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Abstract. Cost-effectiveness, management of risk, and simplicity of
design are all arguments in favour of using heterogeneous multi-robot
teams in dangerous domains. Robot losses are expected to occur and the
loss of useful skills means that replacement robots—either released into
the environment or previously lost and rediscovered—must be recruited
for useful work. While teams of robots may eventually encounter replace-
ments by chance, more active search strategies can be used to locate
them more quickly, either to complete a single task or join a team. These
searches, however, must be balanced with existing tasks so that the team
can still perform useful work in the domain. This paper describes addi-
tions that we have made to an existing framework for managing dynamic
teams in dangerous domains in order to support this goal.

1 Introduction

There are many advantages to using autonomous teams of heterogeneous robots.
With skills spread out among multiple team members, no single unit needs to
possess every capability a mission requires. This reduces the overall cost and
complexity of the robots [1]. This is beneficial in dangerous environments such
as Urban Search and Rescue (USAR) or minefield clearing. In such settings, risk
can be mitigated by deploying fewer elaborate units and more expendable ones.

In any situation where robot damage or loss can occur, team performance will
degrade as robots are lost or destroyed. If possible, losses can be compensated
for by releasing replacement robots into the environment at periodic intervals
during a mission. Existing robot teams should be prepared to accept new mem-
bers, which may either be replacement robots or rediscovered robots that were
previously separated from a team. Robot teams should also recognize when it is
necessary to strengthen their team by searching for and integrating other robots
as required. Successfully integrated robots should also share information with the
new team [14]. Conversely, robot teams may choose not to integrate additional
members due to the costs associated with managing a larger team.

Robots should expend effort searching for other robots possessing skills that
are valuable to the team or the current tasks at hand. This becomes increasingly
necessary as robot teams suffer increased losses, particularly for rare or high-
value skills. Aggressive search strategies (such as exploration of a previously
unexplored area, or searching a location suspected to contain a useful robot)
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are more likely to result in the successful integration of a valuable skill, but at
the cost of performing less immediately useful work. Strategies that only rely
on random encounters with other robots will allow more work to be completed
[7], but are less likely to result in the acquisition of needed skills. These types
of recruitment strategies fall on a spectrum that defines how much effort is
expended into actively searching for useful robots (Fig. 1). The middle point of
this spectrum would contain strategies such as broadcasting wireless requests to
nearby robots without actually attempting to locate them physically.

Passive/No 
Recruitment 
(no searching)

Ac ve
Recruitment 

(physically 
searching for help)

Concurrent 
Recruitment 

(calling for help, e.g. 
wireless broadcast)

Fig. 1. The recruitment spectrum.

Previous work has resulted in a framework for robotic team management in
dangerous domains [7]. We have expanded this framework to include recruitment
strategies from across this spectrum. We evaluate our framework in a simulated
USAR setting in which robots can be damaged or destroyed. The following sec-
tions describe our framework, experimental evaluation, and our results. We begin
with a description of related work for comparison.

2 Previous Work

Existing work does not employ many strategies from the recruitment spec-
trum. It is difficult to form useful comparisons with previous work since many
approaches assume an unlimited communications range, or that robots are
always close enough to communicate [3,4,10]. Additionally, previous work does
not take into account real-world challenges such as communication failures, robot
failures, or robot losses in general [5,6,8,12,15]. This section describes previ-
ous work that uses active searching or random encounters with other robots to
acquire additional team members during the course of a mission.

Krieger and Billeter [9] developed an approach for food-foraging tasks, mod-
elling the behaviour of ants using a large number of homogeneous robots.
Although explicit teams were not formed, robots were able to recruit others
to known food locations in order to increase the amount of food returned to a
central nest. Pitonakova et al. [13] studied active recruitment in more complex
foraging missions where resources varied in size and value. This is similar to our
work in that certain tasks or robot skills may be more important than others,
and the choice of recruitment strategy depends greatly on environmental con-
ditions and the availability of resources. In contrast, we study recruitment in a



Active Team Management Strategies for Multi-robot Teams 387

less abstract domain (USAR) and our work is focused explicitly on long-term
team maintenance as well as short-term team goals.

