
An Intuitive and Flexible Architecture for
Intelligent Mobile Robots

A thesis presented

by

Xiao-Wen Terry Liu

to

The Department of Computer Science

in partial fulfillment of the requirements

for the degree of

Master of Science

in the subject of

Computer Science

The University of Manitoba

Winnipeg, Manitoba

October 2005

c© Copyright by Xiao-Wen Terry Liu, 2005

Thesis advisor Author

Dr. Jacky Baltes Xiao-Wen Terry Liu

An Intuitive and Flexible Architecture for Intelligent Mobile

Robots

Abstract

The goal of this thesis is to develop an intuitive, adaptive, and flexible architecture for

controlling intelligent mobile robots. This architecture is a hybrid architecture that

combines deliberative planning, reactive control, finite state automata, behaviour

trees and uses competition for behaviour selection. This behaviour selection is based

on a task manager, which selects behaviours based on approximations of their appli-

cability to the current situation and the expected reward value for performing that

behaviour. One important feature of this architecture is that it makes important be-

havioural information explicit using Extensible Markup Language (XML) [99]. This

explicit representation is an important part in making the architecture easy to debug

and extend. The utility, intuitiveness and flexibility of this architecture is shown

in an evaluation of this architecture against older control programs that lack such

explicit behavioural representation. This evaluation was carried out by developing

behaviours for several common robotic tasks and demonstrating common problems

that arose during the course of this development.

ii

Contents

Abstract . ii
Table of Contents . iii
List of Figures . v
Acknowledgments . viii

1 Introduction 1
1.1 Motivation . 6

2 Related Work 10
2.1 Domain Relevance vs. Domain Independence 11
2.2 Analysis vs. Synthesis . 12
2.3 Top-down vs. Bottom-up architectures 19

2.3.1 Top-down architectures . 20
2.3.2 Bottom-up architectures . 22
2.3.3 Hybrid architectures . 27

2.4 Deliberative vs. Reactive . 54
2.5 Architectures in Robotic Soccer . 55
2.6 Languages for Architecture design/implementation 58
2.7 Summary of Related Work . 59

3 Design 60
3.1 Requirements . 60
3.2 Design Overview . 63

3.2.1 Sensor and Actuator modules 65
3.2.2 World Model . 65
3.2.3 Sequencing . 67
3.2.4 Timing Constraints . 71
3.2.5 MRClient Agents . 71
3.2.6 Explicit Representation . 79

iii

iv Contents

4 Evaluation 89
4.1 Tasks . 91
4.2 Implementation details . 95
4.3 Evaluation of the Challenges . 98

4.3.1 Racetrack Challenge . 99
4.3.2 Treasure Hunt Challenge . 106
4.3.3 Obstacle Run Challenge . 114
4.3.4 Goal Scoring Challenge . 120
4.3.5 Passing Challenge . 127

4.4 Evaluation Summary . 139

5 Conclusions and Future Work 142

Appendices 146

A Archangel DTD 147

Bibliography 153

List of Figures

1.1 Generic Architecture. 3

2.1 Sony’s Entertainment Robot, Aibo, from [7]. 13
2.2 Subsystems of the ethology architecture from [20]. 14
2.3 Overview of Kolp et al.’s architecture from [63]. 16
2.4 Primary components of RCS architecture, taken from [8]. 18
2.5 Generic Top-down Architecture. 21
2.6 Simple Behaviour Tree. 22
2.7 Generic Bottom-Up Architecture. 23
2.8 Brooks’ layering concept, taken from [28]. 24
2.9 Gorton and Mikhak’s robot platform, taken from [50]. 25
2.10 Gorton and Mikhak’s architecture, taken from [50]. 25
2.11 Gorton and Mikhak’s hardware prototype, taken from [50]. 26
2.12 Diagram of the SSS architecture, taken from [36]. 31
2.13 Diagram of the 3T architecture, taken from [26]. 32
2.14 LICA software configuration diagram, from [53]. 37
2.15 AuRA architecture diagram taken from [19]. 39
2.16 Soldo’s Behaviour Expert diagram from [88]. 42
2.17 Soldo’s Robot Behaviour diagram from [88]. 42
2.18 A diagram of Michaud et al.’s architecture, taken from [73]. 44
2.19 A diagram of Low et al.’s architecture, taken from [70]. 45
2.20 A diagram of Nicolescu and Mataric’s behaviour architecture taken

from [75]. 47
2.21 Extracts from an XML behavior specification from [65]: a) An object

class describing the attributes of an opponent robot. b) A motion
behavior for moving towards a ball. 49

2.22 Artificial chromosome diagram, taken from [61]. 50
2.23 Architecture of Rity diagram, taken from [59]. 51
2.24 Ubibot diagram, taken from [59]. 51
2.25 A diagram of Brussell et al.’s blackboard architecture, taken from [30]. 53

v

vi List of Figures

2.26 Sample XABSL striker definition, taken from [68]. 57

3.1 High-Level Overview Proposed Architecture. 63
3.2 Overall Architecture Diagram. 64
3.3 Information flow in Archangel. 67
3.4 Sequencing Hierarchy. 68
3.5 World Model - Behaviour System - Path Planner. 69
3.6 Information flow in Archangel. 70
3.7 Mobile Robot Client. 72
3.8 Planner: Behaviour Engine & Task Planner. 74
3.9 Competition in Archangel. 76
3.10 Sample XML behaviour. 82
3.11 Example XML trigger example. 87
3.12 Screenshot of prototype program. 88

4.1 Racetrack. 92
4.2 Treasure Hunt. 92
4.3 Obstacle Run. 93
4.4 Goal Scoring Challenge. 94
4.5 Passing Challenge. 95
4.6 Lego Robot and Tank Robot. 96
4.7 Initial Race FSA. 100
4.8 Sample Race Track State. 101
4.9 Racetrack 1 - Problem 1. 102
4.10 Racetrack 1 - Problem 1 Fix. 104
4.11 Racetrack - 2. 105
4.12 Final version of Treasure Hunt XML Tree and FSA diagram. 107
4.13 Treasure Hunt XML. 108
4.14 Treasure Hunt Chase XML. 109
4.15 Treasure Hunt Turn XML. 110
4.16 Obstacle Run state diagram. 114
4.17 A sample of the Obstacle Run XML. 115
4.18 Obstacle Run - Target position surrounded scenario. 117
4.19 Obstacle Run - Target position surrounded scenario with trigger. . . . 117
4.20 Obstacle Run modified state diagram with sample XML addition. . . 119
4.21 Initial Goal Scoring Behaviours. 121
4.22 Avoiding the Ball in Goal Scoring. 121
4.23 Modified Goal Scoring Behaviour. 125
4.24 New KickForward XML behaviour definition with backup state. . . . 128
4.25 Robot1 and Robot2 Behaviour Trees. 129
4.26 Passing Drill. 130
4.27 GoBehindBallForDribble XML state. 131

List of Figures vii

4.28 Dribble XML state. 133
4.29 GoBehindBallForPass XML state. 134
4.30 Pass XML state. 135

Acknowledgments

I want to thank Dr. Jacky Baltes and Dr. John Anderson for their advice, support,

and especially their patience these past few years. Their sage advice was indispensable

and guided me through the darkest of times when writing this thesis. I also want to

thank my family for their support, patience, and help pushing me when I needed it.

I also want to thank the members of our little lab community of the Autonomous

Agents Lab at the University of Manitoba with setting up the robots and environment

when I needed help. Finally, I would like to thank all my employers and clients for

financially supporting and providing me with the flexible work schedule I needed to

finish my program. Without all your support, none of this would be possible. Thank

you.

viii

Chapter 1

Introduction

The goal of this thesis is to design an architecture for intelligent mobile robotics

that is easier and more intuitive to modify, adapt, and extend than previous archi-

tectures. An architecture is a unifying, coherent form or method of construction,

which provides the foundation for creating powerful intelligent systems. Due to the

complexity of formally evaluating this architecture, which would require a formal user

study, this thesis will use anecdotal evidence in the form of several common tasks to

show the features of the architecture (see Chapter 4 for details). Similar to other

intelligent systems, mobile robots must select correct actions out of a huge set of

possibilities. As an example, a mail delivery robot needs to plan an efficient route to

all mail drops (this problem is equivalent to the travelling salesman problem which

is NP-hard) [25, 57, 95, 98]. To make matters worse, mobile robots need to act un-

der constraints imposed by the real world. For example, a robot may have to react

fast enough to avoid certain obstacles. Furthermore, sensors and actuators are noisy

1

2 Chapter 1: Introduction

and inaccurate (e.g. grainy pictures that leads to uncertainty in the identification of

objects).

When discussing intelligent mobile robot, the meaning of mobile is clear: the

robot must be able to relocate itself. However, the meaning of intelligent is less clear.

The definition of intelligence has been debated and discussed by many researchers [8,

84, 93]. For the purposes of this thesis, an intelligent mobile robot must exhibit the

following qualities:

• the mobile robot must act autonomously,

• the robot must perform appropriate actions in controlled and uncertain situa-

tions.

According to Russell and Norvig [84], acting autonomously means the robot will move

and behave independently, free from direct human control. Performing the appropri-

ate action means demonstrating behaviours that are working to the completion of the

system’s objective [84]. This thesis may often refer to the intelligence of the robot

simply as “the robot”.

Perception, reasoning, and execution (see Figure 1.1) are common to all intelligent

mobile robots. Sensors such as light, sonar, or touch sensors gather information about

the environment such as the robots approximate location, the location of nearby ob-

stacles or other robots, and information about itself such as battery power levels. Raw

sensor data must often be filtered, correlated and/or interpreted to form perceptions.

For example, a group of pixels are smoothed and interpolated to generate the position

of a ball or another object relative to the robot. The set of all perceptions guides the

formation of the world model in which the robot reasons. Reasoning often involves

Chapter 1: Introduction 3

Figure 1.1: Generic Architecture.

the robot trying to generate and satisfy multiple and possibly competing goals. Com-

monly, the output of the reasoning stage is an abstract plan (e.g. a sequence of actions

or behaviours) to achieve the robot’s goals. In the execution stage, the abstract plan

is implemented. Abstract operators (e.g. drive-through-the-door) are converted into

lower level commands for motors and other actuators. One of the most interesting and

most frustrating aspects of working with mobile robots is that there can be complete

failure, or a range of other types of errors, in any of these stages. For example, in the

perception stage sensors might fail, or multiple sensors may return conflicting data

about the environment. In the processing stage, unexpected situations may cause the

robot to decide to perform wrong behaviours or behaviours that are detrimental to

it. In the execution stage, the actuator may fail or wheels may frequently slip (in the

case of wheeled robots) on certain surfaces such as dirt, sand, or carpet. Developing,

maintaining, and modifying systems to control intelligent mobile robots in the real

world can be a daunting task.

4 Chapter 1: Introduction

The problem with most systems is that they are often limited by the initial design

of the original developer or specifications. These systems can not cope with error

and are not flexible enough to change significant aspects of the program. For exam-

ple, transforming a soccer playing robot into a garbage collecting robot may require

going through the control program and modifying perceptions (e.g. targets and ob-

stacles), reasoning (e.g. approach a trash can from any direction vs. approaching a

ball in only certain directions), and execution (e.g. add an additional actuator). The

problem is that much of the necessary information is only available implicitly in the

implementation of the system. Without making the necessary information explicit,

the architecture and its implementation does not easily allow for reusability, and

extensibility. A system with an architecture that utilizes an agent-based approach

and makes relevant information explicit should be intuitive, flexible and extensible.

One requirement of the architecture is for necessary information to be made explicit.

However, the overall goals of this architecture is that it must be intuitive, flexible,

adaptable, and extensible. The intuitiveness refers to the simplicity of the architec-

ture for developers to understand and work with: specifically, how easy it is to add,

change and remove behaviours. The flexibility refers to the architecture’s ability to

work in different domains and tasks. The adaptability refers to the architecture’s sup-

port for different sensors/actuators and coping abilities to unexpected scenarios. The

extensibility of this architecture (i.e. the ability to add/remove/modify behaviours)

can be considered another requirement. However, extensibility can also be considered

in terms of the architecture’s intuitiveness to work with and its flexibility for different

tasks.

Chapter 1: Introduction 5

The main contributions of this thesis are:

• a survey of existing robotic architectures;

• the design of a new intuitive and flexible architecture;

• a prototype implementation of the proposed architecture and;

• an evaluation study of the proposed architecture (via the implementation).

The prototype program required hundreds of lines of XML (eXtensible Markup Lan-

guage [99]) specification as well as thousands of lines of C++ code. The survey of

existing architectures, the design and implementation of the new architecture, and

the evaluation study took several years (2003-2005) to complete. During this time,

observations and participation at several international robotic competitions helped

further motivate this research.

Although the need for an intuitive architecture is inherent to all intelligent mobile

robot applications, examples from the domain of robotic soccer will be used since

this domain shares many of the same qualities found in other domains (such as dy-

namic moving objects), and it has a strong and active community of researchers. The

flexibility of this architecture will be demonstrated by using examples from other do-

mains such as collection and racing robots. In section 1.1, architectural issues, which

may seem abstract and vague, are made concrete through examples gathered during

UM RoboCup teams’ participation at past robotic soccer competitions. Chapter 2

describes previous work related to this research. Chapter 3 shows the design of the

new proposed architecture with an explicit behaviour representation prototype, which

6 Chapter 1: Introduction

uses XML. Chapter 4 describes some of the implementation details and how the new

proposed architecture is evaluated. Finally, Chapter 5 will conclude this thesis.

1.1 Motivation

Robotic soccer is an excellent testbed for research into intelligent mobile robotics.

Playing soccer well requires solutions to many problems that are currently being ac-

tively investigated by researchers. For example, a player has to have a core set of

skills: real-time control (e.g. the ability to kick the ball and accept passes), perception

(e.g. the ability to see the ball), awareness (e.g. localization), strategy, coordination

and communication (e.g. the ability to set-up plays). The soccer domain is interesting

because of its complexity and dynamic nature. There are many factors to consider

in making a successful soccer team that can play well and win games. Some factors

such as making players stronger and faster are important, but making them smarter

is also important. The intelligence of a player encompasses the general knowledge

of the game, the plays or strategies to use during play, and the ability to adapt to

situations whether they were previously encountered or are entirely new. Another im-

portant advantage of robotic soccer is that there is a large and growing community of

researchers that participate at international competitions, such as the RoboCup [42]

and the Federation of International Robosoccer Association (FIRA) [43] competi-

tions. These competitive environments allows for quantitative evaluation of different

approaches.

In the last three years (2003-2005), the University of Manitoba has fielded robotic

soccer teams (e.g. [10, 11, 12]) at these events. Observations of the performance

Chapter 1: Introduction 7

of teams at these events has made the need for powerful architectures for mobile

robots blatantly apparent. To be successful in the competition, the robotic controller

used by a team must be adapted to different environments and different opponents.

For example, a goalkeeper has a large set of possible behaviours, which are selected

based on the opponent’s style of play. For example, for opponents with kickers (some

teams can kick a ball at up to nine meters per second), behaviours that are fast-

acting and project the position of the ball based on its current velocity are necessary.

However, these fast-acting behaviours are very susceptible to noise and therefore if the

opponents do not have kickers, behaviours that are slow-acting and based on repeated

measurements of the ball’s position are more appropriate. Thus, the influence of the

fast-acting behaviours needs to be increased/reduced to make the robot’s behaviour

more predictable and reliable when playing against teams with/without kickers.

For the UM 2003 RoboCup control program [10], team members needed to sift

through many lines of C++ code to figure out exactly in what contexts to modify

a behaviour. Extra time was needed to test the effect of this change on the whole

system because of the complex interaction between multiple behaviours. Even in

the C++ code, it was difficult to determine what other behaviours depended upon

a given behaviour. This indicates a clear need for the architecture to be flexible in

these situations.

Another common problem was that behaviours had to be modified to compensate

for noise in the sensors. For example, the minimum distance between two robots

(e.g. when building a “defensive wall” to block a shot) depended on the quality of

the location information. If the location data is very accurate the distance between

8 Chapter 1: Introduction

robots can be reduced (thus reducing the chance of the opponent team scoring), but if

the location information was too noisy, robots would collide with each other resulting

in no defensive wall at all.

In another example, the robot may unintentionally push the ball towards its own

net when it was trying to move around the ball. The robot may be trying to go around

it to a setup position on the other side, while maintaining tight control of the ball

and keep opponent robots from sweeping in and stealing the ball. A simple solution

would be to change the setup position to be further away from the ball in such a

case. In the UM 2003 RoboCup program [10], this change would require additional

time (more than necessary had the system made relevant information explicit and

intuitive to work with) to implement and debug. This additional time may be crucial

in many applications. If this was a larger modification, then the amount of time

may be truly unacceptable. In the face of such changes, designing part of the system

– specifically the part that may require frequent modifications – using a flexible

and explicit representation (e.g. in a language based in XML) would prevent such

disadvantages.

Furthermore, the developer needs to be aware of subtle nuances in the program;

such as if two behaviours were both equally applicable to the current situation, then

the first behaviour that was loaded would be used. This knowledge is made implicit

in the C++ code and is not very intuitive for new developers.

As another example, in one game the defenders would not clear the ball (push the

ball to the sides of the field and away from its own goal area). Subtle restrictions

were discovered from the code of the ClearBall behaviour (the behaviour responsible

Chapter 1: Introduction 9

for clearing the ball). Here, the behaviour prevented the robot from clearing the ball

unless it was very near to the goal. These constraints existed because the behaviour

was initially coded for the goalkeeper. These constraints made sense for the goalkeeper

robot (the goalkeeper is not supposed to leave the goal area), but did not for the other

defenders. As a solution to the previous problem, a new DefenderClearBall behaviour

needed to be created for the defenders; one that is free from those restrictions and

allowed the robot to push the ball to the sides of the field away from its own goal

area. However, this process relied on writing additional C++ code.

From the UM RoboCup teams’ experiences at the robotics competitions, it was

clear that an architecture was needed, and the requirements for this new architecture

are as follows:

1. the process of designing behaviours needs to be simple and intuitive;

2. the goals and conditions of each behaviour need to be made explicit;

3. the process of creating and removing behaviours needs to be simple and flexible;

4. implementation aspects of the decision-making mechanism that chooses and

switches between behaviours also needs to be made explicit.

Even though robotic soccer demonstrates real-world problems and highlights the

need for powerful architectures, the resulting research is applicable to all intelligent

mobile robot domains.

The following chapter provides background information on robotics, different con-

trol architectures (including behaviour-based ones), and other relevant information.

Chapter 2

Related Work

The research field of robotics is an interesting and unique field in Artificial Intel-

ligence (A.I.) and Computer Science. It is a very practical domain, where theories

and ideas are put to the test in real world physical environments. Also, not all the

solutions are guaranteed to work precisely as expected all the time because there are

too many factors to consider and too many unexpected situations can occur. Thus,

the perfect or best solution is often unknown.

Designing an intelligent control program for a robot is a complex task. Agent ar-

chitecture are used to structure the program to make it easier to debug, extend, and

adapt. The terminology in the field has changed in recent years to favour agent-based

approaches. Older systems can be modified to follow new agent-based approaches.

Today, agent-based designs are used more often because of the advantages they pro-

vide. An agent is an entity that can reason and act for itself or on behalf of another.

Most agents are autonomous, which means they reason and act for themselves without

external control. Using agents allows for a distributed approach, which is advanta-

10

Chapter 2: Related Work 11

geous because it is scalable and flexible. Adding extra agents to control more robots

would be simpler than modifying a centralized system. The overall system is also

more protected against system failures because control of the system is distributed

among the agents. Failure of one agent has a limited negative effect on the overall

systems.

There are several criteria that can be used to characterize architectures [15].

• Domain Relevance versus Domain Independence;

• Analysis versus Synthesis;

• Top-down (knowledge-driven) versus Bottom-up (data-driven) design;

• Deliberative versus Reactive approaches.

The rest of this chapter is divided into sections (Section 2.1 – Section 2.4) based

on these criteria.

2.1 Domain Relevance vs. Domain Independence

Domain relevance versus domain independence relates to the practical application

of the architecture. Domain relevant architectures are strongly associated with the

intended domain. This approach to designing an architecture is usually more efficient

for tasks associated with the intended domain. It allows the developer to make

assumptions about the tasks based on domain knowledge. For example, a chess-

playing robot is not under as tight a real-time constraint as a soccer-playing robot.

That is, it can take a little more time moving the pieces. As another example, a

12 Chapter 2: Related Work

seed-planting robot does not need as strict reactive control or obstacle avoidance

behaviours as a vacuuming robot if it can assume it is working in a large open field.

Nevertheless, often the domain relevance directly ties the robot to the domain

making the architecture difficult to extend into other domains. The opposite of the

domain relevant approach is the domain independent approach. These architectures

make little or no assumptions about the domain, hence they are more flexible. How-

ever, they often sacrifice some efficiency. That is, because they make little or no

assumptions, they often must perform additional checks to enforce additional con-

straints on the behaviours. For example, an office floor-sweeping robot using the

domain relevant approach may know that it only has ninety degree turns and oper-

ates at night with few dynamic obstacles. However, if a domain independent approach

was used to design the architecture, the robot will be trying to optimize turns by a

few degrees (e.g. eighty-five degrees vs. ninety-degrees) and perform a more intensive

obstacle avoidance behaviour than would truly be necessary.

The issues relating to domain relevance versus domain independence in robot

architectures are similar to issues relating to “strong versus weak” methods in artificial

intelligence [15, 84].

2.2 Analysis vs. Synthesis

Analysis versus synthesis methodologies relate to assumptions about the very def-

inition of intelligence. In analytical approaches, the idea of intelligence is abstracted

into pieces based on the properties of an existing system. These abstract pieces are

often inspired by intelligent behaviours of biological entities (e.g. dogs, humans, etc.).

Chapter 2: Related Work 13

Figure 2.1: Sony’s Entertainment Robot, Aibo, from [7].

An example of this approach can be seen in the work of Arkin, Fujita, Takagi, and

Hasegawa, who developed an architecture for Sony’s Entertainment Robot, the Aibo

(see Figure 2.1), based on the principles of ethological modelling (studying and mod-

elling animals in their natural environments) [20]. The architecture they developed

was based on popular studies of canis familiaris, the domestic dog. They created

twelve subsystems that mimic the behaviours of a dog, which governs the actions of

the robot. These subsystems (see Figure 2.2 for subsystem interaction model) are:

• Investigative (searching/seeeking);

• Sexual;

• Epimeletic (care and attention giving);

• Eliminative (excretion and urination);

• Et-epimelectic (attention getting or care soliciting);

14 Chapter 2: Related Work

Figure 2.2: Subsystems of the ethology architecture from [20].

• Ingestive (food and liquids);

• Allelomimetic (doing what others in a group do);

• Comfort-seeking (shelter-seeking);

• Agonistic (associated with conflict);

• Miscellaneous Motor;

• Play;

• Maladaptive.

