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Decentralized Coordinated
Motion Control of Two Hydraulic
Actuators Handling a Common
Object
In this paper, reinforcement learning is applied to coordinate, in a decentralized fashion,
the motions of a pair of hydraulic actuators whose task is to firmly hold and move an
object along a specified trajectory under conventional position control. The learning goal
is to reduce the interaction forces acting on the object that arise due to inevitable
positioning errors resulting from the imperfect closed-loop actuator dynamics. Each ac-
tuator is therefore outfitted with a reinforcement learning neural network that modifies a
centrally planned formation constrained position trajectory in response to the locally
measured interaction force. It is shown that the actuators, which form a multiagent
learning system, can learn decentralized control strategies that reduce the object inter-
action forces and thus greatly improve their coordination on the manipulation task.
However, the problem of credit assignment, a common difficulty in multiagent learning
systems, prevents the actuators from learning control strategies where each actuator
contributes equally to reducing the interaction force. This problem is resolved in this
paper via the periodic communication of limited local state information between the
reinforcement learning actuators. Using both simulations and experiments, this paper
examines some of the issues pertaining to learning in dynamic multiagent environments
and establishes reinforcement learning as a potential technique for coordinating several
nonlinear hydraulic manipulators performing a common task. �DOI: 10.1115/1.2764516�

1 Introduction
One aspect of robotics research that continues to receive much

attention in the literature is the manipulation of objects using mul-
tirobot coordinated frameworks. An obvious benefit of such an
approach is the ability to manipulate large or awkward objects that
would be difficult for a single robot to handle. Another important
advantage of using multimanipulator systems is the possibility of
regulating the internal force acting on the object �1�. However,
when two or more manipulators are used to move an object, a
closed kinematic chain is formed and the motion of one manipu-
lator is translated through the object to affect the motion of the
other manipulators �2�. Consequently, it is a challenge to develop
control systems for effective coordinated manipulation, although
much progress has been made in this area.

The development of suitable techniques for the coordinated
control of multiple robots interacting with a common object has
been tackled in a number of different ways. Yet, many of the
developed techniques seem to fall into one of two basic categories
depending upon the feedback signals available for control. The
first is the master/slave approach �3,4� where each robot is con-
trolled independently using either position or force feedback. In
order to manipulate a common object, the master follows a refer-
ence trajectory under position control while the force-controlled
slave attempts to regulate the interaction force in response to the
motion of the master. One of the main challenges that must be
overcome in applying this approach is the design of a slave sys-
tem that can react quickly to changes in the master position �4�.

The second approach to coordinated control of multiple robots

is known as hybrid position/force control, which was originally
developed for single robot systems �5�. Using this paradigm, both
position and force errors are made available to each manipulator
and the control design problem is to derive a suitable algorithm
that gives reasonable position tracking accuracy and at the same
time regulates the interaction forces applied to the object. A num-
ber of solutions based on rigid body dynamics of closed-loop
kinematic chains appear in the literature. To name a few,
Yoshikawa and Zheng �6� derived a single nonlinear state feed-
back position/force control law that takes both the manipulator
and object dynamics into consideration but requires access to po-
sition and force information from all manipulators. As such, the
controller is an example of a global or centralized coordinated
control strategy. Perdereau and Drouin �7� developed model-based
local controllers for a two-robot system. In their work, the desired
force and position vectors were computed by a central supervisor
but no sensory information was exchanged between the two ro-
bots. Using this decentralized approach, each actuator is self-
controlled �7�. Liu and Arimoto �8� also proposed a decentralized
control scheme for a coordinating two robots handling a common
object and noted that adopting such a localized control scheme
greatly simplifies controller implementation.

In practice, the use of the above cited control methodologies
requires knowledge of the exact values of the dynamic model
parameters as well as those of the object under manipulation.
Consequently, more recent investigations �see Ref. �9� and the
references cited therein� have focused on the development of ro-
bust and adaptive coordination controls. The problem of system
uncertainty has also been addressed using neural networks �10�
and iterative learning techniques �11�. Other coordination schemes
based on impedance control concepts have also been developed
�12� but are often criticized for the difficulty associated with
choosing an impedance model that guarantees the desired trajec-
tory tracking performance �8�.

One fundamental assumption underlying all of the above work
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is that the manipulators are equipped with electric motors that
exert controllable torques. However, in many industrial applica-
tions, such as manufacturing, forestry, mining, and construction,
where large power to weight ratios are required hydraulic actua-
tors are often selected as prime movers. Unlike electric actuators,
torque control of hydraulic actuators is not a straightforward prob-
lem owing to the nonlinear nature of the hydraulic functions, fluid
compressibility, and actuator seal friction �13�. As a result, the
literature is not well established in this area and remains limited to
only a few examples �13–15�. Mulder and Malladi �14� developed
a minimum effort control algorithm for a hydraulically powered
cooperative robotic arm and proposed the use of adaptive control
element to enable compliant motion of the end effector. Asokan et
al. �15� designed an electrohydraulic impedance controller for ro-
botic interaction control. The control system design was, however,
carried out and tested using only a single manipulator and the
generalization of the results to multimanipulator frameworks was
not verified. The development presented in Refs. �13,15� em-
ployed a centralized control approach and was validated via simu-
lations in a multimanipulator environment. Limited experimenta-
tion was also done in �15� on two single hydraulic actuators. To
further contribute to the development of suitable control tech-
niques for coordinating the motion of hydraulic manipulators, this
paper investigates the application of reinforcement learning to
synchronize a pair of horizontal hydraulic actuators whose task is
to rigidly hold and move an object along a specified position
trajectory. In contrast to the existing work on coordinated control
of hydraulic manipulators, this paper studies the application of an
artificial intelligence based decentralized control scheme to a hy-
draulically actuated system for the first time.

