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Abstract

Integrating computer vision into a robotic system can provide a closed-loop con-

trolled platform that increases the robustness of a robot’s motion. This integration

is also known as visual servo control or visual servoing. Visual servoing of a robot

manipulator in real-time presents complex engineering problems with respect to both

control and image processing particularly when we want the robot arm to perform

complicated tasks such as portrait drawing. In my research, the implementation of

torque feedback control and Image-based Visual Servoing (IBVS) approaches are pro-

posed to improve previous open-loop portrait drawing tasks performed by Betty, a

humanoid robot in the Autonomous Agent Lab, University of Manitoba.

The implementations and evaluations of hardware, software and kinematic mod-

els are discussed in this document. I examined the problem of estimating ideal edges

joining points in a pixel reduction image for an existing point-to-point portrait draw-

ing humanoid robot, Betty. To solve this line drawing problem, two automatic sketch

generators are presented. First, a modified Theta-graph, called Furthest Neighbour

Theta-graph (FNTG). Second, an extension of the Edge Drawing Lines algorithm

(EDLines), called Extended Edge Drawing Lines (eEDLines). The results show that
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the number of edges in the resulting drawing is significantly reduced without degrad-

ing the detail of the output image.

The other main objective of this research is to propose the extension of the drawing

robot project to further develop a robust visual servoing system for Betty to correct

any drawing deviation in real-time as a human does. This is achieved by investigating

and developing robust feature (lines and shading) extraction approaches for real-time

feature tracking of IBVS in combination with adequate torque feedback in the drawing

task.
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Chapter 1

Introduction

1.1 Introduction

This chapter discusses the motivation of my thesis and introduces the portrait

drawing robot research that I developed. This chapter also presents an overview

of the methods I used to overcome the problems of current approaches to drawing

robots.

1.2 Motivation

Recent research on humanoid robots has devoted significant effort to developing

humanoid robots that can match human behaviour on high-level tasks that require

integration of sensing, physical motion and intelligence. The current state of the art

supports diverse applications involving a wide range of industries, including education,

health care, household services, military, entertainment, etc.

1



2 Chapter 1: Introduction

A portrait drawing robot requires human-specific skills which are challenging tasks

for humanoid robots. Recent results in robotics literature have demonstrated a num-

ber of portrait drawing robots implementations [16; 36; 63]. For instance, Gommel et

al. [36] implemented an industrial robotic arm, KUKA, to draw in Cartesian space.

Lu et al. [63] developed a special purpose robotic arm platform, IRAS, for replicating

and creating works of art. More examples are discussed in Chapter 2. However, none

of these robotic systems successfully mimics human-like features. In recent years

many researchers (e.g., [16; 56; 58; 61; 75; 84]) have tried to develop a robust hu-

manoid robot that could produce pen-and-ink sketches of portraits. This is usually

slow due to complicated motion control and complexity of the input images. It re-

quires high quality and expensive force and torque feedback sensors such as force

sensing resistors (FSR), strain gauges, or load cells for drawing accuracy. The moti-

vation of my research is to adopt affordable robotics technologies to create human-like

artwork with the capability of observational drawing through visual feedback. The

goal of this research is for a humanoid robot to mimic the drawing process of human

by reproducing its way of drawing based on limited feedback control.

Creating a drawing robot with high performance industrial robots (i.e. accurate

and fast) [16; 36; 56; 61; 75; 84] usually involves a high hardware cost. It is a much

more significant challenge to develop an efficient robotic system if the cost is also

an important factor. Reducing the cost of the system requires optimization of all

aspects to retain its flexibility, reliability and performance. During the design and

development of Betty, I only used affordable hardware and open source software to

address both cost and performance issues. I developed an adaptive real-time kernel
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with a PID controller to optimise servo control. The total cost of the hardware is

less than USD 3000 [7]. However due to the hardware performance limitations, it

is difficult to achieve high mechanical accuracy. An alternative image-based visual

servoing and torque feedback control combination is proposed to overcome the lack

to accuracy in Betty’s drawing task.

The portrait drawing humanoid robot, Betty (see Figure 3.1 and Figure 3.2), uses

OpenCV, an open source computer vision library, to perform face recognition and

image processing techniques. These techniques compute a line-art portrait that can

be mapped to the kinematics of the arm. In the early stage of development, Betty

drew the portrait using a point-to-point drawing mechanism which maps the points

from a pixel-reduction image consisting of a set of points, P , as shown in Figure 1.1.

This research aims to develop a robust visual servoing human portrait drawing system

that enables Betty to autonomously draw the portrait by exploring various research

areas. In my research, I implemeted a modified Theta-graph, called Furthest Neigh-

bour Theta-graph (FNTG), an extended edge drawing technique (eEDLines), torque

feedback control (TFC) and image-based visual servoing (IBVS). These implementa-

tions have constructed a good and simple approximation pen-and-ink sketch of the

input image by defining edges joining pairs of points in line segments that utilise

outlining and shading techniques.



4 Chapter 1: Introduction

Figure 1.1: Left : Line-art Portrait from Canny edge detection algorithm. Middle :
Pixel-reduction to reduce the number of pixel. Right : Actual portrait drew by Betty

1.3 Thesis Overview

Chapter 2 discusses related background of my research. The preliminary hardware

and software approaches are described in Chapter 3 as well as the proposed techniques

to address the portrait drawing robot problem. It describes the implementation of

various automatic sketch generator methods and their definition and the proposed

implementation of compensation drawing deviation techniques. Chapter 4 presents

the results of the various implementations. Finally, Chapter 5 concludes this work,

its contributions and possible future research directions. The overall scope of my

research is depicted in Figure 1.2.
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Figure 1.2: Overview of research areas.
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1.4 Summary

This chapter serves as an introduction to my research on portrait drawing robots.

It describes some of the limitations of existing approaches to drawing robots with

the capability to obtain feedback during the drawing process. Finally, the chapter

outlines my overall research area involving the portrait drawing robot.



Chapter 2

Background and Related Work

2.1 Introduction

The development of artist robots has received great interest since 1990 (see Fig-

ure 2.1). AARON, one of the oldest continuously developed programs in comput-

ing history (beginning in the mid-70’s) attempted to create paintings that produced

human-like artworks [24]. Gommel et al. [36] implemented an industrial robotic arm,

KUKA, to draw in Cartesian space. Srikaew et al. [84] created a dual-armed hu-

manoid robot, ISAC, that used the control of the end-effector with force sensors in

the process of drawing. Ruchanurucks and Kudoh also implemented a multi-fingered

robot called Dot-chan which was equipped with position- and force-sensing [56; 81]

to produce color brush drawing. Katsura and his group have developed a calligraphy

robot based on their Motion Copy System [94] which learn the input calligraphy mo-

tion (e.g position and pressure) to reproduce the brush strokes [52]. Tresset and Fol

Leymarie created AIKON/Skediomata a 3-DOF low cost robotic platform dedicated

7
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to drawing sketches [91; 92; 93]. Calinon et al. from École Polytechnique Fdrale de

Lausanne (EPFL) used the small humanoid robot HOAP2 for their human portrait

drawing task [16]. Pica was introduced by Lin et al. for fast human portrait drawing

but its drawing results were very simple and lacked contours [61]. Another interesting

approach was Drawbot, a wheeled-robot with a pen-holder mounted on an arm that

allowed the pen to be lifted off the drawing surface [14]. A similar approach is used in

a polargraph art robot, Makelangelo developed by robotic company called Marginally

Clever [23]. It used a wall-drawing approach which draws on a piece of paper on the

wall with a pen that adjusts its x-y position based on two strings controlled by two

stepper motors. Lu et al. [63] developed a robotic manipulator called IRAS based

on visual feedback that determines stroke positions and applies local gradient inter-

polation to guide stroke orientation in its pen-and-ink artwork. However, this was

only in a fixed plotter-like setting. An in depth review of these works shows that

none of them used visual servoing in humanoid robots as feedback for drawing obser-

vation, and none provide drawing correction during the drawing process. This is an

important ability in pen and ink drawing. In this research, three closed-loop control

techniques, namely torque feedback, IBVS and hybrid control are implemented to

address the drawing deviation problem of Betty which is described in Section 2.3 and

Chapter 3.
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Figure 2.1: Current state of the art for drawing robot.
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2.2 Automatic Sketch Generator

One of the main tasks in portrait drawing is outlining to sketch the outline of

a portrait. Based on the current implementation of Betty, I am also interested in

estimating the ideal edges joining points in the set of points of a pixel reduction

image so that the number of lines is minimal. Therefore, I implemented a geometric

graph called a Furthest Neighbour Theta-graph (FNTG)which is adapted from Theta-

graphs [22; 50; 51] and ordered-Θ-graphs [11]. This novel graph is discussed in

Section 3.4.2. A geometric graph is a weighted graph whose vertex set is a set of

points, P , in d-dimensional Euclidean space, Rd, and the edges of the graph consist

of line segments, each of which joins two vertices. The weight of any edge is the

Euclidean distance, L2, between its endpoints [10].

Geometric graphs are used to model many practical problems in various fields of

computer science and computational geometry. Theta-graphs [22; 51] and Yao-graphs

[104] are popular geometric graphs that appear in the context of navigating graphs

[10]. Theta-graphs and Yao-graphs differ in the way the nearest neighbour is defined.

In both graphs, every vertex is joined by an edge to each of its nearest neighbours

in each cone. In 2D Euclidean space, each cone forms an angle of Θk = 2π/k,

for some fixed k > 0. For Yao-graphs (Yk-graphs), the nearest neighbour of p in

the cone C is simply a vertex q 6= p in C minimizing the Euclidean distance (L2-

distance) between p and q. For theta-graphs (Θk-graphs), the nearest neighbour of

p is the vertex q 6= p whose orthogonal projection onto the bisector of C minimizes

the L2-distance to p [10]. Bose et al. introduced a new variant of theta-graph called

ordered-Θ-graphs, which are built incrementally by inserting the vertices one by one.
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This means that generated graphs may be different based on the order in which the

vertices are inserted so that the resulting graph depends on the insertion order [11].

They show that specific insertion orders can produce graphs with desirable properties,

including low spanning ratio, logarithmic maximum degree and logarithmic diameter.

Bonichon et al. introduced a specific sub-graph of the Θ6-graph defined in R2, called

half-Θ6-graph, which consist of the even-cone edges of the Θ6-graph [10]. They show

that these graphs are exactly the TD-Delaunay graphs, and are strongly connected

to the geodesic embeddings of orthogonal surfaces of coplanar points in 3D Euclidean

space.

Line segment detection is an important research area in machine vision in recent

years [2; 3; 37; 72; 97; 98]. The most popular method among them is the Hough

transform (HT) [46], but the general usage of the HT was popularised after it is used

by Duda and Hart [29] in 1972 and Ballard [6] in 1981. Hough transform is a method

for estimating the parameters of arbitrary shapes (line is a form of shapes) from

its boundary points. Usually HT is preprocessed with edge detection (e.g. Canny

edge detector) to generate edges that cause too many false detections on complex

images [54]. Line segment detector (LSD) is a linear time parameterless method

introduced by von Gioi et al. in 2008 [37; 97; 98] to detect line segments based

on Burns et al.’s method [15]. It uses an a contrario model from Desolneux et al.

approach [27; 28] to validate the false positive of straight edges locally. Also note that

there is a minimal length that a line segment must have, and smaller ones cannot be

detected [98]. In 2011, Akinlar and Topal [2; 3] introduced a novel Edge Drawing

algorithm (EDLines) to extract line segments in linear time and give accurate results,
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requiring no parameter tuning, and runs in real-time (up to 11 times faster than

LSD). EDLines makes use of the clean, contiguous (connected) chain of edge pixels

based on the least squares line fitting method to extract line segments. There are also

some specific purpose (e.g. UAV) line segment detection algorithms [60; 62; 72] which

are not discussed in my thesis work. In my thesis I propose an extension algorithm

based on the EDLines method to generate the sketch outline due to its least expensive

processing compare to LSD. EDLines is the best (i.e. fast and accurate) generic line

segment detection algorithm to the best of my knowledge. However these line segment

detection methods extract each black stroke to produce two detections, one for each

white to black transition. Therefore a extended version of EDLines implementation

is introduced in this thesis to overcome this problem, namely eEDLines.

2.3 Drawing with Closed Loop Feedback Control

One of the main research questions in my thesis work is whether the proposed

closed-loop approaches are significantly superior to open-loop’s “blinded” (non-feedback)

drawing. Three real-time feedback approaches are implemented to address the devi-

ation correction problem: torque feedback, image-based visual servoing and hybrid

control. As discussed in Chapter 1, the non-feedback open-loop approach might not

be adequate for a sophisticated implementation of a drawing robot because it does

not provide sufficient feedback during the drawing process.
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Figure 2.2: Open-loop control diagram

2.3.1 Open-loop Control: Kinematic Model

When using open-loop control in a robotic system, there is no online interaction

between the robot and the environment where no data is collected from the robots

sensors during task execution which can be seen in Figure 2.2 [33; 48]. At first, it

extracts the information from a input image. From this, it generates a robot pose

and motion sequence. This allows the control of a robot and image processing to be

viewed as two independent tasks [55].

One of the main disadvantages of this approach is that the robot will not be able

to correct its state if there are any changes in its environment during the process [48].

For instance, in my earlier implementation of portrait drawing, the portrait of a

person is recognized and extracted, then its pixels position is computed relative to

the camera (robot) coordinate system. This Cartesian space information is used to

move Betty’s arm to the desired position relative to the drawing pad. With the eye-to-

hand camera and inverse kinematic model, the position of the pen is computed based

on the visual information extracted from the camera frame. It then maps the pixels

of the image to Betty’s inverse kinematic model. Next, Betty executes the drawing

task by performing open-loop movements which assumes the environment remains

static after the drawing has started. However, without the real-time feedback of
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Figure 2.3: Closed-loop control diagram

what has been drawn by Betty, it is impossible to make corrections to ensure the

desired output sketch is obtained at the end. Therefore, other closed-loop control

methods are discussed in the following sections. Figure 2.3 shows an example of a

closed-loop control system.

2.3.2 Closed-loop Control: Torque Feedback

In many applications [41; 53; 76; 89; 99; 105], a robot must explicitly control the

force it applies to the object it is manipulating, i.e., the actuators must be controlled

to achieve the desired forces. Force control using feedback of joint torques is limited

by the accuracy over a resistor to estimate the input current of the motors [1; 64].

This indirect measurement has several errors, including the variations in the losses

in the motor itself and the gearbox. To obtain accurate control of the force vector

at the end effector, a wrist force sensor is placed between the tool plate and the end

effector to measure end-effector force [5; 59; 75]. The force transform from the sensor

to the end effector is simple but these load cell sensors are usually expensive. Torque

in joint space is controlled by controlling the torque applied by each actuator (servo).

