (Section 3.2) that can be assigned from one

robot to another. Since robots can only perform one task at a time, robots performing

active recruitment cannot complete any other work. However, the aggressive nature

of this strategy greatly increases the chances that a useful robot will be encountered.

As with concurrent recruitment, active recruitment tasks are created either by

a team leader deciding that a missing role needs to be filled (Section 3.9.2) or a

robot requiring assistance with a particular task (Section 3.9.1). The resulting active

recruitment task is inserted into the robot’s task queue in order of task priority.

Recruitment task priorities are determined by the type of the recruitment task (role-

or task-level). Role-level recruitment tasks are considered the highest priority task

due to the importance of maintaining an adequate set of skills on the team. Thus,

the insertion of role-level active recruitment tasks in a robot’s task queue will cause

the robot to preemptively halt work on their current task and immediately begin

executing the active recruitment task. Priorities for task-level recruitment requests

are determined by the priority of the task being recruited for, ensuring that the

importance of active recruitment tasks are weighed against those of the other tasks

in the robot’s task queue.

An active recruitment task involves a physical search for another robot. Upon

starting up an active recruitment task, the robot will begin a random exploration
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task with the purpose of finding a suitable robot. Upon beginning this active search,

the rendezvous system is temporarily disabled (Section 3.5.1) for a short period of time

(two minutes in my implementation) to allow the robot to search for a recruit without

immediately being inducted into the first new team it encounters (after this length

of time passes, the rendezvous system is reactivated again). The recruiter will also

enable the recruitment broadcast system (Section 4.5) to begin recruitment broadcasts

and handle communications with other robots. As with concurrent recruitment, the

active recruitment communication process will vary depending on the level (task or

role) of the recruitment task. Sections 3.9.1 and 3.9.2 describe these processes in

detail.

3.8.2.1 Preemption of Active Recruitment Tasks

Because active recruitment is considered a normal task, there is the possibilty

that it can be preempted in favour of a higher-priority task (Section 3.6.1). A robot

currently executing an active recruitment task to locate a debris-clearing robot, for

example, may encounter a human victim in need of medical aid. In these situations,

the robot will shut down the active recruitment task and disable the recruitment

broadcast system. This will halt the physical search and the robot will stop sending

recruitment broadcasts. It is possible that a robot will halt an active recruitment

task while it is in the process of negotiating with a potential recruit—to ensure that

recruitment communications are not cut off prematurely, any negotiations already

started are allowed to finish concurrently while the robot starts up execution of the

higher-priority task. Sections 3.9.1 and 3.9.2 describe the recruitment negotiation
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processes.

Recall from Section 3.6.2 that robots are able to discover tasks on their own (e.g.,

a victim requiring assistance) without the involvement of a team leader. If a robot

discovering another task is already too busy to either take on the task itself or perform

active recruitment, existing facilities in the Gunn framework are used to attempt to

pass on the task to a team leader (Section 3.6.2). This is unnecessary in concurrent

recruitment settings since configuration recruitment duties are executed alongside

normal work.

3.9 Task- and Role-Level Recruitment

As previously mentioned, there is a cost associated with managing members of

a team (Section 3.6.3), and this cost increases as the size of the team grows. Sit-

uations may arise where a team only needs to temporarily acquire a skill without

incurring the cost of managing an additional team member. To support the idea that

either permanent or temporary skills might be desired, the ARC framework supports

two levels of recruitment: task-level (temporary) and role-level (permanent) recruit-

ment. Task-level recruitment involves searching for a robot with the desired skills

and requesting that it complete a specific task (Section 3.9.1). Role-level recruitment

involves a robot being tasked by a team leader to locate another robot to occupy a

role which the leader has judged to be underfilled. For either of these recruitment

levels, the recruiting robot executes a search (either a concurrent or active search,

Section 3.8) in an attempt to find a suitable robot. If such a robot is found, the two

robots will negotiate the recruitment request. An outline of these strategies and how
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they are used is shown in Table 3.1.

Passive Concurrent Active

Task-level

Role-level

wait for robot to join team 
by chance

while performing regular 
work, look for a robot to 

complete a task

halt regular work and 
search for a robot to 

complete a task

wait for robot to join team 
by chance

while performing regular 
work, look for a robot to 

fill a role

halt regular work and 
search for a robot to fill a 

role

Table 3.1: Strategies used to satisfy either task or role requirements.

Although task-level and role-level recruitment are separate mechanisms (Table 3.1),

both of these techniques are always employed together when concurrent or active

recruitment is used (i.e., task-level and role-level recruitment are always enabled to-

gether). Neither of them is enabled in passive settings.

3.9.1 Task-Level Recruitment

The ARC framework supports the concept of enlisting the help of other robots

to complete a specific task. Unlike regular task assignment (Section 3.6.3), robots

performing task-level recruitment are not restricted to communicating with team

members only, meaning that recruiting robots can also assign tasks to members of

other teams as well. Importantly, this process does not require the intervention of a

team leader: robots occupying non-leadership roles can perform task-level recruitment

on their own and recruited robots do not need to ask permission from their leader

to execute a task for which they have been recruited. It is also important to note
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that robots in my work are not selfish (such as those in many other applications,

e.g., Sen and Dutta [2002]; Dutta and Sen [2003]; Van De Vijsel and Anderson [2004];

Comi et al. [2014]) and will accept task-level recruitment requests when they are able.

Robots may decline task recruitment requests if they are too low on resources or have

too many pending recruitment duties already. Additionally, robots will not recruit

others as a means of avoiding work: robots will only perform task-level reruitment

when it is strictly necessary.

Recall that robots can either discover tasks on their own (Section 3.6.2) or have

tasks assigned to them by a team leader (Section 3.6.3). If a robot has a full task

queue during either of these situations, or if the task made aware to the robot is

beyond its capabilities, this is indicative that the robot is not an ideal choice for that

task. In either of these cases, the robot will add the task to a list of tasks requiring

recruitment. The next two sections describe the process by which these tasks are

given to other robots.

3.9.1.1 Communication and Task-Assignment Process

The ARC framework relies on the already-existing facilities in the Gunn frame-

work to perform task-level recruitment. Specifically, robots use the exhaustive task

assignment system (Section 3.6.5) to assign tasks to other robots—a robot examines

the tasks it is aware of that are marked for recruitment, and attempts to assign them.

The difference between the Gunn framework’s approach and my own is that in my

framework, non-leader robots are now able to assign tasks using these facilities to

satisfy task-level recruitment. While the Gunn framework uses role heuristics during



Chapter 3: Methodology 65

initial task assignment attempts (and then falls back to exhaustive task assignment

if this fails), this is not an option for task-level recruitment since ideal recruitment

candidates are not assumed to be on the current team, and recruiters are unlikely to

have up-to-date knowledge regarding the capabilities of any nearby robots (or even

which ones are nearby). Communication problems or robot failures are also handled

using the same facilities as described in Section 3.6.5.

3.9.1.2 Initiating Task-Level Recruitment

Normally, in situations where a team leader sends a task completion request, a

robot will agree to the task if its task queue is not already full and the task is within its

capabilities. If either of these conditions is unmet, the robot will not send a rejection

(as it would in the Gunn framework, Section 3.6.3) but will instead offer to recruit

someone for the task if the robot is not already recruiting for too many tasks—it will

send a rejection otherwise. The team leader will agree to this offer of recruitment

only if no other robot agrees to take on the task for execution themselves. If the

team leader agrees, the robot will add the task to their task queue, marking it to be

completed via recruitment. The robot will then perform the task-level recruitment

processes described in 3.9.1.1. Figure 3.5 shows the flow of logic used to determine

whether a robot should offer to perform task-level recruitment when it receives a task

request.

In either concurrent or active recruitment settings, a robot can also recruit for a

task it has discovered itself but is completely unsuited for. For example, a low-cost

explorer robot discovering a fire, but lacking the necessary extinguishing equipment,



66 Chapter 3: Methodology

could recruit another robot to put out the fire. In the Gunn framework, this situation

would be handled by notifying a team leader of the task (Section 3.6.2). In the ARC

framework, the robot will begin a recruitment process instead if the robot determines

it is able to do so (i.e., if it is not too busy for an active recruitment task or is using

concurrent recruitment).

As described above, robots are able to accept a task with the intention of recruiting

someone else to complete it, rather than agreeing to complete it themselves. Because

all robots in my framework have the ability to assign tasks via task-level recruitment,

this has the effect that a task may be passed from one robot to another until a suitable

robot can be found who agrees to execute it. To prevent tasks from being passed back

and forth uselessly between two or more robots, robots will not offer to recruit for a

task that they have recently assigned to another robot themselves.

When a robot becomes disabled, it is possible that tasks assigned to it can be lost

if no other robot has knowledge of those tasks. If no other robots are aware of those

tasks, they will need to be rediscovered. If other robots are aware of the outstanding

work, however (e.g., a victim that needs to be confirmed, or an area that requires

exploration, Section 4.3.2.1), they will generate new tasks and attempt to assign them

accordingly.

3.9.2 Role-Level Recruitment

The purpose of role-level recruitment is to acquire a skill (or set of skills) that

is judged to be essential for the successful operation of the team. Because of the

importance of such skills to the team as a whole, the cost of managing an appropri-
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ate robot over the long run is considered acceptable. The concept of an ideal team

(Section 3.4) is useful here: if a team is missing a member which, according to the

ideal team definition, should be present, then the team should be prepared to accept

the cost associated with managing the additional member and should expend effort

into locating one.

The ARC framework supports role-level recruitment by specifying an additional

team-management duty for the team leader (in addition to those already described

in Section 3.6.3) called a missing role check. The team leader executes missing role

checks periodically, and this process involves two steps. First, the team leader deter-

mines which roles, if any, are absent from the team, based on its current imperfect

knowledge of the team structure. Team leaders are the obvious choice for executing

missing role checks since it is assumed that they will have the most complete picture

of the current team membership. The most important underfilled role (recall that

roles have an importance value, Section 3.2) is selected from this missing role list.

The team leader then assigns a member of the team with a role-level recruitment

duty. The recruiting robot then becomes responsible for locating another robot to fill

the missing role on the team. This process is shown in Figure 3.6. Recruitment tasks

and how they are executed are described in Section 3.8.

Missing role checks are similar in spirit to the role switch checks (Section 3.5)

that all robots execute periodically to balance roles among team members. The main

difference between these two facilities is that missing role checks are only executed

by a team leader. Additionally, missing role checks are executed much less frequently

(every 6 minutes in my implementation) than role switch checks (which run every
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Figure 3.5: Determining whether to offer to recruit for a task.
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30 seconds). This ensures that robots will self-balance their roles within a team

before a team leader judges it necessary to perform role-level recruitment, and avoids

situations whereby a team leader tasks a robot to recruit for a particular role that

becomes filled shortly afterwards as a result of a role switch check.

Unreliable communication and inaccurate knowledge can cause a team leader,

when executing a missing role check, to mistakenly believe that a critical role is miss-

ing from the team because the robot filling that role has not been heard from recently.

As a result of this perceived loss, another robot on the team may be assigned a role-

recruitment duty to find a replacement for the robot that is assumed to be lost. If

a replacement robot is recruited, it is entirely possible that two robots will now fill

the same role redundantly on the same team. Subsequent role checks (Section 3.5)

may rebalance the roles of these two robots to ensure that only one of them occupies

the important role, but this may result in the other robot occupying a role that is

less suited to its abilities. This may eventually be resolved by the extra robot being

recruited back to another team (possibly its previous team), whose leader will eventu-

ally recognize the loss and attempt to acquire a replacement. Thus, the overall effect

of unreliable communication is that robots may spend a significant amount of time

being passed back and forth between teams. This is not entirely negative: similar

to passive encounters (Section 3.5.1) exchanging members between teams using re-

cruitment provides increased opportunities to share operational knowledge. Increased

recruitment efforts in active recruitment settings may also result in greater environ-

mental coverage as robots explore and uncover more of the environment in order to

find recruits.
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The same opportunities exist when robot failures or losses occur: as robots be-

come disabled due to the dangers of the domain, teams will attempt to recruit other

robots in order to compensate for these losses. If few desired robots are actually avail-

able (possibly due to disablement or a lack of suitable replacements), robots may be

recruited back and forth frequently between different teams. This results in greater

information sharing as recruited robots pass along the knowledge they have acquired.

Team Leader
(importance 80)

Explorer/Victim 
Scanner

(importance 40)

Explorer
(importance 10)

?

? ?

? ? ? ?

Missing Role Check

Missing role 
with the 
highest 

importance

role-level recruitment duty 
assigned to robot for role

Figure 3.6: Shows a missing role and the role-recruited duty that is generated as a

result of a missing role check.

3.9.2.1 Communication and Role Assignment Process

The communication flow for role-level recruitment follows a similar structure to

that of task-level recruitment (Section 3.9.1.1). Robots tasked with role-level re-

cruitment duties periodically broadcast (every ten seconds in my implementation) a
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message requesting a robot to fill a specific role. The message also contains the num-

ber of robots on the recruiting robot’s team that are currently known to be filling

that role—this allows potential recruits to determine which team is in greater need

of robots occupying that role.

A receiving robot with too many tasks on its queue will not respond to a role-level

recruitment broadcast. I assume that if a robot is busy then it is currently useful to

its team or otherwise has too much important work to complete. Robots with fewer

tasks, however, will consider the role switch in the following manner.

If a receiving robot determines that it has lost contact with its team, it will offer its

role suitability to the recruiter. If a receiving robot is aware of its team, it considers

whether or not it would be more useful on the new team: if it is more suitable in

the new role, or the number of robots on the new team occupying that role is less

than the number of robots on its own team occupying that role, the robot will offer

its suitability to the recruiter. The potential recruit does not contact its leader at all

during this process (i.e., does not ask for permission to potentially leave the team).