Reinforcement learning encompasses a class of machine learn-
ing techniques, whose algorithms use a trial-and-error search to
learn a map between situations and actions that maximizes a nu-
merical reward signal �16,17�. The learning agent interacts with its
environment by first measuring the environmental state using sen-
sors and then responding to the current stimuli by selecting an
appropriate action, which subsequently alters the environment.
The reward received by the learning agent depends upon the rel-
evance of the selected actions toward achieving the learning goal.
By associating large numerical values of the reward with actions
leading to desirable outcomes, the tendency of the learning agent
to select the same action when a similar environmental state is
sensed in the future is strengthened. On the other hand, when the
numerical reward is small, the exploration of alternative actions is
encouraged. The main difficulty in reinforcement learning is to
design algorithms that guide the evolution of the action-selection
policy toward the optimal one via random interactions with the
environment. In situations where the reinforcement is delayed,
reinforcement learning is often implemented by constructing an
internal model of the state-action map that can be used to estimate
the long term utilities of various actions selected in sequence. By
adjusting the utility estimates, an agent can learn to select actions
that tend to maximize the estimated long term reward. Temporal
differencing �18�, dynamic programming �19�, and Q-learning
�20� are all examples of such model-based reinforcement learning
strategies. In environments where an evaluation signal is always
available immediately following an action, it is possible to employ
algorithms, such as statistical hill climbing techniques �21�, that
maximize the immediate reward.

Although some difficult control problems have been solved us-
ing reinforcement learning, e.g., Refs. �22–25�, many reinforce-
ment learning algorithms assume that only a single learning agent
operates on the environment. In situations where multiple learning
agents operate autonomously in a shared environment, the envi-
ronment can be affected by the actions of more than one agent at
any time. Hence, it is often difficult to properly assign credit or
blame to the behaviors of individual agents, which affect the en-
vironment simultaneously. The resulting credit assignment prob-
lem is a fundamental issue pertaining to the implementation of

reinforcement learning techniques in multiagent learning systems
�26�. Consequently, the application of reinforcement learning
techniques to decentralized control problems in the presence of
multiple learning agents, such as the control problem studied in
this paper, continues to receive much attention in the literature.

The primary objective of this paper is to examine how rein-
forcement learning can improve the coordination of two hydraulic
actuators manipulating an object by enabling the discovery of a
decentralized control strategy that allows the interaction forces,
i.e., the forces between the actuators and the object, to be reduced
while the actuators track centrally planned local reference trajec-
tories as closely as possible. The interaction forces arise due to
positioning errors caused by the imperfect closed-loop actuator
dynamics. By using a specially designed reinforcement learning
neural network, which monitors the interaction force, each actua-
tor can learn how to appropriately modulate the measured force by
adjusting the local reference trajectory. In effect, the interaction
force is reduced not by improving tracking performance but by
learning how to eliminate the difference between the tracking er-
rors of each actuator. The interaction force acting on the object
can therefore be alleviated without the need to explicitly consider
the properties of the object.

In this paper, the stochastic-real-valued �SRV� reinforcement
learning algorithm of Guallpalli �27� is applied to solve the mul-
tiagent learning problem by maximizing the immediate reward.
Implementing a reinforcement learning algorithm that maximizes
the immediate reward is possible since an evaluation signal based
on the measured value of the interaction force is easy to compute
at regular intervals. Consequently, the resulting learning system
has the potential for quick learning and adaptation. The SRV al-
gorithm allows continuous real-valued control outputs to be asso-
ciated with environmental states via the adaptation of the weights
of two connectionist neural networks and can be easily extended
to multilayer neural network frameworks �24�. While the SRV
algorithm has been proven on several single-agent learning tasks
�24,27�, to the best of the authors’ knowledge, its performance has
never been tested in a multiagent learning environment. Thus,
another objective of this paper is to investigate whether learning
can be successful in the absence of any communication between
the hydraulic actuators. It is also of interest to examine how
simple directed communication �28� can be used to influence the
learned behaviors of the hydraulic actuators to further improve the
performance and cooperation of the multiagent reinforcement
learning system. These questions are investigated in this paper in
both simulations and experiments. Simulations are used to deter-
mine the ideal configuration of the proposed reinforcement learn-
ing neural network controller and to establish the general behavior
of the inherently stochastic reinforcement learning system. Ex-
periments are performed to confirm the performance of the rein-
forcement learning system in practice.

The remainder of this paper is organized as follows. In Sec. 2,
the system under investigation is briefly described and a math-
ematical model of a typical valve controlled hydraulic actuator is
derived to facilitate simulation studies. The proposed reinforce-
ment learning control architecture is presented in Sec. 3. Section 4
gives details on the implementation of the reinforcement learning
architecture and summarizes the results of several simulation stud-
ies that were carried out to ascertain the general behavior of the
multiagent learning system. The performance of the multiactuator
positioning system is evaluated on a real experimental test rig in
Sec. 5 both in the absence and presence of interactuator commu-
nication. Concluding remarks follow in Sec. 6.

2 Description of the System Under Investigation
A schematic of a typical servovalve controlled hydraulic actua-

tor for the purpose of mathematical modeling is shown in Fig. 1,
along with the relevant nomenclature. By closing the position loop
using a simple proportional controller, state equations that de-
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scribe the closed-loop hydraulic actuator dynamics between the
desired xd and actual x positions of the actuator can be formed as
�readers are referred to Refs. �29,30� for details�

ẋ = v �1a�

v̇ =
1

m
�− bv + A1P1 − A2P2 − F� �1b�

Ṗ1 =
�

A1x + V̄
�Q1 − A1ẋ� �1c�

Ṗ2 =
�

A2�L − x� + V̄
�− Q2 + A2ẋ� �1d�

ẋv = vv �1e�

v̇v = − �v
2xv − 2�v�vvv + kv�v

2u �1f�

u = Kp�xd − x� �1g�
where

Q1 = Cvwxv�2�Ps − P1�
�

, Q2 = Cvwxv�2�P2 − Pr�
�

for xv

� 0 �2�
and

Q1 = Cvwxv�2�P1 − Pr�
�

, Q2 = Cvwxv�2�Ps − P2�
�

for xv

� 0 �3�
Referring to Eqs. �1a�–�1f�, the system states are actuator posi-

tion x, actuator velocity v, chamber pressures P1 and P2, valve
spool displacement xv, and valve spool velocity vv. Parameters m
and b are the combined mass of the actuator piston and rod, and
the equivalent viscous actuator damping, respectively. Area A1
refers to the area of the piston and area A2 is the annulus area of
the piston on the rod side of the actuator. The effective bulk
modulus of the hydraulic fluid is denoted by �, while L denotes

the actuator stroke and parameter V̄ represents the volume of the
connecting lines between the servovalve and the actuator. Load
force F is a disturbance input and arises when the actuator inter-
acts with the environment or another actuator.