Torque can be measured using a sensor (accurate) or estimated from armature current

(simple).
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2.3.3 Closed-loop Control: Visual Servoing

Visual servoing is a common closed-loop visual feedback control approach for

object manipulation in robotic research e.g. [12; 21; 82; 95; 96] and industry e.g. [43;

73]. In contrast to open-loop control, a closed-loop control system uses vision as the

feedback sensor to continuously track the environment, which provides estimation

and updates for robot control and positioning. Therefore the control sequence is

generated based on a consistent visual feedback of the error between its current and

desired poses of the end-effector.

The terminology of visual servoing was introduced in 1979 by Hill and Park, [42]

prior to the general term ”visual feedback” [47]. Generally, visual servoing techniques

are classified into three types; image-based visual servoing (IBVS), position-based

visual servoing (PBVS) and advanced visual servoing [18; 19].

Figure 2.4 which was adapted from Kragic and Christensen [55], illustrates the

general idea of a visual servoing system to estimate the differential changes between

robot joint space and the image space with a coupled robot-image Jacobian.
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Figure 2.4: General processes of visual servoing. Robot Jacobian relates the knowl-
edge of robot kinematics and the image Jacobian refers the differential changes be-
tween image features on a image space and the pose of the robot.

Position-based visual servoing (PBVS):

PBVS processes the error signal from the image features in order to compute the

control sequence of the robot based on the relative 3D pose between the camera and

the end-effector [25; 102]. PBVS solves the 3D localization problem where 3D infor-

mation of the scene, including a geometric model of the target, and the parameters

of the particular camera model (camera calibration) is known. PBVS is considered

to be a 3D vision sensor. Usually there are two tasks in a PBVS system. First,

as mentioned, it requires a model between camera and end-effector to estimate the

pose of the target. Second, it has to estimate the desired velocity screw of the robot,

which requires precise camera-robot calibration to achieve accurate positioning [55].

Figure 2.5 shows the general design of a PBVS system.
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Figure 2.5: Block diagram of PBVS. p is the actual pose of the robot and p′ is its
desired pose. In this case, positioning task (velocity screw, which can be denoted
as Ṗ = [V ; Ω]T ) is described by its pose error, e as presented by Kragic and Chris-
tensen [55]

Image-based visual servo systems (IBVS):

IBVS was introduced by Weiss and Sanderson [100; 101] to compute the pose of

the robot by processing the error signal from the image features parameters e.g. lines

and image areas directly as its feedback control signals [25]. IBVS involves the compu-

tation of the image Jacobian or the interaction matrix [47; 55]. In contrast to PBVS,

IBVS is considered as a 2D vision sensor. IBVS eliminates PBVS’s requirement of

perfect knowledge of the camera calibration matrix and its complex interpretation of

image features to derive 3D world-space coordinates. Figure 2.6 shows the general

design of an IBVS system.
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Figure 2.6: Block diagram of IBVS. f is the actual location of feature and f ′ is its
desired location. The positioning task is described as location error, e = f − f ′ and
q represents the coordinate of the end-effector.

Advanced visual servoing:

There are some advanced visual servoing systems (e.g. Hybrid Visual Servoing,

Partitioned Visual Servo, etc.) which have been proposed to address the drawbacks

of PBVS and IBVS [19]. For instance, Hybrid Visual Servoing, also known as 2 1/2-D

visual servoing is presented by Malis et al. [67] in 1998. This approach combines the

basic PBVS and IBVS. As compared to PBVS, there is no complex geometric 3-D

model of the object required in the hybrid approach. On the other hand, hybrid visual

servoing ensures the convergence of the control law in the whole task space (faster

to reach the desired position) [68]. However, in some approaches, the visual servoing

model may be estimated by either analytically (nonlinear least square optimization)

or learning to completely remove the calibration step [55]. Figure 2.7 shows the

general design of an advanced visual servoing system.

In my portrait drawing problem, a 2D image (from the drawing pad) is used

directly to estimate the desired pose of Betty’s arm. This is a typical task of IBVS,

where the image distance error (drawing variation) between the current and desired
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Figure 2.7: Block diagram of advanced visual servoing. p and uθ are the actual pose
and orientation (u is rotation axis and θ is rotation angle) of the robot and p′ is its
desired pose. In this case, positioning task (velocity screw, which can be denoted as
Ṗ = [V ; Ω]T ) is described by its pose error, e = [f − f ′uT θ]T as presented by Kragic
and Christensen [55]

image features in the output image plane are tracked. I therefore proposed to use

IBVS to address this problem in my work.

Generally, IBVS can divided into two separate systems. First, a dynamic look-

and-move system. This system performs the control of the robot in two stages: the

vision system provides input to robot controller that then uses joint position feed-

back to control the end-effector. As pointed out by Hutchinson et al., nearly all of

the reported systems adopt this approach [47]. Second, direct visual servo systems.

Here, the visual controller directly computes the input to the robot joints and robot

controller is eliminated (no position feedback) [55]. As discussed by Chaumette and

Hutchinson, there is no strategy that provides perfect properties based on their stabil-

ity issues [18]. However, the coarse estimations in IBVS will only imply perturbations

in the trajectory performed by the robot to reach its desired pose (longer convergence

time) and will have no effect on the accuracy of the pose reached. On the other

hand, IBVS has several advantages over PBVS. In IBVS, a 3-D environment model
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is not required. Its target always stays in the field of view of the camera, and its

performance is robust with respect to camera calibration errors and noise when a

monocular camera is used [12; 18; 25]. Therefore, I use this image-based eye-to-hand

visual servoing to control the relative pose between the drawing tool and the drawing

pad with a single camera mounted on Betty’s head.

For the drawing task, a camera (right eye) is used as a global vision sensor (eye-

to-hand configuration). It retrieves and tracks the position of the features (lines and

shading) in the image relative to the Betty’s inverse kinematic frame. In contrast to

PBVS, great robustness with respect to calibration error can thus be expected.

Table 2.1: Comparison of visual servoing techniques.

IBVS PBVS Advanced VS
Feedback control
signals

Image features Image features
(Camera and end
effector)

Partial of both

Vision sensor 2D 3D 2 1/2D
Pros No perfect cam-

era calibration and
complex interpreta-
tion of image fea-
tures

3D model of the ob-
served object to be
known

Advantages of both

Cons Visibility limita-
tions from coarse
estimation

Sensitive to camera
calibration

Complexity of im-
plementation

Table 2.1 shows the comparison of the three different visual servoing approaches

based on their feedback control signals, vision sensor, advantages and disadvantages.
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2.4 Summary

In this chapter, I have given an overview of current approaches to drawing robots. I

discussed few line segment detectors which I use as sketch generator, and the existing

feedback techniques for robot control. I have addressed how each of these robot

control approaches applies to my research questions.



Chapter 3

Design and Implementation

3.1 Introduction

As described in previous chapters, I am attempting to develop a robust humanoid

system to create sketch like drawing with limited hardware. No force sensor but basic

torque feedback from servos to estimate pressure apply on drawing pad. I also use

visual information (e.g. drawing pad pose, pen location and actual sketch) to correct

drawn output in a 2D X-Y planar.

In this portrait drawing problem, vision is an important component which is used

in both knowing what to draw (human portrait) and how to draw it (line sketch-

ing). Hence, I implemented the Furthest Neighbour Theta-graph (FNTG) and the

extended EDLines (eEDLines) to solve the current portrait sketching problem of

Betty. However, the implementation is not limited to a graph and line segment de-

tection algorithms but it also includes several image processing algorithms, such as

thresholding, Canny edge detection [17] and features extraction based on image mo-

22
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ment. The development took place on a Linux platform with Qt Creator and OpenCV

library. Qt Creator is a cross-platform integrated development environment (IDE)

which support C++ for Qt program development.

In this chapter I describe the design and implementation of the hardware, software,

pen-and-ink techniques, and drawing correction mechanisms of my drawing robot:

Betty. I tested the kinematics control by running it on different applications which

are simulation, drumming, and plotting [7]. Then, I introduce a novel technique

called Furthest Neighbour Theta-graph (FNTG) and extended EDLines (eEDlines)

algorithm to generate sketch like output in vectors of line segments. A torque feedback

control (TFC), an image-based visual servoing IBVS system, and the combination of

both methods are introduced to provide significant feedback for drawing deviation

correction throughout the drawing process in a 3D space. The evaluation will be

discussed in chapter 4.

3.2 Hardware

The upper body of Betty consists of a twelve-revolute joint system with 12 degrees

of freedom (DOF). Figure 3.1 shows the overview of Betty’s upper body. Its head

has 4 DOFs which are pan, tilt, swing and one DOF for the mouth. Each of its arms

provides 4 DOFs, shoulders allow lateral and frontal motions, elbow gives lateral

motion and a wrist motion. These joints are constructed by four Dynamixel RX-64

servos in the head and four Dynamixel RX-64 servos for each of its arms as shows in

Figure 3.2.
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Figure 3.1: Overview of Betty’s 12-DOF upper body.

The main reason I chose RX-64 to construct Betty’s arms is it has higher final

maximum holding torque, 64.4∼77.2 kgf.cm compared to only 12∼16.5 kgf.cm for the

AX-12 [79; 80] which were used in Betty’s previous design [7; 58]. This improvement

allows the RX-64 servos to generate sufficient torque to support the weight of Betty’s

arms and head.

Figure 3.2: Betty’s joints construction: (a): Previous AX-12 head; (b): Current
RX-64 head.
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Figure 3.3: CM-2+ Connection.

In order to control the servos, I use Dynamixel’s dedicated controller, CM-2+

from Robotis as the central control unit with its AVR ATmega128 microcontroller.

The real-time OS establishes communication with the servos. Figure 3.3 shows the

connections on the CM-2+. For Betty’s vision, it has two Logitech QuickCam Orbit

MP, 1.3 Megapixel, pan and tilt motorized webcam. The total cost of the hardware

is less than USD 3000 [7; 58].

3.3 Software

A real-time embedded control system is needed to enable the communication

between a controller program and the servos to respone from events such as position

and torque feedbacks within the operational deadlines. Designing and implementing

a real-time embedded system is a challenging task in my development. It is crucial

to ensure that Betty can responds in the expected period of time. For a robot as

complex as Betty, much preliminary experimentation is required to determine the
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best settings to minimize latency and jitter. Latency is the time between starting

to send a command and receiving a response from the servos where the command

has been executed. Jitter is the time variation of latencies. I looked into two types

of robot kinematics: forward and inverse kinematics. In forward kinematics, the

length of each link and the angle of each joint is measured so I can calculate its end

effector (hand) position by using the Denavit-Hartenberg (DH) convention. In inverse

kinematics, the length of each link and position of Betty’s hand is given to generate

the angle of each joint. I use a kinematic diagram to solve the inverse kinematics

problem.

I developed a pre-emptive multi-tasking kernel in the Control Program to handle

several tasks. Currently the kernel supports four tasks [58]. The first task is an idle

task to toggle an LED. This task is always ready to run to ensure that at least one

thread is running and the task switcher is working properly. The second task is a

communication thread that handles serial port communication between the Motion

Editor program and the CM-2+. The third task is a servo thread which prepares

commands to send from the CM-2+ to the RX-64 servos. The last task is the torque

thread that reads the current torque of each servo and sends it to computer through

the communication thread. The pre-emptive multi-tasking kernel uses a timer inter-

rupt to switch between different threads at an initial timer frequency of 10Hz. To

execute task switching, the kernel will save the complete task state on the stack and

then store the stack pointer in the task control block (TCB).

I chose an interrupted linear queue as the data structure to handle communication

data. A queue is a data structure where item insertions are made at the rear and item
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Figure 3.4: General program framework of Betty.

retrievals or deletions are made at the front of the queue. Because the first item added

to the queue will be the first one to be removed, it is commonly referred to a first-in-

first-out (FIFO) data structures [49]. I implemented a circular queue solution and the

experimental results are discussed in [58]. A circular queue provides a few advantages

over a linear queue. It can be accessed at both ends of its array and it uses a constant

size buffer which minimise memory usage and let the program handles data streaming

efficiently [103]. But data in a circular queue can be replaced unintentionally if the

algorithms in the program is not designed properly. On the other hand, a linear

queue can only be accessed at one end linearly so it is safer and easier to implement

compare to circular queue.

The Motion Controller program is a program running on the PC to control the

robot’s motion based on its vision input. Figure 3.4 shows the overall framework of the

system that explains the connection architecture of Betty’s Motion Editor, Control

Program, CM-2+ and servos. I use Absolute Position as the communication protocol:

it has the advantage of simplicity in implementation compared to the other protocols.
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Table 3.1: Communication Protocols.

Protocol Command Structure

Absolute Position

FF01011982828282828282828282E5
FF: Header
01: optional torque reply
01: SyncWrite command
19: Speed
82: Position
E5: Checksum = lower byte of
∼(01+19+82+82+82+82+82+82+82+82+82+82)

Sliding Resolution

FF01011988888888883C (First frame)
FF01010219222222222239 (Second frame)
FF: Header
01: optional torque reply
01: SyncWrite command
01: Highbytes or 02: Lowbytes
19: Speed
88: combination of 2 Highbytes
22: Combination of 2 Lowbytes
3C: Checksum = lower byte of
∼(01+01+19+88+88+88+88+88)

Difference

FF01011922222222223B
FF: Header
01: optional torque reply
01: SyncWrite command
19: Speed
22: Each 4-bit represents the difference between the desired and
the previous positions. 1 to 7 represent increment and 8 to F
represent decrement
3B: Checksum = lower byte of
∼(01+19+22+22+22+22+22)
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The differences between various protocols were discussed in [58]. Based on these

protocols, the Motion Editor will send instructions to the CM-2+’s Control Program.

I use a SyncWrite command to move the servos to specific positions synchronously.

Table 3.1 shows the structures of the Absolute Position protocol where a SyncWrite

command were sent to move all servos from position 512 to 520 at the speed of 100.

I divided the positions and speed by 4 so each of them can be wrapped into one byte

in hexadecimal. According to Table 3.1, each SyncWrite command of the Absolute

Position protocol will send 15 bytes of instruction in one packet.

As seen in Table 3.1, I also tested two different protocols namely the Sliding Res-

olution and Difference protocols. The Sliding Resolution protocol sends its command

in two separate packets which are high and low packets. The high packet consists of

the most significant four bits of every position whereas the low packet contains the

least significant four bits. The advantage of this protocol is to start the servos as soon

as a command is received. So while the Control Program receives the high packet, all

servos will start moving towards their target positions then the final target positions

will be determined once the low packet has been received.