Chapter 2: Related Work 15

This architecture uses a mechanism based on competition between behaviours for

overall action selection. Behaviours uses two components to compete with other

behaviours: motivation and interest levels. Inhibition is the opposing factor that

suppresses each behaviour, which is applied iteratively until only one behaviour has

a non-zero value. This behaviour will then become the primary behaviour. Other

behaviours can execute as well provided that they do not interfere with the primary

behaviour.

Overall, their architecture works well because they have a model of the level of

intelligence they want to achieve. That is, they worked backwards from the goal to

create their system. However, it is difficult to expand their system to achieve higher

levels of intelligence than its current performance. For example, it is difficult to scale

their system to model human intelligence. Also, proactive/goal-oriented tasks are

often difficult to model in their system. Due to these problems, their architecture is

not very flexible for use in other domain and tasks nor is it very adaptable in terms

of adding more sensors, actuators, etc. As far as their architecture being intuitive,

the developer must be knowledgeable with the behavioural aspects of a dog in order

to work with this architecture. This is not very intuitive since the behaviours are not

explicit in their representation.

Structure-in-5 architecture

Another example of the analysis approach can be seen in the work of Kolp,

Giorgini, and Mylopoulos, in which they proposed a multi-agent architecture based

on organizational theory [63]. Their architectural design, called structure-in-5, was

16 Chapter 2: Related Work

Figure 2.3: Overview of Kolp et al.’s architecture from [63].

modelled after a typical business organization model (see Figure 2.3). Nodes in their

graphs were designated roles as dependers and dependees in which the dependers de-

pend on the dependees for support. Their proposed architecture uses multi-agent

research to highly modularize the components required to control a physical robot.

In theory, this makes their architecture highly flexible and adaptable. However, their

work has not been tested on a physical robot, and thus considerations for real-time

performance seems to be lacking. Also, the design of their architecture seems overly

complex and the behaviour representation is implicit in its design. This is not very

Chapter 2: Related Work 17

intuitive for new programmers. Thus, this architecture is not as useful as it could

have been.

Synthesis approach

The synthesis approach is based on the idea that intelligence can be reduced

to a single atomic unit, which when replicated and organized properly, can create

high-level intelligent behaviour [15]. Synthesis approaches are akin to unified field

theory approaches, which Arkin describes as employing the assertion that a single

construct, when replicated, is sufficient to ultimately reproduce real-time human-level

intelligence [15]. The distinction between these architectures primarily lies in what

constitutes this single construct. In Brooks’ subsumption architecture, this single

construct is represented by a construct called a behaviour [28]. These behaviours are

arranged in a layered fashion so that more complex and sophisticated behaviours can

be created. Brooks’ assertion is that with enough of these layers, real-time high-level

intelligent behaviours can be reproduced [28]. Further discussion regarding Brooks’

subsumption architecture is found later in this section.

RCS architecture

Another popular architecture which applies unified field theory to intelligence was

developed by James Albus [8] for the Intelligent Systems Division (ISD) of the Na-

tional Institute of Standards and Technology (NIST) [5] called the Real-Time Control

System (RCS) [8, 54]. This architecture is similar to Brooks’ subsumption architec-

ture [28]. Instead of layers, it has multiple levels, which form a hierarchy. This may

18 Chapter 2: Related Work

Figure 2.4: Primary components of RCS architecture, taken from [8].

seem as a trivial difference, but there are certain features that set them apart. Each

level has its own sensor processor (SP) module, world modelling (WM), value judge-

ment (VJ) module, and behaviour generator (BG) (see Figure 2.4 for relationship

diagram between components). The sensory processing component evaluates the per-

ceptual data and compares it with the internal world model: that is, it can help filter

some of the noise in the perceptual data. The world modelling component stores a

database of knowledge representing the best estimate of the known world. The value

judgement model makes decisions about actions that were deemed “good” and “bad”,

determines risk and uncertainty factors, and the attractiveness and repulsiveness of

objects and regions of space in the world. The behaviour generation component takes

Chapter 2: Related Work 19

the goals of the system and generates plans to obtain those goals. The most attractive

plan will then be executed. Sensor data moves up from level to level, world modelling

information moves up and down the hierarchy, and behaviour generator commands

are communicated down the hierarchy. Using this hierarchy, Albus proposes that

intelligent behaviours can be created.

The overall RCS architecture appears to be fairly flexible and adaptable (i.e. it has

been implemented on several platforms and domains). However, the programmer does

not appear to be able to change any of the behaviours in the behaviour generation

component easily. Behaviours are not made explicit, nor is the method how the

architecture deals with conflict resolution. For example, what needs to be done if two

goals conflict with each other. Thus, it is not very intuitive in this respect.

2.3 Top-down vs. Bottom-up architectures

Arkin has described the top-down vs. bottom-up architecture as akin to the

scruffy/neat dichotomy in artificial intelligence [15, 84]. According to Russell and

Norvig, the neat approach emphasizes formal analysis based on mathematical rigor

while the scruffy approach emphasizes experimentation and discovery [84]. The

top-down approach is similar to neat, whereas the bottom-up approach is similar

to scruffy. In Arkin’s definition, a top-down is knowledge-driven and involves a “for-

mal analysis and characterization of the requisite knowledge that a system needs to

possess to manifest intelligent robotic performance”, while bottom-up is closer to ex-

perimentation and discovery [15]. However, these statements suggest that it relates

to how a developer approaches the development of the architecture from a software

20 Chapter 2: Related Work

engineering standpoint. An alternative definition is how the system approaches its

problem solving. The following sections (Section 2.3.1– 2.3.3) will relate more to the

latter.

The next sections will further discuss the distinction between top-down architec-

tures (Section 2.3.1), bottom-up architectures (Section 2.3.2), and hybrid architec-

tures (Section 2.3.3).

2.3.1 Top-down architectures

A top-down architecture (see Figure 2.5) uses abstraction to decompose the per-

ception, reasoning, and execution cycle. The motivation for the top-down architecture

is that abstraction can hide details of the lower levels from the higher levels. For ex-

ample, in theory a general path planning algorithm can be developed without the need

to know about the locomotion capabilities (e.g. wheels, legs, or snake-like motion) of

the robot. In practice, the two levels do interact in subtle ways. The reasoning system

cannot be developed independently of the sensors and vice versa. For example, there

are two approaches to global vision in robotic soccer. Most teams mount the camera

directly over the playing field, whereas our team (The RoboBisons) [10, 11, 12] uses

a oblique view [23]. In theory, the exact position and view of the camera should not

affect a behaviour such as dribbling the ball. In practice, since with a side mounted

camera, the robot will occasionally occlude the ball, the dribble ball behaviour must

back off the robot from the ball periodically to make sure that the ball is still in

front of the robot. This backing off is not necessary with a camera mounted directly

overhead.

Chapter 2: Related Work 21

Figure 2.5: Generic Top-down Architecture.

Pure top-down architectures have an explicit world model and focus on devising

one strategy and carrying it through to the end. These systems are good at planning

and higher level reasoning, but are not reactive enough for dynamic environments.

To overcome this problem, researchers have developed extensions to pure top-down

architectures, such as behaviour trees. A behaviour tree is a collection of behaviours

organized in a tree [40]. It maps complex behaviours by branching them into smaller

simpler behaviours. The depth of the tree depends on the complexity of the most com-

plex behaviour, while the breadth of the tree depends on the number of behaviours.

Behaviour trees are very useful to help manage the complexity of one branch from

another on the same level. However, it is difficult to jump from one state in a certain

level in a branch to a different state in another level of a different branch.

For example, in the soccer domain, assume a robot is performing a passing be-

haviour maneuver that requires it to move to a specific location before it can pass (see

22 Chapter 2: Related Work

Figure 2.6: Simple Behaviour Tree.

Figure 2.6). Due to the complexity of this particular maneuver, the behaviour can be

nested several layers down the tree. If the robot suddenly loses the ball, and now has

to block the opponent robot, the robot system logic must move up a certain number

of levels and then down another number of levels until it reaches the state that has

the appropriate behaviour to perform. Quite often, moving back up is not possible,

and it will have to derive the new appropriate behaviour by starting from the top

of the tree and working down. This is important when it comes to improvising or

coping with unexpected events. Also, behaviour tree systems must often deal with

large computational complexity, and therefore perform too slowly to work efficiently

in dynamic real life environments.

2.3.2 Bottom-up architectures

Bottom-up architectures (see Figure 2.7) are the opposite of top-down architec-

tures. Instead of multiple levels of abstraction in the perception, reasoning, and

Chapter 2: Related Work 23

Figure 2.7: Generic Bottom-Up Architecture.

execution stages, bottom up architectures include simple behaviours that map percep-

tions directly to actuator commands (similar to reflexes). More complex behaviours

are created by combining simpler ones. Bottom-up architectures are able to react

quickly to the environment because of the direct links between sensors and actua-

tors (e.g. avoid an obstacle). The disadvantage of bottom-up architectures is that

it is often difficult to know what lower level behaviours are needed and to predict

the interaction of multiple behaviours. Some bottom-up architecture systems include

reactive architectures and Brooks’ subsumption architecture [28].

Pure reactive architectures have a set of low-level behaviours which can react

to certain situations when they arise. The main advantage of using these systems

is that they are computationally efficient. This is a desired quality when working

in dynamic environments such as robotic soccer. However, there are disadvantages

of such systems as well. The main disadvantage is that these systems usually have

no mechanism for higher level planning or reasoning. In other words, they are not

24 Chapter 2: Related Work

Figure 2.8: Brooks’ layering concept, taken from [28].

proactive and often require an event to trigger any behaviour. Furthermore, it is often

difficult to generate or select among several goals.

Brooks’ Subsumption Architecture

Brooks’ subsumption architecture is one well-known architecture for controlling

robots and their behaviours [28, 29]. This architecture is one of the most studied

architectures by many researchers [50, 92]. It does not use an explicit world model

like pure top-down systems. The main concept of Brooks’ subsumption architecture

is that the robots behaviours are designed in a layered approach (see Fig 2.8). Each

layer is an asynchronous module and higher-level layers have the ability to subsume

(i.e. override) the lower layers. The higher layer subsumes the lower layers by either

inhibiting the inputs to or suppressing the outputs of the lower layers. This makes

the architecture robust when new or additional behaviours are required. Gorton and

Mikhak demonstrated how the subsumption architecture can be easily integrated into

hardware (for performance) of a simple platform (see Figure 2.9, 2.10, and 2.11) [50].

Chapter 2: Related Work 25

Figure 2.9: Gorton and Mikhak’s robot platform, taken from [50].

Figure 2.10: Gorton and Mikhak’s architecture, taken from [50].

Brooks’ subsumption architecture is very flexible and adaptable and has also been

used successfully in robotic soccer [82, 83]. Nevertheless, there are several disadvan-

tages with Brooks’ subsumption architecture. The major disadvantage is that the

complexity of designing the system increases greatly as more complex higher level

layers are added. Thus, it is limited in its extensibility and also in its intuitiveness

for developers.

26 Chapter 2: Related Work

Figure 2.11: Gorton and Mikhak’s hardware prototype, taken from [50].

Rocky III

Miller, Desai, Gat, Ivlev, and Loch developed a robot called Rocky III, based on a

reactive, bottom-up architecture [74] and programmed using the ALFA language [46].

Their architecture was slightly different from Brooks’ Subsumption architecture [28].

Instead of higher layers subsuming the function of the lower layers, the higher layers

provide information to the lower layers. Their architecture is a three tiered architec-

ture. The lowest level interfaces with the sensors, and actuators. The second level

computes the motion required to pass to the lower level. The highest layer consists of

the master sequencer which basically contains a list of waypoints for the robot. Their

architecture is fairly simple and has been used only for reactive navigation. However,

it is not flexible enough to change a particular layer or to add more task-directed

behaviours, such as performing passing plays with time constraints in the robotic

Chapter 2: Related Work 27

soccer domain. The disadvantages of this architecture are similar to those of Brooks’

subsumption architecture mentioned previously.

Bottom-up architectures are fast and efficient, but hard to maintain since it is

difficult to predict how adding in a reflex changes the behaviour of the system. For

example, changing a sensor can affect the validity of obstacle avoidance behaviours.

2.3.3 Hybrid architectures

Hybrid architectures are a mix between top-down and bottom-up architectures.

These types of architectures are the most popular because they take advantage of the

strengths of top-down and bottom-up architectures [9, 19, 26, 34, 36, 38, 47, 73, 75,

88, 89]. However, because they also inherit the weaknesses of those architectures, the

difficulty lies in finding a reasonable balance between the two types of architectures.

In hybrid architectures, some sensors and perceptions are directly connected to

the actuators, whereas others are processed more extensively. Instead of a complete

world model, the perceptions place the system in a finite set of states. In other words,

the environment can be mapped to certain states in the system. The reasoning system

moves the agent into desired states. For example, the kick to goal behaviour includes

three states (position behind ball, facing the ball, and kicking the ball into the goal).

One main advantage of using such an architecture is that it is easy to transfer from

one state to another on the same level (compared to that of top-down architectures).

For example, if after approaching the ball the robot is already facing the ball, then

the system will kick the ball immediately.

28 Chapter 2: Related Work

Hierarchically focus vs. Non-hierarchically focus

The popularity of hybrid architectures results from the belief that a combination

of planning and reactive architectures will realize the benefits of both. However,

hybrid architectures can be further categorized by hierarchically focused and non-

hierarchically focused. Hierarchically focused architectures tend to focus on breaking

down the problem of intelligent autonomous robots into layers, levels, or tiers. Quite

often, lower levels tend to focus more on specific implementation consideration prob-

lems such as control and sensory data management. Higher levels focus more on

general abstract problems such as planning, task management, or task sequencing.

With regard to non-hierarchically focused architectures, it is not that the distinction

between levels is completely absent, but rather that the layered aspect is not the most

important part of the architecture. Other aspects such as parallelism (having more

than one component execute in parallel and intelligent behaviours emerges as the

result of the interaction between these components) may be emphasized more than

the hierarchical aspect. The following example architectures elaborate on this point.

ATLANTIS architecture

Gat proposed an architecture called ATLANTIS, which combines planning and

reacting [47]. He claims that his architecture is capable of producing behaviour which

is reliable, task-directed and reactive to unexpected situations. ATLANTIS is based

on a continuous action model, which means that the operators consume negligible

amount of time. These operators, called decisions, do not control the robot directly.

Instead, they initiates processes called activities, which control the robot. But because

Chapter 2: Related Work 29

there is no strict relationship between the decisions and the changes in the world,

this activity action model is more difficult to analyze compared to state-based action

models.

The core principles of ATLANTIS, are based on three components:

1. a controller - a reactive control mechanism that controls primitive activities,

which does not require decision-making computations;

2. a sequencer - a mechanism to control the initiation and termination of the

activities in the controller;

3. a deliberator - performs time-consuming planning activities and world mod-

elling.

The controller in ATLANTIS uses the ALFA programming language [46]. ALFA

was used to create a framework for controlling the robot, instead of using classical

control theory, due to the difficulty of constructing and adequate mathematical model.

Using ALFA allowed the programmer to easily describe the functionality, and thus

the implementation of the hardware.

The sequencer in ATLANTIS is based on the Reactive Action Package (RAP)

system [44]. In general, the sequencer is designed to almost never fail, or rather

failures are assumed to be rare occurrences. This means that the sequencer is limited

in its capabilities of dealing with failures. In complex dynamic domains such as

robotic soccer, quite often a sequences of activities must be interrupted because the

world is constantly changing. Not only are these activities interrupted, but they are

not necessary.

30 Chapter 2: Related Work

The planner in his architecture is a traditional symbolic planner, which is sup-

posed to guide the robot and not directly control it. This alleviates much of the

burden from the programmer to implement the interface between the planner and

the sequencer. However, the drawback is that it is more difficult to evaluate. Overall,

this architecture is not very intuitive. Also, his architecture has been only used in the

task of robotic navigation, which means that it is not very flexible and extensible.

SSS architecture

Connell’s SSS architecture is another hybrid architecture [36] which was developed

for robot navigation in mind. It is primarily based on three layers (see Figure 2.12):

the Servo layer, Subsumption layer, and Symbolic layer (hence the “SSS” acronym

for the name). The Servo layer works directly with the sensors and actuators. The

Subsumption layer is supposed to recognize specific situations and assign setpoints

(points to which the robot should move) to the servo layer, which will activate the

appropriate actuator to perform the desired motion. The Symbolic layer sets the pa-

rameters to the subsumption layer and receives feedback from the Subsumption layer

to know if the parameters are correct. A special construct of this architecture is the

“contingency table”, which is used to relieve some real-time burden from the symbolic

system. The contingency table continuously monitors a collection of special purpose

situation recognizers. When the situations/events of interest occur, the contingency

table quickly passes a new set of parameters to the subsumption layer.

According to Connell [36], behaviour-based/subsumption systems do not impose

as many modelling constraints on the world and are good at making rapid radical de-

Chapter 2: Related Work 31

Figure 2.12: Diagram of the SSS architecture, taken from [36].

cisions. However, behaviour-based systems often have problems with world modelling

and persistent state. This is because behaviour-based systems are often developed

with a distributed design in mind so it is difficult to find a suitable location to store

this information.

There are a few drawbacks in the SSS architecture. First using a symbolic language

at the top layer is flexible, but it does reduce performance. This is even apparent to

Connell, as he uses the contingency table as a fix. Secondly, the contingency table

solution is a somewhat non-intuitive solution, and is not really flexible enough for

complex dynamic domains.

3T architecture

Bonasso et al. developed an architecture called the 3T robot architecture [26]. The

3T architecture has been used on robots for simple office hallway navigation, trash-

32 Chapter 2: Related Work

Figure 2.13: Diagram of the 3T architecture, taken from [26].

collecting robots, and even robots that work on space stations. Their architecture

separates the robot intelligence into three tiers (hence the name) (see Figure 2.13).

The three parts are:

• a dynamically reprogrammable set of reactive skills coordinated by a skill man-

ager;

• a sequencer that controls the activation of skills in the system;

• a deliberative planner that reasons about the goals and constraints.

The dynamically reprogrammable set of reactive skills are called situated skills.

Situated skills represent the 3T architecture’s connection with the world [87]. That

is, they are configurations of the robot’s control system that will achieve or maintain

a particular state in the world. They are called situated because the proper context

must be present for the skill to be effective. For example, a robot may have an arm

to lift objects, however if the robot is placed in an empty room devoid of any movable

objects, this skill is not useful. Thus, knowledge of when the skill is applicable is

Chapter 2: Related Work 33

important. The situated skill has certain specification components to ensure proper

usage: inputs and outputs, initialization, enable and disable components, and com-

putational transform. The inputs and outputs provide the preconditions for the skill

and links to the following skills. Initialization performs any starting configuration

that is necessary to perform this skill. The enable and disable components allow or

disallow the skill to function. Finally, the computational transform implements the

skill’s functionality.

The sequencer organizes the skills for activation. This system is reasonably simple

in that it places the skills in discrete steps that must be performed. The sequencer

used in the 3T architecture is based on Firby’s RAP system [44].

The highest layer, the deliberative component, was placed as high as possible

to reduce the amount of processing that the deliberative component is required to

perform. Their planner has some attractive features such being designed for multi-

agent coordination, and it can also reason about agents that the system does not

control.

The three tiered approach of the 3T has been used in many other architectures

because of the way it modularizes the problem of autonomous intelligent robots.

Compared to the SSS architecture, which is also three tiered, the 3T architecture

is more flexible for certain tasks. In practice, the SSS architecture has only been

demonstrated with pure navigation. Nevertheless, because the behaviour components

are implicit, it is not very intuitive.

34 Chapter 2: Related Work

NASREM architecture

NASREM is an architecture that predates 3T, but shares many of the same fea-

tures [9]. It is a multi-tiered architecture, which provides several levels of abstraction.

One of the primary difference between NASREM and 3T is that 3T maintains a global

world model. NASREM is also mainly a reference model, and not an implementation.

Its disadvantages are similar to those of the 3T architecture.

Saridis’ architecture

Saridis proposed another architecture for intelligent control [85]. This architecture

also has three layers. Saridis takes a more bottom up approach in the design of his

architecture. The lowest level starts with the servo systems available and modifies

them for use for the level above. The next level consists of coordination routines for

the lower subsystems, and a scheduling mechanism which is structured in a network-

like manner. The highest level uses a neural net to find a sequence of actions that

matches the text input. However, this architecture does not handle failure (on each

of the three layers) well and is not as dynamically reconfigurable as architectures such

as the 3T. Thus, it is even less flexible and intuitive than the 3T architecture.

Noreils and Chatila’s architecture

Noreils and Chatila proposed another three tiered architecture [76]. The three

tiers are planning, control, and functionality. The control level of this architecture

distinguishes between failures and successes. In comparison with architectures such

as the 3T architecture, which does not make this distinction, this may be useful. For

Chapter 2: Related Work 35

small tasks, this is useful in the short run to allow the planner to know which actions

will be beneficial. However, in larger tasks, situations will not fit into these two

discrete, crisp categories: rather, they are fuzzy in nature. Problems such as these

can be seen in classical A.I. problems such as the game of chess. It is often difficult

early on to know if choices for actions are beneficial or not. The disadvantages

of this architecture is similar to those of the 3T, Saridis’ architecture and related

architectures.

Ranganatha and Koenig’s architecture

Ranganatha and Koenig proposed another hybrid architecture [79]. The base

of this architecture is reactive in nature. However a deliberative component is given

progressively greater control over the robot in situations where the reactive component

fails to make any progress. Their architecture is also a three-layered architecture with

the following layers: reactive layer, sequencing layer, and a deliberative layer. The

reactive layer uses motor schemata [14] in the form of two simple behaviours: move to

some given coordinates and avoid obstacles. The deliberative layer performs high level

path planning. The sequencing layer evaluates the progress of the reactive layer. If not

enough progress has been made (e.g. the robot is stuck in a local minima/maxima),

then the deliberative layer is allowed to control the robot using a waypoint. Their

architecture uses three different modes of control:

1. mode 1 - reactive layer has full control;

2. mode 2 - reactive layer has most of the control using the advice (a waypoint)

provided by the deliberative layer;

36 Chapter 2: Related Work

3. mode 3 - the deliberative layer has full control since the reactive layer is not

performing or did not perform well given the terrain.

Their architecture provides an interesting view of hybrid architectures. Neverthe-

less, their architecture is adequate for the domain of robotic navigation. However,

it is insufficient for more goal-directed behaviours because the only method for the

deliberative layer to control the robot is via a waypoint rather than a more broad

means. Thus, it is not very flexible. Also, the difficulty of modifying and maintaining

such an architecture is unclear.