The valve spool dynamics are expressed as a second-order lag
�see Eqs. �1e� and �1f�� where kv is the valve spool position gain
and parameters �v and �v are the servovalve undamped natural
frequency and damping ratio, respectively. The gain of the closed-
loop proportional controller is denoted by Kp in Eq. �1g�. In Eqs.
�2� and �3�, which describe the servovalve control flows, param-
eter � is the mass density of the hydraulic fluid, Cv is the servo-

valve coefficient of discharge, and w is the slot width of the port
through which the fluid flows. Ps and Pr denote the hydraulic
supply and return pressures, respectively.

Figure 2 shows two hydraulic actuators that are coupled to-
gether in order to move an object along a one-dimensional posi-
tion trajectory xd, by having each actuator follow the specified
local reference trajectory x1

d and x2
d. With reference to Fig. 2, �i�

the positions of both actuators are considered absolute and posi-
tive right, which eliminates the need to consider the local refer-
ence frames of each actuator separately. �ii� The object is held
rigidly and there is no relative motion between the object and the
end effectors. �iii� The reference trajectories for each actuator are
functions of the desired object motion trajectory and are centrally
planned.

Under ideal circumstances, the two hydraulic actuators will fol-
low their desired trajectories without causing any internal force in
the object. However, in practice, positioning errors resulting from
the imperfect control implementation are inevitable and cause the
actuators to apply an undesirable force to the object. The force is
a result of the relative position trajectory error between the two
actuators and leads to the deformation of the object �see Fig.
2�b��. To improve their performance, each hydraulic actuator is
outfitted with a reinforcement learning neural network, described
in the next section, that can modify the prescribed position trajec-
tory dynamically in response to the measured force between the
object and the actuator. The goal is for the hydraulic actuators to
learn, by reinforcement, how to modify their reference trajectories
in a decentralized fashion to reduce the interaction force.

3 Proposed Control Architecture
A schematic of the proposed coordinated position control sys-

tem is shown in Fig. 3. Referring to Fig. 3�a�, each actuator is
self-controlled and uses a local position control law as well as a
reinforcement learning neural network �RLNN� to manipulate the
object by following a reference trajectory determined by a central
trajectory planner. The reinforcement learning control architecture
that is implemented on each hydraulic actuator is shown in Fig.
3�b�. With reference to Fig. 3�b�, each actuator is positioned using
a simple closed-loop proportional control law. The input signal to
the control loop x̄ d is the summation of the a priori prescribed
reference trajectory x d and a trajectory correction �x determined
by the RLNN. The difference between the prescribed reference
trajectory and the actuator position x d−x is referred to, in this
paper, as the position trajectory error while the error seen by the
controller that drives the actuator x d+�x−x is termed the actuator
position error. The RLNN consists of two independent multilayer

Fig. 1 Schematic of a typical hydraulic actuator for math-
ematical modeling

Fig. 2 Schematic of coordinated positioning task: „a… defini-
tion of reference trajectories x 1

d and x 2
d with respect to desired

object position x d; „b… deformation of object due to relative ac-
tuator positioning error
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feedforward networks together with a Gaussian random number
generator. This neural network architecture represents a SRV re-
inforcement learning system �24�. Trajectory correction �x, which
is used to modulate the interaction force during the manipulation
task, is a normally distributed random variable �x�Kn	�
 ,��
whose mean value is controlled by network output 
 and scaled
by factor Kn. Gain Kn=1.0�10−3 m/mm was used so that the
network inputs and outputs have similar orders of magnitude.
Function �=s�r̂�, where r̂� �0,1� is the estimated reward, con-
trols the trial-and-error search behavior of the reinforcement
learning actuator by adjusting the variance of the Gaussian distri-
bution according to

� = �1 − r̂� �4�

where  is a scaling factor. Physically, Eq. �4� limits the variance
of the random output to an envelope within �2 units of network
output 
, 95% of the time. During learning, the adjustable net-
work weights are adapted so as to maximize the value of the
reinforcement signal r received from the environment. If the ex-

pected reward r̂ can also be accurately estimated, Eq. �4� ensures
that �→0, which makes �x�
. This property enables the actua-
tor to exploit its previously learned behavior.

Referring to Fig. 3�b�, it is observed that the single input to the
RLNN is the measured force F between the implement and the
object. Temporal information carried by the force transducer out-
put is implicitly captured by a short-term memory element, which
is a first-order tapped delay line represented by unit delay operator
z−1. Therefore, each neural network has two inputs, the current
value of the force transducer output F�t� and the stored value of
the force measurement F�t−�t� from the previous time step. In-
cluding the short-term memory element allows the neural network
to behave as a one-step ahead predictor �31� and generate an
input-output map that considers the dynamics of the input signal.
Considering this and the fact that the neural networks have bias
terms, the control action tends to resemble a proportional-integral-
derivative type control law. It should be noted that additional de-
lay taps could be used to provide supplementary higher-order in-
puts to the neural network. This way, more complex models

Fig. 3 Schematic of coordinated positioning system: „a… decentralized control scheme using localized posi-
tion and RLNN controllers; „b… architecture of local reinforcement learning control system showing signals
used for learning as dashed lines
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relating the measured force to the actuator position can potentially
be learned. However, as the number of network inputs increases
so does the number of internal parameters that must be tuned
during learning. Consequently, increasing the number of network
inputs does not guarantee improved performance. In this paper,
the neural network structure was kept as simple as possible and, as
will be seen in the sequel, the selected configuration of the neural
network inputs is adequate to improve actuator performance on
the coordinated positioning task. Also in an effort to avoid overly
complex neural network structures, each multilayer feedforward
network was restricted to have a variable number of hidden neu-
rons arranged in a single layer, as shown in Fig. 3�b�.