In the Difference protocol, the Control Program receives two types of instruction

packets, Absolute and Relative. The Absolute packet is similar to the one described

in the Absolute Position protocol. Then the Relative packet will be sent with only

four bits per position which encodes the differences between current and new target

positions. Although the Difference protocol showed better performance in both la-

tency and jitter experiments. The relative performance was not significant in most

cases. The Difference protocol provide better performance only if the differences be-
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tween new and current positions is less then 28 unit for each servo movement as

seen in Appendix A. In contrast, the Absolute Position protocol is simpler and eas-

ier to implement and it offers more reliable performance when compare to the other

two protocols. The Absolute Position protocol is chosen based on its reliability and

simplicity compare to the other two protocols. Their performances are discussed in

Appendix A and [58].

A Proportional-Integral-Derivative, PID controller is the most popular feedback

control algorithm [69]. Implementation of a PID controller in the Control Program is

based on the feedback of current latency and jitter from torque responses which will

modify its context switching frequency. The context switch frequency is the frequency

of storing and restoring computing processes in an embedded system. It ensures the

pre-emptive kernel is robust enough so the Control Program can modify its context

switching frequency in real-time. Figure 3.5 shows the basic components of feedback

control in a PID controller.

In the PID control loop, the control output (co) is calculated based on the following

equations:

e(t) = sp− pv (3.1)

Pout = KP e(t) (3.2)

Iout = KI

n∑
t=0

(e(t)) (3.3)
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Figure 3.5: Block diagram of PID controller.

Dout = KD[e(t)− e(t− 1)] (3.4)

co = Pout + Iout +Dout (3.5)

Firstly, the error, e(t) is calculated in equation (3.1) by subtraction of the set

point (sp) and the process variable (pv) which is the latency of current run (t) where

t = 0, 1, 2...n and n is the current time. Then the proportional, integral, and derivative

terms of the error are determined by equations (3.2), (3.3) and (3.4). Finally, all

PID outputs are summed to calculate co as equation (3.5). KP , KI and KD are

the constants called proportional, integral and derivative gain respectively which are

tuned on trial and error basis in the case of Betty. The measured latency is the process

variable (pv), the desired latency is called the set point (sp) and the manipulated

variable (mv) is the context switching frequency of Betty’s embedded system. The

difference between current measured latency pv and defined latency sp is the error(e).

In the control process, the context switching frequency, latency mv is adjusted by
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calculating the error e(t) at time t between the measured pv compared to the desired

set point (15000 µs as seen in the Appendix A). The steady state of context switching

frequency is determined if over 10 consecutive occurrences of pv remain between the

control limits of ±5% from the sp are measured.

3.3.1 Kinematics

I solved Betty’s kinematics problem with the Denavit-Hartenberg (DH) Conven-

tion in the forward kinematics and employed a geometric approach in the inverse

kinematics. These are the reasonably general approaches that allows Betty to par-

ticipate in a variety of applications, such as portrait drawing, Wii drumming and 3D

model simulation [58]. Figure 3.6 explains the coordinate frame system attached and

assigned to each arm.

The Motion Controller computes the forward kinematics to calculate the global

position of Betty’s hands (end-effector). Although, a simple two-joint planar ma-

nipulator analysis is possible to solve with some simple transformation matrices, the

accumulated kinematics analysis of a multiple-joint manipulator can be extremely

complicated. Denavit and Hartenberg [26; 40] used screw theory in the 1950’s to

show that the most compact representation of a general transformation between two

robot joints required four parameters. These parameters are now known as the De-

navit and Hartenberg convention (D-H convention) and they are the de facto standard

for describing a robot’s geometry [44]. Thus, I applied the DH-convention to solve

the forward kinematics analysis problem by introducing a simplified presentation to

calculate the position and the orientation of the end effectors. This approach is widely
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Figure 3.6: Kinematic diagram of Betty’s coordinate frame system

used in robotics and animation. In this convention, each homogeneous transforma-

tion, Di is represented as a product of four basic transformations matrices to get the

global position of any particular point at joint i [83].
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Figure 3.7: XY-plane projection of Betty’s
right arm.

Figure 3.8: Pen and wrist orientation com-
pensation where θ4 = −θ2.

Di = Rz,θiTz,diTx,aiRx,αi

=



cosθi −sinθi 0 0

sinθi cosθi 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 1 0 0

0 0 1 di1

0 0 0 1





1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 cosαi −sinαi 0

0 sinαi cosαi 0

0 0 0 1



=



cosθi −sinθicosαi sinθisinαi aicosθi

sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di

0 0 0 1


(3.6)

In equation (3.6), Rz,θi is the rotation matrix for angle θi by the z-axis, Rx,αi
is

the rotation matrix for angle αi by the x-axis, Tz,di is the transformation matrix for

length di by the z-axis, and Tx,ai is the transformation matrix for length ai by the
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Table 3.2: The DH-parameters for both arms.

Joint,i ai αi di θi
1 l1 α1 =90 0 θ1
2 l2 α2 =90 0 θ2
3 l3 α3 =0 0 θ3
4 0 α4 =90 l4 θ4
5 l1 α5 =90 0 θ5
6 l2 α6 =90 0 θ6
7 l3 α7 =0 0 θ7
8 0 α8 =90 0 θ8

x-axis. The detail descriptions of the DH-parameters are:

ai - the distance between two joint axes measured along the x-axis.

αi - the relative twist between two joint axes measured about the x-axis.

di - the distance between the two perpendiculars measured along the joint axis, z-axis

θi - joint angle about the z-axis

According to the coordinate frame system in Figure 3.6, the DH-parameters are

shown in Table 3.2. To establish the homogeneous coordinate between the origin

and Betty’s arms, both shoulders’ coordinate frames are translated to the origin at

its torso with translation matrices, TL and TR for the left and right shoulders respec-

tively where ty and tz are translation parameters from shoulder to torso.

Where, TL=



1 0 0 ty

0 1 0 0

0 0 1 −tz

0 0 0 1


and TR=



1 0 0 ty

0 1 0 0

0 0 1 tz

0 0 0 1
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Once the DH-parameters and relative frames are determined as shown in Figures

3.6, 3.7 and, 3.8, I combined the transformation matrices as the product of translation

and DH-Convention matrices. The example shown in equations 3.7 and 3.8 are the

calculation of the right hand’s global position, denoted as PR. This is based on the

rotation angles of θ1, θ2 and θ3 from the origin O with the transformation matrix

MR. θ4 at the right wrist adapts the inverse angle of θ2 to compensate the frontal

motion of the shoulder which retains the perpendicular orientation of the pen and

the drawing pad.

MR = TRD1D2D3

=



1 0 0 ty

0 1 0 0

0 0 1 tz

0 0 0 1





cosθ1 0 sinθ1 0

sinθ1 0 −cosθ1 0

0 1 0 0

0 0 0 1





cosθ2 0 −sinθ2 l2cosθ2

sinθ2 0 cosθ2 l2sinθ2

0 −1 0 0

0 0 0 1




cosθ3 −sinθ3 0 l3cosθ3

sinθ3 cosθ3 0 l3sinθ3

0 0 1 0

0 0 0 1


(3.7)

PR(x, y, z) = MRO (3.8)

Previously we discussed how to calculate the global position with DH-Convention

based on the assigned servos’ rotation angles. Following is concerned with the inverse
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Figure 3.9: Example of elbow up/down configuration.

method of finding each of the joints’ angle with a given global position. For the

implementation of Betty’s hand positioning, I used a geometric approach for solving

the inverse kinematics problem. The reason for using a geometric approach is because

the design of Betty’s arms is geometrically simple. This makes it easier to solve,

compared to a general inverse kinematics problem [83]. Generally there are multiple

solutions to a inverse kinematics problem, which could be added to the challenge

like elbow up/down configuration as seen in Figure 3.9. The atan2 function is used

rather than simply using inverse sine or cosine to take care of multiple solutions

problem. Based on Betty’s coordinate frames system in Figure 3.6 and Figure 3.7

, the equations to calculate the servos’ rotation angles for Betty’s right arm can be

solved as shown:

θ2 = atan2(Z/Y ) (3.9)

r2 = X2 + Y 2 (3.10)
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β = acos((l22 + l23 − r2)/(2l2l3))...(Law of Cosines) (3.11)

θ3 = π − β (3.12)

θ1 = atan2(X/Y )− asin(l2 ∗ sin(β)/
√
r2) (3.13)

θ4 = −θ2 (3.14)

3.4 Sketching

3.4.1 Pen-and-ink Drawing Techniques

There are many different drawing media and techniques for portrait drawings;

including pencil, pen-and-ink, crayon-and-charcoal and brush-and-ink [71].

Pen-and-ink drawing has a long history back to the illuminated manuscripts of the

Middle Ages, where text is supplemented by decorations such as decorated initials.

However, this drawing technique has only became commonly used since the end of

the 19th century and has since then developed into its own art form [38]. Pen-and-ink

drawing is similar to pencil drawing in that the use of line and technique is closely

related. However pen-and-ink has different drawing tools to choose from, ranging

from quill pens and dip pens to modern drawing pens like ballpoint, fountain and

marker pens. Generally, human faces are organic in nature with delicate features,
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and these require thinner drawing lines. Therefore, the most suitable tool to use is

a pen with a fine-tip nib like a ballpoint pen and its advantages of no leakage, lower

cost and ease of maintenance.

3.4.2 Outlining: Furthest Neighbour Theta-graph

In this subsection, I introduce the formal definition of Furthest Neighbour Theta-

graph or Θ-graph (FNTG) and establish some of its basic properties. Let P be a set

of n points in the plane and let θ be an angle such that kθ = 2π/θ is a positive integer.

For each point p ∈ P , partition the corresponding disc D, with radius r into a set of

kθ cones C, each spanning an angle of θ with apex at p; see Figure 3.10. Then, add

an edge joining p to the vertex in each cone of C whose projection onto the clockwise

cone boundary is the furthest L2-distance from p. Therefore, for any point set P , the

Furthest Neighbour Theta-graph G = (P,E) of P has at most kθn edges of E in disc

D.

Using an algorithm analogous to that described by Bose et al. [11] for construct-

ing ordered Θ-graph, for any set P of n points in R2 and any point in disc D, the

Furthest Neighbour Theta-graph G can be computed in O(n(log n)/θ) time. The con-

struction algorithm for Furthest Neighbour Theta-graph requires finding the furthest

neighbours of each point p ∈ P bounded by a kθ-cone disc with apex at p. We can

use kθ range trees [8] for each cone. In each tree, every point q of P is stored using

a coordinate transformation to (x, y), where x and y correspond to the respective

distances between the projections of p and q on the boundaries of the given cone with

apex at p. See Figure 3.10 and 3.11.



40 Chapter 3: Design and Implementation

Figure 3.10: Comparison between the theta-graph and a Furthest Neighbour Θ8-
graph with kθ = 8. (a): Illustration of notations for Θ8-graph where the edges are
defined by nearest neighbours of p, (b):An example of Furthest Neighbour Θ8-graph
at p, where a is the furthest neighbour of p compared to b, and c is not bounded by
disc D.

Each vertex requires adding at most kθ edges, each of which is determined using

one range search. Thus, the graph can be constructed using a series of kθn searches

in range trees. Each range tree requires O(n log n) space and supports construction

in O(n log n) time [9], with O(log n) update time [57]. Using this implementation

of range trees, the above algorithm computes a Furthest Neighbour Theta-graph in

O(n(log n)/θ) time. Figure 3.12 shows the vision pipeline to generate a sketch-like

portrait with FNTG.

The first step of the implementation is colour conversion from a four-channel

RGBA image to a single-channel grayscale image. Next, it generates a binary image

from the grayscale image by applying a fixed-level thresholding to remove noise in

the output image where pixels with value beyond the threshold are filtered. After

thresholding, a Canny edge detector is applied. In this case, it produces a full size
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Figure 3.11: Finding the furthest neighbour q of p on disc D with the furthest L2-
distance l in the first kθ-cone.

Figure 3.12: Overview of the general vision pipeline.

image as the input image, but with only black (0) and white (255) pixels, which is

known as a single-channel boolean image. The algorithm processes each individual

edge candidate pixel into intensity gradients by applying an hysteresis threshold to

the pixels, where the higher values are more likely to correspond to edges compared

to smaller values. Therefore two threshold parameters are required, an upper and a

lower threshold. If a pixel has a gradient higher than the upper threshold, then it

is accepted as an edge pixel; if a pixel is less then the lower threshold, it is rejected.

If the pixel’s gradient is between the thresholds, then it will be accepted only if it is
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connected to a pixel that is above the high threshold [13].

The next step would be inverting the black (0) and white (255) pixels from the

output edges by applying bitwise XOR operation on the image array with the cvX-

orS() function. The bitwise XOR is computed with the constant scalar value [13].

In order to reduce the number of pixels to a reasonable number, an image thinning

algorithm has been deployed by a 3x3 convolution matrix and its anchor is placed

at the middle of the kernel. The function cvFilter2D() applies arbitrary linear filter

to the image and then interpolates outlier pixel values from the nearest pixels. Its

thinning output is illustrated in Figure B.2.

Figure 3.13: Implementation of the Furthest Neighbour Theta-graph. (a): The initial
proposed single-disc approach. (b): A dual-disc approach to reduce the number of
less significant edges.

In the final step, the line sketch of a portrait is generated with the FNTG algo-

rithm. However, to reduce the number of less significant edges in an input image, a

dual-disc approach is implemented. Figure 3.13(a) shows that the initial single-disc

approach produces many insignificant lines if the neighbours are too close to p, which
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will affect the presentation of the portrait outline. Consequently, Figure 3.13(b) il-

lustrates a proposed dual-disc approach to solve the problem by only considering the

points which fall between the inner and outer discs’ boundaries. The algorithm for

finding the edges of E at any point of P can be described as in algorithm 3.1.

Algorithm 3.1 Generate FNTG

Require: p
Ensure: ep,q 6= eq,p

1: Read dark pixels into a sorted list
2: for all dark pixel p in P do
3: Superimpose D1 and D2 centred at p
4: for all cone in kθ cones do
5: Search and update the furthest neighbour within D1 and D2

6: end for
7: Add an edge e to p
8: end for
9: for all edge e in E do

10: Remove overlap edges if ep,q = eq,p where p and q denote the end points of the
edge

11: end for
12: Draw edges

Figure B.2 in Appendix B shows the implementation of the interactive GUI which

displays the FNTG computed from an input. By modifying the parameters of various

properties on the graph (e.g, discs’ radii and number of cones) an output or sketch

with fewer edges could be generated. The results are discussed in subsection 4.2.1.