This process is illustrated in Figure 3.7.

After waiting a short period of time to gather responses from robots (two seconds

in my implementation), the recruit will select the candidate who indicated the highest

suitability for the role. It will send a role switch request, indicating that the selected

robot should change to the recruiter’s team and fill the new role. The recruited robot,

upon receiving the message, initiates the role change, sends an acknowledgement

to the recruiting robot, and announces its new membership to any nearby robots

(including new teammates). This knowledge will eventually spread—the robot’s new
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Figure 3.7: Recruitment communication flow from the perspective of a potential

recruit.
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team leader would gain knowledge of the new robot through membership updates, and

the robot’s old leader will eventually record the robot’s loss either through wireless

updates or by realizing that the robot has lost contact with the team (similar to when

robots become lost or disabled, Section 3.5.1).

It is possible that a particular robot may find itself being considered for recruit-

ment by more than one robot at the same time. If recruitment broadcasts from

robots A and B both reach a robot C, C will offer its suitability to both robots for

the desired roles. If only one (or none) of either A or B accept C ’s offer, there is no

conflict—robot C will subsequently join one (or none) of the teams. However, if both

A and B accept C ’s offer, C will only join the team whose recruiter (either A or B)

accepts first. C will then send rejection messages to any other robots from which it

receives further acceptance messages.

To prevent a robot from continually being recruited uselessly between two or

more teams in a short time span, robots in my work that have accepted a role-level

recruitment request will ignore further requests for a short period of time (one minute

in my implementation). During this time the robot will not send responses of any

kind to other recruits.

As with task allocation (Section 3.6.3), poor communication can result in failure

to recruit other robots, or can result in duplication of effort. For example, if a

new recruit’s final acknowledgement is not received, the recruiting robot considers

the recruitment to have failed and resumes broadcasting again. This may result in

multiple robots being recruited for the same role when only one robot is actually

needed. As mentioned previously (Section 3.9.2), further role recruitment efforts
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made by other teams help to balance this out. However, as communication becomes

increasingly unreliable, teams will dedicate more effort toward recruitment and will

become more fluid as members are passed more frequently between teams. While this

makes knowledge of current team structure increasingly inaccurate, there are greater

opportunities for information sharing as robot memberships change between teams

over the course of the mission.

3.10 Conclusion

In this chapter I have described my core methodology, including portions of the

Gunn framework that were necessary to implement my own. Chapter 4 describes the

details of the implementation I created for the purposes of conducting the evalua-

tion described in Chapter 5. Some of this is based on a previous implementation of

the Gunn framework [Gunn, 2011], and Chapter 4 describes the components I have

implemented as well as those that my work depends on.



Chapter 4

Implementation

4.1 Implementation Overview

This chapter describes the details of the example implementation that I use to

evaluate my framework (described in Chapter 3). Since I have used the Gunn frame-

work (Section 3.1) as the starting point for my implementation, it is necessary to

describe some existing components of this framework before I describe those of my

own.

The Gunn framework was evaluated in a simulated USAR environment [Gunn,

2011]. To facilitate comparison with this work, I will be evaluating my framework in

this domain as well. I begin with a description of the main USAR concepts that are

relevant to my work.

75
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4.1.1 USAR Concept and Goals

This section provides a high-level description of the operations that robots in my

work are expected to perform. The main goal of my robots is, ultimately, to find and

correctly identify as many human casualties and cover as much of the environment

as possible in a simulated USAR domain. Realistically, victim and environment

information would eventually be conveyed to a human rescue team (which may, for

example, enter the area at a later time) who could then extract casualties based on

the information provided by the robots.

The effort and cost involved in building and conducting experiments using real

physical robots in a sufficiently realistic setting (e.g., debris, size of environment,

etc.) would be prohibitive. Additionally, the time required to conduct experiments

makes this almost impossible—running the required number of trials for my evaluation

(Chapter 5) would take over a year, even when not including factors such as setup

time or battery charging. For this reason, my work is performed in simulation, similar

to [Gunn, 2011].

4.1.2 Simulated Environment

Stage [Gerkey et al., 2003] is an established multi-robot simulator which, like

Gunn [2011], I use as a platform to implement and evaluate my framework. It is

widely-known and has been verified against real robots. Conducting my work in

simulation has two main advantages, as noted by Vaughan [2008]: experimental runs

in Stage are repeatable, and they can be run faster than real-time. This last feature

is particularly important due to the large number of experimental trials required to
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evaluate my work. Additionally, using a simulator removes complexities and problems

that are inherent to physical robots (such as the failure of components like motors or

cables) that are not a central part of my work.

Stage provides facilities for constructing virtual environments, robots, and any

other objects, as well as an API for programming the behaviours and interactions

between these objects. For example, I make use of an abstract robot sensor model

that allows robots to detect one another—Stage refers to this class of sensor as a fidu-

cial sensor, which can be used to simulate RFID technology, robotic vision, or any

other sensor based on object identification. Another class of sensor allows rangefinder

models such as sonar or lasers. My implementation (and that of Gunn [2011]) make

heavy use of Stage’s simulated sensors to allow robots to sense the environment, the

presence of victims, and other robots. It should be noted that the implementation

of the Gunn framework was written using version 3.2 of the Stage API—my imple-

mentation was written using the most current version of Stage (4.1, at the time of

writing), which required existing elements from [Gunn, 2011] to be ported to the new

version of Stage. Although some elements of Stage have changed between versions 3.2

and 4.1, I have ported the Gunn framework in such a way that it remains functionally

identical to the 3.2 version.

Figure 4.1 shows an overhead view of an example environment, and Figure 4.2

shows a closer view depicting the significant objects in my work. As in [Gunn, 2011],

every experimental trial begins with two teams of robots entering the environment

through two separate openings meant to represent doorways or windows. The forma-

tion of the robots is chosen to ensure that those with debris-clearing equipment are
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able to clear any debris blocking the team’s entry, and to ensure that explorer robots

have a clear line of sight to the rest of environment (as opposed to being obstructed

by the team leader). Replacement robots, which are released into the environment at

a later time (Section 3.4), are spaced evenly along the perimeter facing inwards. The

four robot types used in my work are described in more detail in Section 4.2.

Figure 4.1: An example randomly-generated world.

Light grey objects in Figure 4.2 are low-lying debris configurations such as bricks

or pieces of concrete. These are obstacles that robots with a tracked drive system

would be able to traverse in the real world, and robots with wheeled drives would be
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Figure 4.2: Significant environmental objects in my work.

forced to navigate around them. In my implementation, robots with debris-clearing

equipment are able to remove low-lying debris from the environment, simulating the

ability to break down and render debris passable to other robots.

Dark grey debris configurations are meant to represent larger structures such

as walls, support beams, or office equipment (e.g., shelves). Due to their size, these

obstacles are impassable to all robot types and cannot be removed with debris-clearing

equipment—all robots must navigate around them.

Also present in my environments are a number of randomly-placed victim objects.
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These are meant to represent human casualties in need of assistance. Victims are

detectable by robots equipped with the appropriate victim sensor fiducial model

(Section 4.1.2.1). To provide an enhanced level of realism, environments will also

contain a number of false victims. These are debris configurations that resemble

actual humans and require advanced sensors in order to be distinguished from true

victims.

4.1.2.1 Victim Identification

The primary goal of my robots is to locate and identify human casualties in the

environment. In reality, this is a task that requires the input and fusion of multiple

types of sensor readings [Kadous et al., 2006; Tunwannarux et al., 2008; Murphy

et al., 2000]. I use Stage’s fiducial sensor model to abstract away these complexities

since real-world victim identification is not the focus of my work.

To reflect the fact that lower cost robots will possess limited sensory capabilities

and expensive robots will have more advanced sensors, I make use of two types of

victim-detection sensors, implemented by Gunn [2011]: the basic victim sensor and

the advanced victim sensor. The basic version of the victim sensor has a range of 4.0

meters and a field of view of 180 degrees. Within this range, robots equipped with

this sensor can detect the potential presence of human victims but not confirm them

(i.e., to the basic victim sensor, both true and false victims will appear the same).

The advanced robot sensor has a field of view of 180 degrees and has a maximum

range of 6.0 meters, at which distance it can detect the presence of a potential victim.

Within a distance of 4.0 meters, it can correctly distinguish between true and false
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victim sensor type fov identification range detection range

basic 180◦ n/a 4.0m

advanced 180◦ 4.0m 6.0m

Table 4.1: Characteristics of the two victim sensor types used in my work.

victims. These victim sensor types are summarized in Table 4.1.

4.1.2.2 Robot Detection

Some robots in [Gunn, 2011] and my work are equipped with robot detectors that

simulate visual identification of robots in close proximity. This is facilitated by the

use of the fiducial sensor model provided by Stage. Robot sensors have a range of

6.0m and a field of view of 180 degrees.

4.1.2.3 Area Exploration

In order to locate victims, robots must explore the environment. As in [Gunn,

2011], the exploration process is guided by the robot occupying the team leader role.

All robots maintain an occupancy grid (a 2D map defining which parts of the environ-

ment are passable or not) of the environment, and robots with sufficient computing

facilities will identify frontiers, which are boundaries between explored and unex-

plored space. Robots with the appropriate software control modules (Section 4.3.1.2

can assign frontier exploration tasks to other robots so that these areas can be ex-

plored.

Frontier exploration tasks consist of a robot moving to the indicated location,
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exploring randomly for a short period of time, and then reporting back to the as-

signing robot with the map data acquired (Section 4.3.2.1). This may not always be

successful, however: the robot could become stuck, disabled, or recruited to another

team before it is able to complete the task or report back to a leader.

4.1.2.4 Managing Domain Knowledge

The Gunn framework provides facilities for managing and updating robot knowl-

edge [Gunn, 2011]. To the degree that onboard computation and memory allows,

each robot is responsible for maintaining a copy of operational domain knowledge.

This includes the locations of victims, the state of the robot’s occupancy grid, and

knowledge of other robots in the domain. Robots acquire this knowledge either by

discovering significant information themselves (e.g., exploring an area or finding a

victim) or by receiving messages from other robots who have transmitted the infor-

mation as a result of a successful task completion: robots will listen for information

updates from other team members to update their own knowledge. It is assumed that

the robot filling the role of team leader will have the most complete set of operational

knowledge due to its role in assigning tasks and receiving the results.

Spreading knowledge among robots as much as possible is desirable since it re-

duces the chance that important knowledge becomes lost when robot failures occur

(Section 4.1.2.6). Limited wireless communications range, temporary communication

failure, or robot failure may result in robots (including a team leader) failing to re-

ceive critical information from other members. This inconsistency in team knowledge

can result in duplication of effort (e.g., a robot may be sent to confirm a victim that
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was already examined by another robot whose resulting update was not received).

It is highly unlikely that any two robots on a team possess the exact same set of

knowledge, and the failure of a leader might mean that some information is lost—

however, the team would not have to re-start the mission since the new leader would

presumably possess at least some of the former leader’s knowledge.

4.1.2.5 Unreliable Communication

Every robot in my implementation is equipped with short-range wireless commu-

nication modules. As in [Gunn, 2011], I use the ITU indoor radio model (provided

by Stage) to simulate wireless radio transmission. I also use the same wireless pa-

rameters (specifically: signal power, receiver sensitivity, and power loss), modelling

communication ranges of approximately 20m. Although commercially available wire-

less 2.4GHz transmitters can achieve much greater distances in open areas, I assume

that the configuration of the environment (debris, etc.) limits the effective range of

communication.

Additions by Gunn [2011] have extended Stage to support random communica-

tion failures. Each simulated world specifies a communication success parameter,

describing what percentage of wireless messages are successfully transmitted. For

every message m to be sent from robot s to all robots R in radio range, the simulator

generates a random number from 0 to 100. If the random number is less than or equal

to the success parameter, the message is sent to all robots in range. Otherwise, the

message does not reach any of the robots.
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4.1.2.6 Robot Failure

The Gunn framework [Gunn, 2011] supports the concept of random robot failures

to simulate the real-world risk of robot disablement, either temporarily or perma-

nently. Every robot type defines a failure probability value, specifying the probability

that it will experience a temporary or permanent failure. Temporary failure dura-

tions vary randomly between 3 and 4 minutes, and permanent failures last for the

remaining duration of the mission. As in [Gunn, 2011], failures in my work are total,

i.e., I do not simulate the failure of individual robot components. While experiencing

a failure, a robot is not able to move, communicate, or perform computations of any

kind.

4.1.2.7 Fiducial Victim Markers

In addition to locating potential victims, robots in my implementation are also

responsible for placing fiducial victim markers next to potential or confirmed victims

which they discover. These markers are detectable by all robots and are meant to

help human rescue workers (entering after the completion of the robots’ mission) in

locating casualties. Markers can also double as medical kits or protein bars that

can be used by victims. In a real-world setting, a marker might be a small supply

bag with an embedded radio beacon and a small quantity of food. Every robot

carries two markers and will drop one marker near a detected victim when no other

markers have been detected nearby. A victim without nearby markers indicates that

no one has discovered it yet. The limited complement of markers that a robot carries

means that they may run out quickly—my implementation includes facilities allowing
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robots to physically donate a marker to another robot if needed (Section 4.3.2.2). The

marker manager module handles marker placement and donation, and is described

in Section 4.6.1.

4.2 Robot Types

In this section I describe in detail the four robot types in my implementation. The

first three (the MaxBot, Midbot, and MinBot) are the same as used in [Gunn, 2011].

I have added a fourth type of robot to my implementation, the DebrisBot. Figure 4.3

shows each of these robots.

MaxBot DebrisBot MidBot MinBot

Figure 4.3: The robot types used in my work. They are kept geometrically simple to

avoid performance impacts when examining simulation runs by hand.