Gunn and Anderson [7] implemented a team-management framework for het-
erogeneous robot teams in dangerous domains, and considered real-world chal-
lenges such as varying communication success rates, and robot failures and losses.
This framework was evaluated in a USAR setting, where robots were organized
into teams at the onset of each mission and explored the environment to iden-
tify as many human casualties as possible within the allotted time. Losses were
offset by strategies that allowed teams to acquire new members when they were
encountered in the environment by chance, i.e., robots did not explicitly put
effort into locating other useful robots. We have made substantial additions to
this framework, and have developed recruitment strategies enabling robots to
(a) search for and assign tasks to others on an individual basis without the
intervention of a team leader, and (b) recruit additional team members more
permanently when a crucial skill set is missing from the current team. Prelimi-
nary results were published in [11]. This paper describes the additions we have
made to the original framework (points (a) and (b) above, as well as extended
heterogeneity through a new robot type and behaviours), and presents original
results from two large experiments used to evaluate the completed framework.

3 Methodology

3.1 Framework

To adequately describe our additions, a high-level overview of major framework
components is required. Readers interested in a thorough description of the com-
plete framework are directed to [7].

Robots. The underlying assumption in our work is that robots are hetero-
geneous—they differ in how they move, sense the environment, and have vary-
ing storage and computational capabilities. Therefore, no single robot is able to
perform every task, and certain robots will be able to complete certain tasks
better than others, or may not be able to perform some tasks at all. In our
framework, robots are aware of their own individual skills and how well-suited
those skills make them for a particular task. The distributed nature of our frame-
work means that robots rely on local decision-making processes based on their
knowledge of the environment and their teammates. Communication problems,
robot failures, or other challenges mean that this knowledge may not always be
up-to-date.

Tasks, Roles, and Teams. A task in our framework is a single piece of work
which can be assigned to and completed by a robot. Although a particular chal-
lenge or outstanding job discovered by a robot may ultimately involve more
than one robot, such jobs must be broken up into discrete tasks and individually
assigned to team members. However, assigned tasks may involve overlapping
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goals or objectives without explicitly requiring the involvement of more than
one robot, e.g., two robots exploring overlapping areas. In the original version of
this framework [7], task distribution was solely the responsibility of team lead-
ers. Our improved framework allows any robot to perform task assignment in
special circumstances, described in Sect. 3.3. For example, robot A may pass a
particular task to another robot B, if A is already too busy or is incapable of
performing the task. Every robot maintains an ordered queue of tasks, ensuring
that the most important work is completed first.

In our framework, every robot fills a role within a team. A role is defined
by a set of tasks that a robot in that role would be expected to perform, and
is used as a simple heuristic for task allocation to quickly find team members
capable of performing a particular task. A robot with the appropriate skill set
can also perform a task outside of its current role if necessary (e.g., a firefighting
robot could still perform exploratory searches for victims). Robots in our frame-
work possess self-knowledge and are capable of determining their suitability for
a particular role, represented as an integer that indicates how well their skill set
matches the tasks that make up the role.

Roles are fluid, rather than permanent: to compensate for robot losses or
acquisitions, robots periodically evaluate their role within their team and change
to a role that would be more beneficial if required. As robots attempt to address
skill deficiencies by adopting new (possibly non-optimal) roles, there is a risk
that some robots will fill roles for which they are ill-equipped, taking them away
from tasks for which they are better suited. For example, a single robot separated
from its team will realize it is alone and adopt a leadership role (i.e. become a
team of one), even if it has limited capabilities for such a role. If a more suitable
robot is encountered (either by itself or as part of a larger team), it will cede the
leadership role to the other robot as they merge teams.

Team Leader and Task Assignment. The team leader is a special role that
exists for coordinating team actions. The leader also acts as a repository of team
knowledge since other team members are expected to communicate significant
locations, results of tasks, and other important knowledge to the leader. The
team leader is thus expected to have the most complete global knowledge, includ-
ing knowledge of team structure. It is important to note that this knowledge is
unlikely to ever be complete—the leader will not know precisely when a robot
is lost, for example, and communication that would indicate this may be long
delayed [7]. Therefore, relying on local decision making is important despite the
presence of a leader. Due to the memory and processing required, it is expected
that leadership should fall to the most computationally-capable robot on the
team. Ideally, such a robot would have ample facilities to handle these responsi-
bilities, but as team structure degrades due to hazards, less-capable robots may
temporarily fill this role until a better robot is found.