3.4.3 Outlining: Extended Edge Drawing Lines (eEDLines)

Here I define a line segment of two endpoints A and B (AB) as a finite line

vector. It connects endpoints A and B in AB direction as shown in Figure 3.14.

The location of a line segment such as AB on the 2-D coordinate plane (line sketch
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images) is defined by two endpoints. Their coordinates are known as A(x0, y0) and

B(x1, y1). This line segment links the two endpoints but does not extend beyond

them.

Figure 3.14: Definition of a line segment.

Line Segments Grouping

Based on the defined vector representation, line segments which are near-collinear

will be merged. To determine if the line segments are near-collinear, it starts with

compares the slopes, θ between the line segments where θ is defined as equation 3.15

and −π ≤ θ ≤ π. So, if the difference is within a given threshold angle then these

line segments are near-collinear and could be joined if they are close to each other.

θ =


atan2(y1 − y0, x1 − x0), if θ ≥ 0

atan2(y1 − y0, x1 − x0) + π, otherwise

(3.15)

The next problem is determining whether these line segments are close enough

to be joined based on their Euclidean distance. The Euclidean distance between

any two line segments, AB and CD is defined as the minimum distance, d between
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Figure 3.15: Line segment slope using atan2. Slope of line segment v is measured as
θv = −α + π

any two of their points p and q. This distance can be computed using calculus

method [30]. However, I used a geometric approach based on Dan Sunday’s geometry

algorithms [85]. This approach has fewer cases to check compared to the calculus

approach by [30] which is more difficult to implement [85]. There is a similar geometric

approach used in Seth Teller’s [88] example but it is limited to 3D space and slower

then the previous methods [85]. Based on Dan Sunday’s approach, the minimum

distance between AB and CD is defined as equation 3.16.

dp,q = min
p⊆AB,q⊆CD

dAB,CD (3.16)

In any n-dimensional space, assume the two line segments AB and CD are closest

at unique points p and q. Let w(p, q) be the vector of unique minimum distance

between the vectors u and v as described in the quadratic function (equation 3.17) of
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Figure 3.16: Closest distance between two line segments.

p and q where 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1.

w = pu− qv + w0, where w0 = A− C (3.17)

When the vector w is uniquely perpendicular to the vectors u and v as their

minimum distance, it is equivalent to satisfy two equations where u·w = 0 and v·w =

0. Then substitute equation 3.17 into these two equations to get two simultaneous

linear equations as shown in equations 3.18.

(u · u)p− (u · v)q = −u ·w

(v · u)p− (v · v)q = −v ·w (3.18)

Then the linear equations are solved as equations 3.19.
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p =
be− cd
ac− b2

and q =
ae− bd
ac− b2

, where ac− b2 > 0 (3.19)

Therefore, the minimum distance, d can be described as the magnitude of w,

d = ‖w‖ =
√
w · w. Assume the four edges of the two line segments A, B, C and D

are given by p = 0, p = 1, q = 0, and q = 1. Consider p = 0, if 0 ≤ q ≤ 1, then the

two closest points are A and q. However, if q lies outside of CD, then C or D is the

minimum along CD. The other edges are treated in a similar manner.

Figure 3.17: Merge two nearest near-collinear line segments.

Figure 3.17 shows the merging example of two line segments. By considering the

distance, d and slopes of the line segments, θ0 and θ1 as seen in equations 3.20 where

the furthest edges A and D are joined to define a new line segment, PQ. Figure 3.18

shows more line merging examples.
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d < Dt and | θ0 − θ1 |< Θt (3.20)

where Dt and Θt are the thresholds

Figure 3.18: Examples of different line segments merging.

Sketch outline generator

As discussed in the previous section, the extended Edge Drawing Lines (eEDLines)

algorithm is an extended version of the EDLines algorithm. It eliminates the near-

collinear line problem and its data flow is depicted in Figure 3.19.

First, the region of interest (ROI) of a portrait is extracted from an input by the

available Haar-Cascades face detector in OpenCV. Then I use the standard EDLines

algorithm to detect line segments. These line segments are sorted by their y values

using quicksort in a C++ standard library. Next, line segments that lay near the

edges of the portrait and short insignificant lines (based on the given threshold, e.g.

line segments with fewer than 10 pixels) are removed from the line vectors. The final
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step is to merge all near-collinear line segments to minimize the number of significant

line segments.

Figure 3.19: Flowchart for extended Edge Drawing Lines (eEDLines) data flow.

Based on Dan Sunday’s algorithm [85], algorithms 3.2 and 3.3 describe the way to

find the shortest distance between two finite line segments u and v and merge them

as seen in Figure 3.16. Algorithm 3.2 shows how I compute the shortest distance, w

of two line segments from their infinite vectors u and v. Next, these line segments

are merged by algorithm 3.3 if they are near-collinear to each other with a given

threshold angle difference between them. This threshold value could be selected

based on perception of the output sketch, e.g. 8°in most cases.

Figure 3.20 shows the differences between standard EDlines (b) and the eEDlines

algorithms (c). It clearly displays how the near-collinear line segments are reduced.

The detail results of various line segment detection algorithms will be discussed in

the next chapter.
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Algorithm 3.2 Find shortest distance between two finite line segments

Require: line segments, s1 and s2

1: Define line segment infinite vectors of u, v and w
2: Compute the line parameters of the two closest points a,b,c,d as seen in equa-

tion 3.18
3: Compute vector w the closest points p and q to the vector u and v respectively

by solving linear equations as seen in equation 3.19
4: Check the visibility of the finite line segments based on their edges A, B, C and
D

5: Calculate distance, dist between p to q as
√
w · w

6: return dist

Algorithm 3.3 Merge near-collinear line segments

Require: line segments, S

1: Read line segments into a sorted list, S
2: for each line segments si and si+1 in S do
3: for each line segments si+1 in S do
4: if si and si+1 are approximately collinear then
5: Compute the closest distance between si and si+1 with algorithm 3.2
6: if si and si+1 distance < threshold then
7: Merge si+1 to si into a new line segment by joining the furthest edges
8: end if
9: end if

10: Remove si+1 from list
11: end for
12: end for
13: Compare the next line segments

eEDLines has an execution time proportional to the number of pixels in the image

as suggested in the standard EDLines algorithm, because both the total number of

pixels involved and the number of regions are at most equal to the number of pixels.

Due to the line segments sorting (quicksort) step in the algorithm, the complexity of

its processing time increases to O(n2) time in the worst case but it is usually faster,

which is O(nlogn) in most cases.
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Figure 3.20: Extended EDLines Detector. (a) Input checker image, (b) Output from
standard EDLines, (c) Output from extended line segment detector.

Figure 3.21: Sketch outline output comparison. (a): input image (b): standard
EDLines output and (c): eEDLines output

3.4.4 Shading

There are several basic techniques to shade in pen-and-ink to create different tonal

value. These techniques generally require different densities of lines or dots to express

the relative proportion of light and dark that reflect contour and features of a face.

There are three basic shading techniques: hatching, cross-hatching and stippling as

seen in Figure 3.22 [66]
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Figure 3.22: Different shading techniques, (a): Hatching, (b): Cross Hatching and
(c): Stippling.

Hatching:

Hatching is a technique used to create shading value with straight lines in the

same direction for a defined area. When hatching is used, the lines do not cross over

each other. Hatching lines can be parallel or they can be used as cross contour lines

to help define the form of the object. The closer the lines are to each other, the darker

the value. The more space between the lines, the lighter the value.

Cross Hatching:

Cross hatching is just like hatching except that the lines cross over each other.

The more that the lines cross, the darker the value. Cross hatching can be used with

rigid straight lines or as cross contour lines to define the form of the object.

Stippling:

Stippling is adding dots to create the extent of the shading. The higher the

concentration of dots, the darker the shade. The more distance between the dots, the

lighter the shade. Stippling can produce highly realistic drawing due to its robustness
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of shading value. but it may be time consuming for Betty.

Figure 3.23: Flowchart for Shading generator.

Shading is the process of darkening to illustrate varying levels of darkness on

a sketch. Figure 3.23 shows the flowchart of the sketch shading extraction process

implemented to extract shading lines (e.g. hatching or cross-hatching).

First, the image or extracted portrait is saved as a single channel grayscale PGM

(Portable Gray Map) format and its binary image is created by applying a fixed-level

thresholding to extract pixels shading as seen in Figure 3.24(b). After thresholding,

closing (dilation and erosion) and opening (erosion and dilation) operators [32; 77]

are applied to the image. Closing fills small holes (white) and opening removes small

objects (black) as seen in Figure 3.24(c). Then I applied an exclusive OR operator

(XOR) to this extracted shading with a chosen shading pattern (Figure 3.24(d)) to

create shading lines like Figure 3.24(e). Figure 3.25 shows some different shading

pattern applied to a checker image.

Last, the algorithm processes the shading lines image to create the line segments
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Figure 3.24: Sketch shading (a): input image (b): binary threshold (c): extracted
shading (d): shading pattern (e): shading lines.

Figure 3.25: Different shading outputs. (a): input checker image (b): stippling
(c):hatching (d): cross-hatching.

vectors. To produce a complete line sketch image, outline and shading are overlaid

as a single image as shown in Figure 3.26

Figure B.4 in appendix B shows the screen-shot of the implemented automatic

sketch generator.
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Figure 3.26: Full sketch is computed by overlying both outline and shading lines.

3.5 Compensation of Drawing Deviation

3.5.1 Torque Feedback Control (TFC) Model

For Dynamixel RX-64 servos, torque can be measured on a 0-1023 (0x3FF) scale,

based on its maximum holding (stall) torque 64 kgf-cm (6.92 Nm) at 18V. As seen in

Tira-Thompson’s [90] study, a Dynamixel servo can read back the current position,

temperature, load (torque), etc. For instance, position read back can measure to

within 0.5 degree of accuracy at full communication speed in every 130ms. However,

reading the present load would not provide precise torque measurement. Robotis

posted a comment on their official website that the “Present Load” or torque mea-

surement is not a real torque or electrical current measurement. It is actually just

based on the difference between current position and goal position. It has a control
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loop to make sure the motor actually got to the goal position. Hence, the “Present

Load” value is the torque that the servo is applying, not the torque that it is experi-

encing. Therefore, it is not possible to perform “Torque Control” of a servo [31].

Figure 3.27: Designing of torque feedback control (TFC) model.

However, in the brief tutorial book of Anderson [4], he suggested the reality can be

estimated based on the empirical evidence hypotheses and statistical models as shown

in Figure 3.27. In my approach, I designed a simple torque feedback control (TFC)

model based on the two simplest strokes, horizontal and vertical. Some preliminary

experiments are performed to obtain suitable sets of data from the servos’ torque

feedback (right arm). By using this data, a simple TFC model is created and a suitable

set of candidate models is selected based on statistical hypothesis testing to estimate

stroke pressure. “Given candidate models of similar predictive or explanatory power,

the simplest model is most likely to be correct” [4]. Figure 3.28 shows the design of

Betty’s TFC model.

The TFC approach is implemented to observe pen pressure during the drawing

process to prevent overpressure or no-touch errors. Several experiments were con-

ducted to obtain the statistical model. It provides optimum thresholds to estimate

pen pressure. In these experiments, the pressure applied on the Wacom Bamboo

tablet (underneath the paper) are recorded.
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Figure 3.28: Processing flow of torque feedback control (TFC) for drawing task.

Betty’s right arm performed two basic stroke types, namely vertical and horizontal

strokes. Two directions are drawn for both types of stroke. These are upward-

downward and left-right. Figures 3.29 and Figure 3.30 show the average vertical

strokes and Figures 3.31 and Figure 3.32 show the average horizontal strokes from

100 recorded strokes respectively in different directions. Medium pressure is the

normal pressure read from the Wacom Table in the range of 0.7 ± 0.1 and high

pressure represents 1.0 (highest) pressure measurement from the tablet. From these

preliminary experiments we observed that high pressure caused significant errors in

both horizontal and vertical strokes compares to normal pressure. So, it makes the

estimation of stroke pressure essential.

During the experiments, I recorded the torque measurements of each servo on

Betty’s right arm. By using this torque data as seen in the following tables, a simple

TFC model is created. Hence, the suitable set of candidate models can be selected

based on statistical hypothesis testing to estimate stroke pressure.

Table 3.3 shows the torque measurements from four servos on the right arm namely
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Figure 3.29: Medium pressure vertical
strokes.

Figure 3.30: High pressure vertical
strokes.

ID 1, 2, 3 and 4 for shoulder-frontal, shoulder-lateral, elbow and wrist respectively.

Table 3.4 shows the model of vertical downward stroke which suggests how signif-

icantly torque measurements are affected by different stroke pressures. As seen in

Table 3.4, servo ID 2 is not sufficient to differentiate normal pressure strokes from

no-touch conditions. However, servos ID 1 and 3 torques are highly suited for use as

the evaluators to estimate the pen’s tip pressure for this stroke pattern.

Table 3.5 and Table 3.6 show the model of vertical upward stroke. As seen in

Table 3.6, servo ID 2 shows no significant difference between normal pressure stroke

and no-touch conditions. But servos ID 1, 3 and 4 torques may be used to estimate

the pen’s tip pressure for vertical upward stroke.

Table 3.7 and Table 3.8 show the model of horizontal right-left stroke. As seen in

Table 3.8, it is not identical to the previous stroke types we discussed. For horizontal
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Figure 3.31: Medium pressure horizontal strokes.

Figure 3.32: High pressure horizontal strokes.

right-left stroke, servo ID 1 is not sufficient to differentiate high pressure strokes from

no-touch conditions. However, it is highly suited for differentiate these conditions

from normal pressure. Servos ID 3 and 4 torques may be used to estimate the pen’s

tip pressure.

Table 3.9 and Table 3.10 show the model of horizontal right-left stroke. As seen

in Table 3.10, servo ID 2 shows no significant result to differentiate normal pressure

stroke from no-touch conditions like the other vertical strokes we have seen. Similar to

the vertical upward stroke, servos ID 1, 3 and 4 torques may be used as the evaluators

to estimate the pen’s tip pressure for horizontal right-left stroke.

Based on these preliminary experiments, Table 3.11 shows the general TFC model

to estimate the pen’s tip pressure from servos’ torque feedback. For simplicity of the

implementation Servo ID 1 and 3 (shoulder and elbow) are mostly used. Figure 3.33

illustrates the control loop of the TFC model.
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Table 3.3: Results of vertical stroke (downward) tests.

Vertical Strokes (Downward)
Average
Pressure

No 0.67 1.00

Servo ID 1 2 3 4 1 2 3 4 1 2 3 4
Average 16.88 0.02 52.42 0.12 32.32 0.84 20.7 23.6 200.44 11.82 93.1 1.42
Std. Dev. 12.21 0.14 7.65 0.33 16.24 5.37 8.95 2.83 12.13 7.01 8.92 4.36

Table 3.4: Comparison of vertical (downward) stroke model.