4.2.1 MinBots

The MinBot is an inexpensive robot whose main purpose is exploration and vic-

tim discovery. It has a limited complement of sonar sensors to avoid obstacles and

to update its own map of the environment. MinBots lack robot detection sensors
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(Section 4.1.2.2) and only use sonar to sense the environment, and therefore can-

not distinguish between robots and environmental obstacles. This limits the level of

interaction that MinBots can have with other more capable robots.

MinBots cannot detect frontiers, generate frontier exploration tasks, assign tasks,

combine shared environment maps, or perform pathfinding algorithms. This makes

them poorly-suited for leadership positions. Importantly, the original implementa-

tion of the MinBot [Gunn, 2011] did not permit it to assign tasks to other robots.

I maintain this restriction, but allow MinBots (and all other robots) to perform re-

cruitment because this capability is central to my work. Recruitment duties are less

computationally intense than full task assignment duties—recall from Chapter 3 that

task-based recruitment only makes use of the exhaustive task assignment capabilities

(as opposed to both the role-based and exhaustive capabilities) of the task assignment

system already implemented by Gunn [2011]. The computational effort required for

role-level recruitment is also relatively light. However, the MinBot’s lack of a planner

or shared team map means that it cannot provide path information to other robots

when recruiting for tasks. Therefore, there is a greater likelihood that a recruited

robot may become stuck or lost due to the lack of path information that would guide

it around potentially hazardous areas.

4.2.2 MidBots

The MidBot is larger than the MinBot and also has a wheeled drive. Its main

purpose is exploration and victim confirmation. It also has a more powerful sonar

array than the MinBot.
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This robot has advanced victim sensors, allowing it to detect the presence of a

potential victim at a range of 6.0m, and it can confirm victims at a range of 4.0m.

It can also maintain a combined team environment map, detect frontiers, and can

generate frontier tasks. The MidBot is also capable of performing task assignment.

These capabilities mean that the MidBot (unlike the MinBot or DebrisBot) is some-

what suited towards filling team leadership positions. However, the MidBot is not

capable of path-planning; therefore, task assignments performed by the MidBot will

not come with path information, meaning that assigned robots are more likely to

become stuck in the environment while navigating to assigned task locations.

4.2.3 MaxBots

The MaxBot is a large robot with a tracked drive system, enabling it to traverse

low-lying debris. It uses a sonar array to detect low-lying debris, and a laser range

finder with a field of view of 180 degrees to identify all other obstacles. It has a

robot detector and a basic victim sensor only. Its computational facilities (i.e., the

ability to detect frontiers, maintain shared team maps, and assign tasks) make it the

most suitable robot for leadership roles. Since the MaxBot also has a path planner,

it is able to communicate path information for other robots when assigning tasks, if

a path can be found using its accumulated knowledge of the environment.

4.2.4 DebrisBots

I have implemented a highly-specialized robot called the DebrisBot. Its main

purpose is to clear low-lying debris from the environment. It is equipped with a debris
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remover which is used to break down and remove low-lying debris, eventually clearing

the space the debris occupied so that other robots can pass through. The DebrisBot

will attempt to clear debris when executing either the unguided debris removal or

the guided debris removal tasks (Section 4.3.2). Debris removal is achieved through

extra facilities I have implemented in the Stage simulator allowing a robot to apply

cumulative damage to certain objects (such as debris) in the environments. This is

used to simulate the process of breaking down and eventually removing debris. The

range of this equipment is 1m, meaning that the DebrisBot must directly approach a

debris object in order to remove it. All other object types (e.g., tall debris, robots,

or victims) are unaffected by this equipment and cannot be removed or damaged.

This robot has two sonar arrays: one of them is at ground level and the other

is 20cm higher. The different heights of the sonar arrays allow the DebrisBot to

distinguish between low-lying, removable debris, and taller obstacles that cannot

be removed. The presence of a basic victim sensor is useful not only because it

allows the detection of potential victims, but because it also allows the DebrisBot

to distinguish between victims and low-lying debris. Since mistaking a victim for

a piece of removable debris is obviously undesired, the DebrisBot uses its victim

sensor to disqualify any detected debris that is within 2.0m of a detected victim.

In more realistic settings, this prevents humans from getting directly injured as well

as lowering the chances that removing debris near a victim could injure them (e.g.,

by causing structural collapse). To avoid situations where robots can potentially be

mistaken as debris, the DebrisBot applies a similar strategy: it uses a robot detector

to disqualify any debris that is nearby another detected robot (within 25cm).
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The DebrisBot is highly specialized for debris-removal tasks and is poorly-suited

for leadership. It lacks path planning abilities, does not maintain shared map knowl-

edge, and cannot detect frontiers. Much like the MinBot, it does not have task-

assignment capabilities but is still able to perform recruitment.

4.3 Attributes, Tasks, and Roles

4.3.1 Attributes

As mentioned in Chapter 3, every robot is described with a series of computational,

physical, and sensor attributes. These allow robots to have an estimate of their

own abilities, as well as the abilities of others. They are divided into three main

categories: physical (Section 4.3.1.1), computational (Section 4.3.1.2), and sensory

(Section 4.3.1.3) attributes.

4.3.1.1 Physical Attributes

Physical attributes define properties such as robot speed, size, how they traverse

the environment, and any special equipment they possess. Below is a table describing

these attributes and their values for each robot type in my implementation. I have

added the debris remover property to the original implementation by Gunn [2011]

to enable robots to have self-knowledge regarding any debris-removal equipment they

carry. I have also implemented the marker count attribute to track the number of

victim markers each robot has. All robots start the mission with 2 markers, and

cannot carry more than 2. The actual number of markers a robot possesses will vary
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MinBot MidBot MaxBot DebrisBot

locomotion wheeled wheeled tracked tracked

width/length 10cm x 10cm 20cm x 20cm 38cm x 44cm 50cm x 40cm

expendability 1.0 0.25 0.05 0.1

debris remover none none none yes

marker count 2 2 2 2

Table 4.2: Physical attributes for the robots in my work.

over the course of a mission as markers are dropped next to victims (Section 4.1.2.7),

donated to other robots, or received by donating robots (Section 4.3.2.2).

4.3.1.2 Computational Attributes

Computational attributes define the components that exist in the robot control

software. In a physical implementation of my framework, cheaper robots would pos-

sess limited CPU power, and this would place significant constraints in terms of what

those robots could be expected to compute in real-time (the results of these compu-

tations may also be beyond the robot’s memory capacity). For example, a physical

implementation of the MinBot could conceivably be designed around the well-known

Atmel ATmega328 processor [Atmel Corporation, 2015], which has a maximum safe

clock speed of 20MHz and only 2KB of RAM—on this platform, storing and calculat-

ing the results of shared team map data, for example, would be impossible. A MaxBot

based on the popular Pioneer platform, on the other hand, would not experience these

limitations.
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MinBot MidBot MaxBot DebrisBot

victim tracker yes yes yes yes

frontier finder no yes yes no

maintain team map no yes yes no

assign tasks no yes yes no

planner no no yes no

Table 4.3: Computational attributes for the robots in my work.

MinBot MidBot MaxBot DebrisBot

victim sensor basic advanced none basic

robot sensor no yes yes yes

sonar sensors 5 10 3 14

sonar range 4m 6m 2m 6m

laser rangefinder none none yes none

victim marker detector yes yes yes yes

Table 4.4: Sensory attributes for the robots in my work.

4.3.1.3 Sensory Attributes

Sensory attributes define the types of sensors that robots are equipped with.

Cheaper robots would be equipped with fewer (or simpler) sensors in order to keep

their cost low, and advanced robots would have greater and/or more complex sensing

facilities.
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Although laser rangefinder is used as a sensory attribute, Stage 4.1 (recall from

Section 4.1.2 that I ported the Gunn framework from Stage 3.2) no longer supports

the laser rangerfinder component. Instead, Stage 4.1 offers a general-purpose ranger

component to simulate both sonar and laser sensors. I have re-implemented the laser

rangefinder using the Stage 4.1 ranger facilities such that it performs identically to

that used in [Gunn, 2011].

Additionally, the victim marker detector attribute is not an explicit attribute in

my implementation, although it is listed above; all robots are assumed to have the

appropriate sensors for detecting victim markers.

4.3.2 Task Types

This section describes the task types that are used in my implementation. The

first seven of these (explore, explore frontier, find team, find victim, confirm victim,

manage team, and encounter) are implemented already as part of [Gunn, 2011], and

the remaining ones (begin role recruitment, find robot, unguided debris removal, guided

debris removal, donate marker, and wait for marker) I have developed as part of my

implementation.

4.3.2.1 Gunn Framework Tasks

The following tasks have already been implemented as part of the Gunn frame-

work [Gunn, 2011] and are used directly in my own work:

• Explore: This task involves undirected, randomized exploration. This is the

lowest priority task which all robots except the DebrisBot will perform when
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no other tasks are available.

• Explore Frontier : This task involves moving to a specific location, exploring the

area for a brief period, and reporting any results of the search to a team leader.

Tasks of this type can only be generated by a robot with the frontier finding

software module (Section 4.3.1.2).

• Find Team: This task is used by replacement robots when initially released into

the environment. Robots executing this task will travel inwards for a total of

five minutes, or until another team is encountered which it can join (or possibly

form a new team with another robot).

• Find Victim: This task is not explicitly placed on a robot’s task queue, but is

used to determine a robot’s suitability for filling roles that require the use of

the victim tracking software module (Section 4.3.1.2).

• Confirm Victim: This task is used to confirm the presence of a victim where

a potential victim is located. When executing this task, a robot will move to

a specified location and confirm whether or not a true victim is present. Only

robots with an advanced victim detection sensor (Section 4.3.1.3) are suited

for this task, and only robots with the victim tracking software module can

generate instances of this task (Section 4.3.1.2).

• Manage Team: This task is not explicitly placed on a robot’s task queue, but is

used to represent the set of capabilities that are required for a robot to manage

a team (assign tasks, etc.).
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• Encounter : This task is used to guide the team merge and redistribution process

that occurs when teams encounter each other in the environment. It is executed

by the two team representatives cooperatively.

4.3.2.2 ARC Framework Tasks

I have implemented the following tasks to support the example implementation

of the ARC framework:

Begin Role Recruitment

This is a task that is only used to initialize the role-recruitment process in ac-

tive recruitment settings. Recall from Section 3.8.2 that active recruitment treats

recruitment duties as an explicit task that offsets regular work. When a robot starts

this task, it activates the role-level recruitment communications system (Section 4.5),

removes this task from its task queue, and begins executing the find robots task

described below, in order to find a suitable robot to fill a specified role.

Find Robot

The find robot task is used in active recruitment settings to locate other robots.

When a robot begins this task, it activates the role-level recruitment facilities (in the

case of role-level recruitment, Section 4.5) or the appropriate task-level recruitment

facilities (in the case of task-level recruitment, Section 4.5). The robot will then begin

a random walk to increase the chances of locating a useful robot.

Unguided Debris Removal

This is a highly-specialized task that only robots equipped with debris removing

equipment (Section 4.3.1.1) can perform—only the DebrisBot can execute it. This is
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the idle task for the DebrisBot, and is executed only in the absence of other useful

work. It involves performing a random walk, approaching, and removing any low-lying

debris within a certain field of view. This task relies on the detect obstacle perceptual

schema (Section 2.6.1) to distinguish between low-lying and non-removable debris

objects.

A robot executing this task performs a random walk around the environment,

avoiding obstacles such as victims, tall debris, or other robots, and moves towards

short debris objects (which can be removed with the appropriate equipment). It uses

the input of several different sensors to differentiate between these objects to ensure

that only low-lying debris is targeted. If a low-lying debris object is detected, the

robot will move towards the debris and stop a short distance away (within 1.0m in

my implementation). It will then activate its debris-removal equipment, which breaks

down the debris using the damage facilities I have added onto Stage (Section 4.2.4).

If after six seconds (the debris-removal process takes approximately five seconds in

my approach) the debris is not destroyed, the robot executing the task will aban-

don the current debris object (failure to remove the debris can be caused by the

robot approaching a debris object slightly misaligned) and perform a random walk

for two seconds that treats all objects as obstacles. This helps to prevent the robot

from approaching the same debris object at the same unsuccessful angle. The robot

then resumes the process of looking for debris to remove. If the debris removal was

successful, the robot immediately continues to look for more debris.

Guided Debris Removal

This task is similar to the unguided debris removal task described in the sec-
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tion above. Instances of this task are generated by robots that detect they have

become physically stuck on a piece of debris, as indicated by the localization schema

(Section 4.4.1). This task involves moving to a specified location and attempting to

remove a piece of debris, presumably to free a robot that has become stuck at that

location. If the debris-removing robot successfully navigates to the specified location,

it approaches the debris (as in the unguided debris removal task) and begins the re-

moval process. After an attempt to remove the debris (whether successful or not), the

robot discards the task and resumes other work. If after a short period of time (30

seconds in my implementation) the robot fails to either reach the debris location or

reaches the location but does not find any debris, the task is removed and the robot

continues with other tasks.

Donate Marker

The donate marker task guides the marker donation process in the case where

one robot A has agreed to donate a fiducial victim marker to another robot B (Sec-

tion 4.1.2.7). A robot’s suitability for this task is determined by whether or not

the robot is equipped with a robot detector, and the number of markers the robot

currently has (Section 4.3.1.1). A robot with an empty complement of markers is

considered unsuitable for this task. Tasks of this type are assigned either directly by

recruitment (where robot B requiring a marker attempts to locate a robot who can

donate one), or by B passing the task to a team leader for subsequent reassignment

when recruitment is not available. Upon activating this task, robot A broadcasts a

wireless message to robot B, indicating that A is ready to donate. If no response is

received from B after a short period of time, robot A discards the task. Otherwise,
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A will activate the turn in place schema, attempting to visually locate B. If B cannot

be located, A discards the task. If B is located, robot A activates the move to robot

motor schema (Section 4.4.2) and approaches robot B. If after a short period of time,

A has not physically reached B (e.g., as a result of becoming stuck on an obstacle),

A will discard the task. If A successfully reaches B, A will give one of its markers to

B and resume other work.

