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Abstract. Control of a servomotor is a challenging real-time problem.
The embedded microcontroller is responsible for fast and precise actua-
tion of the motor shaft, and must handle communication with a master
controller as well. If additional tasks such as temperature monitoring
are desirable, they must take place often enough to be useful, but not
so frequently that they interfere with the operation of the servo. Since
microcontrollers have limited multi-tasking capabilities, it becomes diffi-
cult to perform all of these tasks at once. It was our goal to create servo
firmware with high communication speeds for humanoid robots, and our
solution is generalizable to non-humanoid motor control as well. In this
paper, we present an event-driven operating system for the Robotis AX-
12 servomotor. By using interrupts to drive functionality that would
otherwise require polling, our operating system meets the real-time con-
straints associated with controlling a servomotor.

1 Introduction

Servomotors are used extensively in robotics to give rise to motion—arms, legs,
torsos, and other appendages contain servos which, in response to commands
from a master controller, must move in a coordinated, timely fashion to walk,
run, or perform other tasks. Control of a servomotor is a task with many real-
time constraints. Of these, the most crucial is timely response to positional
feedback data, in order to actuate the servo to a target position. Failing to meet
this real-time constraint could mean anything from a crashed remote-controlled
airplane to the loss of more expensive equipment. Actuation commands are given
by a master controller, and thus a servo is also responsible for listening to these
commands and responding as quickly as possible: a servo moving in response to
an actuation command that was given two seconds ago is virtually useless.

The ability of a servo to monitor its status (temperature, torque load, etc.) is
also a desirable feature. Overheating, for example, is a situation that should be
avoided to prevent damage. Servos that are able to sense their own status can
shut down in dangerous conditions, or provide relevant sensor data to a master
controller to produce a more intelligent response and avoid the same equipment
losses associated with failure to meet real time constraints.

The main challenge in meeting these requirements stems from a microcon-
troller’s limited ability to multi-task. Analog-to-digital (A2D) conversions for
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reading onboard sensors take time away from the servo’s primary function, which
is to actuate to a specific position with minimal latency or jitter. Although tem-
perature reads, for example, do not need to occur frequently, a servo must con-
tinually check the potentiometer connected to the motor shaft to make sure it
is rotating to the correct position. Doing so requires constant A2D conversions,
which take time and can cause latency in the servo response if implemented
inefficiently. This becomes a challenging real-time problem, and it is the respon-
sibility of a servo firmware designer to ensure that these constraints are met.

It was our goal to create a servo firmware implementation that would allow
us to communicate with multiple servos at extremely high speeds. Our intention
was to use this firmware to control the motors in humanoid robots such as the
DARwIn-OP or Bioloid, but our solution has applications in other areas as well.
High communication speeds with motors is desirable because latency in complex
motor tasks can lead to equipment failure. (For example, a bipedal robot might
fall over if it loses its balance due to servo communication latency.) As the
number of motors increases, this problem is compounded since addressing more
servos requires more time.

Our target motor platform was the Robotis AX-12 servo, as shown in Fig. 1.
Our approach applies to other programmable servos as well. In order to meet
our goal of faster communication times, we needed to create firmware that would
be capable of handling the servo tasks described above. To support this, we
endeavoured to develop an operating system for the AX-12’s embedded Atmel
ATmega8 microcontroller.

It was immediately apparent to us that polling techniques for serial commu-
nications or actuation would not suffice. Simply blocking and waiting for A2D
reads or bytes via serial would not be practical, since spending too much time
on one task would take time away from others. Our solution was to develop
an interrupt-driven operating system, and was motivated by several factors. In
general, interrupt-based systems eliminate the need for polling, and are ideal
for low-power microcontrollers [1,2]. They are also ideal for memory-constrained
applications [1,3,4]. In our case, embracing an event-driven approach allowed us
to update the motor control pulse-width modulation (PWM) signals as often as
A2D conversions could take place, and enabled the use of interrupts to handle ser-
ial communications and timer functions. The following section describes related
work, and the section afterwards describes our operating system, Dorkeus, in
detail.