Servo ID
Pressure Comparison 1 2 3 4

No vs. Normal 2.96e-07 0.1430 1 1.24e-34 3.59e-48
No vs High 6.73e-89 2.26e-16 2.65e-43 0.0202

Normal vs. High 3.27e-74 4.05e-14 2.57e-63 3.41e-47
1 Not significant to identify different pressure on pen tip.

Figure 3.33: Closed-loop control diagram for TFC
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Table 3.5: Results of vertical stroke (upward) tests.

Vertical Strokes (Upward)
Average
Pressure

No 0.67 1.00

Servo ID 1 2 3 4 1 2 3 4 1 2 3 4
Average 76.04 0.12 33.36 0.2 32.42 1.08 11.96 23.52 40.96 58.58 46.42 18.78
Std. Dev. 11.65 0.33 6.08 0.4 18.22 3.99 10.12 3.39 3.08 18.42 8.34 5.21

Table 3.6: Comparison of vertical stroke (upward) model.

Servo ID
Pressure Comparison 1 2 3 4

No vs. Normal 2.25e-24 0.048072 1 2.08e-21 3.81e-44
No vs High 4.90e-28 9.74E-28 2.32e-14 3.67e-30

Normal vs. High 0.000964 2.19e-28 1.31e-33 3.20e-07
1 Not significant to identify different pressure on pen tip.

Table 3.7: Results of horizontal stroke (left to right) tests.

Horizontal Strokes (Left to right)
Average
Pressure

No 0.67 1.00

Servo ID 1 2 3 4 1 2 3 4 1 2 3 4
Average 47.26 30.04 66.24 26.52 23.64 36.34 21.86 23.06 47.44 54.74 41.02 11.66
Std. Dev. 7.77 12.87 7.76 4.68 1.79 14.99 4.04 5.41 2.55 12.12 3.18 5.82

Table 3.8: Comparison of horizontal stroke (left to right) model.

Servo ID
Pressure Comparison 1 2 3 4

No vs. Normal 5.90E-28 0.013217 9.69E-49 0.00046
No vs High 0.438413 1 1.15E-16 2.76E-31 3.77E-25

Normal vs. High 1.56E-69 6.08E-10 3.48E-45 3.05E-17
1 Not significant to identify different pressure on pen tip.
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Table 3.9: Results of horizontal stroke (right to left) test.

Horizontal Strokes (Right to left)
Average
Pressure

No 0.67 1.00

Servo ID 1 2 3 4 1 2 3 4 1 2 3 4
Average 45.14 35.34 66.24 26.36 18.52 35.56 20.84 17.06 25.72 11.88 88.86 1.06
Std. Dev. 6.55 15.14 7.76 6.62 4.21 13.84 4.1 5.45 14.91 7.07 13.83 3.82

Table 3.10: Comparison of horizontal stroke (right to left) model.

Servo ID
Pressure Comparison 1 2 3 4

No vs. Normal 8.33e-40 0.469855 1 1.33e-49 7.56e-12
No vs High 1.94e-12 2.95e-15 4.88e-16 2.03e-37

Normal vs. High 0.000871 4.93e-17 1.25e-39 7.85e-30
1 Not significant to identify different pressure on pen tip.

Table 3.11: Torque feedback control model.

Stroke Type
Torque (τi) threshold conditions for normal pressure

Low Pressure (No-touch) High Pressure
Vertical downward ID1: τ1 < 25 ID1: τ1 > 50
Vertical upward ID1: τ1 > 50 ID1: τ1 < 50 and ID3: τ3 > 40
Horizontal left-right ID1: τ1 > 30 and ID3: 20 < τ3 < 35 ID3: τ3 > 20
Horizontal right-left ID1: τ1 > 40 and ID3: 20 < τ3 < 35 ID2: τ2 > 35 and ID3: τ3 > 20
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3.5.2 Image-based Visual Servoing (IBVS) control

As discussed earlier, a visual servoing approaches is classified based on the type

of feedback it perceived. In my implementation, I extracted the line segments of the

drawing pad’s pen-and-ink sketch. Based on this information, it guides Betty during

the drawing process to correct the drawn errors (e.g. line segments pose (two end-

points) and completeness). Hence, an imaged-based visual servoing (IBVS) approach

is implemented in my thesis to accomplish this task.

IBVS involved manipulation of a set of image features (object) from an acquired

image based on their coordinates by computation of the image Jacobian [55]. In

general, the Jacobian matrix (J) is defined as a matrix based on the motion of the

image feature. J is used to set the desired pose of manipulator as seen in equa-

tion 3.21 [47; 55].

ḟ = Jq̇ (3.21)

Where ḟ represents the motion of the image feature in consecutive images and q̇

denotes the six dimensions velocities, [ẋ, ẏ, ż, ẇx, ẇy, ẇz]: three translations and three

rotations of the feature with respect to the camera frame [21]. Based on the unit focal

length perspective projection model, the relationship between the robot arm and the

image feature is shown as equation 3.22 [47; 55].

ẋ′
ẏ′

 =

 1

Z
0 − x

Z
xy (1 + x2) −y

0
1

Z
− y
Z
−(1 + y2) xy x

 (3.22)

During the drawing task, the pen’s tip is orthogonal to the surface of the drawing
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pad. Hence, no orientation adjustment is required during the servoing. The image

features only need to be translated to the desired pose with the three translation

[ẋ, ẏ, ż] workspace. Therefore, the Jacobian can be simplified as equation 3.23.

J =

 1
Z

0 − x
Z

0 1
Z
− y
Z

 (3.23)

IBVS expresses the control error function directly in 2D image space [55]. The

aim of all vision based control schemes is to minimize the error e(t), which is typically

defined by equation 3.24 as we have seen in Figure 2.6.

e(t) = f − f ′ (3.24)

f is a vector of n visual features based on image measurements (e.g., the image

coordinates of interest points, or the parameters of a set of image segments) and a

set of parameters that represent partial knowledge about the system (e.g. camera

intrinsic parameters or three-dimensional object models) [82]. The vector f ′ is the

desired values of these features. In the drawing tasks, the simplest model for the

controller is its drawing deviation. And there must be a relationship between the

time variation of each variable in equation (3.24).

Based on Kragic et al.’s [55] and Chu et al.’s research [21], the most common

proportional control approach is applied to generate the control signal for the robot.
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q̇ =


ẋ

ẏ

ż

 = KpJ
−1 · e(t) (3.25)

J−1 is the pseudoinverse of the image Jacobian and Kp is the proportional gain.

The visual servoing scheme continues until the evaluated error is less than the given

threshold pixels limit on the image.

Figure 3.34 illustrates the proposed framework of the visual processing pipeline

for the IBVS system.

Figure 3.34: General framework of IBVS for drawing task.

Let us assume the camera position is static and the height of the drawing pad

is known, as shown in Figure 3.35. A number of feature lines are tracked and used

to generate a vector of current measurements, f1f2. The vector of desired reference
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measurements is denoted f ′1f
′
2. The error function for the drawing deviation is defined

as a function of the distance between these measurements, e = f − f ′. This error

function is then updated in each frame and used together with the inverse kinematics

to estimate the control input to Betty.

Figure 3.35: A schematic overview of image based visual servoing.

Drawing pad detection and sketch extraction

Drawing pad location is a crucial information in the IBVS implementation. Based

on this information, it constructs the image plane on a Cartesian space to extracts

content on the drawing pad.

Figure 3.36 shows the overall process to detect the drawing pad location and to

extract its content within the drawing area. First, I applied the Canny edge detector

to the input image to obtain the line image as seen in Figure 3.38(b). With the wide
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Figure 3.36: Flowchart for drawing pad detection.

range of edges in the image, drawing pad contour is extracted based on its moments

size by using the moments function in OpenCV. It allows computation of all moments

as seen in equation 3.26 [87].

mij =
∑
x,y

(array(x, y) · xj · yi) (3.26)

Then I used a rectangular convex hull algorithm as the minimum bounding box of

the rectangle drawing area to compute its four corners’ coordinates in Figure 3.38(d).

Last, based on the detected corners vertices, a perspective transformation is per-

formed to map the deformed drawing pad (region of interest) to its destination image.

The mapping is done by getPerspectiveTransform and warpPerspective in OpenCV

library [86]. Equation 3.27 [86] shows the calculation of the 3×3 perspective trans-

form matrix from four pairs of the corresponding points i = 0, 1, 2, 3. The destination

image vertices are represent as dst(i) = (x′i, y
′
i) and the source image vertices are

referred as src(i) = (xi, yi).
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tix
′
i

tiy
′
i

ti

 = map matrix ·


xi

yi

1

 (3.27)

Then I used the warpPerspective function to perform a perspective transformation

of a source image to a destination image using the specified 3×3 matrix, M . Mapping

of the drawing pad dimension is described in equation 3.28 [86]. Algorithm 3.4 is the

implementation of drawing pad detection. Figure 3.38 shows an example of extracted

drawing pad area. Figure 3.37 shows the perspective transformation of drawing area

to correct distortion and due to viewing angle of Betty right eye.

dst(x, y) = src(
M11x+M12y +M13

M31x+M32y +M33

,
M21x+M22y +M23

M31x+M32y +M33

) (3.28)

Figure 3.37: Drawing area perspective transformation: perspective transformation is
applied to the drawing area (region of interest) to extract drawing content.
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Algorithm 3.4 Extract sketch from drawing pad

Require: input image

1: Define contour vectors
2: cvtColor(): convert color space to grayscale
3: Canny(): compute Canny edge detector
4: findContours(): find contours of edges
5: Define image moment and convex hull vectors based on contour’s size
6: for each contours do
7: Compute image moments of the contours with moments()
8: Compute convex hull vectors with convexHull()
9: Approximate a polygon with approxPolyDP() from the convex hull vectors

10: if Number of corners = 4 then
11: Arrange four corners in counterclockwise order: top-left, bottom-left,

bottom-right, top-right
12: Verify the rectangularity of polygon based on parallelity and equivalent of

opposite edges
13: end if
14: break
15: end for
16: Define region of interest (ROI) of the drawing pad
17: Calculate the perspective transform matrix from four pairs of the corresponding

corners and ROI using getPerspectiveTransform()
18: Apply a perspective transformation to the image using warpPerspective()
19: return Drawing pad ROI
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Figure 3.38: Image pipeline for drawing pad detection. (a): input image; (b): Canny
line detection output; (c): pad contour of drawing area is extracted; (d): four corners
are estimated based on rectangular convex hull.
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Pen detection

Pen detection is important for the implementation of drawing task with the IBVS

approach. Due to the limited feature of a pen in the drawing scene, pen position (x-

and y-coordinates) on the image plane is estimated by using a pink colour marker on

its tip. Figure 3.39 shows the flowchart of this implementation.

RGBA (referring to red, green, blue and alpha for opacity) colour space is not easy

to perform interpretation and segmentation for what human perceive as a constant

colour. The first step of the implementation is colour space conversion from the

default four-channel RGBA to a three-channel HSV (referring to hue, saturation and

value) and it also called HSB (B refer as brightness) which is more commonly used

for image segmentation [74]. Figure 3.40(b) shows the output in HSV space. Colour

is defined by hue and saturation and the value (V) is used to describe the brightness.

If the brightness is low then the colour can be considered as black [65]. Therefore,

HSV is better at capturing the colour intensity for the segmentation compared to the

RGBA colour space.

Next, any pixels in range of the pink colour are filtered and converted to a binary

image. Then the algorithm calculates all moments’ sizes of the dark pixels. It repre-

sents the contour of the pink coloured marker (pen’s tip) as shown in Figure 3.40(c).

Figure 3.40(d) shows the final output where the central moments (based on equa-

tion 3.29 [87])of the selected tip’s contour; with its vector of points is returned as the

estimated pen position.
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muij =
∑
x,y

(array(x, y) · (x− x̄)j · (y − ȳ)i) (3.29)

where x̄ =
m10

m00

, ȳ =
m01

m00

Figure 3.39: Flowchart for pen detection

Algorithm 3.5 shows the detail of the pen’s tip detection process and usage of

OpenCV functions to find contours of the filtered image and compute their image

moments.

Algorithm 3.5 Estimate pen X-Y position

Require: input image

1: Define line segment and image moment vectors
2: cvtColor(): convert color space to HSV
3: inRange(): find in range coloured segments
4: findContours(): find contours of filtered segments
5: for each contours do
6: Compute image moments of the contours with moments() function
7: if image moment in range of limits then
8: Compute pen centre as suggested in equation 3.29
9: break

10: end if
11: end for
12: return Pen centre coordinate

Figure 3.41 shows the example images of occlusion detection that applied in the

implementation. The occlusion detection is based on the pen position and a wrong
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Figure 3.40: Image pipeline for pen detection. (a): input image;(b): HSV image; (c):
extracted pen contour based on colour marker on the pen; (d): estimated position
on the drawing pad plane.

corner or incompleteness of the perceived drawing area. It avoids unnecessary features

extraction in the drawn sketch.
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Figure 3.41: Pad (corners) errors detection. (a): fail to avoid wrong corner; (b):
wrong corner is avoided and drawn sketch is not extracted to avoid inclusive of Betty’s
hand in the sketch while occlusion occur.

3.5.3 Sketch lines matching

Sketch line matching is the process to match line segments based on geometrically

possible pairs of generated sketch and actual drawn lines segments to compensate for

drawing errors for the IBVS approach. This technique is adapted from the eEDLines

approach. The geometry of the drawing pad is mapped to the generated sketch

dimension in 2D space (x- and y-coordinates) as shown in Figure 3.42 with directional

scaling from Figure 3.42(a) to Figure 3.42(b). Its projective transformation matrix is

shown in equation 3.30, where sx = Wsketch/Wimage and sy = Hsketch/Himage. Then

the extracted ROI image is sharpened with a Gaussian blur filter (cv::GaussianBlur)

to enhanced the line features on the image.
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Figure 3.42: Image mapping from input image to sketch for drawing pad. (a): input
image (b): mapped sketch based on drawing pad dimension


ximage

yimage

1

 =


sx 0 0

0 sy 0

0 0 1

 ·

xsketch

ysketch

1

 =


sxxsketch

syysketch

1

 (3.30)

Each of the line segments will be redrawn based on the correction of its position

error. Errors of two end points of a line segment conveys the errors of angle and length

of the matching line segment to its desired baseline. It provides sufficient information

to redraw the unmatched line segment. However, if the matching is unsuccessful

after several trials, the drawing process will move on to the next line segment to

avoid infinite loop of single line segment matching. I use five trials as the termination

condition for each line segment.
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Figure 3.43: Closed-loop control diagram for IBVS

As discussed in the previous chapter, the error function is defined simply as the

difference between the current (or the closest line segment) and the desired line seg-

ment feature e(t) = f − f ′. Based on their two end points, as seen in Figure 3.44;

f is the pose of the current line segment ab and f ′ is its desired pose which is a′b′.