The hidden layers of each neural network generate a nonlinear
representation of the network inputs, which is then further pro-
cessed by the output units. The hidden layer neurons all use the
logistic activation function, ��v�=1/ �1−e−v�. The output of the
first neural network, referred to hereafter as the control network, is
computed as the linear weighted sum of the outputs of the hidden
layer neurons. Hence, the output of the control network is given
by the relation


 = 	
j=1

m

wj
�1��
	

i=0

2

wij
�0�yi� + w0

�1�z0 �5�

where yi refers to input i. The adjustable weight between input i
and hidden neuron j is denoted by wij

�0�, while wj
�1� is the adjust-

able weight between hidden neuron j and the output unit. Index m
denotes the number of neurons in the hidden layer, and the bias
terms are absorbed into Eq. �5� by setting y0=1 and z0=1.

In contrast to the control network, the output unit of the second
neural network, referred to hereafter as the reinforcement estima-
tor, uses a logistic activation function similar to the hidden layer
neurons. This output function was selected because the actual
value of the reinforcement signal r generated by the performance
evaluation function varies continuously between 0 and 1. Thus,
the reinforcement estimate r̂ is computed as

r̂ = ��	
j=1

n

v j
�1��
	

i=0

2

vij
�0�yi� + v0

�1�z0 �6�

where vij
�0� and v j

�1� denote the adjustable weights between input i
and hidden neuron j, and between hidden neuron j and the output
unit, respectively. As before, y0=1 and z0=1 to accommodate the
bias terms. Index n denotes the number of neurons in the hidden
layer of the reinforcement estimator.

The weight matrices w and v of each neural network are tuned
based on the actual value of the reinforcement signal, which is
received continuously from the environment. In this paper, the
hidden layer weights of the control network are updated at each
time step �t using a modified version of the update rule proposed
by Gullapalli �27�

wj
�1��t + �t� = wj

�1��t� + 0.5��t�S �r�t� − r̂�t����x�t� − 
�t��zj�t�

�7�

where the sign function S�r− r̂� that replaces difference �r− r̂� in
the original algorithm is given by

S�r − r̂� = �− 1 r − r̂ � 0

0 r − r̂ = 0

1 r − r̂ � 0
� �8�

Referring to Eq. �7�, at the end of each learning opportunity,
each weight of the control network is incremented by an amount
proportional to

�wj
�1� = �S�r − r̂�ej �9�

In Eq. �9�, �=0.5�2 is assumed to be a constant learning rate
parameter, term S�r− r̂� is a reinforcement comparison, and ej

= ��x−
 /��zj is the characteristic eligibility of weight wj
�1� �18�.

Together, the reinforcement comparison and the characteristic eli-
gibility determine the direction of the error gradient between the
current output �x and the optimal output for which the maximum
reinforcement would be received �24�. To illustrate how the direc-
tion of the error gradient is established, Gullapalli �27� finds it
useful to view Eq. �9� as the normalized noise that is added to the
activation of the control network. If the noise has results in a
reinforcement signal r larger than expected r̂, then the mean out-
put of the control network 
 is adjusted by adapting the network
weights to become closer to the current output �x. If, on the other
hand, the noise results in a reinforcement signal smaller than ex-
pected, the mean output should be adjusted to be further from the
current activation. In this way, the RLNN tends to statistically
climb the error gradient �21� so that the reinforcement can be
maximized via the association of input states with the optimal
control outputs.

Equation �7� is only used to update the hidden layer weights of
the control network. The remaining input layer weights of the
control network are adapted, in this paper, using standard error
backpropagation �31� with a learning rate of 0.5. Also, since rein-
forcement comparison �r− r̂� is known at each time step, the
weights of the reinforcement estimator can be easily adapted us-
ing simple gradient descent. A learning rate of 0.5 was used.

4 Simulation Studies

4.1 Implementation. In order to assess the ability of the pro-
posed reinforcement learning control architecture to reduce the
magnitudes of the interaction forces applied to the object by the
hydraulic actuators during the manipulation task, a set of simula-
tion studies was carried out. The efficacy of learning in the ab-
sence of communication between the learning agents was evalu-
ated first in order to establish performance benchmarks to which
simulation results pertaining to learning in the presence of di-
rected communication could be later compared.

In the simulations, the object was modeled as a pure stiffness,
which resists the motion of the actuators in both tension and com-
pression. With reference to Fig. 2, the net force F applied to the
object by the hydraulic actuators is given by the following equa-
tion:

F = k�x2 − x1 − l� �10�

where stiffness k was taken to be 3.0 kN/m and the length l of the
object was assumed to be 120 mm. The values of the parameters
for the hydraulic actuators used in the simulations are given in
Table 1 and it was assumed that each actuator has the same values
of the model parameters. However, due to the asymmetry in the

Table 1 Parameters of hydraulic actuators used in simulations

Parameter Symbol Value

Supply pressure Ps 6.9 MPa �1000 psi�
Return pressure Pr

0
Total mass of piston and rod m 10 kg
Viscous damping coefficient b 350 N s/m

Actuator stroke L 0.61 m
Piston area A1 1.14�10−3 m2

Piston annulus area A2 6.33�10−4 m2

Volume of connecting lines V̄ 4.15�10−5 m3

Valve coefficient of discharge Cv
0.6

Valve orifice area gradient w 0.020 75 m2/m
Valve spool position gain kv 4.06�10−5 m/V
Valve natural frequency �v 150 Hz

Valve damping ratio �v
0.5

Density of hydraulic fluid � 847 kg/m3

Bulk modulus of hydraulic fluid � 689 MPa
Controller proportional gain Kp 250 V/m
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actuator piston areas, the actuators travel at different speeds de-
pending on the direction of motion. This discrepancy causes dif-
ferences in the position trajectory errors of each actuator and re-
sults in the deformation of the object. In practice, slight
differences in the closed-loop position controllers and/or the pa-
rameters of each actuator would further influence these errors.