2 Related Work

Baltes et al. [5] developed a multi-threaded, real-time kernel for the Atmel
ATmega128 microprocessor called Freezer OS. It handled scheduling of multiple
tasks pre-emptively in a round robin fashion, and included support for interrupt-
based A2D conversions and serial communications. The goal in its creation was
to ease application development of robotic firmware. In contrast, our approach
is entirely interrupt-based and was specifically designed for servomotor control
applications.
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Fig. 1. A Robotis AX-12 servo.

Node.js is a Javascript framework that firmly embraces the event-driven par-
adigm [6,7]. Using this framework, Web developers specify events that must
be responded to, and provide callbacks that should execute to handle the events
requiring response. This interrupt-based approach is similar to our own, whereby
events are handled without the need for polling. Our work differs from Node.js in
that our approach has been tailored to meet various real-time constraints associ-
ated with servo control. Additionally, our work applies the event-driven paradigm
to a control application, rather than a web-based server-side framework.

TinyOS is an event-driven framework that supports the development of real-
time embedded operating systems [1]. Intended for use in sensor networks, its
small size and event-based design make it well-suited for running on low power,
low cost microcontrollers. TinyOS programs can be written modularly without
the need for a global understanding of the entire system [1], and this is made
possible by the self-contained nature of the interrupt handlers that respond to
various events. In this regard, our approach is quite similar. The TinyOS system,
however, was designed specifically for large sensor networks, while our applica-
tion is meant to address the real-time constraints associated with motor control.
A similar system is Contiki [8], a C-implemented operating system developed for
use in large sensor networks. It runs an event-driven kernel that also supports
pre-emptive multi-threading. Our approach differs from Contiki in that Dorkeus
is entirely event-driven, and is meant for servo control applications.

Åarzén [9] described an event-based proportional-integral-derivative (PID)
controller that only generates output responses when the input signal goes beyond
a certain threshold. Improvements were made by Durand and Marchand [10], in
which the controller avoids re-computation of the output signal in cases where the
input signal remains unchanged. While our own approach is event-driven, our PID
control is not triggered by the measured input signal, but rather by the comple-
tion of an A2D conversion. In addition to PID control, our operating system is
responsible for handling serial communications and timer facilities as well.

OpenServo [11] is an online community project dedicated to developing
firmware for various servomotors on different microcontrollers. It supports a large
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number of serial commands for servo control and is partially driven by interrupts.
In contrast, our approach is entirely event-driven, and all of our processing takes
place in the interrupt context. The ActuatedCharacter [12] project is another
effort whose goals involve improving communication speeds with servos. This
approach specifically addresses the AX-12, and features a small, fast communi-
cations protocol. Unlike our approach, it is not entirely interrupt-driven.

3 Dorkeus Operating System

The Dorkeus OS is a fully event-driven servo operating system—it relies entirely
on interrupts to drive its functionality. Our implementation is such that virtually
all of our processing occurs within the interrupt service routine (ISR) context.
While simple computations taking place in an interrupt context do not pose a
problem, performing expensive computation is often not desirable for a number
of reasons. These include (a) the possibility that an interrupt of the same type
can be missed without taking extra precautions, and (b) the fact that ISR code
might need to disable interrupts for longer periods of time in order to avoid race
conditions, possibly resulting in lost events. One solution to both problems is to
offload time-consuming computations to the main task context. Fortunately, the
computation performed in our operating system is intentionally minimal. Thus,
the processing associated with each event does not require it to be handled
outside of an ISR context, resulting in simpler, event-driven code that is easier
to maintain and debug.

Our operating system is composed of three subsystems as shown in Fig. 2:
the control loop, the serial communication system, and the timer queue. The
following subsections describe these systems in detail.

