
 Abstract
As an increasing number of tasks on the Internet become
automated using autonomous agents, it will become
increasingly important for these agents to be able to
discern which agents can be trusted and which cannot.
This is especially true where interacting agents may have
divergent goals, an example being Peer to Peer appli-
cations. Passing on reputation information about other
agents is a strong way to encourage cooperation. This
paper points out weaknesses in both a general reputation
scheme as well as a framework which was previously
proposed. These weaknesses could leave the door open for
exploitation by malicious agents.

Keywords: Multi Agent, Internet, Evolutionary Computing

1. Introduction

Peer to Peer (P2P) systems inherently rely on the
cooperation of members for stability. Studies have shown
[1] that only a small percentage of P2P members
contribute (cooperate) usefully to network services, while
the majority freeload or are even malicious agents
(defection). The next generation of P2P applications such
as distributed caching of the World Wide Web [2] may
require even more rigorous cooperation in the sense that a
member may be required to cache and offer for download
data which may not be of any direct interest to themselves.
Clearly, self-interest alone may not be enough incentive to
keep enough cooperating agents given the propensity for
freeloaders or malicious agents to infiltrate the network.

In the past, centralized as well as distributed
approaches have been proposed to encourage cooperation
among members [3][4][5]. In the centralized case, relying
on a few important nodes leaves the network vulnerable to
attack, because malicious agents need only take down a
few key nodes to cripple the network. A centralized
approach may also result in network bottlenecks. On the
other hand, distributed models can be compromised
(primarily by freeloaders) by members lying about their
level of cooperation or participation. The aim of this paper
is to investigate potential weakpoints in a hypothetical P2P
network using a reputation scheme to promote coop-
eration. We will use a multi-agent approach in describing

and simulating the proposed network.

2. Model

We model our next generation P2P network as a
collection of agents. An agent interacting with another
agent has the choice of cooperating with the other agent
(presumably by serving whatever data request the other
has) or by defecting (artificially throttling one's
bandwidth, offering corrupt data, or any other means of
deception). The same options are available to the other
agent as well and the results of their respective choices are
contained in the following payoff table.

Table 1 is the classical Prisoner's Dilemma seen in
many previous studies concerning cooperation [6]. The
Prisoner's Dilemma can be used to model complex inter-
actions because the payoffs do not correspond to real life
quantities, only the ordering of preferences is important
here (higher is better). This captures the idea that if both
agents cooperate they receive a moderate benefit, but not
as much as one does at the expense of another if the first
defects and the latter cooperates. When both defect they
both receive almost no benefit but at the same time neither
is totally exploited. Note that the average payoff for both
cooperating is higher than in any other case. It is presumed
that an agent can differentiate between the cooperation and
defection of another agent.

Due to the nature of our application, pieces of a given
file (or web page, or whatever it is the network is intended
to share) may be distributed over any number of agents.
As a result, an agent may potentially be called upon to
interact with any number of random agents in the system
to complete a single higher level data request. Agents have
the ability to remember agents they have previously dealt
with, and thus will be able to recognize agents that have
cooperated or cheated them previously. Agents will then
be able to make future decisions on whether to cooperate

Table 1: The Prisoner’s Dilemma

Payoffs Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

EFFECTS OF LYING IN REPUTATION-BASED MULTI-AGENT SYSTEMS

Sara McGrath
Dept. Computer Science
University of Manitoba,

Winnipeg, Manitoba, R3T 2N2
email: ummcgrat@cs.umanitoba.ca

Marek Laskowski
Dept. ECE

University of Manitoba,
Winnipeg, Manitoba, R3T 5V6

email: mlaskows@ee.umanitoba.ca

0-7803-8886-0/05/$20.00 ©2005 IEEE
CCECE/CCGEI, Saskatoon, May 2005

1014

with a given agent accordingly. As with Armstrong and
Durfee [7], the behavior of agents is governed by a set of
parameters. For example parameter “i” specifies the base
probability for an agent cooperating with an agent it has
never encountered. We do not, however, consider any spatial
aspect as they do. In our system in addition to exchanging
commodity data agents can also share information about the
trustworthiness or reputation of other agents. Agents can use
this reputation information in conjunction with firsthand
information (history) to form a primitive world model when
dealing with other agents. In addition to using the stored
history, the parameter “u” dictates how much weight is given
to stored reputation information when calculating the proba-
bility of cooperating with a particular agent. Thus, an agent
can learn about the reputation of another agent before having
to deal with it for the first time. In our system agents will
exchange reputation information immediately after
exchanging data during a given interaction.