It was expected that the performance of the reinforcement
learning actuators, with respect to reducing the interaction force,
should continue to improve as the number of repetitions of the
manipulation task increases. Thus, to facilitate training, the de-
sired smooth path between the initial and final positions of the
manipulated object was approximated by a continuous function so
that learning could proceed uninterrupted. In all of the simulations
reported here, the following formation constrained reference tra-
jectories for each actuator �see Fig. 2� were used:

x1
d = 200 sin�0.5�t� + 240 mm �11�

x2
d = 200 sin�0.5�t� + 360 mm �12�

The performance of each actuator was evaluated based on the
absolute value of the measured force F between the actuator and
the object, as shown in Fig. 4. As is seen, the evaluation function
chosen is piecewise continuous and generates a reinforcement sig-
nal r� �0,1� based on the maximum allowable force Fmax. The
slope of the curve becomes steeper as the origin is approached to
increase the sensitivity of the reinforcement signal to small values
of the measured force. This was found to improve the perfor-
mance of the reinforcement learning system by enabling the
RLNNs to continue to fine-tune their performance after the force
applied to the object had been reduced. In all the simulations and
experiments reported here, Fmax=100 N was assumed. Scaling
factor =1.0 mm was selected in Eq. �4� to limit the envelope of
stochastic exploration to approximately 2 mm. This value was ar-
rived at by considering the stiffness of the object, and allows each
RLNN to modulate the applied interaction forces by about 3 N
while they search for the control actions that tend to reduce the
values of the interaction forces overall. The numerical value of
parameter  should therefore be selected based upon the antici-
pated value of the object compliance and should be decreased as
the object stiffness increases since smaller changes in actuator
position lead to larger changes in the forces applied to the object.
Note that setting  too small may impair the rate of learning by
overrestricting the search space.

In addition to measurements of the interaction force, another
metric was also defined in order to assess the relative performance
of each reinforcement learning hydraulic actuator. The level of
cooperation between the actuators was evaluated by examining
the ratios of the root-mean-square �rms� values of the trajectory
corrections selected by each RLNN to the total corrective effort of
the multiactuator team that was necessary to reduce the force.

Therefore, the particular notion of cooperation adopted here refers
to the ability of the actuators to discover how to equally share the
burden of reducing the interaction forces during the coordinated
positioning task. The trajectory correction ratio c1 of actuator 1 is
defined as

c1 =
�x1,rms

�x1,rms + �x2,rms
�13�

where �x1,rms and �x2,rms are the rms values of trajectory correc-
tions �x1 and �x2. A similar equation can be written for actuator
2. Referring to Eq. �13�, if c1�0.5 then the level of cooperation
achieved between the coordinated actuators is high since �x1,rms
��x2,rms. In other words, both actuators equally share the burden
of reducing the interaction force. If, on the other hand, c1�0 or
c1�1.0, the level of cooperation between the coordinated actua-
tors is low. For example, in the former case, c1�0 implies
�x1,rms�0 so actuator 1 corrects its trajectory very little com-
pared to actuator 2. In the latter case, the neural controller of
actuator 2 is relatively inactive and the entire burden of reducing
the interaction force becomes the responsibility of actuator 1.

Using simulations, the ideal number of neurons in the hidden
layers of the neural networks for each hydraulic actuator was first
established by increasing the number of units in the hidden layers
until performance improvements diminished. The adjustable net-
work weights were initialized using random numbers on the inter-
val �−0.5,0.5� and the dynamic equations were simulated to allow
the neural networks to learn for 90 s �55 repetitions of the ma-
nipulation task�. The fourth-order Runge–Kutta integration
scheme with a 0.001 s time step was used and learning was as-
sumed to occur at a constant rate of 100 Hz. One hundred 90 s
trials were run for hidden layer sizes ranging from 2 to 24 neurons
in both the control and reinforcement estimator networks. For
each trial, the rms value of the interaction force acting on the
object was computed as an indicator of the variance of the force
over the entire 90 s learning period. It was observed that networks
having ten hidden layer neurons reduced the rms value of the
interaction force by at least 65% on average and offered the best
performance with respect to the hidden layer size.

4.2 Coordinated Control With Noncommunicating
Actuators. To illustrate how the performance of the hydraulic
actuators can be improved by the proposed multiagent reinforce-
ment learning system, the time histories of the interaction force as
well as the trajectory corrections were monitored before, during,
and after the learning process. The RLNN of each actuator had
ideal number of hidden neurons in the control network and rein-
forcement estimator. All of the adjustable network weights were
initialized with random numbers on the interval �−0.5,0.5�. The
actuators handled the object under proportional control only dur-
ing the first 10 s of the simulation. This was done to illustrate the
base line performance of the multiactuator system. Then, the neu-
ral networks were activated and learning was allowed for the next
30 s of simulated time. For the final 10 s of the simulation, no
learning was allowed and the hydraulic actuators handled the ob-
ject by exploiting their previously learned behaviors. Figure 5�a�
shows that before learning �time interval �1��, when the actuators
were operated under proportional control only, the peak value of
the interaction force reached nearly 25 N in magnitude. Note that
in Fig. 5�a�, negative values of interaction force represent the
compression of the object. After the neural networks were acti-
vated and learning began �time interval �2��, the interaction force
was reduced almost immediately. Learning continued to improve
the performance of the actuators as the time increased. After
learning, during time interval �3�, it is observed that the peak-to-
peak amplitude of the interaction force had been reduced to ap-
proximately 3.0 N, an 80% improvement over the base line per-
formance under proportional control only.