3.1 Control Loop

The control loop in Dorkeus is responsible for actuating the motor to a specific
position—this is the highest-priority task of any servomotor firmware. In our
approach, the main control algorithm is a PID controller. Positional feedback
is obtained by reading the value of the motor shaft potentiometer using the
embedded ATmega8’s analog-to-digital converter (ADC). An A2D conversion
on an ATmega8 can take anywhere between 13µs to 260µs [13], which means
that pausing to wait for a positional read would result in a delay that could
otherwise be used to perform useful work. We used an interrupt-based approach
to mitigate this problem.

In our approach, we trigger an A2D conversion inside an infinite loop. When-
ever an A2D conversion completes, the corresponding interrupt is executed.
Inside this interrupt, the PID controller is used to compute the response of
the motor. Then, this response is used to adjust the output PWM signal. The
hardware configuration of the AX-12 dictates that this signal is output using
the ATmega8’s only 16-bit timer. Once this process is complete, another A2D
conversion begins.
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Fig. 2. The three subsystems in Dorkeus and the processing associated with each of
their events.

This method has the advantage of not continually polling and waiting for the
ADC result: when the conversion result is ready, it is fed into the controller logic.
This ensures that the servo responds with minimal latency, since it responds to
positional errors as quickly as the A2D conversions can finish. Using interrupts
in this fashion means that while an A2D conversion is taking place, the ATmega8
is free to perform other useful work.

We chose to use a PID controller in our approach due to its generalizabil-
ity and ease of implementation. It is also used in the original AX-12 firmware
provided by Robotis [14]. Our firmware implementation does not depend on any
particular control algorithm, and so it would be a simple matter to substitute
our PID controller for another control algorithm.

3.2 Serial Communication System

The serial communication system is responsible for listening to serial commands
from the master controller and responding as necessary. We chose to embrace an
event-driven approach for our serial communications. This eliminated the need
to poll for serial data.

Supported commands include actuation instructions, pings, and servo posi-
tion read requests. A key element in our implementation is the communication
protocol’s support of a synchronous read command that does not exist in the
original Robotis firmware. This command enables each servo to send positional
data one after the other, after an initial synchronous read request, without fur-
ther management from the master controller. This was inspired by the chain
reply that is used by the ActuatedCharacter firmware [12].

The AX-12 hardware is configured to use a half-duplex communication pro-
tocol with a main controller (i.e., it can either send or receive data, but it cannot
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do both at the same time). Initially, the servo is in receive mode. Every time a
byte is received by the ATmega8 hardware, a receive-complete interrupt executes.
Within the interrupt, the byte is fed through a simple state machine that inter-
prets the serial commands. Once the machine reaches a terminal state (i.e., the
whole message is received), the complete command is executed. If the command
requires it, the ATmega8 will transmit a response.

Message transmission works in a similar manner. The master-slave archi-
tecture of the communications and the half-duplex hardware dictate that the
servo should only transmit messages in response to commands from a main con-
troller. Therefore, once a complete message is received, Dorkeus can switch from
receive to transmit mode, and begin the process of generating a response. With
transmission-complete interrupts enabled, the servo sends the first byte of the
response. The transmission-complete interrupt then fires as a consequence of
the completed byte transmission. The interrupt logic then determines if another
byte needs to be sent. If so, the next byte is transmitted, triggering another
interrupt, and so on. This cascading effect allows all response bytes to be sent
from the ATmega8 as quickly as possible. Eventually, when all bytes have been
sent, the last transmission-complete interrupt finishes without sending anything,
thus ending the chain of byte transmissions. The AX-12 then switches back to
receive mode to await the next serial command.

3.3 Timer Queue

Certain low-priority events, such as measuring slow-changing sensor data (e.g.,
temperature), do not have to occur frequently, but must happen regularly enough
to be useful. For example, it is only necessary to check once approximately
every second if a servo is overheating. To facilitate this, we have developed an
interrupt-based timer system with which events can be scheduled for execution
in the future. Events are registered by the user specifying (a) the time delay in
milliseconds, and (b) the callback function that should be executed when that
time expires. Listing 1 shows the pseudocode of our implementation.