Role Switch Check. Robots are responsible for evaluating the usefulness of
their current role and changing to a more valuable role for the team, if necessary.
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This is done based on the robot’s (potentially inaccurate) knowledge of the
current team structure. Robots with empty task queues perform this check every
30 s and switch to a different role if necessary. The intuition behind this process is
that robots with no outstanding work might be better suited for a different role.
The sections that follow describe the expansions we have made to the original
framework in terms of role management and task assignment.

3.2 Role-Level Recruitment

Our extensions provide robots with the ability to perform searches for other
robots to join their team. These may be previously lost robots, replacement
robots, or even members of another existing team. We refer to this mechanism
as role-level recruitment. This recruitment process begins with a leader peri-
odically assessing the current structure of the team (using possibly incomplete
knowledge), and taking note of the most important role that is not currently
filled. This occurs every 6 min in our implementation. The team leader will then
attempt to assign a particular robot on the team with the task of acquiring a
robot to fill that role. In cases where a team leader is the only robot on a team
(and thus might have many missing roles), the team leader will assign itself
with the task of finding another robot to fill the most important missing role.
Section 3.4 describes the strategies used to find and recruit other robots.

3.3 Task-Level Recruitment

While role-level recruitment provides additional means for acquiring new team
members, our framework also supports the acquisition of robot skills in a less-
permanent fashion. We refer to this as task-level recruitment, and it allows one
robot to search for another to complete a task. This is useful when the original
robot is already too busy to perform additional work, or if it encounters a task
for which it is poorly-equipped.

Task-level recruitment can be initiated in two ways. In our original frame-
work, if a team leader attempts to assign a particular task to a robot, the task
will be rejected if the assignee is already too busy with other work. The team
leader will have no choice but to continually attempt to reassign the task else-
where until it is accepted. In our modified framework, rather than rejecting tasks
when too busy, robots will offer to locate another capable robot to complete the
task. The team leader will agree to this only if no other robot is able to accept
the task for execution. When this occurs, it is the responsibility of the assigned
robot to recruit another robot who will accept the task for execution. Task-level
recruitment can also be initiated when a robot discovers a task on its own that it
is unable to complete. In the original framework, a robot which discovers a task
beyond its capabilities would attempt to relay the task to a team leader for real-
location. In our improved framework, if a robot discovers a task for which it is
poorly-equipped, it will instead attempt to locate another robot who can execute
the task. Importantly, this process does not require the intervention of a team
leader, and thus, is robust to leadership failures or limitations in communication.
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3.4 Recruitment Strategies

A recruitment strategy defines how robots search for others when additional roles
should be filled or tasks need to be completed. Active recruitment approaches
will involve physical searches. While such approaches are more likely to result
in successful recruitment, this is done at the cost of completing less immedi-
ately useful work. Less committed strategies may involve no searching at all (as
employed in [7]), or may only require minimal searching efforts such as broad-
casting a wireless request for assistance. The next two subsections describe the
two recruitment mechanisms we have added to the original framework.

Concurrent Recruitment. This strategy relies only on wireless communica-
tion to search for other robots. Concurrent recruitment can be used to acquire
additional team members (role-level recruitment), or to assign tasks to other
robots (task-level recruitment) when required. This is done concurrently along-
side normal work; recruiting robots are able to execute tasks while also sending
recruitment broadcasts. The content of these broadcasts and any subsequent
communication varies depending on whether a robot is recruiting for a task or
a role. A robot will agree to a role-level request only if (a) its task queue is not
full, and (b) if the robot has lost contact with its team or is better suited to the
new role. The process for accepting task-level recruitment requests is the same
that is used for regular task assignments: if a robot is not too busy, it will accept
the task, and will offer to recruit someone else for the task otherwise.

Active Recruitment. Active recruitment is a more aggressive strategy that
relies on a combination of physical search and wireless broadcasting to locate a
new teammate. While actively recruiting, a robot is fully committed to exploring
the environment in search of other robots, and executes no other tasks. This
increases the chances of encountering useful robots, but prevents immediately
useful work from being completed. Physical searching also increases a robot’s risk
of becoming separated from its team, either by exploring too far or by becoming
stuck on debris while exploring.

