An Intuitive and Flexible
Architecture for
Intelligent Mobile Robots

By Xiao-Wen Terry Liu
Dept. of Computer Science
The University of Manitoba

Winnipeg, Manitoba
November 17 2005

Outline

m [ntroduction & Motivation

m Background — Robot Architectures
m Design

m Evaluation

m Conclusion

Nov. 17, 2005

Introduction

m Goal: Develop an intuitive, adaptive, and flexible
architecture for controlling intelligent mobile robots

® An architecture 1s a unitying, coherent form or
method of construction, which provides the foundation
for creating powerful intelligent systems.

m Intelligent :
Pragmatic definition of intelligence

Must act autonomously

Must perform appropriate action in controlled and uncertain
situations

Nov. 17, 2005

Intelligent behaviour

m Performing appropriate actions demonstrating
behaviours that are working towards completing
the system’s objectives

m Difficulties:
Selecting the correct action among a very large set of
possibilities
Real-time constraints

m Reaction to danger and other events

m Noisy sensors and imprecise actuators

Nov. 17, 2005

Motivation

B Developing, maintaining,
and modifying systems to I
control intelligent mobile _
robots in the real world

can be a daunting task.
[|

Nov. 17, 2005

Motivation (I1)

m Systems often limited by initial design
m New architecture’s focus:
Adaptable: deals with noise and uncertainy

Flexible: add new tasks, change & remove existing
tasks

Extensible: add new sensors/actuators

Intuitive: make the things above easy

Nov. 17, 2005

Test Domain

m Robotic soccer

Requires common fundamental skillset for mobile
robots

m Real-time control

m Perception

B Awareness

m Planning

m Coordination and Communication

Nov. 17, 2005

Robotic soccer research

m Excellent testbed for research

Dynamic and complex domain

Large community of researchers

Nov. 17, 2005

Background

Perception Reasoning Execution

Environment

m Architecture classifications
Domain Relevance vs. Domain Independence
Analysis vs. Synthesis
Top-down vs. Bottom-up

Deliberative vs. Reactive

Nov. 17, 2005

Domain Relevance vs. Domain
Independence

m Domain Relevance: specialized for a
domain/task

= Domain Independence: functions for multiple
domains

m Matter of Utility vs. Efficiency

Nov. 17, 2005

Analysis vs. Synthesis

m Analysis: starts with an m Synthesis: starts with a
intelligence model basic unit/component of

intelligence (unified field
theory)

S e ol

Nov. 17, 2005

Environment

m The first type of architecture

m Knowledge-driven — takes a problem and decomposes
it to further sub-problems

m Good for simple/routine tasks, however cannot cope
with errors well.

Nov. 17, 2005

Bottom-up architecture

Environment

m More reactive by design

m Good for dealing with unexpected situations

Interprocessor bus — ~

m Example: Brooks’ Subsumption -
1A&t(:lllt(3(:tllt€3 i ™~ Seek light

Ayoid obstacles

ndation
D— antrol for mul rsan:lulher actuators,
Matars. | communication with layers)
[-

Nov. 17, 2005

Environment

Incorporates the advantages of both Top-down and Bottom-up
design

But also the disadvantages

Importance is on finding a balance

Examples: 3T, Atlantis, Aura, RCS, SSS
Belief-Desire-Intention (BDI) Architecture
Blackboard Architecture

Ubiquitous Robot Architecture

Nov. 17, 2005

Behaviour Specification

m There are some specialized languages for behaviour
language
eXtensible Agent Behavior Specification [Language (XABSL)

hemaLocation="http://www ki.informatik. hu-berlin.de/XABSL2.1
: ion.xsd" name="striker" initial-state="initial">

hsequent-basic-behavior 1 -to"=

- <set-parameter ref="go-
- =minus=
imal-input-symbol-ref ref="ball.x"/>
imal-value value="8"/>
arameter=
- <set-parameter ref="go-
decimal-value value='
t-parameter=
sic-hehavior=

state ref="initial"/>

Nov. 17, 2005

m Requirements: adaptable, flexible, extensible, and
intuitive
m Archangel architecture
Sensor and Actuator modules
World Model
Sequencing
Timing Constraints
MRClients

m Flexible Behaviour Selection Mechanism

Explicit Representation of behaviour specifications

Nov. 17, 2005

Design Overview

/Mobile Robot Client (M.R. Client)