Wait For Marker

The wait for marker task controls the actions of a robot waiting to receive a

marker donation from another robot. The robot halts all motion and waits for an

indication from a potential donor. If after a short period of time no message has been

received, the robot discards the task and resumes other work. If a donor message is

received, the robot waits a certain amount of time for the donating robot to arrive

and physically donate a marker. If the receiver spends too long waiting for a donation

after receiving a donor message (15 seconds in my approach), it is assumed that the

donating robot has become lost or stuck, and the waiting robot gives up the task and

resumes normal work. Thus, the victim is not marked until it is encountered again

by a robot with a marker. If the donation is successful, the receiving robot drops the

marker near the victim and considers the task complete. Future work could include

implementing a drop marker at location task, where appropriately-equipped robots are

explicitly tasked with dropping a marker near a victim. Although marker dropping

already occurs in my approach as a result of exploration and victim confirmation

tasks, it may be useful for a robot lacking markers to specifically task another robot

(either through recruitment or via a team leader) with dropping a marker at a known
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victim location.

Figure 4.4 depicts the marker donation process.

4.3.3 Role Types

As mentioned previously (Section 3.2), roles are used as a heuristic to simplify

the task-assignment process. This section describes the four roles that are used in

my implementation. The first three (team leader, coordinator/explorer, and explorer)

have already been implemented as part of [Gunn, 2011]. The fourth type, debris re-

mover, I have added as a part of my implementation. Table 4.5 shows the calculated

suitabilities of each robot for every role in my implementation. Suitability values are

calculated for a particular robot-role combination by examining a robot’s attributes

(Section 3.2) and determining how well they satisfy the requirements of each of the

tasks required by that role [Gunn, 2011]. Tasks in each role are assigned hand-tuned

weights indicating the importance of that task to the role. For example, a Coordina-

tor/Explorer role places a high emphasis on the confirm victim task (Section 4.3.2.1):

robots with the appropriate capabilities (e.g., the MidBot has an advanced victim

sensor) will thus score a higher suitability for the Coordinator/Explorer role. In the

extreme case, robots failing to meet the minimum suitability requirements for all tasks

associated with a role will score a suitability of zero. For example, the only expected

tasks of a DebrisBot relate to debris removal (although it can perform other tasks if

requested to do so, as explained in Section 3.6.5)—since all other robots do not meet

the minimum requirements for debris removal tasks, they receive a suitability score

of zero for the debris remover role.
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Figure 4.4: Logic flow of the marker donation process between two robots.



100 Chapter 4: Implementation

robot type Leader Coordinator/Explorer Explorer Debris Remover

MinBot 11 24 124 0

MidBot 73 86 56 0

MaxBot 96 42 52 0

DebrisBot 16 22 52 200

Table 4.5: Suitability values for each robot type to fill each role.

4.3.3.1 Team Leader

The team leader is responsible for directing the efforts of the robots on its team.

This includes assigning tasks, detecting and assigning frontiers to be explored, and

maintaining an overall map of the environment that the team has explored.

Out of the four robot types in my implementation, the MaxBot is best-suited for

this particular role. It possesses frontier-detection software which enables it to direct

exploration efforts more efficiently than simply assigning random exploration tasks.

The planning module on the MaxBot also enables it to build paths to locations of

interest such as potential victims or frontiers, so that robots can be explicitly guided

to them. This greatly reduces the chances that a robot will become stuck or lost

while navigating to a given location. The MaxBot also has the ability to assign tasks,

which is a critical capability in terms of managing a team.

The MidBot is adequately suited for leadership. It possesses the same set of

computational abilities as the MaxBot, with the exception of the planning module.

Thus, the MidBot is not able to calculate path information when assigning tasks,
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increasing the risk that an assigned robot becomes stuck or lost.

The MinBot is utterly unsuited for the team leader role. It lacks all leadership

capabilities except the victim-tracking software. Because it lacks a frontier finder,

it is not able to generate frontier exploration tasks and must perform exploration

using a random walk. It is also unable to assign tasks, meaning that any other

team members may find themselves short of useful work (or the team may break

up altogether). Role-switch checks, however, will ensure that the leadership role is

ceded to the more capable robot on the team, if one exists or is discovered later

on (Section 3.5). The DebrisBot, much like the MinBot, lacks the basic capabilities

required for this role, and is similarly limited.

4.3.3.2 Coordinator/Explorer

Robots occupying this role are responsible for performing exploration and victim

verification tasks, as well as guiding the team distribution process when two teams

encounter one another.

The MidBot is best-suited for this task since it is the only robot that possesses

advanced victim-sensing capabilities enabling it to confirm the presence of victims.

The MaxBot is poorly-suited for this task since it only has basic victim-sensing ca-

pabilities, but the MaxBot is equipped to handle the team distribution process. The

MinBot is unable to perform both victim verification and team redistribution, making

it a poor fit for this role. The DebrisBot lacks victim verification abilities, but has a

robot detector that will enable it to peform team redistribution if necessary.
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4.3.3.3 Explorer

Robots filling this role are expected to perform exploration tasks as guided by a

team leader, for the purpose of detecting potential victims in previously unexplored

areas.

The high expendability of the MinBot (i.e, it is cheap and easy to replace) makes

it an ideal choice to fill this role. Exploration tasks are potentially dangerous and

may result in a robot becoming lost or damaged. While the other robot types possess

the capabilities this role requires, their suitabilities for this role are lower because

they are better suited to fill more advanced or specialized roles.

4.3.3.4 Debris Remover

This is a highly specialized role that involves clearing low-lying debris from the

environment. Specifically, robots in this role are expected to perform the unguided

debris removal and guided debris removal tasks (Section 4.3.2.2). Debris removal

equipment is required to perform these tasks, meaning that only the DebrisBot is

suited to fill this role in my implementation. All other robots are utterly unsuited

for it. The nature of the existing team management facilities implemented by Gunn

[2011], however, dictate that role switches (Section 3.5) may result in a robot taking up

the debris remover role on its own even if it is not equipped for it. Such a robot would

not be able to perform debris-removal tasks since it lacks the necessary equipment.

This results in the robot occupying the debris remover role without actually being

able to perform any of the tasks required of the role, resulting in wasted effort that

could be spent elsewhere (e.g., searching for victims). Subsequent encounters with
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DebrisBots (either alone or as part of a team) will help to correct these issues as team

rebalancing takes place.

4.3.4 Ideal Team

Recall from Section 3.4 that the ideal team definition describes the desired number

of each robot role in a team, and is used as a guide when deciding how to restructure

a team or integrate new members. Similar to [Gunn, 2011], the ideal team definition

in my implementation requires 1 team leader, 1-2 coordinators/verifiers, and 3-10

robots as explorers. My definition also specifies that a team should possess 1-2 debris

removers. This is depicted in Figure 4.5.

The number of robots filling the first three roles in my definition were based on

values obtained through experimentation in [Gunn, 2011]. These values ensure that

a team only has one leader, that the team has advanced robots capable of confirming

victims or stepping in as a team leader (if necessary), and that a large number of

cheap, expendable robots are available for simple exploration. I have chosen to specify

a minimum of 1 and a maximum of 2 debris removers in my ideal team definition to

ensure that stray DebrisBots are more likely to be integrated into existing teams when

they are encountered. For example, restricting a team to only one DebrisBot prevents

teams from integrating additional DebrisBots that might otherwise be adopting team

leader roles if they become lost (Section 3.5). By allowing more than one DebrisBot

on a team at one time, there is a greater probability that DebrisBots in the domain

will be able to perform more useful work related to their intended role.
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1 Team Leader
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Verifiers
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Ideal Team Definition

1-2 Debris Removers

Figure 4.5: Depicts an ideal robot team as used in my implementation.

4.4 Autonomous Control

This section provides a brief description of the low-level control mechanisms for

the robots in my work. With the exception of the detect markers schema, these have

all been implemented as part of [Gunn, 2011]. They are divided into two categories:

perceptual schemas and motor schemas (Section 2.6.1). I have made extensions to

some of these schemas to support my work.
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4.4.1 Perceptual Schemas

Perceptual schemas are used to collect raw sensor data from rangefinders, robot

detectors, and victim detectors to build meaningful representations of the immediate

environment.

• Localization: The localization schema tracks the robot’s position and orien-

tation. All team members share the same coordinate system (centered where

the team began in the environment), but different teams will have different

translational origins. Robots appropriately equipped can use robot detection

sensors to establish translations between observed robots and their own coordi-

nate system, so that location information (victims, frontier locations, etc.) can

be passed between members of different teams. The localization schema is also

used to determine if a robot has become stuck on debris. I have made extensions

so that if after a short period of time (5.0 seconds) the robot is not able to free

itself, it will generate a guided debris removal task where it is stuck and attempt

to pass it along to either a team leader or another robot via recruitment (when

recruitment is available).

• Process Range Data: This schema processes data returned from the rangefinding

sensors (sonar or laser) to gather information about nearby obstacles such as

debris or walls.

• Detect Debris : This schema uses the localization schema to detect whether or

not the robot is stuck, and then records an obstacle at the robot’s location if

it is. This information is used to avoid the obstacle again in the future (if the
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robot can free itself or is freed by a DebrisBot).

• Detect Obstacles : This schema uses data from the process range data, detect

debris, and detect robots schemas to generate a list of obstacles to avoid. I have

made additions to this schema allowing robots to distinguish between low-lying

and high obstacles based on the height of the robot’s ranger sensors. This is

useful for robots that must distinguish between removable and non-removable

debris objects (e.g., the DebrisBot).

• Detect Robots : This schema uses input from the robot detector sensor to build

a list of currently observed robots. This schema can only be used by robots

equipped with a robot sensor.

• Detect Victims : This schema uses the victim detector sensor to build a list of

victims currently observed. The output of this schema is fed into the victim

tracker module (Section 4.6) to generate victim confirmation tasks.

• Detect Lost : This schema tracks the cumulative distance the robot travels when

moving to a new location. After a robot travels five times the distance required

without reaching its goal, the robot removes the current task from its queue

and begins work on the next one, with one exception: robots getting lost during

victim confirm tasks (Section 4.3.2.1) re-queue the task for later, rather than

deleting them, due to their importance.

• Detect Markers : I have implemented this schema to use input from the marker

detector sensor to build a list of currently observed victim markers. The output
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of this schema is used by the marker manager (Section 4.6.1) to determine if

there have been any recently detected victim markers in the area.

4.4.2 Motor Schemas

Recall from Section 2.6.1 that motor schemas are low-level behaviours that use

perceptual schema data to generate vectors that guide robot motion.

The avoid obstacles, move to location, turn in place, random, and recover stuck

motor schemas have been implemented in [Gunn, 2011]. I have implemented the seek

debris and move to robot motor schemas.

• Avoid Obstacles : This schema generates a repulsive force away from detected

objects. This force grows exponentially as the robot gets closer to the perceived

obstacles.

• Move To Location: This schema enables a robot to move to a specific location

using a path (if available), or normal reactive motion if a path is not available.

• Turn In Place: This schema generates a motion vector commanding the robot

to move in a clockwise direction. This is used to allow the robot to spin in place

and look for a robot that has requested an encounter or a marker donation.

• Random: This schema generates a small random motion vector that is added

onto the robot’s current motion. This ensures that the robot does not become

stuck when multiple active motor schemas generate motions that cancel each

other out.
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• Recover Stuck : This schema uses the localization perceptual schema to detect

whether or not the robot is stuck. When this occurs, the recover stuck schema

generates a backwards wiggling motion to attempt to free the robot.

• Seek Debris : I have implemented this schema to assist debris removal robots in

targeting removable debris. It generates a motion vector attracting the robot

to short obstacles (as determined by the detect obstacles perceptual schema,

Section 4.4.1) while repelling the robot away from non-removable debris or

objects that should not be targeted (such as other robots or victims).

• Move To Robot : I have implemented this motor schema to support the donate

marker and wait for marker tasks (Section 4.3.2.2), which require that two

robots physically meet in order for a marker donation to take place. This

schema generates a motion vector guiding one robot towards another robot

that is visible with the robot detection schema (Section 4.4.1).

4.5 Framework-Specific Modules

This section describe aspects of the robot software that specifically support my

framework. With the exception of the recruitment manager, all of these have been

implemented as a part of [Gunn, 2011], although I have made additions to several of

them to support my framework.

• Encounter Manager : The encounter manager module provides facilities for con-

trolling the team merge and distribution process when two robots encounter one

another in the domain.
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• Knowledge Manager : This module tracks any information known to the robot.

This includes the robot’s self-attributes, the attributes of other robots encoun-

tered, and the current structure of the team (which is unlikely to be perfect

except at the outset of a mission). Knowledge regarding other robots is con-

sidered to be ‘stale’ after a robot has not been heard from after three minutes.

Stale robot knowledge is not used in role-switch or task assignments, but can be

reactivated by reestablishing communication. If a robot does not hear from any

of its team mates after three minutes, for example, the robot considers itself to

be on a team of one, and subsequent role switch checks will result in that robot

adopting a leadership role for its own single-robot team. Subsequent encounters

with other robots correct this as teams merge or redistribute themselves.

• Communication Manager : The communication manager is responsible for pro-

cessing wireless messages received from other robots involving team redistri-

bution commands, task assignments, and status updates regarding victims or

completed tasks. My work has required minor extensions to this module to

support recruitment-related messages.