4 Experimental Evaluation

Our framework was evaluated using USAR environments implemented in Stage
[16], a well-known and established multi-robot simulator. It provides facilities
that allowed us to abstract issues associated with physical sensors and hard-
ware, since our focus was to evaluate our framework’s performance with regards
to team management. To reduce bias that may exist in any single environment
configuration, we used 3 randomly-generated USAR scenarios. Each environment
simulated a large area (60m2) of a collapsed building. Environments contained
significant debris, partial rooms, and missing walls, as shown in Fig. 2. The pres-
ence of debris (dark gray and light gray squares) contributed to a considerable
risk of robots becoming stuck, and helped to simulate real USAR conditions. Our
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environments also contained 20 human casualties that robots were responsible
for locating, as well as 10 false victims (gray humans in Fig. 2), which appear
to be casualties to simpler robots but require the attention of more advanced
robots in order to confirm.

Fig. 2. Overhead views of our 3 randomly-generated USAR environments. Team start-
ing positions are visible at the bottom and top entrances.

We abstracted robot heterogeneity to four types of robots, similar to [2,
7]. The most basic and inexpensive robot was a MinBot, a small robot with
very simple victim-sensing capabilities. Its simplicity, low cost, and expendability
make it ideal for potential victim discovery and exploration of unknown areas.
MinBots are unsuitable as team leaders due to their limited computational and
memory facilities, and require more advanced robots to confirm the presence of a
human victim. The next robot is a MidBot, which is larger than the MinBot and
has more advanced victim-sensing capabilities, enabling it to correctly identify
the presence of human casualties at short distances. Increased computational
power and memory make MidBots (marginally) suitable as team leaders if no
better-equipped robots are available. A MaxBot is the third robot type. Its
primary purpose is to function as a team leader due to its large memory capacity
and powerful computational capabilities. MaxBots have basic victim sensors only
and must rely on MidBots to correctly identify casualties. MaxBots are equipped
with a tracked drive enabling them to drive over shorter debris items (light gray
boxes in Fig. 2). The fourth robot was a highly-specialized, tracked-drive robot
called a DebrisBot whose goal was to find and remove shorter debris items in the
environment. Debris removal could be done in an unguided manner (randomly
looking for and clearing debris if no other tasks are available), or by request from
another robot that has become stuck in the environment. Debris removal results
in a piece of debris being completely removed from the environment—this can
only be done at ranges less than 1 m, and takes 5 s.

To test our framework against the challenging aspects of robotic USAR,
our simulator is configured to allow varying levels of communications reliabil-
ity, directly affecting the percentage of messages that are delivered successfully.
This simulates interference in the environment. Wireless communication was
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simulated using Stage’s indoor ITU radio model, with a 20 m range. Robot fail-
ure is also simulated by continually choosing a random value in the range [0,1]
and comparing it to set thresholds for temporary or permanent failure in each
simulation cycle. Exceeding the permanent failure threshold causes the robot to
fail for the remainder of the trial, and exceeding the temporary failure thresh-
old causes a failure for a random length of time (3–4 min). Failure thresholds are
specified separately for each robot type, simulating different degrees of reliability.

4.1 Experimental Design

We evaluated our framework in 2 factorial experiments, testing 3 recruitment
strategies against 3 levels of communications reliability and 3 levels of robot
failure probability. Communications success rates varied between 100%, 60%,
and 20%. Because of the random elements in the algorithm for robot failure,
rates of robot failure are best expressed as an average percentage of time spent
failed for MinBots, MidBots, MaxBots, and DebrisBots, respectively. The values
used in this experiment are categorized as none, minimal (15%, 12%, 9%, 15%)
and major (25%, 21%, 19%, 25%). Each experimental configuration lasted 30
simulated minutes and was run 50 times. Every trial was repeated in 3 unique
environments to help reduce bias.

In our first (main) experiment we were interested in evaluating our framework
using 2 teams of robots each consisting of 1 MaxBot, 2 MidBots, 4 MinBots,
and 1 DebrisBot. Robot teams were initially inserted at the 2 entrances visible
in Fig. 2. For this experiment, we varied whether or not replacement robots
would be available. In trials where replacements existed, 10 MinBots, 2 MidBots,
1 MaxBot, and 1 DebrisBot would be introduced into the environment, spread
evenly along the inner perimeter, after 5 simulated minutes. Each of these units
functioned individually as a 1-robot team until forming a new team or joining an
existing one. The factorial design for our main experiment yielded 8100 trials.

Our second (minimal team) experiment was designed to test the performance
of our framework when resources were scarce and replacements were not avail-
able. In this experiment, 2 robot teams each consisting of 1 MinBot, 1 MidBot,
1 MaxBot, and 1 DebrisBot were placed in the entrances shown in Fig. 2. The
factorial design for our minimal team experiment yielded 4050 trials.