The timer system is implemented as a priority queue, sorted by time in
non-descending (i.e., increasingly distant) order. When an event is added to the
front of the timer queue, the ATmega8’s 8-bit timer should be set to expire
exactly when the first event should occur. Unfortunately, the maximum amount
of time allowed by an 8-bit timer in our implementation is 16.32 ms, which is
generally too small an amount to be useful. This limitation is due to the speed
of the external clock used (16 Mhz), and even with a timer prescaler of 1024, the
maximum timer value is rather short. We are unable to use the 16-bit timer on
the ATmega8 since it is already in use by the PWM output logic. Our calculations
are shown below in Eq. 1.

maxtime =
255(

16MHz
1024

) = 16.32ms (1)



An Event-Driven Operating System for Servomotor Control 291

void t imerExpire ( )
{

TimerEvent e = queue . getFront ( )
e . elapseTime ( getTimerElapsed ( ) )
i f e . isTimeExpired

queue . dequeue . f i r e ( )
f o r each i in queue

i . e lapseTime ( f r on t . getFul lDe lay ( ) )
i f i . i sTimeExpired

queue . dequeue ( ) . f i r e ( )
else setTimer ( e )
i f ! queue . isEmpty ( ) setTimer ( queue . getFront ( ) )

}
void setTimer ( TimerEvent t )
{

i f t . getDelay ( ) > MAX TIME
setTimer Inte r rupt (MAX TIME)

else
s e tTimer Inte r rupt ( t . getDelay ( ) )

}
void reg i s te rTimerEvent ( Cal lback c , int ms)
{

TimerEvent e = TimerEvent ( c , ms)
Time t = getTimerElapsed ( )
i f queue . isEmpty ( ) setTimer ( e )
else

int delay = queue . getFront ( ) . getDelay ( )
i f ms < ( de lay − t )

setTimer ( e )
queue . getFront ( ) . elapseTime ( t )

queue . orderedEnqueue ( c )
}

Listing 1. Pseudocode for our interrupt-based timer implementation.

To bypass this limitation of the 8-bit timer, events that are scheduled to occur
sufficiently far into the future (i.e., later than 16 ms from when the event was
scheduled) set the 8-bit timer to expire in 16 ms. When the expiration occurs,
the timer logic examines the event at the head of the queue and determines if
there is any time remaining before the event fires. If there is time remaining, the
timer is reset again for either (a) the remaining amount, if the delay is less than
16 ms, or (b) the maximum time if there are still 16 ms or more remaining.

If the timer expires and an event is ready to fire, the function associated with
that event is invoked. Figure 3 illustrates the execution of two events. The total
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Fig. 3. Shows the scheduling and execution of two timer events.

amount of time in milliseconds that it took the front event to fire is subtracted
from the respective times of the remaining events to allow for their consideration
of the passage of time. The timer queue is then checked for any additional events
whose time may have expired. Any events that are ready to execute then do so
in the proper order.

It should be noted that there is some imprecision associated with our timer
implementation. Our timer delays are expressed in whole milliseconds, and the
maximum delay that can be implemented using an 8-bit timer in our approach
is 16.32 ms. When setting the 8-bit timer counter register, we multiply the delay
in milliseconds by 15.625 (since 16MHz

1024 = 15.625 ticks per millisecond) and then
round the resulting number to the nearest integer. We were not concerned with
sub-millisecond accuracy, so imprecisions due to rounding were not an issue.
If these imprecisions were problematic, we could have solved this problem by
using a different prescaler (such as 64, which would give 16MHz

64 = 250 ticks
per millisecond) that would remove the need to round. An alternative method
would be to use a prescaler of 256, which would give 16MHz

256 = 62.5 ticks per
millisecond, and would allow us to specify delays in terms of half-milliseconds.
A third option would be to simply alter our timer queue to work in microseconds
instead of milliseconds, but this would necessitate the use of unsigned longs
and would use more memory. We chose to use the highest prescaler available to
ensure that the system spent as little time handling the timer queue as possible.