• Role Manager : This module is responsible for handling role- and team-related

processes such as the role-switch check. I have made extensions to this mod-

ule implementing the missing role check process (Section 3.9.2). I have also

extended the role manager to handle the role-level recruitment process as de-

scribed in Section 3.9.2.1.

• Task Manager : The task manager handles robot work loads. It manages the
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task queue (Section 3.6.1), handles task preemption, and manages all communi-

cations and processes related to task assignment. I have made additions to this

module enabling robots to use the already-existing exhaustive task assignment

(Section 3.6.5) facilities to perform task-level recruitment (Section 3.9.1 in both

active and concurrent recruitment settings (Section 3.8).

• Active Recruitment Manager : This module manages active recruitment states

and tracks the path the robot has travelled (when recruiting actively) in order to

locate another robot; when the robot completes its recruitment tasks, it uses this

path information to guide itself back to its team’s last known location. Path-

tracking facilities are not necessary in concurrent recruitment settings since

robots perform regular work while recruiting (Section 3.8.1).

4.6 Mission-Specific Modules

This section describes the modules that are specific to the USAR implementation

of my framework. All of these modules with the exception of the marker manager

have already been implemented by Gunn [2011].

Importantly, not every robot will have instances of all modules due to differences

in computational ability. Computational attributes (Section 4.3.1.2) are used to de-

termine which facilities are available on a robot.

• Environment Mapper : This module is responsible for integrating the results of

exploration tasks to maintain a shared team map of the environment. This

requires considerable computation and storage facilities and is not present on
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every robot.

• Frontier Finder : The frontier finder module examines a robot’s map of the

environment and uses an occupancy grid-based approach to locate areas of ex-

ploration (Section 4.1.2.3) and generate explore frontier tasks (Section 4.3.2.1).

This requires considerable computation and storage facilities and is not present

on every robot.

• Victim Tracker : This module is responsible for maintaining and updating a

robot’s list of currently known victims and their statuses. Since victim detection

is central to my work, all robots in my implementation possess this module.

• Planner : The planner is used to compute paths to significant locations (e.g.,

victims, frontiers, etc.) that can be given to robots as part of a task assignment.

Because of the computational effort required by the pathfinding algorithm, only

the MaxBot possesses a planner.

4.6.1 Marker Manager

I have implemented the marker manager system to handle the process of releasing

markers when victims are detected, as well as to control when and how often a robot

should ask for markers when its own supply is low.

4.6.1.1 Releasing Markers

To avoid wasting victim markers by constantly deploying them whenever a victim

is detected, robots in my implementation use the marker manager to track how long
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it has been since the robot has observed a victim marker in the environment. The

marker manager also tracks the time that has passed since the robot has dropped

a marker near a victim. When a robot detects a victim close by (1.5 meters in my

work), the marker manager goes through the following process: if a sufficiently long

time has passed since the last marker has been seen (30 seconds), and if a marker

has not been dropped by the robot recently (60 seconds), then the robot will drop a

marker. If any of these conditions are not met the robot will not drop a marker.

The type of victim sensor a robot has also plays a part in this process. Robots

with basic victim sensors cannot distinguish between true and false victims; as a

result, these robots may drop markers near false victims. Robots with advanced

victim detection capabilities, however, will only consider dropping a marker if the

detected victim is in fact a real victim. Future work could include giving robots

with sophisticated victim sensors the ability to pick up markers deposited near false

victims that were dropped by robots with only basic victim sensors.

The marker manager also prevents robots from dropping markers during the exe-

cution of a marker donation task (Section 4.3.2.2), to ensure that a robot agreeing to

donate a marker actually has a marker to donate by the time it reaches the receiving

robot.

4.6.1.2 Requesting Marker Donations

If a robot without any markers wishes to drop a marker near a victim, and the

conditions for doing so are met (as outlined above in Section 4.6.1.1), the robot

will make a request to receive a marker donation from another robot. It does this
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by creating a donate marker task, and attempts to either (a) recruit someone for

that task (when recruitment is enabled), or (b) pass the task along to a team leader

for delegation to another team member. To prevent an overload of potential task

assignments or recruitment processes, robots requiring a marker donation will only

create donate marker tasks every 45 seconds in my implementation.

4.7 Conclusion

In this chapter I have described the implementation of my framework in a simu-

lated USAR domain. The following chapter describes the experiments I have designed

and performed to evaluate my framework.
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Evaluation

5.1 Introduction

To evaluate the effectiveness of my methodology (Chapter 3), I conducted exper-

iments in a simulated USAR domain, comparing the effectiveness of the concurrent

and active recruitment configurations against that of the baseline passive recruitment

configuration (Section 3.8). In my evaluation I consider factors such as the reliability

of wireless communication and the probability that any given robot can experience

temporary or permanent failures during a mission.

The next section reiterates the research questions my work aims to answer. In

the sections that follow, I describe the evaluation metrics employed and the process

I used to generate experimental USAR environments. Following this, I describe my

experimental design (one major factorial experiment and two follow-up experiments),

and then present the results of these experiments and discuss my findings.

114
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5.2 Review of Research Questions

Recall my research questions from Section 1.6.

1. To what degree does the use of various recruitment strategies improve

or hamper the overall performance of teams of heterogeneous robots

in dangerous domains?

2. What factors (e.g., availability of replacement robots, wireless relia-

bility, probability of robot failure) determine the recruitment strategy

that should be used in a given situation?

3. Which recruitment strategies, if any, result in overall best perfor-

mance of teams of heterogeneous robots if wireless reliability levels

are not known?

I answer my first research question by conducting a set of experiments in which

I vary the recruitment strategy and parameters affecting communication reliability

and robot failure. The second research question is answered by examining the relative

success of different recruitment strategies given these hazards, in order to determine

how these factors should influence the choice of recruitment strategy when they are

known. I answer the third question by examining the performance of my recruitment

strategies in environments with varying levels of communication reliability.
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5.3 Evaluation Metrics

To evaluate the performance of the USAR implementation of my framework, I

record four metrics over the duration of each mission: percentage of victims suc-

cessfully identified to leaders, percentage of area coverage, debris items removed, and

successful marker donations. My implementation captures these values at the end of

every experimental trial.

My software tracks the total number of successfully identified victims known to

each individual robot. A victim is considered successfully identified when it has been

confirmed as either a positive or negative victim. For the purpose of my evaluation,

however, I only consider victims that are known to team leaders, since such robots

would be expected to have the most complete picture of a team’s operational knowl-

edge. I do not take into account victim knowledge acquired by replacement robots

(recall from Section 3.5 that single robots will eventually become their own team lead-

ers) that have yet to join a team. Additionally, I do not process victim knowledge

acquired by MinBots due to their inability to merge and maintain team knowledge

(Section 4.2.1). There is also the possibility that a team may lose a leader near the

end of an experiment, leading to a further loss of information as the leader can no

longer receive information from other robots. Statistical information is still captured

from disabled leaders, however. These metrics make my results more conservative

than they would be if I counted all victims identified by all robots, and this is the

same approach used by Gunn [2011].

Environmental coverage is recorded by merging map exploration data from the

same set of robots that victim information is captured. This is the union of area
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coverage data that has been successfully communication to team leaders as a result

of exploration tasks (Section 4.3.2.1). This is the same area coverage metric used

by Gunn [2011]: as with victim statistics, I do not count coverage by replacement

robots that have yet to join a larger team, and there may be individual robots that

possess individual information that has not been communicated to a team leader at

the end of any trial. Additionally, the loss of a leader near the end of an experiment

can cause leaders to miss important information that would otherwise be included

in statistics capturing. Once again, this makes this metric more conservative than

simply counting all coverage by all individuals. All other statistics, which I describe

below, are gathered from all robots.

Debris removal tracking is divided into two separate categories: (a) debris removed

by unguided removal, and (b) debris removed by guided removal (these tasks are

explained in Section 4.3.2.2). This allows me to examine the performance of the

DebrisBot and determine how various factors (communication success rate, robot

failures, etc.) affect certain types of debris removal tasks.

Successful marker donations are tracked by counting the number of times a marker

donation has successfully taken place (Section 4.6.1.2). This metric is particularly im-

portant because marker donations require coordination between two robots, and the

success of any cooperative actions are likely to be heavily influenced by the environ-

mental conditions and the recruitment strategy used.
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5.4 Environment Generation

I evaluated my implementation in multiple simulated environments to reduce the

effects that bias inherent in any single environment would have on my results. To

support this, I used a two-phase approach similar to that of Gunn [2011] to generate

environments in which to evaluate my implementation.

5.4.1 Initial World Generation

Using a software tool developed by Wegner [2003] and further modified by Gunn

[2011], I generated 40 simulated environments as candidates for my experimental eval-

uation. I made modifications to this tool to support the inclusion of DebrisBots. In all

other respects, environment parameters were identical to those used by Gunn [2011]:

all environments measure 60m x 60m, with approximately 13% of the environment

covered by debris and obstacles, and 60% of these debris configurations are passable

only by robots with tracked drives (i.e., MaxBots and DebrisBots can traverse these

types of debris, but other robots cannot) and can be removed by robots with the

appropriate equipment (i.e., DebrisBots).

Victim placement is identical to the approach used by [Gunn, 2011]: 10 negative

victims and 20 positive victims (the difference between these is discussed in Sec-

tion 4.1.2.1) are distributed randomly in the environment such that victims are at

least 0.8 meters away from a wall and do not overlap each other.

The placement of robot teams also matches that of [Gunn, 2011]: two openings

are built into opposite ends of each environment, allowing one-way entry of two sep-

arate teams at the onset of the mission (indicated by red circles in Figure 5.1). The
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distribution of replacement robots is also the same: replacements are released from

equally-spaced positions along the inner perimeter (indicated by blue dots in Fig-

ure 5.1).

Figure 5.1: An example randomly-generated world.

After the initial environment generation, I selected 3 environments to use for

running my experiments. My selection criteria were similar to those of Gunn [2011]:

• I discarded any environment with significant debris blocking the area in which

a team is initially deployed, since the time necessary to navigate such debris

would contribute to lower team performance over the course of the half-hour
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missions. Unlike Gunn [2011], however, I allow limited removable debris objects

to be present in front of a team’s starting position due to the added presence

of a DebrisBot on each team. The DebrisBot is able to remove this debris

immediately upon the start of a mission and prevent it from hindering the

team’s progress.

• I discarded any environments where the presence of large obstacles blocked a re-

placement robot’s starting position, to avoid wasted time as the robot attempts

to navigate around it.

• Any environment with highly clustered debris or obstacles was discarded, since

the environments should be uniformly covered with debris.

• Environments with highly clustered victim populations were not used, in order

to ensure that each environment required roughly the same level of effort when

locating victims.

The output of this first phase was 3 simulated USAR worlds (represented as Stage

.world files) that I used as a starting point for generating my experimental trials. All

of my environments are shown in Appendix A.

5.5 Experimental Design

I used a factorial experiment design to evaluate the effectiveness of my recruitment

strategies, employing the 3 selected worlds I generated as described in Section 5.4.1.

Limitations of the Stage simulator dictate that experimental parameters (e.g., wireless
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communication success rate, probabilities of robot failure, random seeds, etc.) must

be specified in the .world files themselves—this required me to generate one .world

file for every experimental configuration.

Stage (as well as the Gunn and ARC frameworks) guarantee repeatability through

the use of random seed integers embedded in a .world file. Running any particular

.world file will generate the same results each time, since the random seed in a .world

file cannot be changed. This is useful when re-running trials for observation. To en-

sure sufficient breadth of events in my simulations, I used identical sets of 50 random

seeds for each experimental configuration, resulting in 50 .world files for every combi-

nation of independent variables (described in detail in Section 5.5.1). This helped to

ensure that differences in robot team performance across different experimental con-

figurations could not be attributed to random numbers that inadvertently favoured a

group of trials. This ultimately resulted in 8100 .world files, which were run concur-

rently (approximately 36 at a time) using Amazon Web Services. Figure 5.2 shows my

experimental breakdown. The variables depicted in the figure are explained further

in the following subsection.

5.5.1 Independent Variables

With the exception of the recruitment configuration variable, the independent

variables used in my factorial experiment are taken from [Gunn, 2011] in order to

facilitate comparison with that work:

• Replacement Robots : This variable controls the availability of replacement robots

in my experiments—either they are present or they are not. When replacement
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3 generated 
environments

X X X

X X

= 8100 experimental trials

50 repetitions per 
configuration

Figure 5.2: Depicts my experimental breakdown.

robots are used, 10 additional MinBots, 2 replacement MidBots, 1 DebrisBot,

and 1 MaxBot are available. They are introduced into the environment after

five simulated minutes and are spread equidistantly around the inner perimeter

of the environment, facing inwards. With the exception of the DebrisBots, this

setup is identical to that of [Gunn, 2011].

• Recruitment Configuration: This defines the recruitment mode used—this will

be active, concurrent, or passive recruitment (Section 3.8). Recall from Sec-

tion 3.9 that task-level and role-level recruitment techniques will both be en-

abled together in active or concurrent recruitment settings.

• Robot Failure: This variable controls the probability that a particular type

of robot will experience a temporary or permanent failure (Section 4.1.2.6).

Temporary and permanent failure probabilities are specified separately for each

robot type, as shown in Table 5.1. These are the same values as used in [Gunn,
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level model
prob. permanent

failure
prob. temporary

failure
avg. % total

time failed

none MinBot 0.000 0.000 0.000%

MidBot 0.000 0.000 0.000%

MaxBot 0.000 0.000 0.000%

DebrisBot 0.000 0.000 0.000%

minimal MinBot 0.000 0.008 14.9%

MidBot 0.000 0.006 11.9%

MaxBot 0.000 0.004 9.0%

DebrisBot 0.000 0.008 14.9%

moderate MinBot 0.002 0.014 25.1%

MidBot 0.002 0.012 20.9%

MaxBot 0.002 0.010 18.5%

DebrisBot 0.002 0.014 25.1%

Table 5.1: Robot failure probability configurations.