The trajectory modifications, shown in Fig. 5�b�, illustrate the
corrective actions applied by the neural networks. At the begin-

Fig. 4 Reinforcement function for evaluating actuator
performance
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ning of time interval �2�, it is observed that the corrections are
noisy and appear to be selected randomly. This is the period of
time when the neural networks are exploring the environment
most and when the neuronal weights are adapting most rapidly. As
the time increases beyond 30 s, the noise associated with the ex-
plorative behavior is reduced significantly and the corrections se-
lected by the neural networks become more consistent between
repetitions of the manipulation task. The neuronal weights un-
dergo only small refinements during this time as previously
learned behaviors can be successfully exploited. A visual compari-
son of the magnitudes of the trajectory corrections confirms that
the hydraulic actuators have not learned how to equally share the
burden of reducing the interaction force since on average ��x2�
� ��x1�. Figure 5�c� shows that the interaction force could be al-

leviated with negligible effect on the positional accuracy. Thus,
the benefit of improved coordination amongst the hydraulic actua-
tors can be obtained without the need to explicitly improve posi-
tion tracking accuracy. Figure 5�c� also reveals that the hydraulic
actuators have reduced the interaction force by, in effect, learning
how to match their position trajectory errors.

To establish whether the results of Fig. 5 truly reflect the gen-
eral behavior of the inherently stochastic reinforcement learning
system, 500 40 s trials where learning was allowed to occur for
the first 30 s of simulated time were carried out. At the beginning
of each trial, the adjustable network weights were initialized with
different random numbers on the interval �−0.5,0.5�. In addition,
the Gaussian random number generators of each neural network
were initialized with a different randomly selected seed. For each
trial, after the 30 s learning period, the system was run for an
additional 10 s where the hydraulic actuators handled the object
by exploiting their previously learned behaviors. Over this 10 s
time period, the rms values of the interaction forces as well as the
trajectory correction ratio of actuator 1 were computed to evaluate
the performance after learning had converged. Figure 6 reports the
rms interaction force and the corresponding trajectory correction
ratio for actuator 1 obtained from the simulations. The data points
represent the values of the performance metrics obtained for each
trial and are shown in a sequential fashion for the purpose of
comparison. Referring to Fig. 6, it is observed that after allowing
the neural networks to learn for 30 s, the rms values of the inter-
action force are about 1.1 N, on average. This is a marked im-
provement over the base line value of 16.9 N �see Fig. 5�a�� that
is obtained when the system is operated under proportional con-
trol only. These results confirm that, in general, the designed re-
inforcement learning architecture has the potential to improve the
coordination of the hydraulic actuators and allow the interaction
force �due to positioning errors� to be greatly reduced.

The results also imply that for a typical trial, the relative mag-
nitudes of the trajectory corrections selected by each RLNN can
differ significantly since the values of the actuator 1 trajectory
correction ratio were observed to vary widely between 0 and 1
�see Fig. 6�b��. Thus, while reinforcement learning improves per-

Fig. 5 Typical performance of noncommunicating hydraulic
actuators on coordination task: „a… interaction force; „b… trajec-
tory corrections, �x1 and �x2; „c… position trajectory errors,
x 1

d−x1 and x 2
d−x2. Legend: „1… before learning; „2… learning; „3…

after learning.

Fig. 6 Performance of noncommunicating hydraulic actuators
on coordination task after learning: „a… rms interaction force;
„b… actuator 1 trajectory correction ratio
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formance on the manipulation task with respect to reducing the
interaction force, a cooperative effort where each actuator selects
corrective actions of similar magnitude cannot be guaranteed. This
outcome is a direct result of the multiagent credit assignment
problem. Since the force sensor of each actuator measures nearly
the same value of the interaction force, it is impossible for the
RLNNs to infer the relative contribution of each actuator to the
measured force. Consequently, when the force is reduced, each of
the neural networks receives approximately the same value of
reinforcement irrespective of their relative effort. The information
contained in the force measurement alone is therefore insufficient
to properly reward the corrective actions of each actuator during
the learning process.

4.3 Coordinated Control With Communicating Actuators.
The motivation behind the use of communication between the
hydraulic actuators is to enable the actuators to learn how to ef-
fectively cooperate by selecting equal and symmetric neural net-
work outputs as they work to reduce the interaction forces. Recall
that an undesirable internal force is produced when position tra-
jectory errors, e1=x1

d−x1 and e2=x2
d−x2, are different form one

another. Consequently, it is necessary to precompensate the origi-
nal reference trajectories so that �e2−e1�→0. The role of the
RLNNs is, therefore, to alleviate difference �e2−e1� by providing
this compensating action. In the presence of communication, the
multiagent credit assignment problem can be resolved by the de-
sign of additional evaluation functions that reward the selection of
complimentary actions, which tend to match the relative output
levels of each reinforcement learning neural network.

In this paper, the abilities of each neural network to properly
compensate the original reference trajectories are evaluated using
two locally computed penalties p1 and p2. The values of these
penalties are then deducted from the value of reinforcement r
computed using Fig. 4. Hence, actuator 1 receives evaluation r1
=r− p1, while actuator 2 receives r2=r− p2. The penalties are
computed as follows:

p1 = ����e1 − e2� − ��x1 + �x2�� if ���e1 − e2� − ��x1 + �x2�� � 0.5

0.5 otherwise

�14�

p2 = ����e2 − e1� − ��x1 + �x2�� if ���e2 − e1� − ��x1 + �x2�� � 0.5

0.5 otherwise

�15�

where �=0.025 is a positive constant for scaling.
Referring to Eqs. �14� and �15�, when the penalties are nonzero,

reinforcement learning with communication is driven by consid-
ering both the position trajectory errors and the measured interac-
tion forces. Trajectory corrections �x1 and �x2 are continuously
refined until the trajectory error difference �e2−e1� goes to zero,
leading to a zero interaction force. However, unlike the case
where no communication is used, Eqs. �14� and �15� provide an
additional mechanism by which the two actuators can compare
their relative efforts and learn how to properly contribute toward
reducing the interaction force.