LICA architecture

Hu, Brady, Grothusen, Li, and Probert proposed another hybrid agent-based

(meaning some components of the architecture are agents) architecture called LI-

CAs (Locally Intelligent Control Agents) [53]. A strong feature of their architecture

is that control tasks are distributed among agents called behaviour experts. These

behaviour experts tightly couple sensing and action, and they also execute in parallel

in a fashion similar to Brook’s subsumption architecture [28]. However, these be-

haviour experts are loosely coupled in a hierarchical manner. The design of a LICA

module is shown in Figure 2.14. The layers execute in parallel and the lower layers

execute faster due to the simpler processing required. This architecture is as flexible

as Brooks’ subsumption architecture. However, some aspects are not defined, such as

the task and behaviour selection, as well as conflict resolution. For example, consider

a scenario where one module is sensing and directing the robot to head one direction,

while another module is directing the robot to head in another direction. The mech-

Chapter 2: Related Work 37

Figure 2.14: LICA software configuration diagram, from [53].

anism to resolve this problem is not explicit. Without this being made more explicit,

this architecture is not intuitive for debugging, testing, or modifying.

Non-hierarchically focused architectures

The following architectures are other hybrid architectures, however they do not

focus on using a layered approach to bridge the gap between deliberative and reactive

architectures. Although they may have some hierarchical components, it is not those

components themselves that are the essence of the architecture. For example, the

AuRA architecture by Arkin [16]) has a hierarchical planner, but it is essentially

38 Chapter 2: Related Work

only one half of the architecture itself. The other half is a reactive schema-based

component.

AuRA architecture

AuRA (short for Autonomous Robot Architecture) is one of the most note-worthy

architectures [16, 19]. AuRA is a hybridization of a deliberative hierarchical planner

and a reactive controller. It was the first robotic navigation system to present this

style of integration [17]. The components of the AuRA architecture are shown in

Figure 2.15. The hierarchical component consists of the mission planner, spatial

reasoner, and the plan sequencer. The mission planner was the interface for the

human controller. The spatial reasoner, also known as the navigator, helps plan the

paths the robot must take to complete the missions assigned. The plan sequencer

translates the path segments into motor commands and queues them for execution.

The schema controller or schema manager uses schemas (based on schema theory [13]),

which are mappings of perceptions to motion commands. Some of the strengths of

the AuRA architecture are that it is highly modular and flexible, and it provides for

additional adaptation and learning methods.

The AuRA architecture has been used successfully on numerous physical robots.

Arkin and Mackenzie showed how the AuRA architecture can make use of a priori

information to improve mobility [21]. Collins, Arkin, and Henshaw [35] demonstrated

this on a robot called “Buzz” in the first robot exhibition sponsored by the American

Association for Artificial Intelligence (AAAI) [2]. However, the emphasis was on

the reactive component since it was sufficient enough for the specific task at hand.

Chapter 2: Related Work 39

Figure 2.15: AuRA architecture diagram taken from [19].

Nevertheless, much of the behaviour mechanism is implicit in its design. Thus, it is

not intuitive for new developers to modify and extend.

Stoytchev and Arkin’s architecture

Stoytchev and Arkin proposed another robot architecture [89]. Their architecture

was designed to combine deliberation, reactivity, and motivation in a behaviour-based

system. This architecture differs from architectures such as the AuRA architecture

because it adds a third component, specifically the motivation component. The de-

liberative component performs the path planning similar to other architectures. The

path planner also uses a Finite State Automata (FSA) to sequence the path segments.

The reactive component is based on schema theory [13]), similar to the AuRA archi-

40 Chapter 2: Related Work

tecture. There are two primary subsystems of this component: the process monitor,

which is used to keep track of the progress relating to the current task and the ex-

ception manager, which is used to deal with unexpected situations. The motivation

component is similar to other ethologically inspired architectures [20]. Motivation

variables can contain values between 0 and 1 to describe the strength of the particu-

lar motive. The motivation with the highest value will dictate the general behaviour

of the robot.

This architecture is useful for simple intelligence such as navigating office hallways.

However, the flexibility of the reactive component is not robust. For example, it

was not able to handle dead-reckoning errors. This is a significant weakness in this

architecture as well as the AuRA architecture. Thus, these two architectures are not

very adaptable and also not very intuitive.

Reflecs architecture

Goel, Stroulia, Chen and Rowland developed a hybrid architecture called Reflecs,

which is, like the LICA architecture, agent-based [49]. Reflecs’ main components

are a schema-based reactive component and model-based deliberative reasoner. Re-

dundancy and multiple configurations are possible due to the schema-based reactive

component. The deliberative reasoner is part of an agent which is able to detect failure

(i.e. local minima/maxima). The deliberative reasoner uses a Structure-Behaviour-

Function (SBF) model. This model uses three kinds of knowledge.

1. Functions and modes of the perceptual and motor schemas;

Chapter 2: Related Work 41

2. The tasks (or Functions), the methods of performing those tasks (or Behaviours),

and the primitive schemas structure (Structure);

3. Redundancies in the design, thus allowing the system to switch modes/behaviours.

This is another example of an architecture whose primary system is the reactive

component, with the deliberative component used mainly as a backup. Their design

is very flexible. However it is not very intuitive because the behaviours are implicit

in their design.

Soldo’s architecture

Soldo proposed a hybrid architecture with reactive and preplanned control in a

mobile robot [88]. His architecture is also agent-based as the control of the robot

is distributed among a set of behaviour experts (see Figure 2.16). These behaviour

experts perform some specialized processing on the sensor input, which then adjusts

the robot state and the world state. Based on the new robot and world state, ad-

ditional specialized processing is performed to create a robot action. In summary,

a behaviour expert maps sensations to a particular action. Soldo states a set of

these experts create the overall behaviour of the robot (see Figure 2.17). There are

also boundary experts (daemons) whose function is to trigger changes in the overall

behaviour. These boundary experts provide the preplanned control, while regular

behaviour experts provide more reactive control. Also, Soldo’s architecture does not

use a pre-stored map, but performs some map generation dynamically as it identifies

“landmarks” in the world. Goal-directed behaviour requires a map. This implies

42 Chapter 2: Related Work

Figure 2.16: Soldo’s Behaviour Expert diagram from [88].

Figure 2.17: Soldo’s Robot Behaviour diagram from [88].

much of the overall behaviour is reactive until a map is well-formed, to the point

where it can be useful to meet the robot’s objectives.

There are several disadvantages to this architecture. First, Soldo’s merging of

sensing and action into behaviour is not very adaptable. It is true that tighter coupling

provides improved performance, but if those sensors were to fail, then those behaviours

would not be very useful if they cannot work with other sensors. Making modifications

to work with new sensors will take a long time if this modification is needed for all

behaviours in the system. Thus, it is not very flexible. Secondly, behaviours may

conflict with each other. Soldo does not specify a mechanism to deal with conflict

resolution. This is not intuitive for new developers.

Chapter 2: Related Work 43

Michaud, Lachiver, and Dinh’s architecture

Michaud, Lachiver, and Dinh also worked on developing a new hybrid architec-

ture, which combines reactivity, planning, deliberation and motivation [73] (see Fig-

ure 2.18). Their architecture uses an agent-based approach, and the basic control

component is called a behaviour. The external situation module, the needs module,

the cognition module, the motives module, the behavioural module and the final selec-

tion module form the six primary modules in their proposed architecture. Behaviours

all run in parallel and are selected dynamically depending on the intentions of the

agent. Their resulting commands are blended together based on their respective im-

portance. This importance level is determined by the external situation module, the

needs module and the cognition module. The external situation module evaluates the

robot’s environmental conditions that affect behaviour selection (e.g. obstacles). The

needs module selects behaviours based on the robot’s needs and goals. The cognition

module is for cognitive recommendation based on learning how the agent works (its

reactions and behaviour selections of the past) in the environment. The recommen-

dations of these three modules are given to the final selection module, which activates

the selected behaviour. The motives module contains motives, which coordinate the

operations of the other modules.

However, their architecture does not allow for abstraction of behaviours. This

abstraction is useful for developers to incrementally design their system. Using an

abstraction feature would have made their system more flexible. So far, their archi-

tecture has also only been tested in simulation. It is difficult to know how well their

architecture would scale up to real world robots. Their architecture is somewhat in-

44 Chapter 2: Related Work

Figure 2.18: A diagram of Michaud et al.’s architecture, taken from [73].

tuitive already, since it has the behaviour separated and specifies how the behaviours

are to interact. However, it can be more intuitive if the behaviour design used a

specification language.

TCA architecture

Simmons proposed an architecture called Task Control Architecture (TCA) [86].

His architecture uses a task net or task tree, which can be further decomposed to

simpler, lower-level control and functionality. These task trees do not have a specific

representation, which increases the flexibility of this architecture. However these task

trees are manipulated directly by C function calls, which the designer is responsible

for. It also uses a sophisticated and complicated message-passing algorithm, and a

Chapter 2: Related Work 45

Figure 2.19: A diagram of Low et al.’s architecture, taken from [70].

central router to handle these messages. Thus, it is not very intuitive for developers

to modify and extend.

Low, Leow, and Ang’s architecture

Low, Leow, and Ang proposed an hybrid architecture that integrates deliberative

planning and reactive behaviour-based control (see Figure 2.19) [70]. Their architec-

ture has two key features:

• The planning module produces a sequence of checkpoints instead of a conven-

tional path;

• The reactive module also uses a self-organizing neural network for control.

The deliberative component plans a path using cell decomposition similar to the

method found in [78], which generates a series of waypoints/checkpoints. The reactive

component uses the checkpoints as targets to be reached. Combining those targets

with an obstacle avoidance module and a homeostatic control module to regulate the

46 Chapter 2: Related Work

robot’s execution module, the high-level control system generates low-level commands

to its actuators to move the robot. This hybrid architecture is well suited for the

domain of robot navigation. However, the main drawback of this architecture is

that manipulating the robot for another task is not easily done. For example, this

architecture did not take into consideration temporal constraints, and therefore is not

suited for any tasks that calls for it. Thus, this architecture is not very flexible. In

addition, it is not very intuitive, as many important aspects are implicit in its design.

Nicolescu and Mataric’s architecture

Nicolescu and Mataric proposed another interesting hybrid behaviour-based ar-

chitecture [75]. Their architecture was developed as a result of considering two im-

portant issues lacking in pure behaviour-based architectures. First, pure behaviour-

based architectures tend to rely too strongly on reaction and not enough on abstract

representation, and second, that behaviors are generally designed by hand for one

specific task and are not very reusable. Thus, their architecture employs primitive

behaviours, which are tightly integrated with the lower level command generations

that actually control the actuators, and abstract behaviours, which are more high-

level. Abstract behaviours simply specify behaviour conditions, and thus can be

concerned with higher level issues rather than lower level details (e.g. control) (see

Figure 2.20 for a diagram of the behaviour relationship). In addition, there are also

Network Abstract Behaviours, which represent a tree-like network of behaviours. This

construct is used to abstract a large section of the overall behaviour tree. Abstracting

large sections helps developers manage large complex behaviours systems. It gives

Chapter 2: Related Work 47

Figure 2.20: A diagram of Nicolescu and Mataric’s behaviour architecture taken
from [75].

the behaviour system the appearance of simplicity and readability from a high-level

perspective. This increases their architecture’s intuitiveness for new developers to

work with (e.g. adding/changing/removing behaviours). From a reusability stand-

point, this is also very useful. The developer can make use of an network abstract

behaviour to perform the actions of the large behavioural section that the network

abstract behaviour is supposed to represent. This can save the developer time from

redeveloping these large sections.

Their architecture allows more flexibility compared to historical behaviour-based

architectures. In addition, their architecture makes great use of abstraction to simplify

behaviour representation and manageability. However, the design of the behaviours

and other high-level specifics can be made even more intuitive for new programmers

by using more explicit representation.

48 Chapter 2: Related Work

Potential fields based architecture

Laue and Röfer proposed another style of hybrid architecture [65], which is similar

to the proposed architecture of this thesis. One interesting point to note is that

their architecture uses competition instead of superposition between behaviours as

means for action selection. Also, potential fields [18, 58] are tightly integrated into

their behaviours (see Fig. 2.21); not only in the traditional sense as a means of

obstacle avoidance, but also as part of the action selection process. Behaviours in

their architecture also use explicit representation using XABSL [68], which makes

their architecture more intuitive. Further discussion of their behaviour representation

can be found in Section 2.5. Their architecture has been tested in the robotic soccer

domain on Sony Aibo dogs [81] and the B-Smart small-size robots [69]. Thus, this

architecture is somewhat flexible already. However, there are some drawbacks to their

architecture, which is further discussed in the next chapter.

Decugis and Ferber architecture

Decugis and Ferber describes another architecture that uses competition as means

for action selection [39]. Their architecture expands on the works of Maes [71, 72]

by including a hierarchy of levels where a collection of flat scope behaviours resides.

This makes their design flexible. However, the design of the behaviours themselves

does not use explicit representation, and thus it is not very intuitive in this respect.

Chapter 2: Related Work 49

Figure 2.21: Extracts from an XML behavior specification from [65]: a) An object
class describing the attributes of an opponent robot. b) A motion behavior for moving
towards a ball.

Ubiquitous Robot architecture

Kim, Lee, and Kim proposed a unique idea of artificial chromosomes as the basic

foundation of creating a ubiquitous robot [59, 60, 61]. Figure 2.22 shows three types

of artificial genes. F-genes represent fundamental characteristics and genetic infor-

mation such as sex, life span, color, and initial and mean values of internal states.

I-genes represent internal preference settings (i.e. weights) on such matters such as in-

ternal state and external stimuli. B-genes represent the weight settings for behaviour

selection, activation levels, and activation frequency. Using these genes, they created

50 Chapter 2: Related Work

Figure 2.22: Artificial chromosome diagram, taken from [61].

a Sobot prototype (a software/simulation robot) called Rity. Figure 2.23 shows a

diagram of the Sobot Rity’s architecture. The goal was to incorporate a Sobot as

part of a ubiquitous robot (Ubibot), a new generation of robot that exists in the vir-

tual world and real world. From a high level perspective, the Ubibot is comprised of

three parts: the Sobot, the Embot (embedded robot - the controller), and the Mobot

(mobile robot platform) (see Figure 2.24). So far, their work has been implemented

in simulation alone. Whether or not their architecture will work as planned remains

to be seen. Thus, to this point it is unknown whether much consideration has been

put forth regarding how to interface the Sobot intelligence and the actual physical

hardware of an actual mobile robot. This could be problematic if such a design was

an afterthought. For example, the physical robot may not support some behaviours

or behaviours may have been too well trained to be modified. Thus, it may not be

very adaptable in this respect. Also, modification of the behaviours would then be

Chapter 2: Related Work 51

Figure 2.23: Architecture of Rity diagram, taken from [59].

Figure 2.24: Ubibot diagram, taken from [59].

a very difficult task. Thus, it is not very flexible in this respect. Using gene repre-

sentation is a novel idea – however, most developers are not biologists. Much of the

relevant information is made implicit in their design, and thus it is not very intuitive

for developers to work with.

52 Chapter 2: Related Work

Blackboard architectures

Blackboard architectures has also been proposed in the past for use with mobile

robots [30, 62]. The advantages of blackboard-based architectures are:

• They are able to unite several knowledge sources (whether they are homoge-

neous or heterogeneous in nature) for data processing;

• They use simple and effective communication between experts (e.g. domain

knowledge expert agents, control knowledge expert agents, etc.);

• They support the incremental construction of a solution (e.g. for path planning).

Two important blackboard-based architectures include Koenig and Crochon’s TRAM

architecture and Brussel et. al’s blackboard-attention architecture.

TRAM architecture

Koenig and Crochon proposed an architecture called TRAM (short for Tableau-

noir pour Robotique Autonome Mobile, in French) in 1988 [62]. There are four main

components of the TRAM architecture: the domain blackboard, knowledge sources,

the control, and the robot environment. The domain blackboard is a globally acces-

sible blackboard or database that contains state information about the problem/task

and the steps (taken or hypothesized) to solve the problem or complete the task.

Knowledge sources contain information specific to an area of expertise (e.g. planning

expert, or control expert, etc.). The control component manages the blackboard and

the knowledge sources. This allows for a separation between domain information and

control information. The robot environment is another globally accessible construct

Chapter 2: Related Work 53

similar to world state information in other architectures. Their architecture is some-

what flexible with their modular design. However, it is not very intuitive since much

information (e.g. behaviour definitions) are not made explicit.

Blackboard-attention architecture

More recently, Brussel, Moreas, Zaatri, and Nuttin developed another behaviour-

based blackboard architecture (see Figure 2.25) [30]. Their hypothesis in using the

Figure 2.25: A diagram of Brussell et al.’s blackboard architecture, taken from [30].

54 Chapter 2: Related Work

blackboard method was to overcome the lack of flexibility of hierarchical architec-

tures, and the difficulties of state representation and integration of world knowledge.

Their blackboard serves as a communication medium between components and pro-

vides information about state representation. In their blackboard architecture, the

key feature is the concept of attention. Behaviours have different attention levels

depending on the constraints associated with the behaviour and on different stimuli.

More attentive behaviours will make more attempts to exert control over the actua-

tors. The disadvantages of this architecture are similar to the previously mentioned

blackboard architecture.

2.4 Deliberative vs. Reactive

Deliberative vs. reactive architectures relate more to the function of the archi-

tecture than to its structure or organization. Deliberative architectures have plans

preprogrammed, or use a planner to create plans which it will carry out to completion.

Reactive architectures are the opposite of deliberative architectures. Pure reactive

systems do not have planning capabilities. There is a reliance on external stimuli in

order for it to move the robot. For example, a reactive-based vacuuming robot will

not move until it detects a dust cluster nearby, and it will not go searching for it in

a proactive manner.

For all intents and purposes, deliberative architectures are similar to (if not the

same as) top-down architectures. Likewise, reactive architectures are similar to

bottom-up architectures. Discussion of these types of architectures occurred pre-

viously in Section 2.3.

Chapter 2: Related Work 55

2.5 Architectures in Robotic Soccer

The potential of robotic soccer and why it is being used to evaluate the proposed

architecture of this thesis was described previously in Section 1.1. To understand

what makes a useful, flexible, and intuitive architecture (especially for robotic soccer

domain), it is advantageous to understand the types of architectures used in the

past robotic soccer competitions. This section will highlight some of the unique

architectures that were used.

A popular hybrid architecture is the belief-desire-intention (BDI) architecture [27]

which is being used by several robotic soccer teams [31, 32, 33, 91, 97]. Belief refers

to the facts that an agent holds to be true about themselves and its environment.

Desire refers to the goals of an agent. Finally, intention refers to the steps the agent

plans to take to reach its goals or desires. The belief and desires of a robot help drive

its long term planning strategies. The intention and desires of a robot help with its

ability to improvise. This is a popular architecture since it is very flexible and the

concepts themselves are intuitive. However, many aspects are implicit (e.g. conflict

resolution), and thus it can be made more intuitive.

Many teams in robotic soccer competitions have used hybrid approaches. The

MuCows from the University of Melbourne at RoboCup 2000 used a software archi-

tecture based on a set of modules that uses a form of message passing they describe

as publishing and subscribing to messages [52]. One key advantage to their system

is that it allows for the design of scalable and distributed systems, thus making their

design very flexible. However, since much information is made implicit, it is not very

intuitive.

56 Chapter 2: Related Work

At the RoboCup 2001 competition, the RoGi team from the University of Girona,

Spain, used a unique multi-agent system [66]. Their design of the agent is controlled

by a decision making module that is made from two parts: the reactive decisions,

and the deliberative decisions. The former part is based on self-perceptions of the

agent. The latter part requires communication between agents to create complex and

cooperative behaviours. This cooperation allows for agents to reinforce the decisions

made by the reactive decisions component.

The IUT Flash team used an interesting technique, fuzzy logic [67], to help the

transition from one state to another [90]. This is an interesting idea since the dynamics

of soccer does often suggest that state changes are more gradual in nature and not

rigid with minor exceptions such as the referee making a call. Nevertheless, state

machine approaches are highly integrated, which means that one state depends on

another and thus makes it more difficult for behaviour designers to modify behaviours.

Thus, it is not as flexible as it could have been.

XABSL

For many teams, much of the crucial information about the agents’ play is im-

plicit in the code. One exception is the team from Humboldt-Universität von Berlin,

Universität Bremen, Technische Universität Darmstadt, Universität Dortmund and

Freie Universität Berlin in the Four Legged League [37, 69]. They developed an

architecture for Sony Aibo robot dogs based on Extensible Agent Behavior Specifi-

cation Language (XABSL), in order to help describe behaviours (see Figure 2.26 for

a sample behaviour definition) [68, 69]. It is important to note that XABSL is not

Chapter 2: Related Work 57

Figure 2.26: Sample XABSL striker definition, taken from [68].

an architecture itself. It is just one part (the behaviour system) of what makes an

architecture.

XABSL is rooted in the use of eXtensible Markup Language (XML) [99], which

means that information is made explicit to the developer. For example, it is easy to

change the XABSL example above so that the strikers stay further behind the ball.

Thus, using this explicitness approach is more intuitive than most of the previous

approaches. However, there is some room for improvement to make it more flexible.

For example, the code shown in Figure 2.26 does not allow for explicit flexibility in

describing the destination point (i.e. no margin for freedom or variation).

58 Chapter 2: Related Work

2.6 Languages for Architecture design/implementation

To control the complexity and to simplify the design of architectures, researchers

have also developed their own languages to help facilitate the creation of new architec-

tures, as well as implementations based on existing architectures. XABSL, introduced

previously, is one of the newer languages to have emerged from years of research.

XABSL is intuitive since it allows developers to explicitly specify behaviours. It is

also flexible as it has been implemented on two different robotic platforms. However,

there are some shortcomings of XABSL, such as weak behavioural hierarchy support.

The rest of this section describes some other languages that might be considered as

alternatives to XABSL.

GRL

Horswill also describes a functional programming language called GRL (Generic

Robot Language), which is used to program behaviour-based systems [51]. The GRL

compiler allows programmers to write in a more modular manner, yet distills C code

that is supposedly faster than hand-written code. Compared to raw LISP (short for

LISt Processing, a language often associated with symbolic processing and high-level

behaviour development), GRL was reported to be much easier to write and to debug.

However, GRL can be made more flexible, since adding, modifying, and removing

behaviours still requires much of the behaviour system to be recompiled and reloaded

onto the robots.

Chapter 2: Related Work 59

ALFA

ALFA (short for A Language For Action) is another behaviour language for de-

signing reactive control mechanisms for autonomous mobile robots [46]. It was first

proposed by Gat in 1991. ALFA was designed to support bottom-up hierarchical

architectures. Support for top-down, or other hybrid approaches are not well sup-

ported.

2.7 Summary of Related Work

From all the previous work described in this chapter, there is no one architecture

that is flexible, adaptable, and intuitive. The previous approaches described here were

all lacking in one area or another. The next chapter describes a new architecture,

which uses several aspects briefly mentioned in this chapter (e.g. explicit representa-

tion), in a new combination that is intuitive, flexible, adaptable, and extensible.

Chapter 3

Design

The goal of this thesis work was to design a general purpose architecture. However,

it is not necessary for the architecture to work for all imaginable robotic tasks. Further

discussion for this reason is found in the next chapter. If an architecture is made more

flexible, it is able to be adapted to nicely fit or better suit a larger variety of tasks.