3. System Evolution

Our initial investigation uses a custom simulator written
in C++. We submit that the evolutionary stability and
robustness of the following strategies will demonstrate the
stability of a P2P network using those strategies.

During a simulation run, payoffs from each agent's inter-
actions with the rest of the population during a time period T
(measured in number of interactions) are tallied. For our
experiments T was 10,000 games or interactions. Each set of
such games is called a generation. At the end of T the top
scoring 10% of the population are probabilistically chosen to
replicate themselves and replace the lowest scoring 10% of
the population, also chosen probabilistically. In addition,
small changes to agent’s parameters will be made at random
to a relatively small percentage of the population.

Although a Genetic Algorithm approach was considered,
the chosen approach is less intensive computationally. It also
does not have the drawback, as some have argued [8], of
crossover being basically a macro-mutation operator.
However, it does rob the system of an ability to innovate.
That is why we also include a mutation-like operator. After
each generation it chooses 10% of the population at random.
For each of these, a parameter is randomly chosen to be
modified by an absolute amount of +/- 0.05. Care is taken to
ensure that a parameter does not take an invalid value as a
result.

Agents which have their parameters replaced by stronger
agents are “forgotten” by all other agents in the system.
Similarly, their history and reputation tables are wiped clean.
Effectively they are new to the system. After each generation,
5% of the population are chosen at random and “forgotten”
by all other agents. Both these processes allow agents to over
time redeem themselves if they have poor reputations. This

also captures the effects of agents entering and leaving our
simulated P2P network, or perhaps agents having to interact
with new agents because of a particular rare commodity they
are seeking.

We will only simulate 100 agents to represent the agents
that any one agent will typically interact with (for example
the 99 closest agents geographically). Also, reputation table
entries will probabilistically be deleted over time to reflect
the effects of limited cache space, new agents entering the
system, as well as having to interact with an existing agent for
the first time because they have a rare piece of needed data.
This also allows agents with changing parameters to shed
over time a reputation which perhaps no longer applies

In a real implementation however, some kind of request
mechanism would be in place to eliminate unnecessary
transfer of reputation information, especially if there are
potentially a large number of agents.

4. Strategies

Many strategies from other cooperation studies [6][7],
can be represented using our notation. The agent types used
are as follows, including the equivalent type (if applicable) in
Sen et al.[5].
• Tit for Tat or TFT for short (approximates Sen's Recipro-

cative strategy): This strategy starts by cooperating and
then reciprocates whatever its opponent did the last time
they interacted. It does not care about the reputation of
others when deciding whether or not to cooperate.
Because it's a “nice” cooperative agent it always tells the
truth about other's reputations.

• Tit for Tat with Reputation (approximates Sen's Earned-
Trust Based Reciprocative): TFT w/ Rep for short.
Works like TFT but also accepts reputation information
from agents which have cooperated with it in the past.
This allows it to theoretically predict whether an agent it
has never encountered is likely to cooperate or not.

• Always Defect or ALLD for short (approximates Sen's
Collaborative Lying Selfish): Not only does this strategy
never cooperate, it also tries to make selfish agents like
itself look cooperative and make cooperative agents look
selfish by spreading false reputation information.

• Lying Reciprocative or TFT Lying: Is cooperative like
TFT, but ignores reputation information. This strategy
can be described as “two faced” as it lies about all other
agents making them look selfish.

• RANDOM: Cooperates exactly 50% of the time. Since
this is not intended to be a malicious strategy, it always
tells the truth about other agents.

5. Experiments & Results

We ran a number of simulations to investigate the evolu-

1015

tionary stability of the mentioned strategies. First we
compared the time it takes for TFT without reputation to
dominate a population of ALLD agents versus the time it
takes for TFT with reputation to dominate a population of
ALLD agents.

At the beginning of each trial we begin with 16% TFT
agents and 84% ALLD. Axelrod [6] suggested that as few as
5% TFT agents are required for cooperation to eventually
dominate, but in this system we found it to be about 15%.This
is likely due to agents being forgotten at the end of each
generation, which gives ALLD a slight advantage since all
cooperative agents will be “nice” and attempt to cooperate
with it at least once. Figure 1 demonstrates the advantage of
using a reputation based system; TFT w/ Rep takes about five
generations fewer to dominate ALLD. Standard deviation is
shown with the error bars.