In order to better illustrate how using penalty functions �14� and
�15� helps to promote the learning of symmetric compensatory
actions, these equations are rewritten in terms of the actuator po-
sition errors, ê1=x1

d+�x1−x1 and ê2=x2
d+�x2−x2:

p1 = ���− �ê2 − ê1� − 2�x1� if ��− �ê2 − ê1� − 2�x1� � 0.5

0.5 otherwise

�16�

p2 = ����ê2 − ê1� − 2�x2� if ���ê2 − ê1� − 2�x2� � 0.5

0.5 otherwise


�17�

When each learning agent simultaneously discovers an action-
selection policy for which it receives the maximum reinforcement,
r1=r2=1, the argument of each penalty function, p1 and p2, is
zero. Therefore, from Eqs. �16� and �17�, it can be seen that

�x1 = −
1

2
�ê2 − ê1� �18�

and

�x2 =
1

2
�ê2 − ê1� �19�

Equations �18� and �19� imply that, under correct operation of the
system, the output of each neural network should be half of the
actuator position error difference �ê2− ê1�. By expanding and col-
lecting the terms of Eqs. �18� and �19�, we obtain

− �e2 − e1� − ��x1 + �x2� = 0 �20�

�e2 − e1� − ��x1 + �x2� = 0 �21�

Equations �20� and �21� are the arguments of the original penalty
functions �14� and �15�, when p1= p2=0. Simultaneous solution of
these equations requires that both �e2−e1�=0 and ��x1+�x2�=0.
The latter equality implies that �x1=−�x2. Therefore, in order for
the actuators to simultaneously receive the maximal reinforce-
ment, they must learn to make �e2−e1�→0 by applying equal and
opposite trajectory corrections. In other words, the use of the pen-
alty functions, defined by Eqs. �14� and �15�, resolves the credit
assignment problem and keeps the actuators from receiving their
full rewards until their trajectory corrections are adjusted to be-
come symmetric. As will be seen later, in both simulations and
experiments, allowing communication between the actuators, in
this way, does indeed enable them to learn how to properly select
complimentary actions.

Figure 7 reports typical time histories of the interaction force,
the trajectory corrections, and the actuator position trajectory er-
rors before, during, and after learning in the presence of commu-
nication between the actuators. As is seen, the interaction forces
are reduced similar to Fig. 5�a�, but the use of communication has
affected learning such that the actuators learn a highly cooperative
positioning strategy where the correction effort of each is similar
in magnitude �compare Fig. 7�b� to Fig. 5�b��. Hence, the hydrau-
lic actuators are better able to work as a team toward reducing the
interaction force.

To establish the general behavior of the multiactuator reinforce-
ment learning system in the presence of communication, 500 40 s
simulations were carried out. As before, for each trial, learning
was allowed for the first 30 s of simulated time followed by a 10 s
period in which the performance of the actuators was evaluated as
they handled the object using their previously learning behaviors.
In addition, the same network initial conditions as in Sec. 4.2 were
used in the simulations, and it was assumed that communication
occurred at every learning opportunity. It was observed that in the
presence of communication, the actuators could learn how to re-
duce the interaction force similarly to Fig. 6�a�. The correspond-
ing trajectory correction ratios of actuator 1, using the communi-
cation scheme, are shown in Fig. 8. With reference to Fig. 8, it is
observed that the correction effort ratios of agent 1 are all clus-
tered around 0.5 with all the data points lying between 0.3 and
0.7. Hence, the rms output levels of each neural controller are
similar and the burden of reducing the interaction forces is shared
more evenly between the communicating actuators. Consequently,
the level of cooperation achieved as a result of reinforcement
learning is improved significantly in the presence of interactuator
communication.

736 / Vol. 129, SEPTEMBER 2007 Transactions of the ASME

Downloaded 06 Sep 2007 to 130.179.230.148. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



5 Experimentation

5.1 Experimental Setup. In order to test the proposed rein-
forcement learning architecture in a practical environment, experi-
ments were carried out using real hydraulic actuators. A photo-
graph of the experimental test rig, which consists of two
independently controlled hydraulic rams, is shown in Fig. 9. The
first actuator is a double rod type having a 610 mm �24 in.�
stroke, 38.1 mm �1.5 in.� bore, and 25.4 mm �1 in.� rods. It is
controlled by a Moog D765 flow-control servovalve. The second
actuator is similar to the first one but has a shorter 200 mm �8 in.�
stroke and is controlled by a Moog 31 series servovalve. Both
actuators are powered by a common hydraulic supply operating at
a nominal pressure of 7.6 MPa �1100 psi�.

The position of each actuator is measured using a cable-driven

optical rotary encoder and is monitored by the corresponding per-
sonal computer �PC� via a Keithley M5312 quadrature incremen-
tal encoder card. Each PC is also equipped with a DAS-16F input/
output board that is used to send the control signal generated by
the software implemented control algorithm to the servovalve.
The two PCs have been connected using a dedicated local area
network with user datagram protocol �UDP� sockets to establish a
channel for experiments involving communication. The network
link is also used to synchronize the clocks of each PC at the
beginning of each experiment.

The deformable object was simulated in experiments using the
fixture shown in Fig. 9 �inset�. The fixture, which acts nearly as a
pure stiffness, consists of two banks of compression springs ar-
ranged in parallel. The particular bank of springs used to generate
the resistive force depends upon the sign of the net force applied
by the actuators. The nominal object stiffness �5.3 kN/m� can be
adjusted by adding or removing pairs of springs. The interaction
force was measured using a load cell bolted to one side of the
fixture. The load cell output was read by each PC using the DAS-
16F board and was conditioned, in software, using a critically
damped low pass filters having two real poles located at s=−25
before being processed by the neural networks.