Hence, the current errors e(t) of endpoints a and b in 2D space could be defined as

the Manhanttan distance between them:

ea(t) = dist(a, a′) = [exa, e
y
a] = [(xa − x′a), (ya − y′a)] (3.31)

eb(t) = dist(b, b′) = [exb , e
y
b ] = [(xb − x′b), (yb − y′b)]

Then these errors are passed to the inverse kinematics routine to change the joint

angles to desired pose with a P controller. Equation 3.32 shows the proportional con-

trol function where Kp is a empirically tuned gain. The third dimension z could only

be estimated based on no-touch events. The process of the line segments matching is

shown in algorithm 3.6. No transfer of errors from one stroke to the next. It avoids
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Figure 3.44: IBVS based on line segment feature.

false corrections due to shifting of drawing pad during the drawing task.

axIK(t) = axIK(t− 1) +Kp ∗ exa (3.32)

ayIK(t) = ayIK(t− 1) +Kp ∗ eya

bxIK(t) = bxIK(t− 1) +Kp ∗ exb

byIK(t) = byIK(t− 1) +Kp ∗ eyb



78 Chapter 3: Design and Implementation

Algorithm 3.6 Match line segments

Require: line segments from drawing pad, Spad and line segments from sketch, Ssketch
1: Read and draw each Ssketch
2: for each line segments from Ssketch do
3: if Ssketch and Spad are approximately collinear then
4: Compute the closest distance between Ssketch and Spad with algorithm 3.2
5: if Ssketch and Spad distance < threshold then
6: Calculate two end points distances between Ssketch and Spad, p1dist and

p2dist
7: if p1dist and p2dist < lower threshold then
8: Flag the Ssketch as match
9: Return line match

10: else
11: if p1dist and p2dist < within lower and upper thresholds then
12: Return the errors of end points, e1x, e1y, e2x and e2y
13: else
14: Return no line match
15: end if
16: end if
17: end if
18: end if
19: end for

3.5.4 Hybrid Control

Hybrid control is an integrated approach based on torque feedback control and

visual servoing. However, most researchers use force sensors mounted on the robot’s

end-effector to estimate its pose [5; 20; 45; 59; 75]. Here, I define hybrid control as

the combination of the torque feedback control and image-based visual servoing. It

estimates the pressure errors on the pen’s tip and the 2D pose of the line segment

features on the drawing pad. The main goal of this combination setup or hybrid

control is to combine their advantages, while overcoming their shortcomings in a

3D workspace. Where depth error is estimated by the pressure and paper shifts is

corrected by drawn line segment features. Both the task quality (in the sense of
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increased robustness), the accuracy, and the range of feasible tasks have to increase

reasonably with integrated vision and torque feedback control. The results of the

implementation is elaborated in Chapter 4.

3.6 Summary

This chapter described the core of my research and how it was implemented in

both hardware and software. It explained the kinematic model I have designed to

manipulate Betty’s arm. I introduced the TFC model to estimate the pen’s tip

pressure based on the servos’ basic torque feedback. I also developed the algorithms

to the represent a sketch as a series of line segment vectors which serve as visual

features for visual servoing in the compensation of drawing deviation section.



Chapter 4

Evaluation

4.1 Introduction

In this chapter, I designed various experiments to evaluate different aspects of

my research. I tested efficiency of two automatic sketch generator methods, namely

FNTG and eEDLines. Next, I evaluated the drawing feasibility based on three imple-

mentation: TFC, IBVS and their hybrid control. The data collected from a Bamboo

tablet was analysed and was discussed in this chapter. Finally, I evaluated the drawn

outputs of open-loop (feedforward) and closed-loop (hybrid feedback) based on the

similarity test to their inputs. SURF and pixel matching evaluation methods were

used in this experiment.

80
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4.2 Automatic Sketch Generator

The ability to generate a sketch using FNTG was tested by comparing different

parameter settings of the algorithm. Then I compared the number of generated

edges based on these settings. Next, I evaluated my eEDLines algorithm based on

two aspects, its processing time and the number of generated line segments. Its

performance was compared to established algorithms, e.g. LSD and EDLines.

4.2.1 Furthest Neighbour Theta-graphs (FNTG)

In this experiment, several settings of different parameters were tested e.g. number

of cones; to see the capability of FNTG in sketch generating. It is clear that the

accuracy of estimated edges is greatly affected by the bounded perimeter of the discs.

It could be too fine (too many insignificant edges) or too coarse (loss of detail, such

as the eyeglass frames in Figure 4.1) to correctly represent the portrait. Figure 4.1

shows several sketches generated by different parameter configurations of the furthest

neighbour theta-graph.

Table 4.1 shows the results of different inner and outer discs’ radii and their

respective total number of edges based on various numbers of cones, kθ. These results

were obtained from an input image with a 25:100 Canny’s thresholds ratio, resulting

in 5450 pixels before thinning and 1607 pixels after thinning. It showed that the

number of edges could be reduced according to the inner and outer radii ratio, where

a smaller range of disc perimeters produced fewer edges.

The comparison chart shown in Figure 4.2 illustrates the effectiveness of the fur-
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Figure 4.1: Different sketch outputs based of discs’ radii ratio rinner:router. (a): 0:10,
(b): 9:10 and (c) 14:15 with four cones, kθ = 4.

thest neighbour theta-graph to reduce the total number of output edges with different

values of kθ and discs’ radii. For each kθ, the number of edges is reduced significantly

for smaller distance of a inner and a outer discs, e.g. 9:10 ratio. Although the number

of edges grew approximate linearly when the number of cones increased, its setting

was chosen so that a visually reasonable output was obtained. Removing insignifi-

cant edges from the sketches reduced the total number of drawing motions required

by Betty, allowing it to complete the sketching in less time.

Based on a visual evaluation of the output (e.g. portrait (b) in Figure 4.1),

I found that with kθ = 4 and a discs’ radii ratio, rinner:router, of 9:10 produced

reasonable output that faithfully captured and presented the portrait’s detail (e.g.

the glasses frame). Figure 4.3 shows several outputs from a few input images; namely,

checker, molecules [98] and chairs [98] under the chosen parameters. I choose these

images because they are established in the literatures, have good representation, and

complexity of graphic that is suitable for evaluation. In these examples, FNTG
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Table 4.1: FNTG Output edges of kθ-cone comparison based on Canny’s threshold-
25:100, input pixels- 5450 and output pixels- 1607.

kθ-cone Inner
radius
(Pixels)

Outer
radius
(Pixels)

Output
edges

2 0 10 3427
2 5 10 2096
2 9 10 1264
4 0 10 4137
4 5 10 3323
4 9 10 1567
4 14 15 1889
6 0 10 5519
6 5 10 4149
6 9 10 1709
8 0 10 6718
8 5 10 4785
8 9 10 1786

showed the capability to represent line sketches in most cases, but not the checker

input due to the simple single line pattern in the image. Furthermore, thousands of

edges were too many for Betty to draw in a short period of time. Therefore, another

sketch generator, namely eEDLines was tested in the next subsection.
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Figure 4.2: Comparison of number of edges in the output images.
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Figure 4.3: Outputs from different images. Output edges from top to bottom (checker,
molecules and chairs): 26, 759 and 3295. Left to right: input image, Canny edge, and
FNTG 9:10 ratio
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4.2.2 Extended Edge Drawing Lines (eEDLines)

In this subsection, I compared the performance of the proposed line segment

detector algorithm, extended Edge Drawing Lines (eEDLines), to Progressive Prob-

abilistic Hough Transform (PPHT) [35; 70], Line Segment Detector (LSD) and the

original Edge Drawing (EDLines) algorithm. I implemented the PPHT with OpenCV

HoughLinesP function as descried in [70] with rho=1, theta = π/180, threshold =

40, minLineLength = 10 and maxLineGap = 10. rho is the distance resolution of

the accumulator in pixel. theta is the angle resolution of the accumulator in radians

and threshold is the accumulator threshold parameter for votes returned from those

lines. minLineLength is the minimum rejected line length and maxLineGap is the

maximum allowed gap between points on the same line to link between segments.

Figure 4.1 shows the outline of several sketches generated by different line detec-

tion algorithms and their input images namely checker, portrait, molecules [98] and

chairs [98] with various complexity. Based on visual evaluation, the proposed eED-

Lines algorithm (as seen in the last column) produced a good representation of the

sketches outline and successfully reduced the near-collinear line segments accurately

in comparison to the other three algorithms.

Figure 4.5 shows the comparison of a number of line segments extracted based on

these algorithms. PPHT performed poorly in most cases and was unable to represent

the input images. LSD and EDLines produced good detection but as mentioned in

Chapter 3, they both suffered from the co-linear lines issue. My eEDLines algorithm

performed better compared to these algorithms. It successfully reduced the number

of line segments by nearly 50% when compared to PPHT, LSD, and EDLines across
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Figure 4.4: Comparison of generated sketch outline based on different algorithms.
From left to right: Input Image, Probabilistic Hough Transform (PPHT), Line Seg-
ment Detector (LSD), Edge Drawing Lines (EDLines)and Extended Edge Drawing
Lines (eEDLines). From top to bottom: checker, portrait, molecules and chairs.
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Figure 4.5: Number of line segments extracted based on different algorithms.

four test images while still retaining the representation of the original input images.

The full result of this experiment is shown in appendix C, Table C.1.

Figure 4.6 shows the comparison of processing time between different line segments

extraction algorithms. As seen in Akinlar and Topal’s [2; 3] publications, EDLines

outperforms both the PPHT and the LSD algorithms. As seen in Figure 4.4, despite

the fact that eEDLines extended EDLines algorithm to remove the near-collinear

line segments. It also increased the total processing time by the factor of O(n log n)

since the line segments need to be sorted [78]. But, generally eEDLines retained

its advantage over LSD and PPHT. The full result of this experiment is shown in

appendix C, Table C.2.
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Figure 4.6: Processing time of different line segments extraction algorithms. Error
bars indicate the standard deviation.

4.3 Drawing Experiments

In this experiment, I evaluated the feasibility of my implementation of feedback

control based on their drawn outputs. Figure 4.7 shows the experimental setup of

Betty. During the experiments, Betty used its right arm to draw. I used sinusoidal

interpolation for its motion trajectory. Betty used its right eye (Logitech webcam)

for visualisation. I placed a Wacom Bamboo tablet (CTH670M) under the paper to

measure position and pressure on the drawing pad. The measures of Bamboo tablet

were only used to established the reliability of the experiments but did not provide

any feedback control to Betty. The drawing area is based on the specification provided

by the manufacturer, the accuracy of a Bamboo tablet is ±0.5 mm on a 217 mm x

137 mm active area [34].
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Figure 4.7: Experimental setup using a Wacom Bamboo tablet (CTH640M), Betty,
camera and pen.

4.3.1 Position and torque experiments

In these experiments, I established the tests for position repeatability and torque

reliability as seen in Figure 4.8. In the repeatability test, Betty drew four precise

points repeatedly (30 times for each point) to show that it can visually reposition

the pen accurately as seen in Figure 4.9. Table 4.2 shows that Betty successfully

kept a small distance error (< 3 dot units) in this experiment where 3 dot units is

approximately 1.5 mm based on the Bamboo tablet’s accuracy specification. In the

torque reliability test, Betty drew two types of strokes, vertical strokes (upward and

downward) and horizontal strokes (left-to-right and right-to-left) as seen in previous

chapter. The experimental results showed that by way of different stroke patterns, a

significant difference in torque feedback can be measured. It allowed for a significant



Chapter 4: Evaluation 91

estimate of the pressure of the pen’s tip.

Figure 4.8: Left : Position repeatability test and Right : Torque reliability test.

Figure 4.9: Repeatability test

After the position and torque tests, I evaluated three implemented feedback ap-

proaches that we have seen, namely TFC, IBVS and hybrid control. The efficiency

of each approach was tested with a three-stroke task. Then I examined the overall
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Table 4.2: Position repeatability test result.

Average Position
Error from mean Std. Dev.

t-test
(a = 0.05, 3-pixel)x y

Position A 776.46 467.21 2.40 1.4 0.000088
Position B 241.89 467.62 2.75 1.36 0.036366
Position C 282.90 151.41 2.20 1.48 0.000187
Position D 780.10 148.47 1.59 1.21 0.000187

Figure 4.10: Generic drawing tasks. Left: vertical, horizontal and diagonal lines and
right: checkers grid for drawing experiments in torque feedback control, image-based
visual servoing and hybrid control

performance of the accuracy relative to the prior feedforward (open-loop) approach

in more complex experiments, e.g. draw a checker grid as shown in Figure 4.10.

For each implementation, two measures were employed to evaluate the drawing

deviation correction which were: the error in the drawing pressure and the position

error of the pen’s tip. For each experimental trial, I recorded the average error per-

stroke in pixels. To compute the errors, I compared the line segments on the drawn

result to the actual input sketch (e.g. outlining and shading) by the deviation of

each pixel (endpoints) that map into the Bamboo tablet. In each of the measures,

their values were then summed up and divided by the number of strokes to give

the average error in the drawing process for each stroke. The level of error gave

a good indication of how well each of the feedback techniques improved the final
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drawing result. Meanwhile, I measured the total number of required correcting strokes

to establish a drawing task to determine the efficiency of the deviation correction

approaches.

For pressure measures, I recorded the 0 to 1024 pressure level on the Bamboo tablet

within the scale of 0.00 to 1.00. The total number of required correcting strokes to

finish a drawing task and the changes in error over time were sampled. However, due

to different implementations and set up of the hardware, the experimental designs

were varied. Such as, in visual feedback experiments, the pen’s tip prevented the

tablet touch-pen from touching the tablet. Hence, no pressure measures in this kind

of experiments.

4.3.2 Torque Feedback Control Experiment

In this experiment, I used the generic drawing tasks to evaluate efficiency of torque

feedback control (TFC). I used two initial conditions, no-touch (0.0) and high pressure

(1.0) on the Bamboo tablet to justify the feasibility of TFC to correct these errors.