According to Pareto’s principle [80], in anything, twenty percent is vital and eighty

percent are trivial. Thus, it is more important to focus on the few vital tasks which

are common among mobile robots. This is the principal upon which the design of the

proposed architecture is based.

3.1 Requirements

In designing this architecture, the intuitiveness, flexibility, adaptability, and exten-

sibility were deemed the most important. The survey of previous work in Chapter 2

shows that previous architectures fall short in one or more of these requirement areas.

60

Chapter 3: Design 61

To fulfill these requirements, the design will focus on the following aspects:

• Separate and loosely-coupled sensor and actuator modules. The mapping be-

tween sensor data and useful logical perception should be separated. Thus,

the logical perception and the components that depends on these perceptions

(e.g. the world model) can be implemented once, and then can be used by any

behaviour in the architecture. Using a loosely-coupled methodology allows the

architecture to fulfill the adaptability requirement. Further discussion about

the implementation of this is found in Section 3.2.1).

• Explicit world modelling with perceptual processing routines. Using a world

model helps the robot create plans for more goal-oriented tasks. The perceptual

processing routines help extract useful perceptions from the raw sensor data.

Having a world model helps fulfill the flexibility requirement. Further discussion

of the implementation of this is found in Section 3.2.2).

• Flexible sequencing support. There needs to be multiple-types of sequencing,

which help smooth out the overall behaviour and control of the robot. Also, the

degree of sequencing needs to be controllable, in order to balance the reactivity

of the robot to fit the task at hand. That is, the sequence length can be

shortened or the entire sequencing feature turned off if the task requires more

reactivity to the unexpected. In the implementation of the prototype for this

proposed architecture, there are three levels of sequencing, with the higher levels

performing more reasoning. This aspect helps fulfill the flexibility requirement.

See Section 3.2.3 for more details.

62 Chapter 3: Design

• Timing constraints support. Quite often, tasks have timing constraints – for

example, a minimum or maximum time a robot should spend on a task (see

Section 3.2.4). In the proposed architecture, support for these constraints is

specified within the explicit representation of the behaviour. The timing support

fulfills the flexibility requirement, and the explicit representation of the timing

constraints fulfills the intuitiveness requirement.

• Flexible behaviour selection mechanism. Behaviour selection refers to under-

standing what the robot should do in a particular scenario. As one can imag-

ine, this is a difficult task itself. Quite often, behaviours are added or removed

for various reasons (e.g. more precise localization due to additional sensors, or

the environment has changed). The developer needs to add and remove be-

haviours with as little effort as possible in order for the system to be as flexible

as possible. Further discussion regarding how this can be achieved is found in

Section 3.2.5.

• Explicit behaviour representation. Making representation of behaviours explicit

makes an architecture much more intuitive for developers. An explicit represen-

tation of the intent of the behaviour allows the developer to more easily debug

and fix errors that otherwise would have gone unnoticed. Further implementa-

tion of this explicit representation is discussed in Section 3.2.6).

Chapter 3: Design 63

3.2 Design Overview

The new architecture presented here, Archangel (see Figure 3.1 for a general

overview, and Figure 3.2 for more specifics), is a behaviour-based hybrid architecture

that uses an explicit behaviour representation based on XML. Using a behaviour-

based approach with behaviour abstraction, Archangel allows the developer to cre-

ate simple behaviours, and more complex behaviours derived from these simple be-

haviours. As a hybrid approach, this architecture encompasses a deliberative aspect

which allows the robot to create plans, and a reactive aspect to respond to unexpected

scenarios.

Figure 3.1: High-Level Overview Proposed Architecture.

Quite often in traditional systems, the trigger mechanism to execute a behaviour is

too rigid and difficult to maintain. For example, consider maintaining and extending

the behaviours in a large and complex decision tree. It would be difficult to know

64 Chapter 3: Design

Figure 3.2: Overall Architecture Diagram.

exactly where to add new behaviours, and the impact to the system by removing a

behaviour. Archangel deals with this issue by allowing the behaviour to specify how

Chapter 3: Design 65

applicable it is to a particular scenario. With Archangel, the developer can design

the actions for the behaviour, and easily integrate the behaviour into an existing set

of behaviours. See Chapter 4 for some examples.

3.2.1 Sensor and Actuator modules

The sensor and actuator modules were made separate from the rest of the system –

an approach closer to Albus’ RCS architecture [8] than Soldo’s SSS architecture [88].

This is to increase the flexibility of the overall architecture and allow the architecture

to work with different hardware and robots. For example, sensors and actuators can

be swapped in and out with limited impact on the overall A.I. control system. If the

sensors were tightly coupled with the behaviour system, this would lead to problems

where modifications to the sensors and actuators would lead to large changes in

the behaviour system. For example, instead of a global vision camera system, the

designer added a local vision system and shaft encoders, then significant changes to

the behaviour system would be required, such as modifications to all the behaviours.

Using a loosely coupled design is more flexible. Also, this is more useful in designing

and testing behaviours, since the behaviour designer will not have to focus on low

level implementation aspects.

3.2.2 World Model

The world model is a globally accessible construct. It provides information about

the environment and the objects contained within it (e.g. the robots, the ball, and

obstacles). Some static or constant information it provides includes the size and

66 Chapter 3: Design

structure of the known environment (e.g. in the robotic soccer domain, this consists

of the field dimensions and the positions of the goals). All the objects in the world

model (with the exception of the walls) are considered mobile objects (whether they

are self-powered or whether they require additional assistance is not considered).

These mobile objects’ positions and orientations are updated by the sensor modules

(e.g. a global vision camera setup) and associated perceptual processing routines. The

information the world model contains about each object consists of the type of object

(e.g. robot, ball, obstacle, or unknown), the two dimensional (x, y) coordinates of

the object, the global orientation, and the directional velocity (represented by x, y

components). The coordinates represent the center of the object. The actual size of

the object is determined by the type of object: robots are assumed to have a bounding

radius of ninety millimeters, obstacles are assumed to have a bounding radius of one

hundred millimeters, and the ball is assumed to have a radius of forty millimeters.

This information is essentially read-only. Behaviours and other components (e.g. the

low level controller) cannot make changes to the world model directly. The exception

to this are the sensor modules, which are able to write information to update the

world model. This information flow is shown in Figure 3.3. Information from the

sensors will trigger an event in the perceptual processing routines. The perceptual

processing routines take information from sensors and the controller, and update

the world information. For example, a camera sensor module detects motion, which

triggers a perceptual processing routine that filters the motion image to extract the

moving object(s).

Chapter 3: Design 67

Figure 3.3: Information flow in Archangel.

It is important to note that the world model itself will not invoke or update the

behaviour system. The behaviour system accesses the world model to extract the

information that is needed, while the world model is a passive construct similar to

the blackboard in blackboard-type architectures [30, 62]. It helps serve as a commu-

nication medium between the raw sensor data provided by the sensor layer and the

useful logical information needed by much of the behaviour system.

3.2.3 Sequencing

The problem with sequencing can be broken into three separate levels: task se-

quencing, action sequencing and actuator command sequencing (see Fig 3.4). Sequencing

further up the hierarchy requires more reasoning, whereas further down the hierarchy

requires more low level knowledge of the system. It can be said that lower levels have

finer granularity, since the sequenced components are smaller (i.e. performs less work

and requires less effort to modify and debug). For this reason, lower level sequencing

queues are often longer than the higher level sequencing.

68 Chapter 3: Design

Figure 3.4: Sequencing Hierarchy.

For most systems, there is an overall “task” or purpose for the system. However,

quite often there are subtasks involved in achieving this overall task. Task sequencing

refers to ordering these subtasks in an appropriate sequence. In the Archangel archi-

tecture, part of this functionality is given to the behaviour system. The behaviour

designer can specify task ordering in a behaviour. For example, there could be several

states in a given behaviour, and the states can be ordered with conditions to help

transfer from one state to another. The Archangel architecture also provides separate

mechanisms to store previous states and behavioural tasks: a history of the internal

state of the robot, if you will. This is useful for the reasoning system, and allows the

behaviour designer to add additional control configurations. For example, using the

history, the system can easily evaluate its progress and switch to a different behaviour

if there is a lack of progress.

Action sequencing has finer granularity than task sequencing. The actions the

robot should take to complete the task specified by the programmer are more of a

matter of efficiency rather than some other type of requirements satisfaction. An

example could be a set of waypoints to describe the most efficient path for the robot

Chapter 3: Design 69

Figure 3.5: World Model - Behaviour System - Path Planner.

to travel to get from point A to point B. The path planner is the component that

discovers this path (see Figure 3.5). It works as an on-demand component. The

behaviour system will request the the best path given the source (the robot’s current

position) and the destination. The path planner can use any algorithm it wishes to

find this path (e.g. Quadtree decomposition [78], Flexible Binary Space Partition-

ing [22], Potential fields [18, 58, 64], or other alternatives). The waypoints on the

path are stored as a sequence, which can be later used to guide the robot. This is

helpful if the environment is not expected to change rapidly.

Actuator command sequencing has the finest granularity among the three types

of sequencing in the architecture. The purpose of this type of sequencing is mainly

performance based. The advantages of using command sequencing are:

• less processing of complex routines (e.g. task and path planning) leading to

more processing time for motor commands, which leads to faster motion;

• smoother and more natural turns;

70 Chapter 3: Design

Figure 3.6: Information flow in Archangel.

• a reduction in the required processing power which can be used for other func-

tions.

However, the disadvantage of having a long sequence is that reactivity is reduced. For

example, a robot will continue a kick even though the ball has moved. As another

example, a robot will continue to attempt to open a door even though the door has

just been opened.

For actuator command sequencing, there are two components that deal with this

issue: the command generator and the command sender (see Fig 3.6). The command

generator takes waypoints or high-level motion commands (e.g. “kick”) to produce

low-level commands to the command sender. Designing this as a loosely coupled

module in the architecture adds flexibility to change actuators. That is, changing

actuators means a change in only how the higher level commands (e.g. the waypoints)

maps to the low level actuators (e.g. how hard or how long to turn a wheel).

The command sender receives those commands and places them into a queue to

be executed. The command sender attempts to send commands to the actuators at

Chapter 3: Design 71

regular intervals. However, some commands take longer than others to execute. Thus,

the command sender will block the transmission of subsequent commands until the

current one has completed execution. Currently, the mapping between the command

sender and the actuators are fixed in the implementation phase (e.g. compile-time).

Future work can be done in determining the benefits of making this aspect more

reconfigurable.

3.2.4 Timing Constraints

There are certain tasks in any domain that have timing constraints. For example,

a soccer-playing robot may have to wait ten seconds before it is allowed to steal the

ball from the other team on a free kick. Alternatively, a floor-cleaning robot should

spend at most thirty minutes cleaning before heading to its charging station if it is

known the battery lasts only thirty-five minutes. In such scenarios, it is useful to

set timing constraints on some behaviours. The Archangel architecture allows these

constraints to be set within the behaviours themselves, giving maximum flexibility to

the behaviour designer. Section 3.2.6 includes a detailed description.

3.2.5 MRClient Agents

Software agents called mobile robot clients (MRClients) are used to control each

individual robot (see Figure 3.7). Each MRClient has its own planner, which consists

of the behaviour engine (BE), task manager (TM), and a collection of behavioural

schemes in an explicit representation as described in Section 3.2.6. It also has links

72 Chapter 3: Design

Figure 3.7: Mobile Robot Client.

to a command generator and a command sender. (The command generator and

command sender can be local or global to the MRClient).

During the initialization phase at runtime, the behaviour engine reads in XML

behaviours, parses them, and stores them internally as a collection of XML Document

Object Model (DOM) objects to be interpreted. This provides a very flexible design

(almost at the level of interpreted languages). With regards to the robots used for the

evaluation (Chapter 4), this approach is very suitable. It is flexible in that it is easy

to add, remove, and modify behaviours without large changes to other parts of the

program, and without the need to recompile the program. Also, this higher-level of

abstraction allows the behaviors to be validated independently regardless of whether

Chapter 3: Design 73

it was used in interpreted approach or a compiled approach. However, the interpreted

approach is less suited for embedded systems which have limited resources to run an

interpreter.

With regards to the robots used for the evaluation (Chapter 4), another possibility

is the compiled approach where XML is used to define the behaviour and also embed

“the how” or the specific implementation of the behaviour, which is then converted

into a C++ class to be compiled with the program. This alternative suffers from a

few disadvantages:

1. It is more difficult to add behaviours. The XML behaviour definitions would

need to be converted to C++ code. The task planner must also be made aware

of these new behaviours. Depending on the implementation, the designer also

needs to be aware of how the new behaviour(s) will interact with the existing

behaviours.

2. It is more difficult to modify existing behaviours. Small modifications such as

moving a setup point behind a ball will require the XML behaviour definition

to be converted to C++ again, and the program will need to be recompiled.

3. It is more difficult to remove existing behaviours. Modifications to the task

planner are needed to remove behaviours from those available.

When the MRClient is invoked to move, either from an external stimulus such as

an update to the world model, or from an internal timer, the MRClient will run its

execute function, which is the main processing loop of the MRClient. The execute

function will access the planner to decide on the correct course of action to take. The

74 Chapter 3: Design

Figure 3.8: Planner: Behaviour Engine & Task Planner.

planner (see Figure 3.8) uses the behaviour engine to access the XML behaviours and

then uses the task manager to decide which behaviour to activate.

Complex behaviours are represented as behaviour trees using abstraction. This

is one way in which Archangel encompasses a deliberative approach. The reasoning

behind using behaviour trees and abstraction is to create a system where it would

be easy to add, remove, or modify complex behaviours. This is extremely important

in situations where behaviours are to be reused. For example, consider a GoHome

behaviour, which is a complex series of procedures a robot must do to head home

(e.g. go to home area, signal security system, open the door, etc.). This can be created

once, and then to include it as part of another behaviour can be as simple as adding

Chapter 3: Design 75

one extra line to that other behaviour. Removing the GoHome behaviour from the

robot’s set of behaviours can also be as simple as removing one line. Modifying this

GoHome behaviour can also be done without severely impacting the overall behaviour

system.

In addition, a complex behaviour can involve several internal states (e.g. a finite

state automata – FSA). Rather than a tree-like structure with a somewhat linear

path, these states can follow a complex graph-like structure with possibly cyclical

paths. This is another way in which Archangel encompasses a deliberative approach.

Archangel uses a reactive component, the task manager, which uses competition

as a means of behaviour selection [18, 65, 71, 72]. Behaviours will compete for the

attention of the task manager (see Figure 3.9). This strategy allows for a reactive

approach based on deliberative knowledge. When the task manager needs to decide

on which behaviour to activate, it will query each behaviour about its applicability and

its reward. The applicability of a behaviour refers to how applicable the behaviour is

to the current world situation, while the reward refers to a reward value for completing

that particular behaviour. All behaviors in the system support two functions in order

to support this: calc applicability(state) and calc reward(state).

The function calc applicability(state) returns how close the current world state

matches the assumptions of the behavior. For example, the behaviour shoot-goal

returns a high applicability if the robot and the ball are lined up and close to the

opponent’s goal. The function calc reward(state) returns the expected reward should

the behavior succeed. For example, the score-goal returns a reward of 0.9 whereas

block-opponent returns 0.3. The calc applicability(state) and calc reward(state) func-

76 Chapter 3: Design

Figure 3.9: Competition in Archangel.

tions are limited in the amount of processing that they are allowed to do. These

functions are expected to be approximations of the assumptions and effects of a be-

haviour, and are correspondingly expected to return very quickly. For example, to

determine whether a given behaviour’s assumptions are precisely met might require

the behaviour to plan a complete path to the goal destination, which is computa-

tionally expensive. Instead, the calc applicability(state) function could estimate this

applicability by the distance of the robot to the goal position.

Given the applicability and the reward, the task manager will compute an acti-

vation value for that behaviour. The behaviour that has the largest activation value

Chapter 3: Design 77

will be the behaviour chosen by the task manager. The activation value can be de-

scribed as a combination of the behaviour’s applicability value and the reward value.

This is a loose definition of an activation value to give developers some flexibility

in how they wish to design this combination. However, a simple weighted sum has

been implemented and shown to work well in the prototype program described in

Chapter 4. Equation 3.1 describes the simple equation with A, and B being weights

for the applicability and reward value respectively.

activationV alue = A ∗ applicabilityV alue + B ∗ rewardV alue (3.1)

Since behaviours can be specified from another set of behaviours, the behaviour

engine and the task manager will work in a recursive manner. As shown in Fig-

ure 3.9, behaviour2 is comprised of behaviour2A and behaviour2B. The applicability

of behaviour2 is a combination of the two sub-behaviours (e.g. max(behaviour2A,

behaviour2B) – the maximum value between the behaviour2A and behaviour2B). A

similar technique can be employed for reward components. Using this hierarchical

abstraction control and action selection is a strong feature of the Archangel architec-

ture. This approach is similar to that used by Decugis and Ferber [39]. The difference

between Decugis and Ferber’s architecture and Archangel is in the specification of the

behaviour themselves. Archangel’s behaviors are more intuitive and flexible, since rel-

evant and important information is made explicit. This behaviour selection is also

similar to that of the potential fields based architecture proposed by Laue and Röfer,

however it differs from their approach since developers need not be familiar with

the concepts of potential fields to design behaviours. Also, their behaviour selection

78 Chapter 3: Design

model of using potential fields works well for representing the majority of navigation

behaviours, however it makes less sense in other scenarios. For example, it is harder

to represent the activation criteria of a behaviour that calls for the robot to spin on

the spot for a given length of time (e.g. a spin-kick for some soccer playing robots).

In Archangel, the chosen behaviour from the behaviour selection process (the one

with the largest activation value) is executed until the next time step. With the use of

competition as action selection, there can be situations where the robot will oscillate

between two behaviours or goals, as Tyrrell showed in [94]. Tyrrell’s experiments had

the robot go to two separate locations, one for “eating” and another for “drinking”.

However, the control system constantly changed the predominant behaviour/goal

and it never reached either location. To avoid the common problem of oscillating

between behaviours, the task manager in Archangel enforces a minimum threshold

for changing from one behaviour to another. Thus, the robot will likely continue on

the path it initially chose. In cases such the one presented in Tyrrell’s experiment,

the applicability values in Archangel can be functions of the distance to the possible

subgoal (eating location or drinking location). The robot will then likely choose to

go to the closer subgoal. If both were equally close, the architecture’s mechanism

for this conflict resolution is always to choose the newer behaviour (the one with the

latest information).

For future research, learning can be incorporated into the behaviours and task

planner. Behaviours could be given the ability to adjust the value of the calc applicability(state)

and calc reward(state) depending on the success of the behaviour. Other researchers

are investigating methods for learning behaviour selection [41, 48, 77, 96].

Chapter 3: Design 79

Obstacle avoidance is an important feature often required of a robot in many do-

mains. In the Archangel architecture, the obstacle avoidance behaviour is recognized

as a separate component because of its importance. In the prototype Archangel pro-

gram, compared to all the other behaviours, which were fully implemented in XML,

a low-level obstacle avoidance behaviour (based on potential fields [58]) was imple-

mented in C++. This was because the model of the potential fields itself rarely needs

to be changed. However, all the parameters for this model are configurable in XML.

For example, the force exerted by the ball by default is assumed to be repelling;

however each XML behaviour definition can redefine this parameter to suit its needs.

The “walls” in the world model will also exert a repelling force to help confine the

robot within a specific area. Additional configurations can be added in the future.

This potential fields behaviour also aids as a mechanism for conflict resolution. For

example, in Tyrell’s experiments previously mentioned, the robot will choose to go

to the closest objective.

The next section will further describe the XML behaviour language used to de-

scribe individual behaviours.

3.2.6 Explicit Representation

The goal to make information explicit must be carefully balanced with the need for

an intuitive architecture. Obviously, the most extensible architecture is a description

of a C++ program in XML. However, the resulting system would be even more

difficult to understand and modify than the original C++ code. Therefore, the type

and amount of information that is expressed explicitly must be carefully controlled.

80 Chapter 3: Design

Explicit representation of behaviours is important for the architecture to be intu-

itive. XML was chosen as a basis for representation because it provides a foundation

for developers to represent behaviours explicitly. Also, XML is flexible in its ex-

pressiveness by allowing the developer to freely describe a behaviour. Many systems

are increasing their XML-support for analogous reasons and its use here allows this

architecture to be implemented on many platforms and systems. Using XML also

means that a variety of existing tools can be used to assist the programmer in writing

the XML behaviour definitions. XML tools are constantly being improved upon such

that they are almost to the point of having WYSIWYG (What-You-See-Is-What-

You-Get) functionality, similar to the tools for HTML coding. This all leads to more

intuitive tools for the future. Ultimately, the use of XML can potentially replace how

programmers approach high-level specification design and implementation for robotic

systems (i.e. replace some symbolic programming components).

The rest of this section will describe the XML foundation for explicit representing

and describing behaviours. There is a considerable number of ways to represent

behaviours, and the following representation is just one set of possibilities. It is

important to note that this thesis is not primarily about using XML in the architecture

– rather it is about the architecture design (and the specific implementation developed

for robotic control). The set of XML tags described here was kept minimal so not to

confuse/overwhelm developers with the numerous possibilities and to stay intuitive.

An as-needed approach was used to develop this minimal set (i.e. a XML tag was

created when the existing set of tags was insufficient for the task). However, this

minimal set is sufficient to cover all the cases in the next chapter and thus the majority

Chapter 3: Design 81

of general situations that arise, which those cases are supposed to represent. The

complete sample Document Type Definition (DTD), the document used for syntax

validation, can be found in Appendix A.

The root element (top container entity) is the <behaviour> element. The

<behaviour> element must have a unique name to help distinguish it from other

behaviours. A behaviour can also have a minimum execution time associated with

it. This allows a behaviour to let the task manager know how much time it will take,

so the task manager will not switch to another behaviour during this time. This is

a necessary characteristic in order to avoid switching between behaviours too often,

which could result in behaviour oscillation with no progress being made. This relates

back to the timing constraints support mentioned earlier in this chapter.

The components of a behaviour are: <init>, <draw env>, <behaviour list>,

<reward>, <applicability> and <execute> (see Figure 3.10 – a sample high-

level behaviour that contains sub-behaviours).

Behaviour components

The optional <init> section describes the variables this behaviour wishes to ini-

tialize. For example, the behaviour in Figure 3.10 initializes the <target list>,

which is a list of target positions. The <target list> element has two primary

attributes: src (the source to initialize the target list from), and ofType (the type of

objects from the source). Currently the only source allowed is “World::videoObjects”,

which is the collection of objects given to the input of the system architecture. How-

ever, additional sources can be added in the future. The second attribute selects the

type of objects (i.e. a subset of the source) to be included in the <target list>.

82 Chapter 3: Design

Figure 3.10: Sample XML behaviour.