Fig. 1. Number of generations before TFT variants dominate
the population, initially 16% TFT & 84% ALLD

Fig. 2. Average Value of Parameter “u”, initially 95% TFT w/
Rep (u = 0.3) versus 5% TFT Lying (u = 0)

The advantage demonstrated in Figure 1 does come at a
price. Figure 2 shows that when TFT w/ Rep is paired against
TFT Lying, the latter invades and dominates a population of

the former within 80 generations. TFT Lying accomplishes
this so quickly by turning the reputation trait against itself. By
always giving low reputation information TFT Lying over
time subverts TFT w/ Rep into behaving effectively like
ALLD. This allows TFT Lying to eliminate TFT w/ Rep, just
as ALLD was eliminated in Figure 1.

Using reputations has at least one more weak point
which we will illustrate. That is, agents that employ different
strategies may have a different frame of reference or world
view resulting in incompatible reputation information. Figure
3 shows the results of running basic TFT in a population of
RANDOM agents compared to TFT w/ Rep in a population
of RANDOM agents.

Fig. 3. TFT vs. RANDOM and TFT w/ Rep vs. RANDOM,
initially 30% TFT (i = 1) and 70% RANDOM (i = 0.5)

Interestingly enough, TFT w/ Rep does considerably
worse on average, and sometimes fails to dominate a
RANDOM population after 100 generations. This is all the
more intriguing considering that RANDOM is by default
passing on the true reputation. To explain, consider what
would happen over a number of interactions between
RANDOM and TFT w/ Rep agents, ignoring for the moment
the possibility of erroneous reputation information. Over
time, a TFT w/ Rep agent should be able to correctly model a
RANDOM agent resulting in an approximately 50% chance
of cooperating with the RANDOM agent. At the same time,
the RANDOM agent is also modeling the TFT w/ Rep agent,
not that it uses that model in deciding whether to cooperate or
not. The model the RANDOM agent forms of the TFT w/
Rep agent is basically a RANDOM agent since the TFT w/
Rep agent will cooperate approximately 50% of the time, as
mentioned above. Now, when this RANDOM agent coop-
erates with another TFT w/ Rep agent, it passes on that the
first TFT w/ Rep agent is a RANDOM agent. Over time the
TFT w/ Rep agents treat each other like RANDOM agents
because of the reputation information passed on by
RANDOM agents. In this way the TFT w/ Rep agents lose
any advantage they had over RANDOM, all without any

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 P

op
ul

at
io

n

Generation

vs.Lying ALLD

TFTno reputations
TFT with reputations

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100

P
ar

am
et

er
s

Generation

TFT w/ reputations vs. TFT lying

parameter u

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

P
ar

am
et

er
s

Generation

System Evolution

i no rep
i with rep

1016

agents lying. This is what we mean when we say that
RANDOM has a different frame of reference. It views TFT
w/ Rep agents differently, because it is treated differently by
TFT w/ Rep, because at the core they behave differently than
TFT w/ Rep agents.

6. Other Reputation Frameworks

To demonstrate that the above weakness is not limited to
the system we presented, we also implemented Sen’s infor-
mation processing domain [5] using Swarm [9], and used
Sen’s equivalent of TFT w/ Rep, ALLD, and TFT Lying.
Instead of playing the Prisoner’s Dilemma, agents are experts
in one of three task types. At each time step an agent is
assigned one of the three task types at random. The quality of
the completed task will be greater if an agent is an expert in
that particular task type. An agent may ask another agent to
do the task, provided that the first thinks that the second can
do a better job (for example if the second is an expert in that
task and the first is not). An agent which helps another incurs
no cost besides improving a competing agent’s score with
respect to its own.

If agent A helps B with a task then A is said to have a
positive balance with B (B owes A help), and B has a
negative balance with A until B helps A with some task. Note
that A’s balance with B and B’s balance with A are not neces-
sarily equal. In this domain TFT type agents reciprocate prob-
abilistically, with the probability of helping an agent
increases as the balance with that agent increases. When
agents that use reputation are deciding whether to help
another agent, not only do they look at their own balance with
that agent, but they also consider the balances (with the agent
requesting help) of agents they owe help to. So if A owes B,
and A is deciding whether to help C, A will consider B’s
balance with C, in addition to A’s own balance with C. An
important difference here is that TFT Lying agents report a
huge negative balance when asked for balances with other
agents regardless of actual balance. TFT Lying will only look
at its own balances when deciding whether or not to help
another agent. ALLD will request help but will never help
others. As before ALLD distorts balances by reporting that
agents with negative balances have positive balances and
likewise that agents with positive balances have negative
balances. For further details please see [5], note that the
naming convention for the agents will be different, as
explained earlier.

A performance comparison between ALLD and TFT w/
Rep (lower curves) when either interacts with TFT Lying
(upper curves) is shown in Figure 4, below. What it suggests
is that TFT Lying causes TFT w/ Rep to behave like ALLD.
TFT Lying accomplishes this by providing balances which
fool TFT w/ Rep into believing all other agents are ALLD.