Betty repeated 30 times for each vertical (upward and downward), horizontal (left-

right and right-left) and diagonal lines (left-right with downward) based on these two

initial conditions for a total of 150 trails. For these trials, the average pressure on the

Bamboo tablet and measured torque reply for each stroke were recorded. I measured

the error in pressure for each stroke based on the TFC model using initial errors of

“high pressure”, “low pressure” (no-touch) and desired “normal pressure” as seen in

the previous chapter. The ideal average “normal pressure” experience on the Bamboo

tablet should be at the level of 0.7±0.1. A correction of 10 mm was applied when the
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measured torque was too low or too high.

Figure 4.11: Stroke pressure correction based on torque feedback control. (a): low to
normal (b): high to normal. Green, blue and red were used to indicate low, normal
and high pressure measurements respectively.

Figure 4.11 shows the different pressure applied to the tablet. In Figure 4.11(a),

it started with initial lower pressure strokes until it was corrected by the TFC model

in two strokes. Similarly, the system corrected the initial high pressure error in two

strokes as seen in Figure 4.11(b). An real world example of the pressure correction is

illustrated in Figure 4.12

Figures 4.13 and 4.14 show how different stroke types corrected the high pressure

error with their average pressures for each stroke. These figures clearly show that the

high pressure error could be corrected at average of three strokes in all tested stroke

types. From the 1.0 pressure recorded in the first stroke, the average of pressure

detected was reduced to the 0.7±0.1 range.

Figures 4.15 and 4.16 show the no-touch error correction results and their average
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Figure 4.12: Real world example of stroke pressure correction. A line segment is
completed in few trial after depth correction based on torque feedback from servos.

pressures for each stroke. As we have seen in the high pressure error results, the

no-touch error could also be corrected at average of three strokes in those tested

stroke types. From the initial no-touch stroke (no pressure is read from the tablet)

the average of pressure detected increased to the 0.7±0.1 range. In this experiment,

I labelled the trail as a failure if correction was unsuccessful after the first stroke and

the last stroke (fifth stroke). Hence, the TFC model provides 92.7% and 94.0% of

successful detection of high pressure and no-touch respectively.

Figures 4.17 and 4.18 show the accumulated strokes for the corrections which

compare difficulty of different stroke types to make their corrections. Figure 4.19

shows the averages of trails needed to make the correction of each stroke type in both

the high pressure and the no-touch conditions. Table C.6 in appendix C shows its

full experimental result.
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Figure 4.13: Number of stroke occurrence: High to normal pressure.
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Figure 4.14: Average pressure for each strokes: High to normal pressure.
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Figure 4.15: Number of stroke occurrence: No-touch to normal pressure.
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Figure 4.16: Average pressure for each strokes: No-touch to normal pressure.
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Figure 4.17: Number of accumulated stroke: High to normal pressure.
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Figure 4.18: Number of accumulated stroke: No-touch to normal pressure.
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Figure 4.19: Number of strokes for different stroke type based on TFC model. Error
bars indicate the standard deviation.
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4.3.3 Visual Servoing Control Experiment

In this experiment, I tested the efficiency of the IBVS control approach based on

two given x- and y- position errors of 10 mm and 20 mm offset (0.5 mm is equivalent

to 1 Bamboo tablet’s unit). Betty repeated 30 times for each stroke type of vertical,

horizontal and diagonal lines based on these two offsets for a total of 90 trails in

each initial condition. Only one direction of strokes (downward and left-right) were

examined in this experiment because it had no effect on visual information. For these

trials, the average errors in the position for each type of stroke were measured. Next, I

calculated the absolute differences of the current position of two endpoints, p1 and p2;

and the desired position, p
′
1 and p

′
2 as mapped by the Bamboo tablet. This calculation

is shown in equations (4.1) and (4.2), dist is the Euclidean distance between two end

points of p1 and p
′
1. I selected the proportional gain, Kp = 0.4 empirically during the

experiment.

ep1 = dist(p1, p
′

1) (4.1)

ep2 = dist(p2, p
′

2) (4.2)

Figure 4.20 shows the result if the drawing is moved during the experiment. In

Figure 4.21 shows how line segments were perceived from the camera based on the

algorithms discussed in previous chapters.

Figures 4.22 and 4.23 show the number of required correcting strokes to the initial

10 mm offset error and how it converged to its desired distance from a baseline (line
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Figure 4.20: Real world example of stroke error correction with IBVS control. A
correct line segment was drawn in second trial after error correction based on its line
segment’s feature.

segment). These figures clearly show that this 10 mm offset error was successfully

corrected within two to three strokes for vertical and horizontal strokes. It reduced

the error to approximately 5 mm from the desired baseline. However, diagonal strokes

did not show good convergence on average. Based on my observation, it was caused

by the sinusoidal drawing motion at the wrist that is likely to create curvy lines.

Therefore, I used linear interpolation in this matter but small vibration at the

pen’s tip caused by the non-smooth trajectory created jerking lines. This problem

introduced significant noise to the existing line segment detection algorithm and af-

fected the result as seen in Figure 4.23.
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Figure 4.21: Line segments perceived from the camera. (a): input ROI image as
seen from camera, (b): line segments detected by eEDLines approach (1) is the first
stroke, (2) is the corrected stroke and the dotted line is the desired line segment.

Similarly to 10 mm offset experiments, Figures 4.24 and 4.25 show consistent

convergence of vertical and horizontal strokes. However, due to the drawing motion

trajectory; diagonal strokes remained harder to correct, often requiring 4-stroke and

5-stroke.

In this experiment, I labelled five-stroke trails as correction failures. IBVS con-

trol approach had relatively higher failure rate of 13% and 17% in diagonal strokes

compare to lower failure rate of nearly 3% in vertical and horizontal strokes for 10

mm and 20 mm offsets respectively.

Figures 4.26 and 4.27 show the accumulated strokes for the corrections which

compare difficulty of different stroke types to make their corrections. Figure 4.28

shows the averages of trails needed to make the correction of each stroke type in

both 10 mm and 20 mm offset conditions. Table C.9 in appendix C shows its full

experimental result.
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Figure 4.22: Number of stroke occurrence for each trial with initial 10 mm offset
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Figure 4.23: Average error of p1 and p2 for each strokes with initial 10 mm offset
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Figure 4.24: Number of stroke occurrence for each trial with initial 20 mm offset.
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Figure 4.25: Average error of p1 and p2 for each strokes with initial 20 mm offset.
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Figure 4.26: Number of accumulated stroke for each trial with initial 10 mm offset.
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Figure 4.27: Number of accumulated stroke for each trial with initial 20 mm offset.
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Figure 4.28: Number of strokes for different stroke type based on IBVS control. Error
bars indicate the standard deviation.
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4.3.4 Hybrid Control Experiment

In this experiment, TFC and IBVS approaches were combined. The pressure

and position errors were measured as we have seen in two previous experiments to

investigate the superiority compared to TFC and IBVS. However, due to the high

number of physical experiments; only 20 mm offset error condition was used in this

experimental setting. Figure 4.29 shows the example of the no-touch and 20 mm

offset correction in this experiment.

Figure 4.29: Hybrid control vertical line experiment. (a): no line is drawn in first
trail due to no-touch error, (b): line is draw in second trial with 20 mm offset error,
(c): offset error is corrected in third trial

Figure 4.31 and 4.30 show the number of required correcting strokes to correct

initial high pressure error in the 20 mm offset error experiment. I observed no signifi-

cant difference between the hybrid approach compare to IBVS control. This indicates

that the IBVS control can successfully corrected the drawing deviation independently

even in high pressure condition. As we have seen previously, the increased error of

diagonal stroke is likely the result of drawing motion trajectory.

For the no-touch scenario, the initial correction (second stroke) of position error

was indeterminate due to the lack of visual reference for the line segment feature in
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the first stroke. When a line segment was drawn on the second stroke, it corrected the

position error based IBVS control. Since the initial no-touch error could be corrected

by either TFC or IBVS (detects the absent of line segment), it raised an important

question of the necessity of using torque feedback. However, to draw a more complex

sketch, IBVS could be insufficient to detect the error due to multiple line segments

from the drawing area. Therefore TFC is necessary to identify the initial no-touch

error where the hybrid control is superior in this matter.

Figures 4.34 and 4.35 show the accumulated strokes for the corrections which

compare difficulty of different stroke types to make their corrections. Figure 4.36

shows the averages of trails needed to make the correction of 20 mm offset under

both no-touch and high pressure conditions. Table C.12 in appendix C shows its full

experimental result.
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Figure 4.30: Number of stroke occurrence: High to normal pressure with 20 mm
offset.
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Figure 4.31: Average pressure for each strokes: High to normal pressure with 20 mm
offset.
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Figure 4.32: Number of stroke occurrence: No-touch to normal pressure with 20 mm
offset.
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Figure 4.33: Average pressure for each strokes: No-touch to normal pressure with 20
mm offset.
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Figure 4.34: Number of accumulated stroke: High to normal pressure with 20 mm
offset.
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Figure 4.35: Number of accumulated stroke: High to normal pressure with 20 mm
offset.
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Figure 4.36: Number of strokes for different stroke type based on Hybrid model. Error
bars indicate the standard deviation.
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4.3.5 Drawing Accuracy Experiment

This segment compares the performance of the non-feedback and the feedback

controls by matching between their baseline image (as seen in Figure 4.10). In this

evaluation, only hybrid control was used as a feedback control because TFC and IBVS

are not powerful enough for a complicated sketch. I evaluated the accuracy of the out-

put by using their dark pixels and SURF descriptors. In the SURF evaluation, I used

OpenCV’s SurfFeatureDetector, SurfDescriptorExtractor and BruteForceMatcher to

run the feature matching between input baseline image and drawn sketch. Figure 4.37

illustrates an example of output from the SURF evaluation.

Figure 4.37: SURF features comparison between the baseline checker and the drawn
output.

Figure 4.38 is the comparison of drawn checkers of different drawing conditions.

Figure 4.38(b) and (c) were drawn without inverse kinematics (IK) noise; and Fig-

ure 4.38(d) and (e) were the drawn sketches with noise of 10 mm for x, y, and

z-dimensions. These noises were randomly applied during the drawing process.

On average, the number of strokes were increased for hybrid control on both with
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Figure 4.38: Drawn checker from different configuration. (a): checker sketch (b):
output without feedback (c): output with hybrid control (d): output with IK noise
and without feedback (e): output with IK noise and hybrid control. I used a cropped
image of chairs, due to a high number of line segments in the original image.

and without IK noise as seen in Table 4.3. Based on my observation and visual eval-

uation of Figure 4.38(e), the hybrid control improved its drawn output significantly

against the IK noise as compared to Figure 4.38(d). Figure 4.39 illustrates other

comparisons of the drawn outputs of open-loop and hybrid control.

Table 4.3: Average stroke count per line segment

Non-feedback Feedback Average stroke increse
No IK noise 22 48 2.18

With IK noise 22 63 2.86

Table 4.4 shows the SURF keypoints comparison of the baseline checker (345

keypoints) and pixel-to-pixel to the drawn checker with no IK noise. The results did
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Figure 4.39: Drawn outputs comparison. From left to right: input image, generated
sketch, drawn output without feedback, drawn output with hybrid control

not show the improvement of the feedback control in the sense of feature matching

percentages of dark pixels due to simplicity of sketch. But it shows increase of SURF

keypoints detected in feedback approach due to the greater number of drawn lines.

In the other drawn outputs (portrait, molecules and chair with SURF keypoints of

633, 419 and 690 respectively), Tables 4.5, 4.6 and 4.7 clearly shows an increase

of percentages for matched dark pixels and SURF keypoints when using feedback

control.
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Table 4.4: Feedback and non-feedback comparison without IK noise (checker).

No IK noise (Checker)
Non-feedback % Feedback %

SURF (354) 152/187 81.28 225/259 86.87
Pixel-to-pixel 3512/10015 35.07 3701/10015 36.95

Table 4.5: Feedback and non-feedback comparison without IK noise (portrait).

No IK noise (Portrait)
Non-feedback % Feedback %

SURF (633) 287/316 90.82 409/425 96.24
Pixel-to-pixel 2284/12909 17.69 3870/12909 29.98

Table 4.6: Feedback and non-feedback comparison without IK noise (molecules).

No IK noise (Molecules)
Non-feedback % Feedback %

SURF (419) 111/125 88.80 279/294 94.90
Pixel-to-pixel 1566/5188 30.19 1762/5188 33.96

Table 4.7: Feedback and non-feedback comparison without IK noise (chair).

No IK noise (Chair)
Non-feedback % Feedback %

SURF (690) 290/312 92.95 567/589 96.26
Pixel-to-pixel 4234/16984 24.93 6559/16984 38.62
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Under random IK noise, I only used checker in the experiment to see how my

hybrid control method performed against the noise due to the complexity of noisy

output of other inputs. Table 4.8 clearly shows an increase of percentage of SURF

keypoints when using feedback control. However, the pixel matching method is diffi-

cult to justify due to the error line segments created by IK noise. Therfore, the SURF

method is a better estimator of drawing accuracy.

Table 4.8: Feedback and non-feedback comparison with IK noise (checker).

With IK noise (Checker)
Non-feedback % Feedback %

SURF (354) 159/201 79.10 330/384 85.94
Pixel-to-pixel 3019/10015 30.14 5170/10015 51.62

4.4 Summary

In this chapter, I have described my methods and hardware that I used to evaluate

my implementations of drawing robot. Based on the experimental results, it shows

that eEDLines successfully reduced the number of line segments compare to other

tested algorithms and retained the representation of the input images. I established

that TFC, IBVS and their combination in the drawing task are reliable to drawing

deviation of line segments in sketch nearly 85% of the time. I also established superi-

ority and robustness of hybrid control against drawing deviation in the drawing task.

It shows that the hybrid control is nearly 5% better than non-feedback control with

or without IK noise in SURF keypoint matching experiments. Therefore, it is proven

that a feedback control has it advantage over a non-feedback control by improving

the quality of its drawn output.
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Conclusion

5.1 Contribution

This thesis makes many contributions to the state of the art in modern robotics.

The major contribution is the development of a humanoid robot with drawing devi-

ation correction capability.

In this thesis work, I developed a real-time embedded control system (Betty’s

Control Program) to enable communication between the Motion Editor and hardware

(e.g. CM2+, RX-64). This embedded system deploys a pre-emptive multi-tasking

kernel to handle several tasks. The main advantage of a pre-emptive scheduling is its

real-time response on the task level. Where the time to tick a task is mainly depends

on the interrupt latency. Therefore, I use a PID controller to optimise the latency

and jitter by controlling the context switching frequency. On the other hand Betty’s

embedded system uses the Absolute Position protocol and a queue data structure to

improve the reliability of its data communication and makes it easier to handle.
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For the drawing problem, I implemented a new approach for the drawing robot to

visual servo the drawing task, using an image-based visual servoing technique. The

goal of this approach is to translate the drawing deviation into control actions within

the drawing task.