/" Planner

ffi'a-sk Planner M
World Model Behaviour| Task
Engine | Manager

"'Bohaviour Set E 4 Path J

| [Behaviour1 L BRI
jcability |
v 3

. Obstacle
-) | Avoidance

Perceptual
Processing
Routines

! b 4
Sensors Actuators
Environment

Nov. 17, 2005

Sensors and Actuators

m Sensors and actuators use a loosely-coupled
methodology to allow for extensibility

1.e. perceptual processing routines and command
generator abstracts hardware from logical

m Use perceptual processing routines to link
sensors to World Model

Filtering of object coordinates — e.g. obstacles, ball

Useful to deal with errors

Nov. 17, 2005

World Model

m Very useful for purpose-driven (proactive) behaviours

m Can be used when sensotrs fail

For example, when the ball gets hidden behind another robot
from the camera sensor

Nov. 17, 2005

Sequencing

m Different levels of sequencing

Task Sequencing — ordering subtasks to complete
the goal
m H.g. Steal the ball, go behind the ball, then kick

Action Sequencing — e.g. a set of waypoints to move
to destination

Actuator Command Sequencing — more
performance related

m H.g. help smooth out turns

Nov. 17, 2005

Sequencing (I1)

m Trend

Units mote abstract up the pyramid

Fewer units queued up the pyramid

m More queuing usuals means better efficiency, however
less reactivity

/ Sequencing o

Action Sequencing

Actuator Command SequencingE"’"-..__._____

Nov. 17, 2005

Timing Constraints

m Necessary to deal with real-time constraints

B Minimum time allowed for behaviours

Useful to avoid behaviour oscillation

B Maximum time allowed for behaviours

Useful to avoid local minima/maxima situations

Nov. 17, 2005

Mobile Robot Client

m Controls one (physical) robot

Mobile Robot Client (M.R. Client)

Planner
Task Planner Path Planner I

[Behaviour System J A??égﬁfe

P -

i Command Generator

i Command Sender

Nov. 17, 2005

Behaviour System

m Uses competition as behaviour selection

m Behaviour with the largest activation
(applicability+reward) value:

T Behaviour EnginefTask Manager
1

[] 1
! 1 1
<Behaviour1= i <Behaviour2= [<Behaviour-N=> |
1
| : :
| |
<applicabllity= ' m = <applicabliity= -’
]
1 !
=rewards i : = =rewards —
i I—
hy
i
h
h

<Behaviour2A> 5 <Behaviour2B=>

<applicabilty> |-/ <applicabillty> |-/

| <reward> | =reward>

Nov. 17, 2005

Command Generator & Sender

m Relates to the actuator command sequencing

m Abstracts the physical actuators

' Command

| Generator 5 | Sender
|] I

To actuators

- :

Nov. 17, 2005

Explicit Representation

m Using eXtensible Markup Language (XML) to
describe behaviours

m Different types of behaviours

m High-level complex behaviour representation
Behaviour-tree Composition

Finite State Machine

m [.ow-level action behaviours

Nov. 17, 2005

Sample Behaviour Representation

- <behaviour name="sampleBehaviour">
init>
deoObjects

“rect x="360" y="40" width="20" height="20"/>
raw_env:
“behaviour_list>
“behaviour_ref name="chaseTarget"/>
“behaviour_ref name="goHome'
“behaviour_ref name="dance"/
ehaviour_list>
ward value="0.5"/>
applicabilit

obot fartherThan="50">

behaviour=>
Nov. 17, 2005

System: Linux, QT3

Nov. 17, 2005

Evaluation

m Difficult to evaluate robot architecture.

(No universally accepted standard)

m User study — costly (time, money, and other resources)

m Eyalnation between architectures are more of a question
of efficiency rather than computability— R.C. Arkin
m Anecdotal evidence on several challenge tasks

Used soccer domain

RoboCup challenge tasks

m Bias

Nov. 17, 2005

Challenges

m Simple tasks required of mobile robots
applicable to many domains
Path Tracking (Racetrack)
Obstacle Avoidance (Obstacle Run)
Path Planning (Treasure Hunt)
Goal-Scoring (Shooting)
Robotic Interaction (Ball-Passing)

Nov. 17, 2005

Path Tracking

» Robot's Path

O Obstacle

Nov. 17, 2005

Path Tracking

m Sample state

pen colour="r

state name="state2'>
ndition=

~obot within="60":