The <behaviour list> element lists all the lower level behaviours that make up

the current behaviour. This allows for behaviour abstraction. Usually these lower

level behaviours are simpler behaviours but this architecture does not make this a

requirement. The <behaviour list> element contains multiple <behaviour ref>

elements, which are equivalent to pointers (for those familiar with C/C++) to other

behaviours. The <behaviour ref> element has a required attribute, name, which

is the name of the sub-behaviour.

Chapter 3: Design 83

The <reward> section is intended to describe the reward the robot will receive

when it successfully completes this behaviour. The behaviour designer can use this

element to help design a reward function that can be used for behaviour learning

applications. A final reward value for the behaviour can then be generated. The

reward values in the Archangel prototype is from a range of 0 to 1, where 0 being no

reward and 1 being the maximal reward.

The <applicability> section describes how applicable the behaviour is to a

certain scenario. This is done by providing a list of conditions that needs to hold

true in order the behaviour to be considered applicable. These conditions modify an

applicability value from a range of 0 (not applicable at all) to 1 (very applicable).

Each condition is described using a <condition> element. Alternatively, a fixed

specific value can be used as well (e.g. <applicability value= “0.75” />).

The <condition> element allows for three possible types of child tags to help

describe the scenario: <robot>, <ball>, <shot on goal>. The latter two are

more applicable to the specific domain of a soccer playing robot, however, for other

domains, additional tags can be added. The <condition> element also allows for a

value to override whatever is the described condition by assigning a Boolean value to

the attribute met (e.g. <condition met= “true” />).

The <robot> element specifies the state of the robot. Since the intent was for

this to be used by mobile robots, this element is used to describe the robot’s position.

Similarly, the <ball> tag specifies the state of the ball.

84 Chapter 3: Design

The <execute> section describes the actions for the robot to take for this be-

haviour. For simple behaviours, the following simple actions were implemented for a

mobile robot to take: <goto>, <turn>, and <kick>.

The <goto> element requires a position to which a robot can move. To describe

a position, different specifications were implemented:

• <absolute position> – describes an absolute position in global coordinates

expressed as an x and y value.

• <reference position> – describes positions that are well known in the world

model, whether they are fixed positions (e.g. home locations) or relative posi-

tions (e.g. the ball).

• <relative abs focus position> – is a modification to the previous specifi-

cation in that it allows relative positioning to a reference point. This is done by

providing a second focus point expressed using x, y coordinates. The relative

position can be a point between these two points, or just a point aligned with

the first two points. For example, the following XML code describes a position

behind the ball, aiming at the point with coordinates (2700,800).

<relative ref focus position offsetPos=‘‘behind’’

reference=‘‘World::ball’’ focusPoint.x=‘‘2700’’ focusPoint.y=‘‘800’’/>

• <relative ref focus position> – is a further modification in that the focus

point can be described using another focus point. For example, assuming the

coordinates of (2700,800) represented the center of the opponent’s net, the pre-

Chapter 3: Design 85

vious example can be rewritten as:

<relative ref focus position offsetPos=‘‘behind’’

reference=‘‘World::ball’’ focusPoint=‘‘World::theirGoalCenter’’/>

This representation is easier to understand since significance of those coordi-

nates is made more explicit.

In most cases, the robot will not need to be absolutely perfect in its positioning, and

it is also difficult to ensure this. Due to noise in the sensors (e.g. vision system) and

small positional errors in the world, some flexibility must be allowed with this respect.

The <goto> tag has an attribute, called within, to allow for a margin of freedom

(i.e. an offset). This is one feature that distinguishes this explicit representation from

that of XABSL mentioned in the previous chapter. The only drawback to this offset

representation is that it does not distinguish the direction of the offset. The latter two

position elements provide additional support for this finer offset control. However, for

most purposes, the first two specifications should be adequate. Additional elements

can be defined in the future if needed.

The <turn> element is a very simple action in that it requires a point that the

robot needs to face towards or away from. For example, the following XML code

directs the robot to turn towards the ball.

<turn direction=‘‘towards’’>

<reference_position reference=‘‘World::ball’’/>

</turn>

The <kick> element is another very simple action which instructs the mobile

robot to move its lower appendages (if any). In the Archangel prototype, a kick

86 Chapter 3: Design

was defined as a quick motion forward, backward, to another specified direction. For

example, the following XML code describes

<kick type=‘‘forward’’/>

Theoretically, using <goto> can result in the same action, however defining a <kick>

element is much more explicit in describing the robot’s intended action.

The <execute> section describes the actions for the robot to take to achieve the

goals of the behaviour. It may also contain a FSA, using the <state> element. Each

state in the FSA will contain one or more of the simple actions, a reference to the next

(default) state (<next state>), and the condition that has to be met in order for

it to change to the next state (<condition>, a child of <next state>). Note that

the next state can be set to be recursive, which is useful to act as an end state. Each

state can also have a minimum execution time associated with it to delay transition

to another state to prevent certain problems such as oscillation between behaviour

states.

In addition to the features described previously, each state may also contain a set

of triggers to allow it to change to more than one state [18]. The usefulness of this

is shown in the next chapter. Each trigger contains a reference to a state, along with

the conditions that needs to be met in order for the transition to occur. However,

this trigger set is optional (see Figure 3.11). This trigger set mechanism is also used

for the child behaviours as well. This allows for a more reactive approach whenever

possible.

The <draw env> section is used for drawing, or physically displaying information

and is intended primarily for debugging purposes and to let the developer know

Chapter 3: Design 87

Figure 3.11: Example XML trigger example.

which behaviour is executing. The <draw env> tag has the following child elements:

<pen>, <line>, and <rect>. Additional items can be included in the future.

There can be multiple items and they can appear in any order required. The <pen>

element cannot have any child nodes and has a required attribute: colour (which

describes the pen colour). The values for colour are taken from the set of enumerated

colours in the QT libraries [55] (which were used for the implementation). The

<line> element does not have any child nodes, and has four required attributes: x1,

y1, x2, and y2, which represent the coordinates for the line. The <rect> element

does not have any child nodes, and has four required attributes: x1, y1, width, and

height. The first two attributes represent the coordinates of the top left corner of

the rectangle, and the width and height attributes describe the dimensions of the

rectangle. Figure 3.12 shows how the drawing aspects is used to display information

for the user in a racetrack task, which can be used as feedback in determining how

well the robot is following a path and to show the target destination of the robot (see

Section 4.1 and Section 4.3.1 for specific information relating to this task).

88 Chapter 3: Design

Figure 3.12: Screenshot of prototype program.

In summary, with the supported features and components described in this sec-

tion, Archangel is designed to be an intuitive, flexible, and adaptable architecture.

The next section will describe some implementation details and how Archangel was

evaluated.

Chapter 4

Evaluation

This Chapter describes the methodology used for evaluating the Archangel ar-

chitecture and the results of the evaluation. A prototype of the architecture was

implemented and used to control several robots in a series of challenges, which rep-

resent common tasks performed by mobile robots. This development process was

compared against similar programs created by the UM RoboBison team [10, 11, 12].

While some aspects of an architecture can be easily evaluated (e.g. average runtime

of the control cycle), measuring the extendibility or flexibility of an architecture is

difficult since these aspects are subjective and vary from user to user. Furthermore,

concepts such as flexibility are subjective in themselves.

Arkin [15] stated that the major distinction between architectures is not a matter

of computability, but rather efficiency, which argues that certain architectures are

better suited for certain tasks. He further suggests that comparing architectures

is similar to arguments made between programming languages (e.g. C++ vs. Java

vs. Lisp). I argue that not only is the efficiency of the final system important, but also

89

90 Chapter 4: Evaluation

the ease with which modifications and debugging can be performed. To extend Arkin’s

analogy, comparing architectures is similar to comparing how quickly different tasks

can be solved with different programming languages. This suggests that comparing

architectures itself is pointless unless one compares their performance on specific

tasks. Recall from Chapter 1 and Chapter 3, Archangel was intended to be more

of a general robotic control architecture rather than one that was focused on one

particular domain. However, the prototype is grounded in robotic soccer to help with

the evaluation.

To achieve meaningful quantitative results in an architectural evaluation requires

large user studies, which is far beyond the scope of a Master’s thesis. Therefore, anec-

dotal evidence, which was collected during the implementation of several challenge

tasks, will be used to evaluate features of the architecture. The chosen challenges

represent common tasks required of mobile robots. The series of challenges that will

be used as benchmark problems for this new architecture are as follows: (a) path

tracking on a racetrack, (b) path planning and navigation in a treasure hunt, (c) ob-

stacle run, (d) shooting/goal scoring, and (e) ball passing. Some of these challenges

have been used elsewhere in the robotics community [4, 6].

Section 4.1 will further elaborate on the challenges used to evaluate the architec-

ture and why they are used. Section 4.2 describes additional relevant implementation

details that relates to the evaluation of the robots. Section 4.3 describes the actual

evaluation of the architecture, and provides the evidence mentioned previously. Fi-

nally, Section 4.4 will summarize the evaluation and display some of the results. Part

of the results was based on past experiences with previous C++ programs developed

Chapter 4: Evaluation 91

over the years. However, it is important to note that the results are misleading if one

does not read or understand the reasoning behind the results, detailed in Section 4.3.

4.1 Tasks

The first challenge is the path tracking task, which demonstrates the behaviours

involved in path following. Mobile robots are commonly expected to move along a

predetermined path. This task will be grounded in a racetrack environment that

involves the robot racing around a custom racetrack for a fixed number of laps (see

Figure 4.1). The racetrack has multiple turns to make it more challenging for the

robot, as this requires the robot to have better timing and control. This challenge

is a time trial with only one robot on the track. Normally, the performance of the

robot is measured by the total time it takes the robot to complete the course. Penalty

times are assigned when a robot performs an illegal action (e.g. cutting a corner). To

evaluate the architecture, this particular racetrack may change shape (i.e. the number

or type of turns may change).

The Treasure Hunt (see Figure 4.2) is another timed challenge, which demonstrates

path planning and navigation behaviours. This challenge involves a robot searching

an area for all the target items (treasures) scattered randomly about a field. The robot

will move to each target in turn. As an additional requirement, to signal that the

robot thinks it has reached a target point, it must stay in the same spot on top of the

target point for five seconds. This challenge tests the robot’s effectiveness in finding a

path to cover all the targets in the fastest time possible (compared to the time of the

robot’s previous trials and that of other robots). Normally, the performance measure

92 Chapter 4: Evaluation

Figure 4.1: Racetrack.

Figure 4.2: Treasure Hunt.

in evaluating the robot is the number of targets the robot can visit within the allotted

time. To evaluate the architecture, the treasures will be randomly placed in different

locations over several trials between passes. Other requirements and constraints can

Chapter 4: Evaluation 93

Figure 4.3: Obstacle Run.

be imposed in the future to see how easy it is to change the behaviours to adapt to

new situations or cope with constraints.

The Obstacle Run (see Figure 4.3) is another timed challenge, involving the robot

running from one end of the field to the other for a fixed number of times, while

avoiding obstacles on the field. This challenge demonstrates obstacle avoidance be-

haviours. Normally, the performance measure in evaluating the robot is the time

it takes the robot to complete the course. The robot is penalized for touching the

obstacles by extra time being added to their trial time. To evaluate the architecture,

the obstacles will be randomly placed around the field over several trials. For some

trials, additional constraints such as a time delay (having the robot stay in the same

spot for a certain amount of time) were imposed.

The Goal Scoring challenge (see Figure 4.4) has the robot attempting to kick the

ball on an empty net, gathering as many goals as possible in a fixed time period. This

challenge demonstrates goal-oriented (or task-directed) behaviours. This is similar to

94 Chapter 4: Evaluation

Figure 4.4: Goal Scoring Challenge.

the popular scavenging (search and gather) domain in A.I. The performance measure

in evaluating the robot for this task is the number of goals scored within the time limit.

To evaluate the architecture, additional constraints were imposed, such as a static

goalkeeper. This challenge also involves some aspects from the obstacle run challenge,

such as obstacle avoidance. The robot needs to avoid the ball in some scenarios, in

order to reach a position behind the ball (so that the ball can be kicked). However,

the ball needs to be considered an obstacle only part of the time – otherwise, the

robot will never approach it for a kick. Using a static goalkeeper adds an additional

element of complexity in that it will be a permanent obstacle.

The final challenge is the passing challenge. This challenge (see Figure 4.5) is

more complex than the other challenges and is designed to demonstrate interaction

between two robots. It involves two robots passing the ball between each other on a

field divided into four quadrants. The field is first divided in halves, where there will

be one robot on each half. The field-half each robot is on is further divided into halves

Chapter 4: Evaluation 95

Figure 4.5: Passing Challenge.

again. When a robot receives a pass from the robot on the other half of the field, the

receiving robot must dribble the ball to the other quadrant on its own half of the field

before attempting to pass to the other robot. The robots attempt to make as many

passes as they can in a fixed time period. The performance measure in evaluating the

robots is the number of successful passes within the time limit. An unsuccessful pass

refers to a scenario where this cycle is not completed. For example, if a robot kicks

the ball off the field. Subtle changes to the passing techniques will also help evaluate

the flexibility of the architecture.

4.2 Implementation details

This architecture has been implemented on two types of physical robots: 1) in-

frared (IR) controlled tanks, and 2) robots made from the Lego Mindstorm kits (see

Figure 4.6). The IR tanks use a fixed infrared command protocol. For both these

96 Chapter 4: Evaluation

Figure 4.6: Lego Robot and Tank Robot.

robots, off-board C++ applications were written using the QT libraries from Troll-

tech [55] to demonstrate the architecture in practice. Because of the flexibility of the

architecture, the most difficult modification was the change of the command genera-

tor: a Lego Mindstorm command generator was required for the Lego robots, and a

separate command generator was required for the IR tanks. This was to control the

timing to generate suitable velocities on the robots because of the physical differences

between them (e.g. the tanks are a quarter of the size of the Lego Mindstorm robots).

The other modification was a small change to scale the environments the robots will

be tested in (due to the difference in size between the robots and the available of ma-

terials used to construct the fields). All behaviours were reused (with minor changes

for efficiency – see Section 4.3.2 for an example) demonstrating the flexibility of the

architecture.

Chapter 4: Evaluation 97

A global vision camera was used for sensors. This global vision setup uses a low-

grade camera mounted from an angle instead of being mounted directly overhead.

This type of setup introduces some problems such as occlusion, to which the system

must adapt. A separate vision processing system called Ergo Vision Server [45] (evo-

lution of the Doraemon Vision Server [3, 24]) was used for simplicity, since it is a

robust system that was especially designed for angle mounted camera systems. The

vision server transmits filtered position data to the program controlling the robots

via User Datagram Protocol (UDP) messages across a network at roughly twenty-

four to thirty frames per second for real-time processing. UDP does not guarantee a

successful transmission of any packet, but it is suitable for robotics research. Using

Transmission Control Protocol (TCP), which uses retransmission as a mechanism to

compensate for packet collision, would only serve to force obsolete information to

be retransmitted. UDP, on the other hand, avoid these retransmissions, since that

data may no longer be pertinent to the state of actual the world. However, due to

imprecision/noise in the sensor system (and partially to the inherent unreliability of

UDP), the Archangel program’s sequencing was disabled because the hardware did

not receive all the commands and therefore it was having the robot move off course.

The effect was that the resulting control behaviours were more reactive and able to

recover faster from errors.

All high-level behaviour definitions were designed in XML in order to meet the

requirement for explicit representation (and ease of behaviour modification). This

required a significant amount of work (e.g. implementing a module to parse, validate,

and interpret the XML behaviour definitions). To simplify matters, the QT libraries

98 Chapter 4: Evaluation

contain XML parsing modules. For this implementation, the QT Document Object

Model (QDOM) module was used. This particular module reads and parses the XML

file only once, and then creates an XML Document Object Model (DOM) Tree, which

is stored in memory for later use. However, it does not have full XML validation ca-

pabilities. That is, inputs are expected to be valid XML files. Otherwise, an error is

returned by the QDOM parsing module. It does not specify the specific error, or the

location of the error, because of its limited validation capabilities. To deal with this,

I validated input using another third party tool, xmllint [56]. Most of the real work

was involved in designing the XML language specification to define the behaviours for

mobile robots and the developing the interpreter to translate the behaviour specifica-

tions into observable actions. In addition, validated XML behaviour definitions, by

themselves, do not ensure proper operation of the mobile robot clients. For example,

it is impossible in XML to specify limits for numerical values. Thus, error and sanity

checking needed to be enforced in the implementation itself.

4.3 Evaluation of the Challenges

This section provides some anecdotal evidence for evaluation. Previously devel-

oped control programs (e.g. the programs developed for UM RoboCup teams in 2003-

2004 [10, 11, 12]) for these tasks were implemented in C++ only. However, the 2004

client program implemented some parameters in a separate text file. The Archangel

program takes this initial concept further by making the entire behaviour components

easily configurable in a high-level representation using XML. Evaluating these chal-

lenges involved comparing the Archangel prototype against the 2003 and 2004 C++

Chapter 4: Evaluation 99

client programs. For the evaluation, I will play the role of the developer making the

changes to the existing code, since it was impossible to get all the original developers

of these programs to participate due to time constraints and other commitments.

Also, because I was one of the original developers of each of these program, my fa-

miliarity with these programs will greatly impact these results. That is, it will take

less time for me to make such changes compared to an untrained developer. However,

since I am familiar with each of these programs, the results for each of the program

should be affected equally. On a related note, because the original C++ programs

were not designed to work with the IR tanks, the timing results and code changes for

the original C++ program relate only to the Lego Mindstorm robots.

4.3.1 Racetrack Challenge

The first challenge, the racetrack, is a general path following control problem. In

the original C++ programs, the path was represented by an array of x, y coordinates.

For the new program, one XML behaviour definition was created, with several internal

states (see Figure 4.7). Each state shows that a robot needs to go to a certain position

and the conditions for moving to another position.

In Figure 4.8, the state is simply named state1. The action of this state is to

move to a position in the world specified by absolute coordinates. The condition for

moving to the next state is dependent upon the distance between the robot and the

current target point (e.g. sixty millimeters).

One important specification of this state is that it specifies some graphical feedback

is to be drawn; in this case, a red twenty pixel square at the current target point.

100 Chapter 4: Evaluation

Figure 4.7: Initial Race FSA.

Graphical feedback is more meaningful and intuitive compared to textual feedback.

In drawing a target point on the field, it also represents the relative distance to

the robot, which is easily understood by humans. This is significantly simpler than

reading tens to hundreds of lines of debugging output statements. Drawing this

rectangle significantly simplified the debugging phase. Initially, the robot’s movement

were extremely random looking. But looking at this alone, it was difficult to know

if it was the behaviour system, or another problem elsewhere (e.g. misidentification

of objects due to noisy vision data, IR communication drop-outs, etc.). After the

addition of this square, the behaviour system showed the square was at a constant

location, which pointed to a failure of another component. In this case, the problem

Chapter 4: Evaluation 101

Figure 4.8: Sample Race Track State.

was due to noisy vision data and was solved by re-calibrating the vision system. The

simple addition of this square is estimated to have saved hours worth of debugging.

The other states are similar to this one shown in Figure 4.8.

Developing code for this challenge in the Archangel program took roughly 4 days.

However, this was because much of the behaviour engine’s foundation still needed

to be solidified (i.e. it was still being developed). Re-implementation of another

path following task should take significantly less time now that this is completed.

Alternatively, development of this task in the original C++ programs took roughly

a week (given past performance of students of a Mobile Robotics Course taught at

the University of Manitoba [1]) and did not include the development of an overall

behaviour engine.

102 Chapter 4: Evaluation

The code size for the behaviour itself was smaller for the original C++ program.

Much of this was because the XML behaviour definition of the Archangel program

included some repetition. However, it was somewhat difficult to debug this task in

the original 2004 C++ program. Control information was distributed among multiple

files, and part of the code was implicit in the design (i.e. there was a path following

component built into the program). To search for this component, the developer

would need to know this component is a “hidden” control option of the graphical

user interface (GUI). To track down this control option, the developer would need to

know the key phrase “Follow Path” from GUI, and search for that. They would then

find that this loads a lower control level, which uses multiple C++ classes. All this

can get very time-consuming, and difficult to understand and manage.

Figure 4.9: Racetrack 1 - Problem 1.

Chapter 4: Evaluation 103

The initial design of the racetrack resulted in the robot driving a path similar to

the one shown in Figure 4.9. The intent was for the robot to drive using bi-directional

capabilities. For example, at checkpoint No. 2 and checkpoint No. 5, the robot was

supposed to drive in reverse until it reached the following checkpoint. However, during

some initial tests, the robot would often drive into the obstacle located near that

checkpoint due to poor infrared communication near checkpoint No. 2. The obstacle

avoidance feature was tuned so that the robot would move close to the obstacles so

that the robot will not drive off the field (and out of the camera sensor’s view) and

so that the robot can achieve a faster time for the trial.

Racetrack change No.1

As a simple solution (now referred to as Racetrack change No.1), checkpoint No. 2

was split into two separate checkpoints (see Figure 4.10 - checkpoint No. 2 and the

new checkpoint No. 3).

For this change to occur in the original C++ program, another pair of x, y co-

ordinate values needed to be inserted into the array of checkpoints. However, in the

Archangel prototype program, another state needed to be created and inserted in the

XML behaviour definition (similar to Figure 4.8).

As one might expect, making this simple change to both programs was very fast

(less than one minute). However, it took about three minutes to calculate the points

and five more minutes to perform some additional tests. From the previous example,

adding this extra state in the original C++ program was simple as adding one addi-

tional line. This assumes that the user was familiar with the original C++ program,

that they knew where the array definition was, and that there would be no undesired

104 Chapter 4: Evaluation

Figure 4.10: Racetrack 1 - Problem 1 Fix.

side-effects in adding a new target point. If the developer was unfamiliar with the

original program, discovering this information would be a difficult task itself (as per

the previous explanation that this information is implicitly distributed among several

C++ classes and files).

There was slightly more work in Archangel (twelve extra lines of code were required

instead of one line). Even if the developer copied the state from a template, it would

require the following modifications: changing the state name, changing the name of

the next state to transition to, and changing the coordinates.

Given this as evidence, one might ask why bother using the new architecture at

all? The answer to this relates back to the the fundamental principles domain rele-

vance versus domain independence of Section 2.1. The developer of the original C++

program made assumptions about the domain and task, which made code develop-

Chapter 4: Evaluation 105

ment extremely efficient. However, a tremendous amount of flexibility was sacrificed

for this efficiency. Nonetheless, for a simple change such as this, the work of adding

twelve extra lines required for Archangel program, translates to mere seconds of time,

which for most purposes is negligible.

Racetrack change No.2

To demonstrate the flexibility of the new architecture, the racetrack design was

then changed to a different shape (see Figure 4.11).

Figure 4.11: Racetrack - 2.

Making this modification (now known was Racetrack change No.2) took roughly

10 minutes to calculate the new points. Both programs required changing the co-

ordinates, and the state structure was kept the same. Development for the original

C++ program was slightly faster (18 minutes instead of 15 minutes). This was be-

cause there was some additional modifications (21 lines instead of 7 lines) in the XML

106 Chapter 4: Evaluation

behaviour definition due to extra debugging aspects (e.g. drawing new target points

and new paths). If these aspects were removed, or ignored, then the difference in

development time would be less significant.