Furthermore, the main contribution of my work is I implement the combination

of the torque feedback control with the IBVS framework which combined vision/-

torque control. This framework is based on the task frame formalism in a hybrid

control setting and uses both the torque feedback equipped in the Dynamixel RX-64

servo motor at each joint, and vision feedback of the current drawing image. This

hybrid approach improves Betty’s drawing capability in a 3D workspace, where XY

and Z(depth) errors could be corrected by the drawn line segment features and the

estimated pressure respectively.

As we seen in Chapter 2, there are many drawing robots. Unfortunately, the

cost of the hardware of these robot systems is too expensive. In my work, I used

an affordable upper body humanoid robot, which has the downside of error prone

drawing. The benefit of this approach is that it provides Betty with the capability

of observational drawing by way of torque and visual feedbacks which can overcome

the drawbacks of the hardware limitations.

In order to reduce the total number of strokes required to compute a drawing

task, I developed a unique modified furthest neighbour theta graphs approach to

generate sketch lines that can reduce the time required for a drawing task. However,

this approach did not reduce the number of line segments significantly. Therefore, an

improved EDLines approach, namely the extended EDLines or eEDLines approach is
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introduced to significantly reduce the line segments in the sketch generator.

The capability to evaluate the efficiency of different drawing implementations is

very important. Unfortunately, none of the current research done in the field has

provided a conclusive platform for drawing output evaluation. In my thesis, I used

a Bamboo tablet and a series of experiments to provide the capability of drawing

evaluation. This may lead to a better understanding of the various components,

such as the correlation between pressure and drawing (pixels) deviation in different

implementations.

5.2 Future Research

As future work, I would like to improve the visual feedback of the drawing task

by investigating better line segment detection algorithms. Such as, a line detection

algorithm proposed by Liu et al. [62] which is based on steerable filters for edge ridge

detection and line fitting algorithm. Based on their experimental results, this method

outperforms LSD and EDline in the evaluation of their work.

Since there is a limitation in the area of diagonal line drawing motions, another

extension to my work would be developing a better interpolation motion e.g. 3rd order

spline fit to smooth the IK trajectory of the drawing motion. It would potentially

prevent jerking and vibrations when a line is drawn as suggested in Calinon et al.

work [16].

I would also like to consider machine learning techniques to automatically select

and tune the existing parameters. They would pre-set thresholds instead of manually

specifying them as I did in some of my implementations, e.g. eEDline. This extension
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would improve the robustness of the sketch generator to create a realistic portrait

when used with my existing approach.

One last interesting future work would be to integrate other control methods with

the IBVS approach, e.g. stereo vision and fuzzy control as proposed by Hanh and

Lin in their 6-DOF manipulator object grasping research [39]. This would improve

the accuracy and robustness of drawing deviation correction throughout the drawing

process.

5.3 Conclusion

In this thesis, three approaches are implemented for drawing deviation control,

torque feedback, image-based visual servoing and hybrid control. These implemen-

tations correct the errors during the drawing task when no accurate force sensor

feedback at the end effector is used. This image-based visual servoing utilises an

image-based structure, using image moments as a set of general features represen-

tative of an image object if possible. The control action of the image-based visual

servoing has been used as a function of error in the visual space. This approach leads

to a significant reduction of the computational burden as compared to existing model

based approaches, as well as compared to existing learning approaches that model

inverse kinematics.



Appendix A

Robot Motion Controller

Data Structure

In order to optimise the embedded system, I measured the latencies and jitters

of 100 runs to analyse the efficiency of those different implementation discussed in

section 3.3. Baud rate of 1 Mbps is used in USART0 for serial communication. In

these experiments, 58-byte of instruction packet is sent to the Control Program; then

the averages of latencies and jitters in different queue data structures were compared.

Table A.1: Results of circular and linear queue data structures

Queue Data Structures
Linear Circular

Latency (µs) 581 1103
Jitter (µs) 2.0 1.4

Based on the experimental results in Table A.1, generally both queue data struc-

tures produce acceptable latency and jitter. Circular queue needs 1103µs compare to

581µs in regular queue which perform better in this implementation where it takes
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10µs to send a byte at 1 Mbps baud rate. However, circular queue provide an advan-

tage over linear queue where it uses less memory in an embedded system for real-time

transmission.

PID Controller

Then the PID controller is extended with a Optimisation Quality Function to

minimize the latency. This function returns its control output in the factor of 75%

latency and 25% jitter to control the context switching frequency. The optimization

phase is similar to the general PID controller, except it will find the context switch-

ing time which has the lowest control output from the quality function. It will be

adjusted to reach the desired set point based on the latencies and jitters measure-

ments. Performance of the PID controller and Optimisation Quality Function are

tested based on three difference protocols discussed in the previous work of motion

controller implementation [58]. Figure A.1 shows the test results of PID controller

with 15000µs as the set point (SP) of latency. Figure A.2 shows the optimization

result of 100 trials at 5000Hz with ± 50 of context switching frequency in different

protocols. The averages of latencies are 15320µs, 15105µs and 15411µs for Absolute

Position, Difference and Sliding Resolution respectively.

Although the Difference protocol has shown better performance in both experi-

ments but it is not significant and only if the differences between new and current

positions are less then 28 for each servo movement as seen in A.1. In contrast, the

Absolute Position protocol is simpler and easier to implement and it has most reliable

performance compare to the other two tested protocols.
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Due to the fluctuation of latency along the desired set point, I implement control

limit approach to acknowledge the steady state after a few occurrences of control

outputs fall between the control limits are perceived.

Figure A.1: Performance of PID controller in different communication protocols with
KP = 0.1, KI = 0 and KD = 0.02

Figure A.2: Performance of Optimisation Quality Function in different communica-
tion protocol
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Graphical User Interface

Following are some GUI screenshots of the implementation of Betty.
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Motion Controller

Figure B.1: Motion controller screen-shot
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Furthest Neighbour Theta-graph

Figure B.2: Furthest Neighbour Theta-graph screen-shot.
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Face Detection

Figure B.3: Face detection.
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Outlining: extended Edge Drawing Lines (eEDLines)

Figure B.4: Sketch generator: eEDLine.
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Pad and Pen Detection

Figure B.5: Pen and pad detection.
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Drawn sketch extraction

Figure B.6: Drawn sketch extraction.



Appendix C

Full Evaluation Results

Following tables are full evaluation results of the experiments as described in

Chapter 4.

Extended Edge Drawing Lines

Table C.1: Number of line segments extracted based on different algorithms.

Input image resolution
Number of Extracted Line Segments
PPHT LSD EDLines eEDLines

Checker 349 x 383 13 14 12 6
Portrait 236 x 276 198 123 139 69

Molecules 192 x 172 19 56 64 37
Chairs 512 x 512 947 574 658 428
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Table C.2: Processing time of different line segments extraction algorithms.

Input image resolution
Processing Time (ms)

PPHT LSD EDLines eEDLines
Checker 349 x 383 15.31 52.53 5.26 5.39
Portrait 236 x 276 28.29 73.42 5.04 7.65

Molecules 192 x 172 6.58 20.71 2.50 3.83
Chairs 512 x 512 92.48 263.41 18.37 108.53

Torque feedback control

Table C.3: Torque feedback control with high pressure

Stroke 1 Stoke 2
Average Std. Dev. Occurrence Average Std. Dev. Occurrence

Vertical Downward 1.000 0.0000 1 0.875 0.0618 2
Vertical Upward 1.000 0.0000 1 0.882 0.0399 3

Horizontal Left-Right 1.000 0.0000 0 0.862 0.0404 2
Horizontal Right-Left 1.000 0.0000 1 0.907 0.0631 2

Diagonal 1.000 0.0000 0 0.900 0.0623 1
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Table C.4: Torque feedback control with high pressure (cont.)

Stroke 3 Stroke 4
Average Std. Dev. Occurrence Average Std. Dev. Occurrence

Vertical Downward 0.747 0.0484 23 0.717 0.0403 3
Vertical Upward 0.755 0.0457 24 0.716 0.0308 1

Horizontal Left-Right 0.710 0.0507 24 0.655 0.0189 3
Horizontal Right-Left 0.759 0.0591 22 0.736 0.0516 4

Diagonal 0.751 0.0500 21 0.772 0.0694 4

Stroke 5
Average Std. Dev. Occurrence

Vertical Downward 1
Vertical Upward 0.836 1

Horizontal Left-Right 0.868 1
Horizontal Right-Left 0.777 1

Diagonal 0.804 0.0113 4

Table C.5: Torque feedback control with no-touch

Stroke 1 Stoke 2
Average Std. Dev. Occurrence Average Std. Dev. Occurrence

Vertical Downward 0.000 0.0000 2 0.490 0.0533 3
Vertical Upward 0.000 0.0000 1 0.493 0.0604 5

Horizontal Left-Right 0.000 0.0000 0 0.478 0.0433 1
Horizontal Right-Left 0.000 0.0000 0 0.493 0.0551 3

Diagonal 0.000 0.0000 1 0.497 0.0677 4

Stroke 3 Stroke 4

Average Std. Dev. Occurrence Average Std. Dev. Occurrence

Vertical Downward 0.690 0.0555 23 0.752 0.0304 2
Vertical Upward 0.693 0.0352 19 0.765 0.0528 4

Horizontal Left-Right 0.734 0.0495 23 0.832 0.0682 5
Horizontal Right-Left 0.718 0.0549 19 0.785 0.0570 7

Diagonal 0.759 0.0511 18 0.842 0.0836 5

Stroke 5
Average Std. Dev. Occurrence

Vertical Downward 0
Vertical Upward 0.906 1

Horizontal Left-Right 0.942 1
Horizontal Right-Left 0.932 1

Diagonal 0.966 0.0479 2
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Table C.6: Number of strokes for different stroke type based on TFC model.

High to normal No-touch to normal
Stroke count Std Dev. Stroke count Std Dev.

Vertical Downward 3.10 0.8030 2.97 0.8503
Vertical Upward 3.00 0.7878 3.00 0.8710

Horizontal Left-Right 3.30 0.6513 3.43 0.6261
Horizontal Right-Left 3.13 0.7303 3.33 0.7112

Diagonal 3.50 0.7768 3.00 1.1447

IBVS control

Table C.7: IBVS control with 10 mm offset error

Stroke 1 Stoke 2
eP1 eP2 Average Occurrence eP1 eP2 Average Occurrence

Vertical 10.64 9.77 10.21 0 5.23 5.38 5.31 17
Horizontal 10.69 11.01 10.85 0 5.56 5.65 5.61 15

Diagonal 10.39 10.50 10.44 0 7.98 7.95 7.97 6

Stroke 3 Stroke 4
eP1 eP2 Average Occurrence eP1 eP2 Average Occurrence

Vertical 5.61 5.79 5.70 10 5.74 4.46 5.1 2
Horizontal 5.84 6.01 5.93 12 4.69 4.61 4.65 2

Diagonal 7.04 7.12 7.08 11 6.73 6.82 6.779615 9

Stroke 5
eP1 eP2 Average Occurrence

Vertical 6.10 5.65 5.88 1
Horizontal 4.67 5.86 5.27 1

Diagonal 6.80 7.52 7.16 4



136 Appendix C: Full Evaluation Results

Table C.8: IBVS control with 20 mm offset error

Stroke 1 Stoke 2
eP1 eP2 Average Occurrence eP1 eP2 Average Occurrence

Vertical 19.94 19.74 19.84 0 8.86 10.28 9.57 13
Horizontal 19.92 20.38 20.15 0 10.40 9.78 10.09 11

Diagonal 20.15 19.69 19.92 0 16.61 16.34 16.48 4

Stroke 3 Stroke 4
eP1 eP2 Average Occurrence eP1 eP2 Average Occurrence

Vertical 6.68 6.25 6.46 12 5.28 4.85 5.07 4
Horizontal 6.67 6.64 6.65 15 6.23 5.86 6.05 2

Diagonal 8.93 8.95 8.94 10 7.31 7.35 7.33 11

Stroke 5
eP1 eP2 Average Occurrence

Vertical 5.15 4.59 4.87 1
Horizontal 5.24 4.67 4.95 2

Diagonal 8.31 8.04 8.18 5

Table C.9: Number of strokes for different stroke type based on IBVS control.

Pixel off set
10 mm 20 mm

stroke count Std Dev. stroke count Std Dev.
Vertical 2.57 0.7739 2.83 0.8172

Horizontal 2.63 0.7649 2.77 0.8339
Diagonal 3.37 0.9643 3.57 0.9353
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Hybrid control

Table C.10: Hybrid control with 20 mm offset error and no-touch

Stroke 1 Stoke 2
eP1 eP2 Average Occurrence eP1 eP2 Average Occurrence

Vertical 21.33 19.91 20.62 0 20.15 19.77 19.96 0
Horizontal 19.95 19.70 19.83 0 20.28 20.17 20.22 0

Diagonal 20.44 20.76 20.60 0 20.04 20.01 20.03 0

Stroke 3 Stroke 4
eP1 eP2 Average Occurrence eP1 eP2 Average Occurrence

Vertical 7.06 6.80 6.93 16 5.08 4.86 4.97 14
Horizontal 7.03 7.61 7.32 15 5.68 5.75 5.71 14

Diagonal 11.47 11.39 11.43 10 6.97 7.80 7.39 13

Stroke 5
eP1 eP2 Average Occurrence

Vertical 0
Horizontal 4.67 5.86 5.27 1

Diagonal 7.28 7.58 7.43 7
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Table C.11: Hybrid control with 20 mm offset error and high pressure

Stroke 1 Stoke 2
eP1 eP2 Average Occurrence eP1 eP2 Average Occurrence

Vertical 20.00 22.04 21.02 0 6.57 6.26 6.41 13
Horizontal 21.42 22.21 21.82 0 6.44 6.72 6.58 14

Diagonal 19.62 21.52 20.57 0 15.62 15.21 15.42 3

Vertical 5.92 5.80 5.86 14 4.88 5.26 5.07 2
Horizontal 6.51 6.76 6.63 12 5.91 5.75 5.83 3

Diagonal 8.63 8.63 8.63 9 6.93 6.80 6.86 11

Stroke 5
eP1 eP2 Average Occurrence

Vertical 6.51 6.52 6.52 1
Horizontal 6.76 6.50 6.63 1

Diagonal 8.12 8.49 8.31 7

Table C.12: Number of strokes for different stroke type based on hybrid control with
20 mm offset error.

20mm off set
No touch High Pressure

stroke count Std Dev. stroke count Std Dev.
Vertical 3.17 0.3790 2.93 0.8193

Horizontal 3.27 0.5208 2.87 0.8277
Diagonal 3.90 0.7589 3.73 0.9444
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