2011].

• Communication Reliability : This defines the probability that any given wireless

message will be successfully delivered to its intended recipients (Section 4.1.2.5).

As in [Gunn, 2011], I use communication success rates of 100%, 60%, and 20%.
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5.6 Additional DebrisBots Experiment

I conducted a second experiment in which I inserted additional DebrisBots into

the environment as replacements. This Additional DebrisBots experiment was done

to study the effect that extra DebrisBots would have on the number of successful

guided debris removals (Section 4.3.2.2), since this particular metric is difficult to

interpret given the small number of DebrisBots in my main experiments. I substituted

two replacement MinBots with DebrisBots, resulting in a total of five DebrisBots in

the environment. All other experimental parameters were identical to those of my

main experiments, with the exception of the presence of replacements—since I was

specifically concerned with testing the effect of multiple replacement DebrisBots, I

did not run any trials where replacements were not present. This resulted in 4050

experimental trials. Figure 5.3 shows the breakdown for this experiment. The results

of this experiment are given in Section 5.9.

1 replacement 
configuration
· replacements

3 recruitment 
configurations
· passive
· concurrent
· active

3 levels of robot 
failure
· none
· minimal
· moderate

3 levels of comm. 
reliability
· 100%
· 60%
· 20%

3 generated 
environments

X X X

X X

= 4050 experimental trials

50 repetitions per 
configuration

Figure 5.3: Depicts the breakdown for my Additional DebrisBot experiment.
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5.7 Minimal Team Experiment

I performed a third, Minimal Team experiment to compare area coverage levels

and the number of victims identified for all three recruitment strategies when operat-

ing with a minimal team and no replacement robots. The purpose of this experiment

was to determine how robot performance was impacted when few robots were avail-

able for recruitment or task assignment in general. In this experiment, robot teams

only contained 1 MinBot, 1 MidBot, 1 DebrisBot, and 1 MaxBot. All robots were

given 4 victim markers each (Section 4.1.2.7) instead of the usual 2, to offset the lower

number of markers available to the team as a whole—this ensured that robots in this

experiment had the same number of victim markers (16) as they did in my main

experiment. For this particular experiment, the ideal team definition (Section 4.3.4)

was changed to exactly match the initial make-up of each team (1 of each type of

robot). This was done to ensure that robots would not focus too much effort into

recruiting robots that were unlikely to be available given the smaller teams and the

(known) lack of replacements. Note, however, that this does not preclude the pos-

sibility of role-level recruitment taking place if a team detects that a member has

become lost. Additionally, task-level recruitment is still possible. All other experi-

mental parameters were identical to the previous two experiments. The breakdown

of this experiment is also identical to that of the Additional DebrisBots experiment

(Figure 5.3), yielding 4050 trials.
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5.8 Main Experiment Results

In this section I describe the results I obtained by running the trials for my main

experiment, as described in Section 5.5. Statistics were collected at the end of every

trial, including the metrics described in Section 5.3. The results presented in the

following subsections show the impact of communication unreliability and robot fail-

ures, as well as the effect of the presence of replacement robots. Error bars on all

charts that follow indicate a confidence interval of 95%.

It is important to note that victim identification results (Section 5.8.1) and area

coverage results (Section 5.8.2) in passive settings are similar, although slightly higher

than, those of Gunn [2011] in ideal communication conditions with no robot failures.

As conditions deteriorate, area coverage and the percentage of victims identified in

passive settings do not degrade as severely as they do in [Gunn, 2011]. This is likely

due to the added presence of DebrisBots (Section 4.2.4), who are able to traverse short

obstacles and perform unguided debris removal in the absence of more important

work (Section 4.3.2.2). This enables robot teams to gain additional coverage due

to the extra robot in general, and the DebrisBot also clears debris for the other

team members. While it is possible that the improved equation for determining

role switch weights (Section 3.5) has an effect on these results, I do not believe

this is a significant factor, for the same reason given in [Gunn and Anderson, 2015]:

the number of situations that the altered equation affects is small. The addition of

DebrisBots (1 on each team, plus 1 replacement, if replacements are used), however,

is a significant factor and is likely the cause of these differences. In all other respects,

my experimental setup is identical to that of Gunn [2011], and so I believe that the
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Figure 5.4: Percentage of identified victims, with no replacement robots available.

results shown in the subsequent sections are directly comparable to that work.

5.8.1 Victims Identified to Leaders

Figures 5.4 and 5.5 shows the percentage of victims identified to a team leader,

for each recruitment strategy under varying communication success rates and robot

failure rates.

The largest improvements between my new recruitment strategies and passive re-

cruitment are seen when communication success rates fall to 20%. A major weakness

of [Gunn, 2011] was that extreme communication failures caused teams to completely

break down, indicating that extremely low communication success rates were not suf-

ficient to maintain adequate team performance—as communications failed in passive

settings, fewer victim confirmation tasks (Section 4.3.2.1) could be assigned by a team
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Figure 5.5: Percentage of identified victims, with replacement robots available.

leader. Active recruitment strategies, however, allow other robots to perform task as-

signment as well (i.e., task-level recruitment, Section 3.9.1), allowing more opportu-

nities for victims to be confirmed. Role-level recruitment (Section 3.9.2) also provides

additional opportunities for information exchange, since robots changing teams bring

new victim knowledge with them. Additionally, the physical act of searching during

active recruitment allows recruiting robots to cover more ground (area coverage is

discussed in Section 5.8.2) and discover more victims.

In conditions of 100% communication success rate and no robot failures, active and

concurrent recruitment performed similarly when replacements were available. Given

that there were no failures, there should be less need for replacements (although

robots can still leave a team by getting lost). The replacement robots available

essentially become a bonus, and both concurrent and active recruitment perform



Chapter 5: Evaluation 129

equally well at finding and integrating them. When replacements were not available,

active recruitment provided more noticeable gains over concurrent recruitment. In

the case where communications are 100% reliable, robot failures do not occur, and

replacements are not available, the only robots that can be recruited to replace those

lost from a team must either be from an existing team, or previously lost robots. In

either case, a more active approach is of greater use.

Beyond that one case, active recruitment outperformed passive in all experimental

conditions, regardless of robot failure levels or the communication success rate. Over-

all, active recruitment outperformed passive in all experimental conditions, regardless

of the presence of replacement robots. These improvements likely arise as a result

of the physical searches that robots perform when actively recruiting: as mentioned

above, physical exploration increases the chances of encountering other robots and

also provides opportunities to discover new tasks, such as victims that need to be

confirmed. Robots encountering one another as a result of recruitment also have the

opportunity to fill more useful roles on other teams and exchange useful information

as a result.

It is interesting to note that in ideal conditions with no replacements, concur-

rent recruitment was outperformed by passive recruitment. The likely cause of this

phenomenon is the slight duplication of effort that occurs as non-leader robots in

concurrent settings assign victim-confirmation tasks to other robots without the in-

tervention of a team leader. Without the broader perspective that the leader possesses

(i.e., which victims are confirmed and which are still unknown), victim confirmation

tasks may be unnecessarily assigned to more than one robot, resulting in wasted
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Figure 5.6: Percent area coverage, with no replacement robots available.

robot efforts that should be directed elsewhere. Since passive recruitment relies on

a single leader to make task assignment decisions, this duplication of effort is much

less likely to occur—the leader assigns tasks using knowledge accumulated from the

other members of the team. However, this reliance on a leader and communications

with it is also shown to be a vulnerability. As communications degrade or as robots

fail, the redundancy in robot efforts provided by concurrent recruitment becomes

advantageous and results in more victims identified than in passive settings.

5.8.2 Area Coverage

Figures 5.6 and 5.7 show the percentage of robot area coverage for each recruitment

strategy, under varying communication success and robot failure rates.

With the exception of conditions with extremely low communication success rates,
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Figure 5.7: Percent area coverage, with replacement robots available.

there is not much difference in area coverage across recruitment strategies when re-

placements are available. A possible reason for this could be that 30 minutes is not

sufficient time to allow robots to cover the entire area, and the area coverage levels

shown in Figure 5.7 represent the maximum area that can be covered in that time.

It is also possible that my experimental environments, shown in Appendix A, contain

hard-to-reach areas that make it difficult for my robots to achieve more than 90%

environmental coverage. This could also be reflective of my conservative tracking of

environmental coverage, since the remaining area may have actually been explored

by isolated robots or not communicated to a team leader. As communication success

rates fall to 20%, and as robot failures become more significant, the effect of using

active and concurrent recruitment over passive recruitment becomes more obvious.

With a 20% communications success rate, not only is it more difficult to communicate
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exploration results to a team leader, but it becomes much more difficult to effectively

manage a team (e.g., receive task assignments, accept assignments, negotiate team

rebalancing, etc.), and the ability to more actively recruit individuals has a greater

impact.

Similarly, greater failure rates have a corresponding impact. The fact that there

is only a small difference in area coverage between 100% and 60% communication

success rates and low levels of failure indicates that the environment is forgiving

enough in these conditions to allow near-complete coverage of the environment during

a trial without significant recruitment. Less-forgiving conditions, however, are more

reflective of USAR environments and show the utility of my recruitment techniques.

It is probable that real robots in actual USAR conditions will exhibit a greater level

of failure than is used in my experiments, and will further demonstrate the usefulness

of these strategies.

My recruitment strategies also show their effectiveness when no replacement robots

are available, and active recruitment results in greater coverage of the environment

compared to concurrent and passive recruitment in all experimental configurations.

This is due to the physical searches that take place in these settings, as well as

the improved likelihood of recruiting new team members (possibly to replace failed

robots): as robot teams exchange members over the course of a trial (e.g., a robot

from team 1 may join team 2, and a robot from team 2 may eventually join team 1),

useful environmental information can be shared.

Interestingly, concurrent recruitment performed poorer than passive recruitment

in terms of area coverage, except in conditions of severe communication failure. The
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likely explanation for this is a duplication of exploration effort, as noted in Sec-

tion 5.8.1. Recall from Section 4.3.1.2 that MidBots have the ability to detect fron-

tiers (Section 2.6.2). Since in concurrent recruitment settings robots are able to assign

tasks, MidBots are thus able to assign explore frontier (Section 4.3.2.1) tasks to other

robots via recruitment when frontiers are discovered. In passive recruitment settings,

however, only team leaders are able to assign exploration tasks. Since these tasks

originate from a leader with a unified view of the environment, exploration tasks

will be allocated so as to minimize duplicate area coverage. MidBots in concurrent

recruitment settings, however, are not likely to have as complete a picture of the

environment as a team leader. Subsequent exploration tasks (assigned by MidBots)

result in some duplication of effort as robots are tasked with exploring areas that

have already been examined.

Figures 5.9 and 5.8 show area coverage in situations of major robot failure and

20% communication success rates, with and without replacement robots respectively,

for each of the three recruitment strategies. When replacements were not available,

concurrent recruitment performed slightly better than passive due to the fact that

exploration tasks could be assigned by non-leader robots. When replacements were

available, however, concurrent recruitment resulted in much greater area coverage

than passive recruitment, since my recruitment strategies are better able to leverage

the existence of replacements in severe environmental conditions, when compared

to passive recruitment. Regardless of the presence of replacement robots, active

recruitment resulted in the highest area coverage over both concurrent and passive

recruitment in these conditions. This is likely due to the combination of physical
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Figure 5.8: Percent area coverage over time, with major failures and 20% communi-

cation success rates, with no replacement robots available.

searches that take place in active recruitment settings as well as the ability of non-

leader robots to assign exploration tasks.

5.8.3 Debris Removed

Recall that DebrisBots are able to clear small debris objects as a result of their

unguided debris removal or guided debris removal tasks (Recall from Section 4.3.2.2

that unguided debris removal is performed by an idle DebrisBot, and guided debris

removal is executed at the request of a robot that has become stuck). My simulation
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Figure 5.9: Percent area coverage over time, with major failures and 20% communi-

cation success rates, with replacement robots available.

software tracks the success of these two types of debris removals separately since this

yields more useful information about the behaviour of the DebrisBots. The next two

sections describe these results.

5.8.3.1 Unguided Debris Removal

Figures 5.10 and 5.11 show the number of debris objects removed as a result of

unguided debris removal, by recruitment method, communication success rate, and

probability of robot failure.
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Figure 5.10: Amount of debris removed during execution of the unguided debris re-

moval task, with no replacements available.

The amount of debris removed was slightly greater in concurrent recruitment set-

tings than in passive settings. This is likely because in passive settings, DebrisBots

are unable to assign tasks via recruitment to other robots, and must spend more time

executing tasks other than debris removal. The amount of debris removed in con-

current settings was also higher than in active settings. This is due to the fact that

DebrisBots performing active recruitment must perform a physical search at the ex-

clusion of other useful work, i.e., DebrisBots cannot perform unguided debris removal

tasks while they are actively recruiting. Concurrent recruitment does not suffer from
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Figure 5.11: Amount of debris removed during execution of the unguided debris re-

moval task, with replacements available.

this problem, since there is nothing preventing a DebrisBot from continuing useful

work (e.g., unguided debris removal) while simultaneously broadcasting recruitment

requests.

The addition of replacement robots resulted in more debris removal when com-

munication was poor, since robot replacements include one DebrisBot (Section 5.5.1)

and lower communication reliability provides extra opportunities for DebrisBots to

look for debris in the absence of higher-priority task assignments.