Nonetheless, developing for the original C++ programs were neither intuitive nor

flexible. In terms of intuitiveness, the racetrack’s XML definition is more understand-

able than a list of x, y coordinates since it associates a purpose with those coordinates.

More importantly, the code written for this component was only reusable for tasks

that require the robot to move in a fixed series of waypoints. If the robot was to

perform some action between two specific waypoints, it is less flexible to so do in

the original C++ programs. However, the behaviour engine code was designed to

be reusable (i.e. the racetrack’s XML behaviour definition can be modified to satisfy

different constraints or swapped for other behaviours to solve a different problem).

4.3.2 Treasure Hunt Challenge

The treasure hunt challenge is different from the previous racetrack challenge in

that there is no fixed path for the robot to follow. The robot must discover the

path on its own. As described in Section 4.1, the treasure hunt challenge has the

robot searching for “treasures” in a given space. For this task, three XML behaviour

definitions were created in Archangel: TreasureHunt, TreasureHuntChase and Trea-

sureHuntTurn (see Figure 4.12).

The TreasureHunt is the behaviour that encompasses the general behaviour for

this task (see Figure 4.13). One noteworthy function it performs is that it initializes

a <target list>, which are the “treasures” for this task. These targets are taken

Chapter 4: Evaluation 107

Figure 4.12: Final version of Treasure Hunt XML Tree and FSA diagram.

from the collection of tracked objects labelled as “obstacles” in the world model.

Technically, these objects are not obstacles. However, the sensor system recognizes

them as such. As described in Section 4.2, the sensor system is a separate component,

which is effectively a “black box” (i.e. not modifiable) from the standpoint of this

architecture. Thus, it is not truly important as to what tracked objects are classified

as for this task. However, the potential field parameters were modified to suit this

task. That is, the repelling force of the obstacles were turned off so that the path

planning module will not treat them as objects to avoid.

The TreasureHunt also explicitly lists sub-behaviours, and it also explicitly states

that the behaviour list will be used. The reward and applicability is irrelevant at this

juncture, because the treasureHunt will be the only behaviour that is loaded.

TreasureHuntChase is a simple behaviour that is intended to move toward the

treasures (see Figure 4.14). This behaviour is applicable when the robot is further

108 Chapter 4: Evaluation

Figure 4.13: Treasure Hunt XML.

than a certain distance (e.g. fifty millimeters) away from the “closestTarget”. The

“closestTarget” is a position that is calculated from the World model. If it is further

than a minimum distance (e.g. fifty millimeters) away from the target position, then

this behaviour instructs the robot to go to the target position. The system allows for

a set tolerance (e.g. forty millimeters) when determining whether a robot has reached

its target point or not.

TreasureHuntTurn is a more complex behaviour that contains a FSA (see Fig-

ure 4.12 and Figure 4.15). It also has a minimum execution time of five seconds.

This guarantees that the robot will stay in place (with respect to the geographical

coordinates of x and y) for five seconds to fulfill the requirements of this task as

specified in Section 4.1.

The applicability conditions of this behaviour are the inverse of the Treasure-

HuntChase behaviour. That is, TreasureHuntTurn is applicable when it is within

a certain distance (e.g. fifty millimeters) of the “closestTarget”. This simplifies the

conflict management issue relating to this task.

Chapter 4: Evaluation 109

Figure 4.14: Treasure Hunt Chase XML.

Initially, this behaviour was a simple behaviour that just marked the target po-

sition as completed. It was later converted to a FSA to make use of the holonomic

turning capabilities (e.g. turn on the spot) of the robots.

The StateTurn1 state is the initial state, which was added later to utilize the

holonomic turning capabilities. The action in this state is to turn towards the closest

target position. It will transition to the next state, StateMark, when the robot is

truly within a minimum distance (fifty millimeters).

The StateMark state marks the target position completed (i.e. visited). This state

then unconditionally transitions to the state StateTurn2.

The XML behaviour definition required less work in terms of code size than the

original C++ program (e.g. 40 lines instead of 50 lines). This was because much

110 Chapter 4: Evaluation

Figure 4.15: Treasure Hunt Turn XML.

Chapter 4: Evaluation 111

of the low level implementation was abstracted using the high-level specification. In

terms of development time, this task required three days to develop and test using the

Archangel prototype. Much of this time was used to debug low level implementation

details (not included in the code size value specified previously) and for testing. Using

the original C++ program, it also took three days to develop. Thus, there was not

any savings in terms of development time.

Treasure Hunt change No.1

Originally, StateTurn1 and StateTurn2 did not exist. However, after some de-

bugging, state StateTurn1 was added, which acts as a delay for the state StateMark.

This change will henceforth be referred to as Treasure Hunt change No.1. In some

initial testing scenarios, this extra state was not part of the state machine, and only

the TreasureHuntTurn (originally named TreasureHuntMark) behaviour was loaded

to test this behaviour separately. That is, the TreasureHuntChase behaviour was not

loaded. What occurred was that the robot would mark each target (at each iteration

of the control loop) as being completed (i.e. visited) even though it did not visit those

target positions. This was not the desired observable actions, as the idea was to visit

a target position in order to mark it as completed.

To complete the fix, StateTurn2 was added as well. The StateTurn2 state func-

tions exactly the same as the StateTurn1 state in that it turns towards the next “clos-

estTarget”. However, it was made into a leaf node, or an end state (as part of Treasure

Hunt change No.1). That is, the next state to transition to is itself. The reason for

this was because there were no other “safe” states to transition to – to transition to

StateTurn1 and StateMark would both prematurely mark target positions as com-

112 Chapter 4: Evaluation

pleted. Since there are time constraints on the TreasureHuntTurn behaviour (which

prevent the task manager from selecting another behaviour), performing StateTurn2

for the remaining minimum execution time should not be detrimental to the system.

These two extra states (StateTurn1 and StateTurn2) enforced the idea that the sys-

tem should not mark a target position as completed until the robot actually visits it.

The human developer can then move the robot to each treasure manually to further

test the actions of the TreasureHuntTurn behaviour.

A special feature of this state machine is that it will reset the state machine

back to the initial state (StateTurn1) if the task manager switches away to another

behaviour and then switches back to this behaviour. This is done by the behaviour

engine and task manager accessing the history mentioned in Section 3.2.3.

This change simply required ten lines to be added in the original C++ program

and required twelve lines to be added with two more lines modified in the Archangel

program. Thus, more changes were needed of the Archangel program. However, time-

wise, Archangel required only eight minutes, whereas the original program required

twenty minutes. This was because the changes in the Archangel were explicit and

spatially localized. The changes required in the original program were more wide-

spread. The developer needs to be aware of the impact of the changes and also keep

track of the changes.

Treasure Hunt change No.2

The entire TreasureHunt (and TreasureHuntTurn and TreasureHuntChase) be-

haviour could have been designed as a FSA. However, splitting this up in the manner

that has been done here serves several different purposes. One is that it makes debug-

Chapter 4: Evaluation 113

ging the actions of the behaviour simpler, because the developer can debug certain

actions separately to ensure they work properly. This adds some flexibility in the

behaviour design. Secondly, it makes actions more explicit and distinct, which also

makes things more intuitive since the developer can see exactly how a behaviour is

supposed to work. Another reason is for reusability. To make behaviour definitions

more flexible, it would help if it made some behaviours more reusable. From exper-

imentation, these behaviours were determined to work correctly on Lego Mindstorm

robots. However, a small modification must be made for the behaviours to perform

correctly with the miniature tank robots. Due to the fact that the miniature tanks

use a fixed proprietary IR protocol, there are certain actions that they can and cannot

do. For example, an IR tank cannot turn on the spot. If the robot were to attempt to

turn on the spot, it may move out of position. If the requirements for the task were

very strict, such that the robot may not move at all from the position to pause/turn,

then moving out of position should not be a possible action for the robot. Thus,

any turning action in the TreasureHuntTurn needs to be changed to specify that the

tank should not move (this modification is Treasure Hunt change No.2). Also, the

TreasureHuntChase behaviour does not need to be modified and can be reused (the

same as be said for TreasureHunt).

Only one line needed to be removed from the behaviour in the original C++

program to deal with this change. Six lines needed to be removed from the XML

behaviour definition of Archangel. However, since these six lines are explicit and

spatially localized, removing these six lines were as simple and almost as fast as

removing that one line in the original C++ program. Overall time-wise, this change

114 Chapter 4: Evaluation

was even faster in the Archangel program. This was partially because the original

C++ program needed to be recompiled whereas the Archangel program did not need

to be recompiled. The rest of the time difference was due to testing time.

4.3.3 Obstacle Run Challenge

The obstacle run differs from the treasure hunt in that the target positions (e.g. the

treasures of the previous task) are not in fixed, discrete locations. Instead there is

a zone which can have multiple target positions. Also, the robot will run back and

forth between two target zones, all the while avoiding dynamic obstacles. For this

task, one XML behaviour definition was needed. This behaviour has two states, one

state for each zone (see Figure 4.16).

Figure 4.16: Obstacle Run state diagram.

Since the robot must avoid obstacles in this challenge, the obstacle avoidance is

turned on in the XML behaviour definition. The low level controller will use some

algorithm (e.g. potential fields) to perform this behaviour.

In the XML behaviour definition for the state (see Figure 4.17), the robot is

instructed to move to a specific position given in absolute coordinates. This is be-

cause the path planner requires a specific target position. The primary condition to

switch to the next state is that the robot must be within a certain distance (e.g. fifty

millimeters) of the designated target position.

Chapter 4: Evaluation 115

Figure 4.17: A sample of the Obstacle Run XML.

The XML behaviour definition was originally thirty lines long, whereas the be-

haviour in the original C++ program is forty lines long. The behaviours in the

original program are longer since their implementation requires certain functions to

be implemented regardless of their use (e.g. a paint() function). The XML behaviour

is less stringent in this case. Development of this task in the original C++ program

took two days, whereas in the Archangel program it took merely one hour for the

initial XML behaviour definition. The reason for this was during the development

of the original C++ program, there were many bugs and the program was not ma-

ture enough (i.e. still in its beta testing stages). Re-development of this behaviour is

116 Chapter 4: Evaluation

expected to be faster in the original program since it is now more mature. On the

other hand, the reason why development in Archangel was so fast was this behaviour

was developed along side the racetrack challenge. That is, the foundation for these

two challenges (e.g. the behaviour engine) was mature enough to support the initial

design of this behaviour. Given this scenario, it is difficult to compare the two since

the maturity of the program at the time of developing of the behaviours needs to be

considered. However, it is difficult to control the development path of any project

due to the various factors that affects it (e.g. the experience levels of developers in

designing and implement specific aspects).

Obstacle Run change No.1

Instructing the robot to run to a static discrete location on the field is a simple

solution. If this was all there was to this state (see Figure 4.17), then the flaw should

be obvious: the target position could be surrounded by obstacles (see Figure 4.18).

Thus, it would be impossible for the robot to ever reach that point precisely.

However, the requirements were only that the robot reach any position within

the goal area. Thus, it is not necessary for the robot to reach that point precisely.

Changing the coordinates of this position is trivial in this architecture. However, in

a dynamic environment where the obstacles can move, the continuous changing of

this position by the developer is infeasible. Automatic changing of this position is

not difficult: however this is not intuitive and it removes control from the behaviour

level. This will make the system harder to debug.

Therefore, a better solution is to have several triggers that will be activated when

the robot reaches any position within that end-zone, and have these triggers explicit

Chapter 4: Evaluation 117

Figure 4.18: Obstacle Run - Target position surrounded scenario.

Figure 4.19: Obstacle Run - Target position surrounded scenario with trigger.

118 Chapter 4: Evaluation

in the XML behaviour definition. This change will be referred to as Obstacle Run

change No.1.

The triggers in the XML behaviour definition need to explicitly specify the next

state that the behaviour system should transition to if a condition was met. The

condition is when the robot is within a rectangular shaped area. The robot will

attempt to wander to that surrounded target position, but may move within the goal

area in its attempts (e.g. by noise in sensors or imprecision in the actuators influencing

the continuous potential fields model), thus triggering the secondary condition (see

Figure 4.19).

The changes in the original C++ required four additional lines. However, changes

in the XML behaviour definition required eighteen lines. Development time took

forty minutes using the original C++ program, whereas it two hours for the equiv-

alent changes in the Archangel program. The reason for the difference in time was

that simple trigger support is simple to implement in the original C++ program

(e.g. adding a couple of conditions at key locations). At this point, trigger support

needed further refinement in Archangel to support this feature. However, the trigger

support is now at a point, where similar changes will be just as fast in Archangel.

In terms of intuitiveness, the trigger implementation in Archangel is more intuitive

since this information is made explicit. Equivalent information is still implicit in

the behaviours of the original C++ program. Making these changes will require the

developer to find the key locations, which is not very intuitive.

Chapter 4: Evaluation 119

Figure 4.20: Obstacle Run modified state diagram with sample XML addition.

Obstacle Run change No.2

To demonstrate the flexibility aspect, a new requirement was added to this task.

The robot now had to stop for five seconds once it reached an end-zone before con-

tinuing. Making this change in the program with the new architecture was simple as

adding two extra states within the XML behaviour definition file (See Figure 4.20).

This change will be referred to as Obstacle Run change No.2.

This change took merely seconds. However a similar change in the old programs

required additional variables to be defined, which required the addition of several

new states. Then a more complicated decision-tree was needed to help distinguish

between the states. Development for this change in Archangel took thirteen minutes

120 Chapter 4: Evaluation

overall with eighteen additional lines, whereas the original C++ program took thirty

minutes with thirty additional lines. One may argue that a simple sleep command in

the C++ code should be sufficient: however, this will not send any IR commands to

the robot. For the Lego robots, if no IR was received within a certain timeout (three

seconds), the robot will move randomly in order to attempt to locate a stronger IR

signal, making a sleep command, used alone, ineffective. In addition to the sleep

statement, the command sender would need its own thread, and must transmit the

stop command if the task planner does not issue a command. Even if this work was

done, consider the additional requirement of reacting and avoiding obstacles. Clearly,

given this constraint, a sleep command will not be sufficient. In terms of its flexibility,

Archangel is more flexible and intuitive since it facilitates such scenarios.

4.3.4 Goal Scoring Challenge

The goal scoring task differs from the previous challenges in that the robot must

be able to interact with another object (i.e. the ball) in the environment. For the

goal scoring task, initially in the new architecture program, five separate XML be-

haviours were created: Shooting, MoveBehindBall, LineUpToKick, KickForward, and

GoBackHome (see Figure 4.21).

The Shooting behaviour encompasses the overall behaviour for this goal scoring

task. That is, it is the root node of this behaviour tree. It places the other behaviours

in a behaviour list, which its <execute> statement explicitly states is to be used.

The initial XML behaviour definition required eighty-four lines, and took five

days to implement and test. However, development of this task in the original C++

Chapter 4: Evaluation 121

Figure 4.21: Initial Goal Scoring Behaviours.

Figure 4.22: Avoiding the Ball in Goal Scoring.

122 Chapter 4: Evaluation

program required 172 lines and took one week to implement and test. This was the

fourth challenge to be developed and was one of the most difficult to develop (i.e. it

took the most time out of all the challenges thus far). The reason was that it is

difficult to interact with the ball (e.g. the ball might hit a bump and move in an

unexpected direction). The programs were often not mature enough to handle all the

unexpected scenarios that could come up. However, the XML behaviour definition

provided a level of abstraction which served to hide the less informative computational

information, yet made the relevant functional behaviour information explicit. This

made working with the Archangel program more intuitive.

Goal Scoring change No.1

The MoveBehindBall behaviour had a minimum execution time of 0.2 seconds (to

prevent behaviour oscillation). It was designed to bring the robot to a position behind

the ball, aimed towards the center of the opponent’s goal. One important scenario to

avoid was having the robot between the ball and center of the opponent’s goal (see

Figure 4.22). In order to reach such a position, the robot may attempt to drive right

through the ball, which would result in the robot moving the ball further away from

the goal (or even worse, into its own goal if this was a soccer match). Thus, we should

explicitly state for the robot to avoid the ball. Initially, this behaviour only had one

condition, that being the ball is not in the opponent’s goal. However, this condition

alone caused a few problems. For example, if the ball was not found or it was not

found in the field, then the execution of this behaviour would fail. That is, the robot

cannot move to a position behind the ball if the position of the ball is not known.

Thus, two extra conditions were required. This change will now be known as Goal

Chapter 4: Evaluation 123

Scoring change No.1. The first additional condition was that the ball had to be found

on the field. The second additional condition was that the robot had to be further

than a specific distance (e.g. four hundred millimeters) away from the target position

behind the ball. Adding these extra conditions required only eight more lines in the

XML behaviour definition. More importantly, making these conditions explicit help

reinforce the idea and motivation behind this behaviour.

The LineUpToKick behaviour also had a minimum execution time of 0.2 seconds.

It was designed to turn the robot towards the ball for preparation of the KickForward

behaviour. The applicability condition for this behaviour is that the robot must be

within a specific distance (e.g. three hundred millimeters) of the target position (a

position behind the ball facing the center of the opponent’s goal) and the probability

of the shot on goal is high (i.e. the robot is aligned with the ball and any point within

the goal).

The KickForward behaviour executes for a minimum of 0.15 seconds. It was

designed to kick forward. For both the Lego robots and the miniature tank robots,

this meant that the robot will drive forward at top speeds for a fraction of a second.

The applicability conditions for this behaviour depends on the shot on goal being

very high.

Development for this change required eight lines in both the original C++ program

and the Archangel program. In terms of development time, the Archangel program

took nine minutes, and the original C++ program also required nine minutes. This

was mostly attributed to the fact that the original program needed to be re-compiled.

This modification proved to be simple enough in either programs.

124 Chapter 4: Evaluation

Goal Scoring change No.2

The GoBackHome behaviour was designed to move the robot to a position behind

the center line in order to be ready for the next iteration of goal scoring. To help with

the debugging of this behaviour, the “home” position is explicitly stated to be drawn

on the field. Initially there was only one condition for this behaviour to execute: the

ball must be in the goal. However, after some further experiments, some unexpected

scenarios were discovered, specifically when either the ball was found but it was not

on the field, or the ball was not found anywhere in the environment. Given these two

unexpected scenarios, two extra conditions were added to handle these scenarios, so

that the robot will perform the GoBackHome behaviour in these situations as well.

This change will be referred to as Goal Scoring change No.2. Making these changes

was simple in this architecture. The first unexpected scenario took six additional

lines in the XML behaviour definition, and the second unexpected scenario took five

additional lines. Making this change in a purely C++ program required roughly the

same number of line changes. However, the code was not as clean and intuitive as

the XML behaviour. The results for the development time for this change was the

same as the previous change, for similar reasons.

Goal Scoring change No.3

Also, during the debugging phase, it was difficult to understand why the Kick-

Forward behaviour was not always activating when it was supposed to. Thus, the

LineUpToKick behaviour was converted into a second state of the MoveBehindBall

behaviour (i.e. a new XML behaviour was created from the two old XML behaviours).

This change will be referred to as Goal Scoring change No.3. Figure 4.23 shows how

Chapter 4: Evaluation 125

Figure 4.23: Modified Goal Scoring Behaviour.

the overall goal scoring behaviour tree has changed as a result of this: a new behaviour

MoveBehindBallAndAim employs a simple FSA.

The GoBehind state encompasses all the functionality of the old MoveBehindBall

behaviour. The condition under which to transition to the next state is that the

robot must be within a specific amount (fifty millimeters) from the target position

(the position behind the ball).

The Aim state turns the robot towards the ball, and it transitions to the next

state (GoBehind) if it is further than a specific distance (ninety millimeters) from the

target position.

The main changes in both programs involved removing behaviours and adding

another behaviour. Making these changes in the original C++ program required

modifications of the task planner itself, since the task planner knows only the be-

haviours provided when it was compiled. This is not as flexible as the Archangel

architecture.

126 Chapter 4: Evaluation

Overall, this was a larger change compared to the previous changes. It took a

forty minutes to change nineteen lines in the XML behaviour definitions and fifty

minutes to change twenty lines in the original C++ program. For this change, the

Archangel was more intuitive, and thus the changes were performed more quickly,

since it was only important, explicit information that was merged. The original C++

program required the developer to read the code to decide what code was relevant

and important to be re-used.

Goal Scoring change No.4

After the modifications of Goal Scoring change No.3 were completed, another

problem was discovered, in that the kick behaviour was activating too often – even

when the robot was far from the ball. The solution to this problem was an additional

condition in its applicability: the robot must be within two hundred millimeters of

the ball. This change will be referred to as Goal Scoring change No.4.

This change required two additional lines in the original C++ program, but four

additional lines in the Archangel program. However, it took only six minutes in

Archangel, and nine minutes in the original C++ program. The difference in time

can be attributed to the fact that changes in Archangel were at a higher specification

level than that of the C++ program (and required no re-compilation).

Goal Scoring change No.5

To further demonstrate the flexibility of the Archangel architecture, another re-

quirement was added (this is Goal Scoring change No.5). This requirement was to

have the robot back up or drive in reverse once it kicked the ball into the goal. The

purpose of this requirement was that the net had a mesh net, which made finding the

Chapter 4: Evaluation 127

robot difficult with the global vision camera. Having the robot back up will hope-

fully get the robot to move away from the net and back onto the field, where it can

be more easily recognized by the global vision system. To satisfy this requirement,

an additional state called backup was added to the kickForward behaviours (see Fig-

ure 4.24). The kickForward behaviour’s original kicking motion was placed in another

state called kick. To transition from the kick state to the backup state, the ball

had to be found within the goal, or the ball either had to be not found by the global

vision camera. The latter proved useful in cases where the camera calibration was not

precise, and the robot ended up occluding the ball from the camera in its attempts

to kick the ball. The backup state helped move the robot back to a position where

it would not occlude the ball (and give the robot a second chance to kick the ball).

Each state has a minimum execution time of 70 milliseconds.

This change took fourteen additional lines in the original C++ program, but took

twenty lines in Archangel. However, in terms of development time Archangel took

thirteen minutes as opposed to thirty minutes needed of the original C++ program.

The reason was that the changes required in the original C++ program were implicit

and more widely dispersed. Making this change in Archangel was more intuitive since

the relevant changes was made explicit and located in a small section within the XML

behaviour definition.

4.3.5 Passing Challenge

The final challenge is the passing challenge. This challenge is different from the

rest in that it requires two robots to interact with each other and with part of the

128 Chapter 4: Evaluation

Figure 4.24: New KickForward XML behaviour definition with backup state.

Chapter 4: Evaluation 129

environment (i.e. the ball). For the passing challenge, six XML behaviours were

created in the Archangel program. Each robot had three behaviours (see Figure 4.25).