4 Performance

Our operating system achieves our goal of faster communication speeds with a
master controller. Using our interrupt-based approach and minimal communica-
tion protocol, we have achieved highly reliable communication at speeds as high
as 1 Mbps with up to 10 servos. Both the original Robotis firmware and Dorkeus
support the ability to send and receive positional data to and from servos, and
additional tests have revealed that our protocol enables us to continually send
and receive positional data at a rate nearly ten times faster than the original
firmware on the AX-12 for an equal number of servos. The use of our synchro-
nous read command contributes greatly to these reduced communication times
when compared to the original Robotis firmware, which requires positional data
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to be requested individually from each servo, one at a time. Since our communi-
cation protocol can address up to 32 unique IDs, the system as it stands should
be able to perform with similar success with a larger number of servos. This
would enable much faster control of the servos in a robot, allowing faster motion
updates and helping to reduce the probability of falling or becoming unbalanced.
We intend to discuss our protocol in more depth in a future paper.

Our AX-12 operating system is entirely event-based; all actions that occur
do so as a result of either an internal or external event. This has certain implica-
tions and presents challenges to which traditional time-based serial implementa-
tions are not susceptible. Consider the Watchdog Timer (WDT) present in the
ATmega8.

The WDT’s primary function is to detect nonprogress in the operation of a
microcontroller. At regular intervals, onboard firmware should reset the WDT
counter to indicate that progress is being made. Should the WDT expire (perhaps
due to an infinite loop), a system reset command will be issued if the proper
configurations are made. This ensures that the system is restarted if it fails to
make progress. While this method works with conventional approaches, it will
not succeed in an event-driven environment where there is no guarantee that
progress will be made in finite time. It is conceivable that the WDT could expire
in between events, undesirably resetting the system.

While disabling the WDT reset functionality (by, for example, enabling the
WDT interrupt) can prevent undesirable resets, this defeats the main purpose of
the WDT, which is to detect nonprogress. Since inter-event progress is impossible
to determine in an interrupt-based implementation, progress must be considered
at the event level itself. In other words, if a single event fails to make progress on
its own, the system should reset. A detailed examination of possible approaches
is beyond the scope of this paper, but one solution might be to implement an
idle task that continually runs in the background, resetting the WDT counter
at regular intervals. Should progress be halted in an event handler, the idle task
will not run, causing the WDT to expire, which will in turn effect a system reset.

5 Future Work

The minimal nature of the computations performed by the ATmega8 in our
implementation means that all of our events can be handled in an ISR context.
More complex events and processing—such as inverse kinematic computations—
would require much more intense calculations and should be run in the main task
(i.e., non-interrupt) context. We intend to investigate the possibility of including
such processing into our operating system to better support the inclusion of more
advanced computational tasks.

Our minimal serial communication protocol, while beyond the scope of this
paper, has helped contribute to the fast response times we have observed. We
intend to investigate possible extensions to it in the future. Another one of our
goals is to more strongly evaluate the performance of our operating system and
its communication protocol by using it to control the servos on a humanoid
robot—such as the Bioloid—while walking or performing other complex tasks.
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6 Conclusion

In this paper, we have presented an event-driven operating system for the Robo-
tis AX-12 servomotor for use in humanoid robotics. This approach is valuable
because it allows efficient management of the many tasks that a servo must per-
form in real time, and is not limited to any particular servo application. Although
our implementation utilizes an AX-12 motor, our approach is applicable to virtu-
ally any servo with a microcontroller. Combined with an efficient communication
protocol, our operating system greatly reduces a servo’s response time. In this
case, polling techniques simply cannot offer the efficiency granted by the use of
interrupt-based approaches. Our firmware embraces this paradigm and offers a
more modern alternative in the face of multi-tasking and real-time constraints.
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