Another phenomenon can be observed when robot failures occur: the number of
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Figure 5.12: Amount of debris removed during execution of the guided debris removal

task, with no replacements available.

unguided debris removals decreases as robot failures increase. This is because the

higher number of robot failures results in DebrisBots being assigned tasks that would

otherwise be assigned to other available robots. In real-world USAR conditions, this

effect would likely be seen even more strongly due to the fact that robots would fail

very often.
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Figure 5.13: Amount of debris removed during execution of the guided debris removal

task, with replacements available.

5.8.3.2 Guided Debris Removal

Figures 5.12 and 5.13 show the number of debris objects removed as a result

of guided debris removal, by recruitment method, communication success rate, and

probability of robot failure.

Recall from Section 4.3.2.2 that instances of guided debris removal tasks are only

created when a robot has detected that it has become stuck. A debris object that

is removed relatively close by to a stuck robot is considered a success, but does not

necessarily indicate that the robot has been freed. This is because the robot may
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have become stuck on an obstacle that cannot be removed (such as a wall—visual

observations of some simulations indicate that robots are more likely to become stuck

against walls that form tight corners), and the DebrisBot may simply have removed

debris that happened to be very close by. These numbers are lower in comparison to

the number of unguided debris removals (Section 5.8.3.1) due to the infrequency with

which robots become stuck, compared to the amount of debris that is removed during

unguided debris removal. The infrequency and variability in robots becoming stuck

means there is significant variability with which guided debris removals occur, and this

is reflected in the wide confidence intervals seen in Figures 5.12 and 5.13. This makes

it more difficult to draw useful conclusions regarding the effect of various recruitment

strategies and environmental conditions. However, some useful observations can still

be made.

Active recruitment configurations resulted in the lowest number of guided debris

successes. This is likely because robots recruiting for targeted debris tasks in active

settings perform physical searches that take them further away from the stuck robot

who originally created the task. While a physical search may ultimately result in

finding a DebrisBot sooner, the DebrisBot receiving the task may have to travel

across a significant portion of the environment in order to reach the stuck robot.

This increases the probability that the DebrisBot may be intercepted and recruited

for more important duties along the way (thus moving the guided debris tasks further

down the robot’s task queue), as well as increasing the possibility that the DebrisBot

becomes stuck on (non-removable) obstacles. Concurrent and passive recruitment do

not involve physical searches, making it more likely in those settings that a targeted
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debris removal task will ultimately be successful. As communications degrade in a

passive setting, however, the likelihood of a guided debris removal task being conveyed

to a DebrisBot lowers signficantly (due to the required intervention of a team leader),

accounting for the lower number of guided debris removals seen in Figure 5.12 when

communications fall to 20% in passive settings.

The presence of replacement robots results in a greater number of guided debris

removals. A combination of factors likely contributes to this. The addition of a

replacement DebrisBot provides redundancy and increases the probability that a stuck

robot will be assisted. Also, the greater number of non-disabled robots (due to

the presence of replacements) means that there are more robots that can become

stuck, potentially increasing the number of targeted debris removal tasks. Lastly, the

presence of replacement robots means that more robots are available in general to

perform work that might otherwise be assigned to a DebrisBot—thus, the DebrisBot

is more available for guided debris removal tasks.

5.8.4 Marker Donations

Figures 5.14 and 5.15 show the number of fiducial victim markers that were suc-

cessfully transferred to robots who requested them (Section 4.1.2.7), by recruitment

strategy, robot failure rate, and communication reliability rate. These numbers are

generally low because of the high degree of coordination and communication that

is required. Unlike other tasks, marker donation requires the efforts of two robots,

with one robot executing the give marker task and another executing the wait for

marker task, and assumes that neither robot has more important work to complete.
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Figure 5.14: Number of successful marker donations, with no replacements.

Additionally, the donating robot must have established line-of-sight with the robot

requiring a marker, which will not occur frequently due to the number of obstacles in

the environment. It is also possible that each robot carried too few victim markers,

making it likely that they would have none to donate after having previously encoun-

tered even a small number of victims (recall from Section 5.4.1 that every environment

contains 10 negative and 20 positive victims).

Communication success rates had a significant impact on the number of fiducial

victim markers successfully donated to robots requiring them. The tasks involved

in a marker donation require a high degree of coordination, and communication fail-
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Figure 5.15: Number of successful marker donations, with replacements.

ures occurring with either robot at any point causes this process to fail. Extremely

low communication success rates (20%) resulted in virtually no successful marker

donations.

Robot failures also had an effect on the number of marker donations that could

be completed. This is caused by the lower availability of working robots to provide

marker donations, as well as the lower number of working robots that can request

them.

Both active and concurrent recruitment performed better than passive recruitment

when communications were reliable. This is because recruitment facilities provided
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robots with extra opportunities to successfully pass on a give marker to robot task

themselves to a unit that was able to donate. Passive recruitment, on the other hand,

required a robot to pass on the task to a team leader, who would then assign the task

to another robot. The team leader therefore acts as a bottleneck, which is problematic

if they are out of wireless range or otherwise unavailable (i.e., due to radio or robot

failure).

The presence of replacement robots resulted in a slight increase in the number of

successful marker donations due to the larger number of robots available. The gains,

however, are small. A possible reason for this is that the majority of replacement

robots were MinBots, which only carry a single victim marker each. While a robot

with one marker is still able to donate, any MinBot encountering an unmarked poten-

tial victim (e.g., shortly after being deployed as a replacement) will cause the MinBot

to drop its only marker, precluding the possibility of making a donation.

5.8.5 Effect of Failures and Communication Success Rates

Robot failures and communication success rates both had significant impacts on

the effectiveness of my recruitment techniques, and these two variables affected my

results in different ways depending on the metric being observed. Victim identifi-

cation (Section 5.8.1) and area coverage (Section 5.8.2) were most greatly impacted

by communication failures, since these metrics relied on information being passed to

team leaders. While robot failures did have an effect on these two metrics, the effect

of failures was less than that of communication success rates, which was the limiting

factor in these results.
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Unguided debris removal was most greatly affected by robot failures. As men-

tioned in Section 5.8.3.1, more robot failures led to more tasks being assigned to

DebrisBots. This resulted in fewer opportunities for unguided debris removal since

DebrisBots would be busy with tasks that would otherwise be assigned to other

robots. It is difficult to determine the effects of communication success rates and

robot failures on guided debris removals due to the wide confidence intervals shown,

as discussed in Section 5.8.3.2.

Marker donation (Section 5.8.4) was slightly affected by robot failures due to

the varying number of working robots who could donate victim markers, but this

metric was most strongly affected by communication success rates. The high degree of

coordination required to complete this joint task made marker donations more difficult

to accomplish with communication success rates of 60%, and virtually impossible to

complete at communication success rates of 20%.

5.9 Additional DebrisBots Experiment Results

Figure 5.16 shows the results of my Additional DebrisBots experiment (Section 5.6),

by recruitment strategy, communication success rate, and robot failure probability.

Error bars indicate a 95% confidence interval.

The results of this experiment are similar to those of the main experiment’s guided

debris removal amounts (Section 5.8.3.2). While the amount of debris removed is

higher in the Additional DebrisBots experiment because of the increased number

of robots available to clear debris, it is clear that in all experiments, concurrent

recruitment consistently outperforms passive recruitment, and passive recruitment
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Figure 5.16: Amount of debris removed during execution of the guided debris removal

task, during my Additional DebrisBots trials.

outperforms active recruitment (except when communication is poor). This suggests

that for uncommon tasks, active recruitment is not always an ideal strategy. As

recruiters move away from the uncommon task’s location to find a robot to perform

the task, there is a greater risk that a recruit may not be able to navigate to the task’s

location since it is further away, or that the recruit may be intercepted for other duties

along the way. Also similar to the main experiment’s guided debris results, there is

significant variability in the number of guided debris removals in any trial, leading

to wide 95% confidence intervals. The discussion regarding wide confidence intervals

presented in Section 5.8.3.2 similarly applies to these results.
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Figure 5.17: Percentage of victims identified, during the Minimal Team experiment.

5.10 Minimal Team Experiment Results

In this section, I describe the results of my Minimal Team experiment. Fig-

ures 5.17 and 5.18 show the number of victims known to team leaders and area

coverage, respectively, by recruitment method, communication success rate, and prob-

ability of robot failure. As with my main experiment, these statistics are captured

from team leaders.

Active recruitment outperformed both concurrent and passive recruitment in terms

of the percentage of victims identified, in almost all experimental configurations. This
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Figure 5.18: Percentage of area coverage, during the Minimal Team experiment.

is due to the greater level of physical exploration that takes place in active recruit-

ment. More exploration provides opportunities to cover more of the environment,

discover more victims, and encounter other robots with useful information regarding

the status of victims. Area coverage was also highest in active settings due to the

physical searches that active recruitment supports.

As in my main experiments (Section 5.8.2), concurrent recruitment performed

slightly poorer than passive recruitment in terms of area coverage, except in condi-

tions of severe communication failure. A similar phenomenon can be seen when ex-

amining the percentage of victims identified: concurrent recruitment performs more
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poorly than passive recruitment, except in conditions of greater robot failure and

communication unreliability (i.e., the types of conditions typical to domains such as

USAR). As with area coverage, this is likely due to some duplication of effort that

occurs in terms of area exploration and victim confirmation tasks (Section 4.3.2.1).

As conditions degrade, however, the effectiveness of passive recruitment declines and

is surpassed by concurrent recruitment.

There was not a large difference in the percentage of victims found in concurrent

settings until communication success rates fell to 20%. This suggests that the abil-

ity to assign tasks without a team leader provides redundancy and prevents robot

performance from degrading.

Robot failures had a stronger effect on these results than in my main experiment

(Section 5.8). This shows, intuitively, that the performance of small robot teams can

degrade significantly in dangerous domains when losses occur and replacements are

not available.

Interestingly, the amount of area coverage in this experiment is only slightly less

than that of my main experiment where replacement robots are not available (see

Figure 5.4). This suggests that a relatively small team of robots is sufficient to cover

a significant portion of these evironments, regardless of the recruitment strategy, and

larger teams (or the availability of replacement robots) provide few improvements be-

yond this. As mentioned previously (Section 5.8.2), it is possible that my experimental

environments (Appendix A) contain hard-to-reach areas that make it difficult for my

robots to achieve full coverage, and the presence of larger teams or replacements only

helps to provide slightly more coverage in those areas. It is also possible that the
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remaining area is explored by isolated individuals or not communicated to a team

leader. (A map of area coverage over my experimental trials would have provided

useful insight, but these statistics were not captured by my simulator.) However,

active recruitment still outperformed the other two strategies in this regard due to

the physical searches it involves.

5.11 Analysis

Now that I have described the results of my experiments, I will now make some

general observations of my methodology and identify areas of strength as well as

certain areas that could use improvement.

My framework clearly shows that active and concurrent recruitment strategies

provide significant performance gains in many cases. The ability to assign tasks to

other robots without the involvement of a team leader removes a layer of indirection

from the task assignment process, and enables robots to pass tasks from one unit to

another until a successful recruitment takes place (Section 3.9.1.2). Role-level recruit-

ment also provides significant benefits because it allows robots to more aggressively

search for desired team members, who likely contain new information that can be

useful to the team (such as the locations of victims). This spread of information also

increases redundancy across multiple robots, meaning that the failure of a particular

unit does not result in as great a loss of information.

My recruitment strategies also demonstrate that they are much more capable of

handling situations where communication success rates are extremely low, or when

robot failures are likely to occur. Passive recruitment strategies rely heavily on chance
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encounters with other robots and rely on team leaders to perform task assignments,

and it is clear that this strategy does not perform well under challenging condi-

tions (also noted by Gunn [2011]). The overall high performance of my recruitment

strategies indicates that more decentralized decision making is useful when operating

conditions are harsh.

Similarly, active and concurrent recruitment often result in greater performance

improvements when replacement robots are not available. These gains are lessened

when replacement robots are present, indicating that with enough robots in ideal

conditions, recruitment strategies provide little benefit and can even be detrimental

to team performance (as noted in Section 5.8.2). However, it is unrealistic to expect

such ideal conditions when operating in hazardous environments.

A weakness of concurrent recruitment is that it can result in duplication of effort.

This is advantageous when operating conditions are harsh, but can be detrimental

to robot team performance under ideal conditions due to the fact that, without the

intervention of a team leader (who possesses a larger view of the work that needs to

be performed), robots are able to assign tasks in a slightly overlapping fashion. For

example, two different robots independently assigning exploration tasks might result

in an area unknowingly being explored more than once.

A weakness of active recruitment is that it takes robot efforts away from immedi-

ately useful work. This is not problematic for types of work that are easily completed,

either because there are many such tasks available, or because many robots are avail-

able that are capable of performing that particular type of task. However, task types

which occur infrequently tend to become neglected as robots spend significantly more
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time recruiting than executing these types of tasks. Work such as exploration will still

occur as a side-effect of active searches and likewise, new tasks might be discovered

as well. This suggests that robots capable of performing important tasks which occur

less frequently should use concurrent recruitment to avoid spending too much time

recruiting actively instead of executing important tasks. Therefore, the decision to

use concurrent versus active recruitment depends on the level of task specialization,

the number of robots available to complete the task, the importance of the task, and

the overall likelihood of such a task being created.

A related weakness of active recruitment is that since it involves physical searching,

robots actively recruiting for a specialized task at a particular location are more likely

to recruit the required robot further away from the physical location of the task, since

active searching (which takes a robot away from its original location) is more likely

to result in successful recruitment. This might make it more difficult for a recruited

robot to reach the original task location—it may be intercepted, or become stuck

or lost along the way. As seen in my main experiment (Section 5.8.3.2) and in my

Additional DebrisBots experiment (Section 5.9), it would be more useful to perform

less aggressive searches in these cases, and future research will need to determine

where this balance lies.