The main differences between the behaviours of robot1 and robot2 were due to the

coordinates on the field to which each of the robot had to move. Using similar but

separate behaviours also help in customizing the control program for each robot. For

example, if one robot is more sensitive to motor commands (i.e. sometime twitches

greatly from the odd command), the control behaviour for that robot can specify to

have the robot move further away from the ball when the robot needs to move around

the ball (so as not to accidentally bump it).

The first behaviour was the overall tree behaviour for the robot, which was called

Robot1Passing for robot1 (and Robot2Passing for robot2). It had two child behaviours

called Robot1PassingGoBackHome, and Robot1PassingDrill. The second robot had

similarly named behaviours.

Figure 4.25: Robot1 and Robot2 Behaviour Trees.

Robot1PassingGoBackHome instructs the robot to go to the “home” location (a

specific position on the field specified by absolute coordinates) on its side of the field,

which is in one corner position. This behaviour is applicable when the ball is not

found or not on the robot’s side of the field.

130 Chapter 4: Evaluation

Figure 4.26: Passing Drill.

The Robot1PassingDrill behaviour has several internal states. These internal

states can be remodelled as a behaviour tree instead as well, so from this point on-

wards the concept of state and behaviour can be used interchangeably. These internal

states are as follows (see Figure 4.26):

• GoBehindBallForDribble;

• Dribble;

• GoBehindBallForPass ;

• Pass and;

• HeadHome.

The initial state is the GoBehindBallForDribble behaviour, which instructs robot

to go to a target position behind the ball to prepare for the dribbling procedure using

an absolute focus point on the other quarter of the field while avoiding the ball (i.e. the

Chapter 4: Evaluation 131

robot needs to drive around the ball) (see Figure 4.27 for the XML description of this

state). In order to transition to the next state, Dribble, the robot must be within a

specific distance (fifty millimeters) from that target position. In addition, there is a

trigger that will take the robot to the GoBehindBallForPass behaviour in situations

where the ball somehow ended on the other quarter of the field. This scenario can

happen if the robot accidently bumped the ball (whether the ball was in a static

position or was still moving), or if there was third party intervention (e.g. a human

operator moved the ball manually).

Figure 4.27: GoBehindBallForDribble XML state.

132 Chapter 4: Evaluation

The initial XML behaviour definition for this task required 322 lines and the

original C++ program need just as many lines (320 lines). However, the difference

in development time between the two programs was great. It took three days in

the Archangel program, whereas this development in the original C++ program took

two weeks. Part of this difference was due to the difficulty in working with the ball

and with more than one robot. However, much of the difference was also due to

the intuitiveness of the Archangel architecture itself, and more specifically the XML

behaviour definition methodology.

Passing change No.1

The Dribble behaviour is designed to dribble the ball to that absolute focus point

on the other quarter of the field (see Figure 4.28 for the XML description of this

state). Alternatively, the behaviour can be changed to move towards the ball as well

(passing change No.1). However, this method explicitly represents the destination to

which the robot intends to move the ball. This behaviour also has a trigger to move

back to the GoBehindBallForDribble behaviour if the robot loses possession of the

ball, which happens often to robots without dribble bars (mechanisms which spin in

such a fashion as to create an attracting force to the ball).

Performing the changes for passing change No.1 required only one line to be mod-

ified in the Archangel program, but four lines in the original C++ program. De-

velopment time for this change took fifteen minutes in the Archangel program and

twenty-three minutes in the original C++ program. The reason for the time differ-

ence and size of the changes was because the original C++ program required more

low level involvement.

Chapter 4: Evaluation 133

Figure 4.28: Dribble XML state.

The GoBehindBallForPass behaviour is similar to the GoBehindBallForDribble

behaviour except that the focus point is an absolute position on the other side of the

field (see Figure 4.29 for the XML description of this state). Its default next state

is the Pass behaviour, but it also has a trigger to the HeadHome state to handle an

unexpected scenario: that of the ball ending up on the other half of the field (e.g. by

the robot accidently bumping it there, or through human intervention).

134 Chapter 4: Evaluation

Figure 4.29: GoBehindBallForPass XML state.

The Pass behaviour is similar to the Dribble behaviour in that it moves the ball

towards an absolute position (however on the other half of the field). Its default

next state is the HeadHome behaviour. However, there are two triggers to assist in

unexpected scenarios. The first trigger helps transition back to the GoBehindBall-

ForPass behaviour in situations where the robot loses possession of the ball and the

ball remains on the current quarter of the field. The second trigger transitions to the

GoBehindBallForPass behaviour and handles situation where the ball ends up back

Chapter 4: Evaluation 135

Figure 4.30: Pass XML state.

in the previous quarter of the field and the robot must perform the dribbling actions

again.

Passing change No.2

The HeadHome behaviour is just a redundant behaviour added in case the

Robot1PassingGoBackHome was not loaded (passing change No.2). This is useful if

the designer was testing Robot1PassingDrill separately. This redundancy also makes

the system more robust against failures.

136 Chapter 4: Evaluation

Making this change required twelve extra lines (per robot) in the Archangel pro-

gram but only eight extra lines in the original C++ program. Both these changes

took one hour in implementation and test (more so with the latter). The difference

in lines of modification is artificial in this case as XML requires ending tags, which

were placed on separate lines for readability.

Passing change No.3

Some difficulties that arose for this task were bad IR communication and sensor

(vision) data in certain areas of the field, and unexpected movements (e.g. the robot

running into the ball when it was not supposed to). In one scenario, the home

position of the robot was near a corner. The corner position was chosen because it

was deemed more likely that the ball would roll in front of the robot, and ensures

that the ball will never get behind it. However, much of the behaviour was written

prior to actual field tests. Upon the field tests, parts of the field were discovered to

receive poor IR communication. In certain scenarios of no IR reception, the Lego

robot may move randomly (or spin on the spot) to attempt to locate an IR signal.

This can move the robot out of position, or may bring the robot to an undesirable

position. Using this architecture, it was trivial to move this home position further

away from the corner (passing change No.3), which improved the robot’s performance

(i.e. it will receive IR signals and will not move uncontrollably, spinning away seeking

IR signals). Performing this modification in the old program is not as intuitive for a

new developer.

This was a trivial change in both programs (i.e. only one line needed to be modified

per robot). However, development time was faster using Archangel because of the

Chapter 4: Evaluation 137

same reasons mentioned previously, relating to the higher layer of abstraction in the

XML behaviours.

Passing change No.4

In another scenario, when the robot was trying to get around the ball, it often

ran into it instead. Upon closer inspection of this behaviour, it was discovered that

the behaviour did not call for the robot to avoid the ball. Thus, a control command

was added for the robot to avoid the ball (passing change No.4). This helped improve

performance, in that the robot was not running into the ball as often. Making such

a feature explicit greatly improved debugging of this behavior. Otherwise, to debug

this problem, the developer would need to trudge through several lines of C++ code

to ensure that the potential fields were acting correctly to push the robot away from

the ball. Even having done this, it would still be difficult to know when this pushing

force will execute. Having this aspect explicit is much more intuitive. As further

optimization of this aspect of avoiding the ball, the behind ball position was changed

to be further back. This also improved the robot’s performance in avoiding the ball.

Using this architecture made this change easier and more intuitive: the value of

the setup position could simply be changed from behind to farBehind. Using these

descriptive values are much more intuitive in that they are easier to debug and to

change. These descriptive values represent a range of values as opposed a single

discrete value, which allows for some flexibility depending on the precision provided

by the sensors and actuators, and also depending on the precision required by task

or domain.

138 Chapter 4: Evaluation

Both these changes requires only the addition of one extra line. Overall, devel-

opment time was somewhat faster using the Archangel program (ie. ten vs. fifteen

minutes). However, the difference could be greater if one was to factor in the process

of diagnosing that this was the problem. It was easy to notice this problem in the

XML behaviour definition, since this relevant information was made explicit. The

lack of this control command to avoid the ball was easier to see. However, in the

C++ program, this aspect is implicit in the code and one can easily overlook this

change if one was not familiar with the program itself.

Passing change No.5

Another problem that was encountered using this behaviour was that the robot

sometimes missed the ball when it was far behind it. Based on the assumption that

the setup point was too far for the required dribble, the destination to dribble to

(which was defined as previously stated an absolute position) was changed. This

change (passing change No.5) fixed this particular problem.

As further general optimization for this task, in the passingGoBackHome be-

haviour, originally the orientation was not set. This meant that the robot could

have been facing any direction. For the Lego robot, that was not making good use

of the robot’s holonomic driving capabilities. Thus, including the orientation in the

behaviour allowed the robot to get into a better position (also part of passing change

No.5) to anticipate the next behaviour (e.g. goBehindBallForDribble). This made for

a much more effective passing play.

The changes of passing change No.5 required trivial amounts of work (i.e. two

or four lines needed to be modified in either program). Development time for these

Chapter 4: Evaluation 139

changes was somewhat comparable (e.g. twenty-five vs. fifteen minutes). Much of the

reasoning behind these difference were same as those of passing change No.3 (i.e. the

higher layer of abstraction methodology argument).

4.4 Evaluation Summary

The following tables, Table 4.1 and 4.2, summarize the results described in this

chapter. The first table, Table 4.1, describes roughly the amount of “code” (in lines

of code) that needed to be added or modified for each of the five challenges (and

modifications of those challenges). The second table, Table 4.2, describes the time it

took to implement the initial code and changes relating to the five challenges. The

next chapter further explain these results and draw conclusions of this thesis research.

140 Chapter 4: Evaluation

Results summary

Original C++ Client Archangel

Code size
Racetrack original design 50 lines 88 lines of XML
Racetrack change No. 1 added 1 line edited 19 lines
Racetrack change No. 2 modified 7 lines modified 21 lines
Treasure Hunt original design 50 lines 40 lines of XML
Treasure Hunt change No. 1 edited 10 lines edited 14 lines
Treasure Hunt change No. 2 edited 1 line remove 6 lines
Obstacle Run original design 40 lines 30 lines of XML
Obstacle Run change No. 1 added 4 lines Add 18 lines of XML
Obstacle Run change No. 2 edited 30 lines edited 18 lines
Goal Scoring original design 172 lines 84 lines of XML
Goal Scoring change No. 1 add 8 lines add 8 lines
Goal Scoring change No. 2 edited 10 lines add 11 lines
Goal Scoring change No. 3 edited 20 lines edited 19 lines
Goal Scoring change No. 4 modify 2 lines add 4 lines
Goal Scoring change No. 5 modify 14 lines add 20 lines
Passing original design 320 lines 322 lines of XML
Passing change No. 1 modify 4 lines (x2) modify 1 line (x2)
Passing change No. 2 modify 8 lines added 12 lines (x2)
Passing change No. 3 modify 1 line (x2) modify 1 line (x2)
Passing change No. 4 modify 1 line (x2) add 1 line (x2)
Passing change No. 5 modify 3 line (x2) modify 2 line (x2)

Table 4.1: Code size.

Chapter 4: Evaluation 141

Results summary - part 2

Original C++ Client Archangel

Development Time
Racetrack original design 7 days 4 days
Racetrack change No. 1 8 minutes 8 minutes
Racetrack change No. 2 15 minutes 18 minutes
Treasure Hunt original design 3 days 3 days
Treasure Hunt change No. 1 20 minutes 8 minutes
Treasure Hunt change No. 2 6 minutes 4 minutes
Obstacle Run original design 2 days 1 hour
Obstacle Run change No. 1 40 minutes 2 hour
Obstacle Run change No. 2 30 minutes 10 minutes
Goal Scoring original design 7 days 5 days
Goal Scoring change No. 1 10 minutes 7 minutes
Goal Scoring change No. 2 9 minutes 7 minutes
Goal Scoring change No. 3 50 minutes 40 minutes
Goal Scoring change No. 4 9 minutes 6 minutes
Goal Scoring change No. 5 30 minutes 13 minutes
Passing original design 14 days 3 days
Passing change No. 1 23 minutes 15 minutes
Passing change No. 2 1 hour 1 hour
Passing change No. 3 10 minutes 6 minutes
Passing change No. 4 15 minutes 10 minutes
Passing change No. 5 25 minutes 15 minutes

Table 4.2: Development Time.

Chapter 5

Conclusions and Future Work

Evaluating an architecture is a difficult task, as described in the previous chapter.

It was difficult to evaluate the architecture based on quantitative measures since

terms such as flexibility, extensibility, and intuitiveness are very subjective. Arkin

may have described it best when he pointed out evaluation between architectures is

more a question of efficiency that computability [15]. That is, one may architecture

may work better than another depending on the task, domain, and people involved.

Grounding this research in a domain such as robotic soccer helped in this matter.

Robotic soccer was chosen as the domain because of the strong international research

support, and because a robotic soccer player represents common skills required of an

intelligent mobile robot as described in Section 1.1. Through a series of challenges,

the advantages of using the Archangel architecture is shown to have great potential.

From the results described in the previous chapter, there were little savings in code

size (lines of code) in using the Archangel program compared to the original C++

program. Quite often, the code size increases in the Archangel program. However,

142

Chapter 5: Conclusions and Future Work 143

it is difficult to use code size as a measurement since not all parts of the XML code

are functional: rather, they exist for validity and readability (e.g. ending tags are

placed on separate lines for readability). Also, the organization of the code is not

portrayed using a single value such as “lines of code”. For example, the functional

code (the code that performs the necessary functions to complete the task) may be

too far distributed and the developer must spend a lot of time simply finding all the

different parts of the code. In general, the Archangel architecture saved the developer

a lot of time due to the higher layer of abstraction provided by the XML behaviour

definitions. These XML behaviour definitions just needed to be reloaded, whereas

the behaviours in the original C++ client program required a recompilation of the

program.

However, development time is an imperfect measurement as well because various

factors affect this time that are difficult to control. The development of the XML

description tags and the behaviour were developed in tandem on the basis of necessity

(as described in the previous chapter). This was done to keep the set of XML tags

to a minimum, in order to stay intuitive and understandable so not to overwhelm

developers. Because of this, the development of the XML behaviours took longer

than might actually have been necessary. Had the behaviour engine (and supporting

XML infrastructure) been completed prior to testing the behaviours, development

time would be significantly shortened. For example, the obstacle run was developed

right after the XML foundation was set in place for the racetrack challenge. Since the

obstacle run is similar enough to the racetrack, significant time was saved since very

little (lengthy and time-consuming) changes were needed of the behaviour engine.

144 Chapter 5: Conclusions and Future Work

Thus, the obstacle run was done in one hour as opposed to days. With the behaviour

engine completed and the XML foundation in place, developing new behaviours should

take significantly less time than that which was initially reported for each of the

challenges.

However, in general, working with the Archangel program is more intuitive and

flexible since relevant information is made explicit. Also, the higher layer of abstrac-

tion provided by the XML behaviour definitions allowed for increased flexibility. It

allowed developers to focus more on the relevant high-level specification changes, and

less on the lower-level changes, which saves time in many of the sample changes.

In conclusion, the Archangel architecture was able to meet the goals outlined in

the beginning of this research. The overall goals were for it to be intuitive, flexible,

adaptable, and extensible. The flexibility of this architecture was shown by the im-

plementation on two types of simple robots as described in Section 4.2. One of the

greatest strengths of this architecture is the behaviour system. Designing behaviours

was made simple and intuitive using the explicit representation. This explicit repre-

sentation made relevant information easy to notice and find, so that adding, removing

and modifying behaviours is simple to do (i.e. it is flexible and extensible to suit dif-

ferent tasks). From several challenges/tasks from Section 4.1, the evaluation of the

implementation of the architecture from Section 4.3 demonstrates how easy it was to

add new behaviours, remove old behaviours, and modify existing behaviours to suit

new requirements and unexpected scenarios.

Adding behaviours into the system was simple as writing another state or XML

definition file. For example, as shown in Section 4.3.3, the obstacle run challenge.

Chapter 5: Conclusions and Future Work 145

Also, incorporating this addition into the existing system was made easy as adding

one additional line in the parent behaviour. Conversely, removing behaviours was as

simple as removing one line from the parent XML behaviour definition (e.g. as shown

in Section 4.3.4, with the goal-scoring challenge). Modifying existing behaviours

was easier than previous control client programs that require the programmer to

re-compile the program.

Having the behaviours loosely coupled in its own XML behaviour definition files

significantly simplifies the testing and debugging stage. It allows the programmer to

test and debug each behaviour separately before testing all the behaviours as a whole.

This allows developers to find errors faster and also design tests (i.e. test cases) to

find specific scenarios where systems succeeds or fails.

In summary, as originally stated in Chapter 1, the main contributions of this thesis

are:

• a survey of existing architectures;

• the design of a new intuitive and flexible architecture;

• a prototype implementation of the proposed architecture and;

• an evaluation study of the proposed architecture (via the implementation).

Chapter 2 described the existing robotic architectures and Chapter 3 described the

proposed architecture, Archangel. With all the architectures presented in Chapter 2,

it should be clear that Archangel is a unique architecture that has its own niche

among robotic architectures. The implementation of the architecture required many

hours of work, but the benefits of the architecture justifies all the effort.

146 Chapter 5: Conclusions and Future Work

For future work, there are a few ways to improve on this architecture and support

its claims. As mentioned in the previous chapter, I played the role as the developer

that gathered these results. That being the case, some bias may have affected the

results. Some factors helped minimize this bias, specifically my familiarity with both

programs. That is, results would have been extremely skewed (in favour of Archangel)

if I was completely unfamiliar with the original C++ program.

As noted at the beginning of this thesis, formal user/case studies can be performed

to further validate the intuitive, flexibility and usefulness aspect of this Archangel

architecture. If the participants were unfamiliar with both of these programs, it

should also reduce any bias that exists. However, this will require additional resources

(in terms of time, people, and funding) which is beyond the scope of this Master’s

thesis.

To improve this architecture, it can be further ported to other systems and robots.

This can potentially help extend the set of explicit representation in order to make

it more flexible to use. This also supports the claim that the overall architecture is

extensible.

Nonetheless, there are a large set of possibilities for further extensibility. Much

of these possibilities will depend on the domain and tasks required of mobile robot.

However, the Archangel architecture is flexible and intuitive enough to meet these

challenges.

Appendix A

Archangel DTD

<!ELEMENT behaviour (init?, draw_env?, behaviour_list?,

reward?,applicability,execute)>

<!ATTLIST behaviour name ID #REQUIRED

minExecMicroSecs CDATA #IMPLIED>

<!ELEMENT init (target_list)?>

<!ELEMENT draw_env (pen | line | rect)* >

<!ELEMENT behaviour_list (behaviour_ref)*>

<!ELEMENT behaviour_ref EMPTY>

<!ATTLIST behaviour_ref name ID #REQUIRED>

<!ELEMENT reward EMPTY>

<!ATTLIST reward value CDATA #IMPLIED>

<!ELEMENT applicability (condition)*>

<!ATTLIST applicability value CDATA #IMPLIED>

<!ELEMENT execute (state | goto | kick | turn)* >

<!ATTLIST execute initialState IDREF #IMPLIED

autoResetFSM (true | false | on | off | 1 | 0) "false"

useBehaviourList (true | false) "false">

147

148 Appendix A: Archangel DTD

<!ELEMENT target_list EMPTY>

<!ATTLIST target_list src (World::videoObjects) #REQUIRED

ofType (obstacle) #IMPLIED

updatable (true | false) #IMPLIED

sortBy (distanceAscending | distanceDescending |

unsorted) #IMPLIED>

<!ELEMENT pen EMPTY>

<!ATTLIST pen colour (white | black | red | darkRed | green |

darkGreen | blue | darkBlue | cyan |

darkCyan | magenta | darkMagenta | yellow |

darkYellow | gray | darkGray |

lightGray) #REQUIRED>

<!ELEMENT line EMPTY>

<!ATTLIST line x1 CDATA #REQUIRED

y1 CDATA #REQUIRED

x2 CDATA #REQUIRED

y2 CDATA #REQUIRED>

<!ELEMENT rect EMPTY>

<!ATTLIST rect x CDATA #REQUIRED

y CDATA #REQUIRED

width CDATA #REQUIRED

height CDATA #REQUIRED>

<!ELEMENT state ((draw_env | goto | kick | turn | mark_complete)*,

next_state, (trigger_set)?) >

<!ATTLIST state name ID #REQUIRED

minExecMicroSecs CDATA #IMPLIED>

<!ELEMENT goto ((absolute_position | reference_position |

relative_ref_focus_position |

relative_abs_focus_position), control_command?) >

<!ATTLIST goto within CDATA #IMPLIED>

<!ELEMENT control_command EMPTY>

<!ATTLIST control_command avoidBall

(true | false | on | off | 1 | 0) #REQUIRED>

Appendix A: Archangel DTD 149

<!ELEMENT absolute_position EMPTY>

<!ATTLIST absolute_position x CDATA #REQUIRED

y CDATA #REQUIRED

orientation CDATA #IMPLIED >

<!ELEMENT reference_position EMPTY>

<!ATTLIST reference_position reference

(closestTarget |

World::self | World::ball |

World::closestObstacle |

World::closestRobot |

World::centerField |

World::ourKickersKickoffPosition |

World::ourGoalkeepersKickoffPosition |

World::ourGoalPost1 |

World::ourGoalPost2 |

World::theirGoalPost1 |

World::theirGoalPost2 |

World::ourGoalCenter |

World::theirGoalCenter) #REQUIRED>

<!ELEMENT relative_ref_focus_position EMPTY>

<!ATTLIST relative_ref_focus_position reference

(closestTarget |

World::self | World::ball |

World::closestObstacle |

World::closestRobot |

World::centerField |

World::ourKickersKickoffPosition |

World::ourGoalkeepersKickoffPosition |

World::ourGoalPost1 |

World::ourGoalPost2 |

World::theirGoalPost1 |

World::theirGoalPost2 |

World::ourGoalCenter |

World::theirGoalCenter) #REQUIRED

offsetPos CDATA #REQUIRED

focusPoint (closestTarget |

World::self | World::ball |

World::closestObstacle |

World::closestRobot |

World::centerField |

150 Appendix A: Archangel DTD

World::ourKickersKickoffPosition |

World::ourGoalkeepersKickoffPosition |

World::ourGoalPost1 |

World::ourGoalPost2 |

World::theirGoalPost1 |

World::theirGoalPost2 |

World::ourGoalCenter |

World::theirGoalCenter) #REQUIRED>

<!ELEMENT relative_abs_focus_position EMPTY>

<!ATTLIST relative_abs_focus_position reference

(closestTarget |

World::self | World::ball |

World::closestObstacle |

World::closestRobot |

World::centerField |

World::ourKickersKickoffPosition |

World::ourGoalkeepersKickoffPosition |

World::ourGoalPost1 |

World::ourGoalPost2 |

World::theirGoalPost1 |

World::theirGoalPost2 |

World::ourGoalCenter |

World::theirGoalCenter) #REQUIRED

offsetPos CDATA #REQUIRED

focusPoint.x CDATA #REQUIRED

focusPoint.y CDATA #REQUIRED>

<!ELEMENT kick EMPTY>

<!ATTLIST kick type (forward | straight | reverse |

spinKickLeft | spinKickRight) #REQUIRED>

<!ELEMENT turn (absolute_position | reference_position |

relative_ref_focus_position |

relative_abs_focus_position) >

<!ATTLIST turn direction (towards | awayFrom) #REQUIRED>

<!ELEMENT mark_complete EMPTY>

<!ATTLIST mark_complete target (closestTarget) #REQUIRED>

<!ELEMENT next_state (#PCDATA | condition)* >

<!ATTLIST next_state name IDREF #REQUIRED>

Appendix A: Archangel DTD 151

<!ELEMENT condition (#PCDATA | robot | ball | shot_on_goal)* >

<!ATTLIST condition met (true | false | 1 | 0) "false">

<!ELEMENT robot ((absolute_position | reference_position |

relative_ref_focus_position |

relative_abs_focus_position)?,

(within_rect | not_within_rect)?,

(add | subtract)?) >

<!ATTLIST robot within CDATA #IMPLIED

fartherThan CDATA #IMPLIED>

<!ELEMENT ball ((absolute_position | reference_position |

relative_ref_focus_position |

relative_abs_focus_position)?,

(within_rect | not_within_rect)?,

(add | subtract)?) >

<!ATTLIST ball isFound (true | false | 1 | 0) #IMPLIED

within CDATA #IMPLIED

fartherThan CDATA #IMPLIED>

<!ELEMENT within_rect EMPTY>

<!ATTLIST within_rect x CDATA #REQUIRED

y CDATA #REQUIRED

width CDATA #REQUIRED

height CDATA #REQUIRED>

<!ELEMENT not_within_rect EMPTY>

<!ATTLIST not_within_rect x CDATA #REQUIRED

y CDATA #REQUIRED

width CDATA #REQUIRED

height CDATA #REQUIRED>

<!ELEMENT add EMPTY>

<!ATTLIST add value CDATA #REQUIRED>

<!ELEMENT subtract EMPTY>

<!ATTLIST subtract value CDATA #REQUIRED>

<!ELEMENT shot_on_goal (add | subtract)?>

<!ATTLIST shot_on_goal facingGoal (true | false | 1 | 0) #REQUIRED

probability CDATA #REQUIRED>

152 Appendix A: Archangel DTD

<!ELEMENT trigger_set (trigger_next_state |

trigger_child_behaviour)+ >

<!ELEMENT trigger_next_state (condition)>

<!ATTLIST trigger_next_state targetName IDREF #REQUIRED>

<!ELEMENT trigger_child_behaviour (condition)>

<!ATTLIST trigger_child_behaviour targetName CDATA #REQUIRED>

Bibliography

[1] 74.406 - Intelligent Mobile Robotics.

http://www4.cs.umanitoba.ca/%7Ejacky/Teaching/Courses/74.406-Intelligent-

Mobile-Robotics/current/index.php.