Nov. 17, 2005

Treasure Hunt

Robot's Path

O Treasure

Nov. 17, 2005

Treasure Hunt

- <behaviour name="treasureHunt" >

target_list of Type="obstacle" sre="Waorld
nit=

behaviour_list>
‘behaviour_ref name="treasureHuntChase
‘behaviour_refl name="treasure HuntTurn"/
ehaviour_li
ward value

applicability valu =
ecute useBehaviourList="tru

</behaviour:=

Nov. 17, 2005

“behaviour name="treasureHuntChas
“ini
eward valu

reference="clos

n reference="closestTarget

Treasure Hunt

n reference™"clos

robot within="50
eference_por

tate name="stateMa
“mark_complete target

urn direction™"tow:
<reference_position reference="closestTan

Nov. 17, 2005

ealy [e09

Robot's Path

O Obstacle

Nov. 17, 2005

Obstacle Run

m Impossible scenario using single destination
point

X Target Position
Obstacle

Nov. 17, 2005

Obstacle Run

m Fxplicit trigger mechanism for zone

X Target Position

O Obstacle

Nov. 17, 2005

Nov. 17, 2005

Obstacle Run

- <behaviour name="obstacleRun">
<inil/>
<reward value="1"/>
<applicability value="1"/=
- <execute initialState="RunToZonel">
- <state name="RunToZonel">
- <‘golot
<control_command avoidBall="true"/>
~absolute_position x="2640" y="760"/>
</golo>
- <next_state name="RunToZonel">
- <¢ondition=>
- <robot within="50"~
<absolute_position x="2640" y="760"/>
</robot:>
</condition=
</mext_state>

<le= trigger if reach end zone 1 —=>
- <trigger_set>
- <irigger_next_stale targetName="RunToZone2"=>
- <condition=
- <robot=
<within_rect x="2520" y="260" width="220" height="1000"/>
</robot>
</condilion=
</trigger_next_state=
</trigger_set>
</slate>

Nov. 17, 2005

Obstacle Run

AfterZone2Pause

RunToZone1 RunToZone2

AfterZone1Pause

- <state name="AfterZonelPause" minExecMicroSecs="5000000">
- <goto>
<reference_position reference="World: gelf"/>
</goto>
- <next_state name="RunToZone2">
<condition met="true"/>
</next_state>
</state>

Goal Scoring

Robot's Path
Ball

Nov. 17, 2005

Goal Scoring

Shooting

GoBackHome MoveBehindBall LineUpToKick KickForward

<behaviour_list-
behaviour_ref name="GoBackHome"/
behaviour_ref name="MoveBehindBall",
behaviour_ref nfime—"LmeUpTolx_mk"
y ef ll’llllef"l_lt.leOI'“ ar

pplicabili
cute useBehaviourList="true"/>
ehaviour=

Nov. 17, 2005

Goal Scoring

“xechMicroSecs”

"high">

Nov. 17, 2005

w

L

Robot's Path
Ball

Nov. 17, 2005

Passing

m Passing

m Sub-behaviours:
GoBackHome
PassingDrill

Nov. 17, 2005

m PassingDrill

GoBehindForDribble

Dribble

GoBehindForPass

k4

Pass

¥

HeadHome

Passing

pr—— =T, .
- =<state name="goBehindBallForDribble"=
- <golo>
<control_command avoidBall="true"/>
<relative_abs_focus_position offsetPos="farBehind”
reference="World:ball" focusPoint.x="600" focusPoint.y="200"/>
</goto=
- <next_state name="dribble"=
= <condition=
- <robot within="50">
<relative_abs_focus_position offsetPos="farBehind”
reference="Waorld::ball" focusPoint.x="600" focusPoint.y="200"/>
</robot=
</condition=
</mext_stat
- <trigger_set>
- <trigger_nexl_slate targetName="goBelundBallForPass">
- =condition=
= <ball isFound="true">
in_rect width="1370" x="0" y="0" height="600"/>

</condition=
</trigger_next_state>
=/trigger_set>
=/slale>

Nov. 17, 2005

- <state name="dribble"=-
- =goto=
<control_command avoidBall="false"/>
<absolute_position x="600" y="200"/>
</goto=
- <next_state name="goBchindBallForPass">
- <condition=
- <ball isFound="true"=>
<within_rect width="1370" x="0" y="0" height="600"/>
</ball>
~/condition>
</next_state>

- <trigger_set=
- <trigger_next_state targetName="goBchindBallForDribble"=
- <condition=
- =robot>
=within_rect width="1370" x="0" y="0" height="600"/>
=/robot=

<= AND ==
- =ball=
<within_rect width="1370" x="0" y="600" height="920"/>
</ball=
</condition>
</trigger_next_state>
</trigger_sel>
o=