5.12 Conclusion

In this chapter, I have provided an overview of my research questions and the

approach used to answer them. I described my evaluation metrics and how I generated

my experiments, as well as my experiment breakdown and the independent variables
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in my study. Following this, I presented and discussed my results. Finally, I concluded

with a discussion of my methodology’s strengths and weaknesses.



Chapter 6

Conclusion and Future Work

6.1 Introduction

I begin this chapter by reviewing my research questions (Section 5.2) and dis-

cussing how my experimental results from Chapter 5 answer them. I provide an

outline of the main contributions of my thesis in Section 6.3, and discuss directions

for future work in Section 6.4.

6.2 Answers to Research Questions

My research questions were originally presented in Section 1.6. In this section, I

review these questions and discuss how my results answer them.

1. To what degree does the use of various recruitment strategies improve

or hamper the overall performance of teams of heterogeneous robots

in dangerous domains?

154
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My results show that active and concurrent recruitment strategies provide sig-

nificant performance improvements over passive recruitment approaches. This

is particularly true when operating under the challenging conditions that are

expected of dangerous environments. It appears that my recruitment strate-

gies become increasingly useful as the environment becomes more dangerous.

This is particularly true of active recruitment, which often provided the greatest

gains in these conditions. In situations where conditions are highly favourable

(e.g., plenty of robots available, with few failures, and reliable communication)

recruitment provides little benefit and can even hamper team performance.

2. What factors (e.g., availability of replacement robots, wireless relia-

bility, probability of robot failure) determine the recruitment strategy

that should be used in a given situation?

As environmental conditions become less favourable, recruitment strategies be-

come increasingly useful. The availability of replacement robots, wireless relia-

bility, and robot failure probabilities all contribute to this: unfavourable values

of any of these factors should be taken as an indication that more active re-

cruitment strategies are necessary for most tasks. There are exceptions to this,

however: for example, guided debris removal was shown to be less effective in

active recruitment settings (Section 5.8.3.2). An additional factor to consider

is the existence of highly-specialized work that does not need to occur often. In

active recruitment settings, highly-specialized robots often spent a significant

amount of time performing recruitment at the cost of performing lesser amounts

of highly-specialized work. When deciding on a recruitment strategy, therefore,
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the importance and frequency of such work, as well as the availability of robots

able to complete such work, must be taken into account.

3. Which recruitment strategies, if any, result in overall best perfor-

mance of teams of heterogeneous robots if wireless reliability levels

are not known?

Active and concurrent recruitment outperformed passive recruitment in several

cases, particularly when communication reliability was low. This makes these

two strategies ideal choices if wireless reliability levels are not known. As noted

above, the choice to use either active or concurrent recruitment also depends on

the number and availability of robots that are able to perform highly-specialized

work, the importance of the work to the team’s overall mission, and how of-

ten that particular type of work is required (one particular example is guided

debris removal, Section 5.8.3.2, which received the least benefits from active

recruitment).

6.3 Contributions

My thesis research provides a number of useful contributions, including:

1. A methodology for dynamic team management that provides increased perfor-

mance for teams of heterogeneous robots in dangerous environments, particu-

larly when environmental conditions become highly unfavourable. This includes

techniques for more actively acquiring new team members and promoting the

spread of useful information, as well techniques for assigning tasks among other
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robots on a team without the direct involvement of a team leader.

2. The recruitment spectrum: a useful definition of the types of recruitment strate-

gies and their proven effects on team performance in dangerous settings.

3. Insight into the usefulness of various recruitment strategies in varying environ-

mental conditions.

4. An example implementation of my methodology, demonstrating the effective-

ness of my framework in simulated disaster environments in a repeatable man-

ner.

5. An experimental domain that is useful for other future work.

6.4 Future Work

Although the evaluation of my framework clearly demonstrated significant ben-

efits of my methodology, my work has raised several useful questions that further

contribute to this field. There are numerous ways in which my research can be im-

proved, and it encourages several avenues of future work. This includes improvements

to my implementation, enhancements to my methodology, and possible directions for

further research.

6.4.1 Implementation Improvements

First and foremost, a physical implementation of my work using real robots would

yield additional insight into the effectiveness of my methodology. Given that my
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recruitment strategies result in greater gains under more challenging conditions, the

difficulty of operating in real-world environments with real robots may indicate even

more utility than what is shown in simulations. Issues such as localization, sensor

error, and the physical shifting of debris would be more complex in the real world.

Additionally, robots would become stuck more often in a physical implementation,

even if only in a minor way. Experiments with real robots along the lines of those

done in my thesis are needed to see the effects that these real world conditions would

have on my framework.

Conducting experiments in simulation is still important, however, because of the

difficulty of maintaining a large number of real robots consistently over a large number

of experimental trials. For this reason, it is also important for simulation realism to

be improved. In this section, I describe various ways to improve my implementation.

A possible improvement to my implementation would be to enforce real-time con-

straints on robot processing. Currently, robots can perform arbitrarily complex com-

putations in a single simulation time step; in a physical implementation, larger com-

putations would take greater time to complete. My simulator could be made more

realistic by imposing restrictions on how many computations a robot can complete

in a single time step. My results are still conservative in this aspect, however, as the

limitations placed on the MinBots (Section 4.3.1.2) are likely small compared to the

type of affordable computational power that could be placed on an expendable robot

platform (e.g., a cell phone).

Future work could also include making improvements to my simulator allowing

robots to physically move small debris objects by bumping into them. This would
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make debris removal more realistic than it is implemented in my work and, also

realistically, may increase the chances of robots becoming stuck as debris is shifted.

Although Stage does not currently support object dynamics [Vaughan, 2008], this

could conceivably be implemented, or simulators offering more complex physics, such

as ARGoS [Pinciroli et al., 2012] or Gazebo [Koenig and Howard, 2004] could be used.

This would also enable other robots to shift debris somewhat, even if not properly

equipped to do so. Porting my implementation for evaluation using another simulator

in general (such as USARsim [Carpin et al., 2007], which was originally designed with

USAR in mind) would also help to more rigorously evaluate my framework.

My results indicated that victim marker donation tasks were infrequent events due

to the difficulty of coordinating in the environment (Section 5.8.4). As a result, many

robots would not have been able to mark victims when required, due to a lack of victim

markers. One possible solution to this problem is to allow robots the ability to pick

up markers that are detected near false victims, since those markers must have been

dropped by a robot lacking advanced victim-sensing capabilities. Another solution

would be to introduce a mark victim task, where an assignee would be instructed to

drop a victim marker at a particular location.

My simulation environment also deals with robot failures at a very coarse level:

either a robot is operational or it is not. Realistically, individual robot hardware

components fail often [Carlson and Murphy, 2003], and these failures will affect a

robot’s capabilities. My implementation could be extended to allow the failure of

individual components, and robots would be required to detect these in order to

determine if a particular task lies within their capabilities. As components fail (likely
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permanently) as a mission progresses, robots would be required to request assistance

via recruitment as their abilities degrade. Additionally, robots with failed components

would be less likely to be tasked with important work, and fully-functional robots

would be more likely to receive such work.

Since real robots always have to deal with the imprecision associated with physical

sensors, it would be interesting to explore the impact of varying levels of sensor noise.

Extensions to my simulator could be made that would allow for adjustable ranges

of sensor error, in order to determine how this would affect robot performance in

different recruitment configurations.

Lastly, it would be interesting to see information passing implemented as a task

itself. Low-cost robots with large stores of memory could be tasked with acquiring

and sharing useful information with the teams they encounter in the environment.

This would help to spread out knowledge even more.

6.4.2 Directions for Future Research

My work has raised many questions about recruitment and team management,

and this is a valuable contribution. In this section, I discuss broader avenues of

future research that my work has revealed.

Some of my experimental results (Sections 5.8–5.10) indicate that not all types of

tasks or robots are well-suited for active recruitment. As noted in Section 5.11, active

recruitment can have a negative impact on the execution of highly-specialized tasks

when few robots with the appropriate capabilities are available, when compared to

other recruitment strategies. It would be interesting to allow robots to indivdually
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learn the appropriate recruitment strategy to use during a mission, based on their

knowledge of (a) their own importance and the importance of the tasks they can

execute, and (b) the number of similarly-equipped units present in the environment.

Recall from Section 3.9 that task-level and role-level recruitment are always en-

abled together in my work, even though they are considered separate mechanisms. A

possible direction for future work might involve exploring the usefulness of these two

techniques separately. Depending on environmental conditions or the requirements of

the tasks at hand, for example, it may be beneficial to enable only one of those tech-

niques when more active recruitment strategies are being used. Future work should

explore this possibility further.

My results indicate that recruitment becomes increasingly useful as environmental

conditions become less favourable or if small teams of robots are employed. In ideal

conditions with many robots, however, recruitment can become detrimental to per-

formance. It would be very interesting to explore this balance further and determine

which factors (e.g., number and type of robots, communication success levels, and

chances of robot failure) most strongly contribute to this. Another factor to consider

is the risk associated with searching: performing physical searches might result in

a robot becoming lost, or might result in wasted time if a useful robot cannot be

found. There is a trade-off between performing searches and executing immediately

useful work, and future research should endeavour to explore this balance further.

Additionally, my work assumes that an environment will be uniformly hazardous. In

reality, certain areas of a disaster site may be safer (or more dangerous) than others.

In these scenarios, robots could assess the conditions of the area in which they are
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operating, in order to determine an ideal team management strategy.

Marker donation (Section 4.3.2.2) is unique in my work in that it is the only type

of task that requires explicit coordination between two robots. Robots working on

tasks together is an important problem and is worth exploring further, particularly

in challenging environments. The results I have gathered for marker donation suc-

cesses (Section 5.8.4) indicate that operating conditions such as poor communication

and robot failures often increase the difficulty of joint tasks to the degree that they

become impossible to successfully complete. Realistically, many tasks in hazardous

environments might require coordination between multiple robots (e.g., safely moving

a victim, putting out large fires, etc.). Coordination becomes increasingly difficult

as the number of robots increases, and hazardous operating conditions create further

challenges. While I have shown (Section 5.8.4) that recruitment can be beneficial in

these situations, my implementation tests a very limited range of possible scenarios

and coordination tasks. One direction for future work might involve the development

of more complex recruitment mechanisms, where robots would be able to search for

and “build up” a group of differently-equipped robots in order to complete a larger

task together in a hazardous setting. The possibility of robot and communication

failures in these environments makes for a much richer set of problems that would

help to further advance knowledge of recruitment and its utility in such settings.

As mentioned previously (Section 3.2), my framework supports subtask division

to a limited degree in the form of victim marker donation (Section 4.3.2.2), and this

division of subtasks is fixed between two robots. This restriction is similar to that in

the work of Kiener and Von Stryk [2007]. It would be useful to investigate dynamic
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task refactoring, where subtask assignments could change based on perceived robot or

communication failures in order to improve robot performance when executing joint

tasks in hazardous environments.

It would be interesting to investigate methods of recruitment that do not involve

direct communication. While my implementation assumes that robots can only com-

municate via radio, robots could also be made to harness stigmergy [Beckers et al.,

1994] to guide the completion of work. Robots could leave behind instructions for

other robots using elements taken from the environment and arranged in such a way

that they convey a meaningful message. A particular configuration of bricks, for

exmple, could indicate a dangerous area or a victim nearby that still needs to be

identified.

My framework operates under the assumption that all robots belong to a particular

team (even if only a team of one), and that robots should fill roles on those teams

so as to match the ideal team definition as closely as possible. It does not consider

the possibility that certain robots may be more useful globally if they do not join a

team. A rare, highly-specialized robot capable of carrying other robots over debris,

for example, would certainly be useful to the team which it belongs to, but may not

be sufficiently accessible to other teams in the environment. In these situations, it

may be more useful for such robots to refuse to join any team whatsoever, so that all

teams can potentially benefit equally from its unique capabilities. Furthermore, this

behaviour could be learned over time. For example, the number of times a robot has

been recruited by members of different teams can be used as an indicator of whether

or not the robot should avoid belonging to a team altogether.
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A limitation of my work is the duplication of effort in terms of exploration and

victim confirmation in concurrent recruitment settings, when communication success

rates are high and robot failures do not occur. This is due to the fact that the

intervention of a team leader (who has a greater perspective of outstanding work) is

not required in concurrent recruitment settings—as a result, tasks can be assigned

redundantly across multiple robots, resulting in wasted effort. Future work should

explore effective methods for performing frontier exploration when such tasks can

originate from multiple robots with varying perspectives.

Lastly, another limitation of my work is that it only involves ground-based (wheeled

or tracked-drive) robots. The demands of robotic USAR suggest that other types of lo-

comotion (wall-climbing or flying) may provide significant advantages and would add

further richness to the study of robotic USAR. Wall-climbing robots would be particu-

larly useful since they can avoid ground-based debris and access high-reaching vantage

points to survey an area (e.g., for victims). Flying robots (e.g., micro-quadcopters)

provide similar benefits and do not need to climb over obstacles at all. Because of

their abilities to observe wide areas from higher above, flying or climbing robots would

be able to provide navigational information, direct teams efforts, and act as beacons

or waypoints for ground-based robots.

6.5 Conclusion

The development of useful autonomous robots is a challenging endeavour that is

made even more complicated by the extreme conditions under which they are often

expected to operate. My research has demonstrated that active recruitment tech-
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niques provide significant performance gains for robots operating in these environ-

ments, compared to passive recruitment techniques. My work provides insight into

the types of strategies that should be embraced when autonomous robots are used

for dangerous work in the future. I have also presented interesting avenues of future

work that would help to further enhance the methodology I have developed.



Appendix A

Experimental Environments

Figures A.1, A.2, and A.3 show the three environments in which I conducted my

experiments (Chapter 5).
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Figure A.1: Experimental environment 1.
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Figure A.2: Experimental environment 2.
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Figure A.3: Experimental environment 3.
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