Fig. 4. Performance comparison for the information domain

To see exactly how this is occurs, consider Figure 5.
Agents A & B are Reciprocative (TFT), however they lie and
report a huge negative balance with any given agent when
queried about their balances. C, D, and E being TFT w/ Rep
will consider the balances of agents who have helped them in
the past. So, when agent A helps C (in blue), C will query A
when deciding to help anyone else. A will report that any
other agent owes it a huge amount, effectively infinity,
causing C to behave as an ALLD agent towards all agents
besides A. At some point B will also help out C (in red) and
convince C to not help A either. Over time C will have a
negative balance with all other agents (since it only accepts
help and never offers) large enough so that all other agents
will no longer help C out. Effectively C is cut off from the
rest of the agents in the system.

Fig. 5. Information domain example - how a TFT w/ Rep
agent is made to behave as ALLD

Over time, A and B will convert all other TFT w/ Rep
agents in the system to behave as ALLD agents in the same
manner. A and B will continue to behave Reciprocatively
towards one another since they do not consider any balances
besides their own. Since Sen demonstrated that Recipro-
cative or TFT agents will eventually dominate ALLD agents,

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350 400 450 500

T
as

k
Q

ua
lit

y

Time

Performance Comparison, TFT Lying vs ALLD and TFT Lying vs TFT w/ Rep

TFT Lying vs TFT w/ Rep
TFT Lying vs ALLD

ALLD
TFT w/ Rep

A

B

C

D

E

TFT, Lying,
Does not
consider other’s
balances

TFT w/ Rep

1017

so will the Reciprocative agents dominate the TFT w/ Rep
agents over time. Thus, we have shown how TFT w/ Rep
agents are also not evolutionarily stable in Sen’s system.

7. Conclusions

We have demonstrated that because one can trust an
agent to cooperate, one should not trust the agents it trusts nor
out of hand mistrust the agents it mistrusts. Not only is lying
a possibility, but a difference in perspective could cause
incompatable reputation information. The good news is that a
simple Tit-for-Tat strategy is quite robust, especially when
future interactions with the same agent are likely. The bad
news is that in cases where the temptation to both defect and
lie is large, and the relative probability of future interactions
is low, a method to detect defectors before interacting is
desirable. Unfortunately, the reputation schemes we
presented may not be enough. Suggestions for detecting lying
exist [10], however these do not into take account that other
agents may have different yet legitimate frames of reference,
so a grounding [11] approach may be necessary as well.

8. Acknowledgements

We would like to thank the Internet Innovation Centre at
the University of Manitoba for the use of their facilities as
well as assistance in attending this conference.

9. References

[1] S. Saroiu, P. Gumma, and S. Gribble. “A Measurement
Study of Peer-to-Peer File Sharing Systems,” In
Proceedings of Multimedia Computing and Networking,
2002.

[2] S. Iyer, A. Rowston, and P. Druschel. “Squirrel: A
decentralized peer-to-peer web cache,” In 21th ACM
Symposium on Principles of Distributed Computing, pp.
213-222, 2002.

[3] P. Resnick and R. Zeckhauser. “Trust among strangers in
internet transactions: Empirical analysis of ebay's
reputation system,” Working Paper for the NBER workshop
on empirical studies of electronic commerce. 2002.

[4] Bram Cohen. “Incentives build robustness in bittorrent,”
Proceedings of the First Workshop on the Economics of
Peer-to-Peer Systems, June 2003.

[5] S. Sen and P. Dutta,``The evolution and stability of
cooperative traits,'' in the Proceedings of the First
Intenational Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 1114-1120, July 2002.

[6] R. Axelrod. THE EVOLUTION OF COOPERATION.
Basic Books, 1984.

[7] A.A. Armstrong, E.H. Durfee. “Mixing and memory:
Emergent cooperation in an information marketplace,”
Third International Conference on Multi Agent Systems.
1998.

[8] P. Angeline. “Subtree Crossover: Building Block Engine
or macromutation?,” Proceedings of Second Annual
Conference in Genetic Programming, pp. 34-41, 1997.

[9] http://www.swarm.org

[10] S. Buchegger and J. LeBoudec. “A Robust Reputation
System for P2P and Mobile Ad-hoc Networks,”
Proceedings of P2PEcon, 2004.

[11] D. Jung and A. Zelinsky. “Grounded Symbolic
Communication Between Heterogenious Cooperating
Robots,” Autonomous Robots, pp. 269-292, 2000.

1018