Passing

“state name="goBehind BallForPass"=
- =golo>
<relative_abs_foeus_position offsetPos="behind”
reference="World::ball” focusPoint.x="2740" focusPoint.y="200"/>
<=/goto=>
- <next_state name="pass">
- =condition>
- <robot within="50">
<relative_abs_focus_position offsetPos="behind”
reference="World::ball" focusPoint.x="2740"
focusPoint.y="200"/>
</robot=
</condition=
</mext_state=
rigger if ball crosses the line —-»
rigger_set=
- =lrigger_nexi_state targetName="headHome"=
- <condition=
- <ball isFound="true"=
<within_rect width="1370" x="1410" y="0" height="1520"/>
</ball=
</condition>
</lrigger_nexi_state>
</trigger_set=
</state=

Nov. 17, 2005

- <state name="pass">
- =golo>=
<absolute_position x="2740" y="200"/=
=/golo>
- <next_state name="headHome">
- <condition>
- =ball isFound="true"=>
rithin_rect width="1370" x="1410" y="0" height="1520"/>
=/ball=
</condition=
</next_state=
- <trigger_set>
- <trigger_next_state targetName="goBehindBallForPass"=
- =condition=
- <robot=
<within_rect width="1370" x="1370" y="0" height="152

</ball=
</condition=
</lrigger_next_state>
</trigger_set>
</state=

Evaluation

How easy is it to add/change/temove behaviours?

Variations in tasks

m Metrics

Lines of Code (LoC) for changes

Time required for changes

Nov. 17, 2005

Results

Original C++4 Client

Archangel

Code size

Racetrack original design
Racetrack change No. 1
Racetrack change No, 2

50 lines
added 1 line
madified 7 lines

58 lines of XML
adited 19 lines
modified 21 lines

Treasure Hunt original design
Treasure Hunt change No. 1
Treasure Hunt change No. 2

50 lines
edited 10 lines
edited 1 line

40 lines of XML
edited 14 lines
remove 6 lines

Obstacle Run original design
Obstacle Kun change No. 1
Obstacle Kun change No. 2

40 lines
added 4 lines
edited 30 lines

30 lines of XML
Add 18 lines of XML
edited 18 lines

Goal Scoring original design
Goal Scoring change No, 1
Goal Scoring change No.
Goal Scoring change No.
Goal Scoring change No. 4
Goal Scoring change No.

72 lines
add 8 lines
edited 10 lines
edited 20 lines
modify 2 lines
modify 14 lines

34 lines of XML
add 8 lines

add 11 lines
edited 19 lines
add 4 lines

add 20 lines

Passing original design
Passing change No. 1
Passing change No, 2
Passing change No. !
Passing change No.
Passing change No. !

320 lines

modify 4 lines (x2)
modify 8 lines
modify 1 line (x2)
modify 1 line (x2)
meodify 3 line (x2)

322 lines of XML
modify 1 line (x2)
added 12 lines (x2)
modify 1 line (x2)
add 1 line (x2)
modify 2 line (x2)

Nov. 17, 2005

Results (I1)

Original C4+ Client

Archangel

Development Time

Racetrack original design
Racetrack change No. 1
Racetrack change No. 2

T days
3 minutes
15 minutes

4 days
& minutes
13 minutes

Treasure Hunt original design
Treasure Hunt change No. 1
Treasure Hunt change No. 2
Obstacle Run original design
Obstacle Run change No. 1
Obstacle Kun change No., 2
Goal Scoring original design
Goal Scoring change No. 1
Goal Seoring change No.
Goal Scoring change No. :
Goal Seoring change No.
Goal Scoring change No. !
Passing original design
Passing change No. 1
Passing change No. !
Passing change No.

Passing change No. ¢
Passing change No.

3 days

20 minutes
6 minutes
2 days

40 minutes
30 minutes
T days

10 minutes
9 minutes
50 minutes
9 minutes
30 minutes
14 days

23 minutes
1 hour

10 minutes
15 minutes
25 minutes

3 days

& minntes
4 minutes
1 hour

2 hour

10 minutes
5 days

7 minutes
T minntes
40 minutes
6 minutes
13 minutes
3 days

15 minutes
1 hour

6 minutes
10 minutes
15 minutes

Nov. 17, 2005

Conclusion

m [ines of code is imperfect measurement

How much of the code is functional?
m Time required difficult to remove implication of
bias
m Future Work

Additional domains and tasks

Nov. 17, 2005

The End

(Questions?)