5 Results and Discussion

We evaluated our framework using 2 criteria: the total percentage of true and
false victims successfully identified and communicated to a team leader, and the
total percentage of the environment covered and communicated to a team leader.
We focused only on knowledge conveyed to team leaders, since they are likely
to possess the most complete (but still imperfect) set of information. They also
represent the best source of knowledge for human extraction teams in real-life
scenarios. This makes our results more conservative—other robots may contain
additional information that has not been relayed to a leader.
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Fig. 3. Main experiment victims identified, with replacement robots available.
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Fig. 4. Main experiment victims identified, with no replacement robots available.

5.1 Main Experiment Results

Victims Identified to Leaders. Figures 3 and 4 show the percentage of vic-
tims identified and communicated to a team leader, with and without replace-
ments respectively. In all graphs that follow, error bars show 95% confidence
intervals.

A major weakness of [7] was that robot teams could not function effectively
when communication success rates were as low as 20%. As communications
failed, fewer tasks could be successfully assigned and fewer results could be
relayed to leaders. This is reflected in our results: passive recruitment is shown
to perform poorly in these conditions. Active and concurrent recruitment strate-
gies, however, provide a significant improvement in terms of victims identified,
regardless of the presence of replacement robots, when robot operating condi-
tions or communication reliability are poor.

Interestingly, in ideal conditions where no replacements are available, pas-
sive recruitment performs better than concurrent recruitment. This is likely due
to a slight duplication of effort that occurs as non-leader robots assign victim-
identification tasks that would normally be coordinated by a team leader. With-
out a team leader’s broader perspective on remaining or outstanding work, mul-
tiple robots may unnecessarily be tasked with completing the same job. This
redundancy can be harmful to team performance in ideal conditions, but is ben-
eficial whenever conditions are not ideal.
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Fig. 5. Main experiment area coverage, with replacement robots available.
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Fig. 6. Main experiment area coverage, with no replacement robots available.

Area Coverage. As shown in Fig. 5, there is not much difference in area cover-
age between recruitment strategies when replacements are available. It is possible
that the area coverage amounts shown here reflect the maximum area that can
be covered and conveyed to a team leader in the time allotted (30 min), or that
some areas are extremely difficult to reach. As communication success rates fall,
and as robot failures increase, active and concurrent recruitment show greater
improvements over passive recruitment.

Figure 6 shows that active recruitment is more effective than passive recruit-
ment when no replacements are available. This strategy results in the greatest
environment coverage, likely due to the physical searches that take place and
the improved likelihood of recruiting robots with useful information about the
environment. As with victim identification (Sect. 5.1), concurrent recruitment
performed more poorly than passive except where communications were unre-
liable. As noted previously, this is likely because of a duplication of effort that
occurs when tasks are assigned without the coordination of a leader.

5.2 Minimal Team Experiment Results

In this experiment, active recruitment resulted in the greatest number of vic-
tims identified, in almost all experimental configurations. This is likely due to the
increased exploration that takes place when actively recruiting—exploration pro-
vides more opportunities to discover victims and cover the environment. Active
recruitment also resulted in the highest levels of area coverage (Fig. 8).
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Fig. 7. Minimal team experiment victims identified.
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Fig. 8. Minimal team experiment area coverage.

Because of the smaller robot population, robot failures had a greater impact
on these results than in our main experiment. However, it is interesting to note
that area coverage in this experiment is only slightly less than that of our main
experiment where replacements were not available. This suggests that only a
small number of robots is necessary to cover most of the environment in 30 min.
It is also possible that our experimental environments contain hard-to-reach
areas that make it difficult to attain 100% environmental coverage, and that
additional robots only improve coverage by a small amount.

6 Future Work and Conclusion

Since increased knowledge transfer between robots has clear benefits, directions
for future work include having robots explicitly tasked with spreading informa-
tion to others. The importance of the information could be used to determine
the ideal recruitment strategy for conveying it: more critical information would
require a more active approach.

In this paper, we described and evaluated recruitment strategies allowing
robot teams in dangerous domains to acquire additional skills temporarily or
permanently. Our recruitment strategies provide the greatest benefits when oper-
ating conditions are not ideal. Since this is often expected to be the case for many
future robotics applications, we believe our framework and results provide sub-
stantial insight into how distributed robot teams should be designed to operate
in these environments.
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