[2] American Association for Artificial Intelligence (AAAI). http://www.aaai.org/.

[3] Doraemon: Robocup Video Server. http://sourceforge.net/projects/robocup-

video/.

[4] E-League at Columbia University. http://agents.cs.columbia.edu/eleague/.

[5] National Institute of Standards and Technology (NIST). http://www.nist.gov/.

[6] Researchers of the E-League Project.

http://agents.cs.columbia.edu/eleague/people.php.

[7] Sony Global - AIBO Global Link. http://www.sony.net/Products/aibo/.

[8] J.S. Albus. Outline for a theory of intelligence. In IEEE Transactions on Systems,

Man and Cybernetics, volume 21, pages 473–509, May–June 1991.

153

154 Bibliography

[9] J.S. Albus, R. Lumia, and H.G. McCain. NASA/NBS standard reference modle

for telerobot control system architecture (NASREM). Technical Report 1235,

National Bureau of Standards, 1986.

[10] John Anderson, Jacky Baltes, Doug Cornelson, Terry Liu, Clint Stuart, and

Adam Zilkie. The University of Manitoba ULeague team. In Proceedings of the

RoboCup Symposium, Padova, Italy, July 2003.

[11] John Anderson, Jacky Baltes, and Terry Liu. Robobisons 2004. In Daniele

Nardi, Martin Riedmiller, , and Claude Sammut, editors, The Seventh RoboCup

Competitions and Conferences, Berlin, 2005. Springer Verlag.

[12] John Anderson, Jacky Baltes, Brian McKinnon, Terry Liu, Paul Furgale, and

Shawn Schaerer. Robocup 2004 Presentation, 2004.

[13] M. Arbib. Schema Theory. In S. Shapiro, editor, Encyclopedia of Artificial

Intelligence, pages 1427–1443. Wiley, 2nd edition, 1992.

[14] R. Arkin. Motor Schema-based Mobile Robot Navigation. International Journal

of Robotic Research, 8(4):92–112, 1989.

[15] R. Arkin. Just what is a robot architecture anyway? Turing equivalency ver-

sus organizing principles. In AAAI Spring Symposium: Lessons Learned from

Implemented Software Architectures for Physical Agents, 1995.

[16] R.C. Arkin. Towards Cosmopolitan Robots: Intelligent Navigation in Extended

Man-made Environments. Ph.D thesis, University of Massachusetts, Department

of Computer and Information Science, 1987.

Bibliography 155

[17] R.C. Arkin. Integrating Behavioral, Perceptual, and World Knowledge in Reac-

tive Navigation. Robotics and Autonomous Systems, 6:105–122, 1990.

[18] R.C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge, Massachusetts,

USA, May 1998.

[19] Ronald C. Arkin and Tucker R. Balch. AuRA: Principles and Practice in Review.

Journal of Experimental and Theoretical Artificial Intelligence(JETAI), Volume

9(Number 2/3):175–188, April 1997.

[20] Ronald C. Arkin, Masahiro Fujita, Tsuyoshi Takagi, and Rika Hasegawa. Etho-

logical modeling and architecture for an entertainment robot, 2001.

[21] Ronald C. Arkin and Douglas C. Mackenzie. Planning to behave: A hybrid

deliberative/reactive robot control architecture for mobile manipulation, 1994.

[22] Jacky Baltes and John Anderson. Flexible binary space partitioning for robotic

rescue. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Las Vegas, October 2003.

[23] Jacky Baltes and John Anderson. Identifying robots through behavioral anal-

ysis. In Proceedings of the Second International Conference on Computational

Intelligence, Robotics, and Autonomous Systems (CIRAS), Singapore, 2003.

[24] Jacky Baltes and John Anderson. Interpolation Methods for Global Vision Sys-

tems. In Daniele Nardi, Martin Riedmiller, and Claude Sammut, editors, The

Seventh RoboCup Competitions and Conferences, Berlin, 2005. Springer Verlag.

156 Bibliography

[25] Paul E. Black. Algorithms and Theory of Computation Handbook, chapter Dic-

tionary of Algorithms and Data Structures. CRC Press LLC, 1999.

[26] R. P. Bonasso, R. J. Firby, E. Gat, David Kortenkamp, D. Miller, and M. Slack.

Experiences with an architecture for intelligent, reactive agents. In Journal of

Experimental and Theoretical Artificial Intelligence, volume 9, 1997.

[27] Michael E. Bratman, David J. Israel, and Martha E. Pollack. Plans and Resource-

Bounded Practical Reasoning. Computational Intelligence, 4(4):349–355, 1988.

[28] Rodney A. Brooks. A robust layered control system for a mobile robot. In IEEE

Journal of Robotics and Automation, volume 2, pages 14–23, 1986.

[29] Rodney A. Brooks. Intelligence without representation. Number 47 in Artificial

Intelligence, pages 139–159. 1991.

[30] H. Van Brussel, R. Moreas, A. Zaatri, and M. Nuttin. A behaviour-based

blackboard architecture for mobile robots. In Industrial Electronics Society

(IECON’98): 24th Annual Conference of the IEEE, volume 4, pages 2162–2167,

1998.

[31] H. Burkhard, M. Hannebauer, J. Wendler, H. Myritz, G. Sander, and T. Mein-

ert. BDI Design Principles and Cooperative Implementation — A Report on

RoboCup Agents, 1999.

[32] Hans-Dieter Burkhard, Jan Wendler, Thomas Meinert, Helmut Myritz, and Gerd

Sander. AT Humboldt in RoboCup-99. In RoboCup, pages 542–545, 1999.

Bibliography 157

[33] Chee Fon Chang, Aditya Ghose, Peter Harvey, and Justin Lipman. Gongeroos’99

Team. In RoboCup-99 Team Descriptions, 1999.

[34] Mark M. Chang, Brett Browning, and Gordon F. Wyeth. ViperRoos 2000. In

RoboCup 2000: Robot Soccer World Cup IV, pages 527–530. Springer-Verlag

Berlin Heidelberg, Inc., 2001.

[35] T. R. Collins, R. C. Arkin, and A. M. Henshaw. Integration of reactive navigation

with a flexible parallel hardware architecture. In IEEE Int. Conf. on Robotics

and Automation, volume 1, pages 271–276, 1993.

[36] J.H. Connell. SSS: A Hybrid Architecture Applied to Robot Navigation. In 1992

IEEE International Conference on Robotics and Automation, volume 3, pages

2719–2724, May 1992.

[37] Ingo Dahm, Uwe Düffert, Jan Hoffmann, Matthias Jüngel, Martin Kallnik, Mar-

tin Lötzsch, Max Risler, Thomas Röfer, Max Stelzer, and Jens Ziegler. German-

Team 2003. In RoboCup 2003: Robot Soccer World Cup VII, 2003.

[38] Raffaello D’Andrea, Tams Kalmr-Nagy, Pritam Ganguly, and Michael Babish.

The Cornell Robocup Team. In RoboCup 2000: Robot Soccer World Cup IV,

pages 41–51. Springer-Verlag Berlin Heidelberg, Inc., 2001.

[39] Vincent Decugis and Jacques Ferber. Action selection in an autonomous agent

with a hierarchical distributed reactive planning architecture. In Proceedings of

the second international conference on Autonomous agents, pages 354–361. ACM

Press, 1998.

158 Bibliography

[40] R. G. Dromey. Architecture as an Emergent Property of Requirements Inte-

gration. In Second International Workshop From SofTware Requirements to

Architectures (STRAW’03), 2003.

[41] Marc Ebner. Evolution of a control architecture for a mobile robot. In Moshe

Sipper, Daniel Mange, and Andrés Pérez-Uribe, editors, Proceedings of the Sec-

ond International Conference on Evolvable Systems: From Biology to Hardware

(ICES 98), volume 1478, pages 303–310, Lausanne, Switzerland, 23-25 1998.

Springer Verlag.

[42] RoboCup Federation. RoboCup website. http://www.robocup.org.

[43] FIRA. FIRA website. http://www.fira.net.

[44] R. James Firby. Adaptive Execution in Dynamic Domains. Ph.D thesis, Yale

University, Jan. 1989.

[45] P. Furgale, J. Anderson, and J. Baltes. Real-Time Vision-Based Pattern Tracking

Without Predefined Colors. In Proceedings of the Third International Conference

on Computational Intelligence, Robotics and Automation, Singapore, December

2005. (to appear).

[46] Erann Gat. ALFA: A Language for Programming Robotics Control Systems. In

Proceedings of the IEEE Conference on Robotics and Automation, May 1991.

[47] Erann Gat. Integrating planning and reacting in a heterogeneous asynchronous

architecture for controlling real-world mobile robots. In AAAI-92, pages 809–815,

July 1992.

Bibliography 159

[48] Andrey V. Gavrilov, Vasilij V. Gubarev, Kang-Hyun Jo, and

H. H. Lee. Hybrid Neural-Based Control System for Mobile Robot.

http://ermak.cs.nstu.ru/islab/publications/Kor2004.pdf.

[49] A. Goel, E. Stroulia, Z. Chen, and P. Rowland. Model-based reconfiguration

of schema-based reactive control architectures. In Proceedings of the Fifteenth

International Joint Conference on Artificial Intelligence. Morgan Kaufman Pub-

lishers, 1997.

[50] Tim Gorton and Bakhtiar Mikhak. A tangible architecture for creating modular,

subsumption-based robot control systems. In Extended abstracts of the 2004

conference on Human factors and computing systems, pages 1469–1472. ACM

Press, 2004.

[51] Ian Horswill. Functional programming of behavior-based systems. In Au-

tonomous Robots, volume 9, pages 83–93. Kluwer Academic Publishers, Dor-

drecht, Netherlands, 2000.

[52] Andrew Howard. MuCows. In RoboCup 2000: Robot Soccer World Cup IV,

pages 535–538. Springer-Verlag Berlin Heidelberg, Inc., 2001.

[53] H. Hu, J.M. Brady, J. Grothusen, F. Li, and P.J. Probert. LICAs: A Modular

Architecture for Intelligent Control of Mobile Robots. In Intelligent Robots and

Systems 95. ’Human Robot Interaction and Cooperative Robots’, volume 1, pages

471–476, 1995.

160 Bibliography

[54] Hui-Min Huang. An architecture and a methodology for intelligent control. In

IEEE Intelligent Systems and Their Applications, volume 11, pages 46–55, April

1996.

[55] Trolltech Inc. Trolltech website. http://www.trolltech.com/.

[56] William Shotts Jr. linuxcommand.org website.

http://linuxcommand.org/man pages/xmllint1.html.

[57] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and

J.W. Thatcher, editors, Complexity of Computer Computations, pages 85–103,

Plenum, New York, 1972.

[58] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.

Int. J. Rob. Res., 5(1):90–98, 1986.

[59] Jong-Hwan Kim, Yong-Duk Kim, and Kang-Hee Lee. The Third Generations

of Robotics: Ubiquitous Robot. In Second International Conference on Au-

tonomous Robots and Agents (ICARA), December 2004.

[60] Jong-Hwan Kim, Yong-Duk Kim, and Kang-Hee Lee. The Third Generations of

Robotics: Ubiquitous Robot. In 6th IEEE International Symposium on Compu-

tational Intelligence in Robotics and Automation (CIRA), June 2005.

[61] Jong-Hwan Kim, Kang-Hee Lee, and Yong-Duk Kim. Ubiquitous Robot: The

Third Generations of Robotics. In Second American University of Sharjah In-

ternation Symposium on Mechatronics (AUS-ISM), April 2005.

Bibliography 161

[62] Anne Koenig and Elisabeth Crochon. Tram: a blackboard architecture for au-

tonomous robots. In IEA/AIE ’88: Proceedings of the first international con-

ference on Industrial and engineering applications of artificial intelligence and

expert systems, pages 590–597, New York, NY, USA, 1988. ACM Press.

[63] Manuel Kolp, Paolo Giorgini, and John Mylopoulos. Organizational multi-agent

architectures: A mobile robot example. In AAMAS ’02: Proceedings of the First

International Joint Conference on Autonomous Agents and Multiagent Systems,

pages 94–95, New York, NY, USA, 2002. ACM Press.

[64] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,

Massachusetts, USA, 1991.

[65] Tim Laue and Thomas Röfer. A behavior architecture for autonomous mobile

robots based on potential fields. In RoboCup 2004, LNAI. springer, 2004.

[66] J. Ll de la Rosa, B. Innocenti, M. Montaner, A. Figueras, I. Munoz, and J. A.

Ramon. RoGi Team Description. In RoboCup 2001: Robot Soccer World Cup

V, pages 587–590. Springer-Verlag Berlin Heidelberg, Inc., 2002.

[67] Lotfi Zadeh. Fuzzy Sets. In Information and Control, volume 8, pages 338–353,

1965.

[68] Martin Lötzsch. XABSL: The Extensible Agent Behavior Specification Lan-

guage. http://www.ki.informatik.hu-berlin.de/XABSL/.

[69] Martin Lötzsch, Joscha Bach, Hans-Dieter Burkhard, and Matthias Jüngel. De-

signing Agent Behavior with the Extensible Agent Behavior Specification Lan-

162 Bibliography

guage XABSL. In RoboCup 2003: Robot Soccer World Cup VII, pages 114–124.

Springer-Verlag Berlin Heidelberg, Inc., 2003.

[70] Kian Hsiang Low, Wee Kheng Leow, and Jr. Marcelo H. Ang. A hybrid mo-

bile robot architecture with integrated planning and control. In Proceedings of

the first international joint conference on Autonomous agents and multiagent

systems, pages 219–226. ACM Press, 2002.

[71] P. Maes. How to do the Right Thing. Connection Science Journal, 1(3):291–323,

February 1989.

[72] P. Maes. Situated Agents can have Goals. Robotics and Autonomous Systems,

6:49–70, 1990.

[73] F. Michaud, G. Lachiver, and C.T. Le Dinh. A New Control Architecture

Combining Reactivity, Planning, Deliberation and Motivation for Situated Au-

tonomous Agent. In Fourth International Conference on Simulation of Adaptive

Behavior, pages 245–254, 1996.

[74] David P. Miller, Rajiv S. Desai, Erann Gat, Robert Ivlev, and John Loch. Re-

active navigation through rough terrain: experimental results. In Proceedings

Tenth National Conference on Artificial Intelligence - AAAI-92, pages 823–828,

Jul 1992.

[75] Monica N. Nicolescu and Maja J. Matarić. A hierarchical architecture for

behavior-based robots. In Proceedings of the first international joint conference

on Autonomous agents and multiagent systems, pages 227–233. ACM Press, 2002.

Bibliography 163

[76] Fabric Noreils and Raja Chatila. Plan execution monitoring and control archi-

tecture for mobile robots. IEEE Transactions on Robotics and Automations, 2,

1995.

[77] R. Peter Bonasso and David Kortenkamp. An intelligent agent architecture

in which to pursue robot learning. In Working Notes: MCL-COLT ’94 Robot

Learning Workshop, July 1994.

[78] S. Quinlan and O. Khatib. Experimental robotics 2. In R. Chatila and

G. Hirzinger, editors, Towards real-time execution of motion tasks. Springer-

Verlag, 1993.

[79] Ananth Ranganathan and Sven Koenig. A Reactive Robot Architecture with

Planning on Demand. In International Conference on Intelligent Robots and

Systems(IROS), pages 1462–1463, 2003. Las Vegas.

[80] R. John Reh. Pareto’s Principle - the 80-20 rule.

http://management.about.com/cs/generalmanagement/a/Pareto081202.htm.

[81] Thomas Röfer, R. Brunn, Ingo Dahm, M. Hebbel, Jan Hoffmann, Matthias

Jüngel, Tim Laue, Martin Lötzsch, W. Nistico, and M. Spranger. GermanTeam

2004. In RoboCup 2004: Robot Soccer World Cup VIII, 2004.

[82] Raúl Rojas, Sven Behnke, Lars Knipping, and Bernhard Frötschl. FU-Fighters

2000. In RoboCup 2000: Robot Soccer World Cup IV, pages 547–550. Springer-

Verlag Berlin Heidelberg, Inc., 2001.

164 Bibliography

[83] Raúl Rojas, Sven Behnke, Achim Liers, and Lars Knipping. FU-Fighters 2001

(Global Vision). In RoboCup 2001: Robot Soccer World Cup V, pages 571–574.

Springer-Verlag Berlin Heidelberg, Inc., 2002.

[84] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, 1995.

[85] G.N. Saridis. Architectures for intelligent controls. Intelligent Control Systems:

Theory and Applications, 1995.

[86] Reid Simmons. An architecture for coordinating planning sensing and action. In

Proceedins of the Workshop on Innovative Approaches to Planning, Scheduling,

and Control, 1990.

[87] Marc G. Slack. Sequencing formally defined reactions for robotic activity: In-

tegrating raps and gapps. In Proceedings of the SPIE’s Conference on Sensor

Fusion, 1992.

[88] Monnett Hanvey Soldo. Reactive and Preplanned Control in a Mobile Robot.

In 1990 IEEE International Conference on Robotics and Automation, volume 2,

pages 1128–1132, May 1990.

[89] Alexander Stoytchev and Ronald C. Arkin. Combining deliberation, reactivity,

and motivation in the context of a behavior-based robot architecture, 2000.

[90] AliReza Fadaie Tehrani, Peyman Amini, Hamid Reza Moballegh, Pezhman

Foroughi, Omid Teheri, Behrouz Touri, Ahmad Movahedian, and Mohammd

Bibliography 165

Ajoodanian. IUT Flash Team Description. In RoboCup 2003: Robot Soccer

World Cup VII, 2003.

[91] Jason Thomas, Kenichi Yoshimura, and Andrew Peel. Roobots. In RoboCup

2001: Robot Soccer World Cup V, pages 591–594. Springer-Verlag Berlin Heidel-

berg, Inc., 2002.

[92] Daniel Toal, Colin Flanagan Caimin Jones, and Bob Strunz. Subsumption ar-

chitecture for the control of robots. In IMC-13, pages 703–711, 1996.

[93] A. M. Turing. Computing Machinery and Intelligence. Mind, 49(236):433–460,

1950. http://cogprints.org/499/00/turing.html.

[94] T. Tyrrell. An evaluation of Maes’s bottom-up mechanism for action selection.

Adaptive Behavior, 2(4), 1994.

[95] Eric W. Weisstein. Traveling Salesman Problem.

http://mathworld.wolfram.com/TravelingSalesmanProblem.html.

[96] Alfredo Weitzenfeld, Ronald C. Arkin, Francisco Cervantes, Roberto Olivares,

and Fernando Corbacho. A Neural Schema Architecture for Autonomous

Robots. In International Symposium on Robotics and Automation, Saltillo,

Coahuila, Mexico, Dec. 12–14 1998. http://www.cc.gatech.edu/ai/robot-

lab/online-publications/Iberamia.pdf.

[97] Mattias Werner, Helmut Myritz, Uwe Düffert, Martin Lötzsch, and Hans-Dieter

Burkhard. Humboldt Heroes. In RoboCup 2000: Robot Soccer World Cup IV,

pages 651–654. Springer-Verlag Berlin Heidelberg, Inc., 2001.

166 Bibliography

[98] Wikipedia. NP-Hard. http://en.wikipedia.org/wiki/NP-hard.

[99] World Wide Web Consortium (W3C). Extensible Markup Language (XML).

http://www.w3.org/XML/.

	Abstract
	Table of Contents
	List of Figures
	Acknowledgments
	Introduction
	Motivation

	Related Work
	Domain Relevance vs. Domain Independence
	Analysis vs. Synthesis
	Top-down vs. Bottom-up architectures
	Top-down architectures
	Bottom-up architectures
	Hybrid architectures

	Deliberative vs. Reactive
	Architectures in Robotic Soccer
	Languages for Architecture design/implementation
	Summary of Related Work

	Design
	Requirements
	Design Overview
	Sensor and Actuator modules
	World Model
	Sequencing
	Timing Constraints
	MRClient Agents
	Explicit Representation

	Evaluation
	Tasks
	Implementation details
	Evaluation of the Challenges
	Racetrack Challenge
	Treasure Hunt Challenge
	Obstacle Run Challenge
	Goal Scoring Challenge
	Passing Challenge

	Evaluation Summary

	Conclusions and Future Work
	Appendices
	Archangel DTD
	Bibliography