Fig. 7 Typical performance on coordination task with commu-
nication: „a… interaction force; „b… trajectory corrections, �x1
and �x2; „c… position trajectory errors, x 1

d−x1 and x 2
d−x2. Leg-

end: „1… before learning; „2… learning; „3… after learning.

Fig. 8 Actuator 1 trajectory correction ratios after learning us-
ing communication scheme

Fig. 9 Photograph of test rig upon which experiments were
carried out. Inset: Close-up view of deformable object and load
cell.
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5.2 Results

5.2.1 Benchmark Performance. To implement the learning test
in experiments, sinusoidal test signals similar to the ones used in
the numerical simulations, but scaled to accommodate the sizes of
the experimental actuators, were used:

x 1
d = 50 sin�0.5�t� + 485 mm �22�

x 2
d = 50 sin�0.5�t� + 705 mm �23�

Figure 10 shows the benchmark performance of the experimen-
tal system under proportional control only. The proportional con-
troller gain was set to Kp=250 V/m for each actuator. Referring
to Fig. 10�a�, the measured force ranges about 40 N peak to peak.
It is also observed that while the peak-to-peak magnitude of the
force remains about the same, the mean value of the force de-
creases over time. This is a result of imperfect position sensing
and small differences in the starting times of each actuator, issues
which cannot be escaped in a practical setup. The benchmark
positioning errors for each actuator are included in Fig. 10�b� for
reference.

5.2.2 Performance of Noncommunicating Actuators. The ex-
perimental performance of noncommunicating reinforcement
learning actuators was tested first in order to evaluate the ability
of the real-world multiactuator team to reduce the measured force
acting on the object. Sinusoidal test signals �22� and �23� were
used to facilitate the learning process. As in the numerical simu-
lations, the adjustable network weights were initialized with ran-
dom numbers on the interval �−0.5,0.5�. Learning was allowed
for the first 30 s of the experiment. For the last 20 s of the experi-
ment, no learning was allowed and the hydraulic actuators
handled the object using their previously learned behaviors. In the
experiments, the nominal learning rate observed was approxi-
mately 80 Hz. As a practical consideration, the software algorithm
was set up so that the learning process was reinitialized whenever
the absolute value of the measured force exceeded 100 N. In prac-
tice, such a threshold is needed to prevent damage to the object

due to the application of unexpected excessive force. It was ob-
served that the measured force was reduced significantly in all but
1 of the 20 trials conducted. Typical experimental performance,
which is in qualitative agreement with the results of the numerical
simulations �see Fig. 5�, is shown in Fig. 11.

Referring to Fig. 11, it is observed that the measured force is
reduced almost immediately from the 40 N peak-to-peak bench-
mark value �see Fig. 10�a�� to about 10 N peak to peak during
learning �time interval �1��. This is a marked improvement over
the benchmark performance of the system. The corresponding tra-
jectory modifications, which illustrate the corrective actions ap-
plied by the neural networks, are shown in Fig. 11�b�. As in simu-
lations, it is observed that in the absence of communication, the
hydraulic actuators do not learn to equally share the burden of
reducing the measured force. Comparing Fig. 11�c�, which reports

Fig. 10 Benchmark experimental performance on sinusoidal
trajectory „22… before learning: „a… measured force; „b… position
trajectory errors, x 1

d−x1 and x 2
d−x2

Fig. 11 Typical experimental performance of noncommunicat-
ing agents on coordination task: „a… measured force; „b… trajec-
tory corrections �x1 and �x2; „c… position trajectory errors, x 1

d

−x1 and x 2
d−x2. Legend: „1… learning; „2… after learning.
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the position error of each actuator with respect to the desired
trajectory, to Fig. 10�b�, it is observed that the force has been
reduced with negligible impact on positional accuracy. Figure
11�c� also reveals that in the experiment, the hydraulic actuators
have reduced the force by learning how to match their position
trajectory errors �see Fig. 11�c� for 20� t�30 s�. After learning
has ceased �time interval �2��, the multiactuator team maintained
its performance and kept the measured values of the force less
than 10 N peak to peak.

5.2.3 Performance With Communication. The experimental
performance of reinforcement learning actuators was tested next
in the presence of communication. As before, the actuators
learned for the first 30 s of the experiment and handled the objects
using their previously learned behaviors for the remaining 20 s of
the test. Twenty trials were conducted and the multiactuator team
was observed to learn how to significantly reduce the measured
value of the force in all but two trials.

Typical experimental results with communication are shown in
Fig. 12. Figure 12�a� shows that the measured force is reduced
very quickly after learning begins �time interval �1�� from 40 N
peak to peak down to about 20 N peak to peak. This performance
is maintained after learning has ceased during time interval �2�.
Figure 12�c� shows that the learning process had minimal impact
on the position error of each actuator with respect to the desired
trajectory. More importantly, however, it is observed that the use
of communication has enabled the actuators to learn a highly co-
operative positioning strategy where the correction effort of each
actuator is similar in magnitude �compare time interval �2� of
Figs. 11�b� and 12�b��. The experimental results thus confirm the
observation that the hydraulic actuators are better able to learn
how to work as a team toward reducing the interaction force when
they are permitted to communicate their position errors periodi-
cally during learning.

Two final experiments were conducted using communication to
further evaluate the practical performance of the reinforcement
learning system. In the first experiment, the robustness of the re-
inforcement learning control architecture to changes in the object
properties was assessed. The second experiment tested the gener-
alization of previously learned control actions to more realistic
position trajectories that include starting and stopping motions.

In the first experiment, the stiffness of the object was increased
by 25% from 5.3 kN/m to 6.6 kN/m. Since the object stiffness
has increased, the measured force is more sensitive to the neural
network trajectory corrections. Consequently, as discussed previ-
ously in Sec. 3, the envelope of stochastic exploration had to be
reduced in size by scaling Eq. �4� by a factor of 0.6, i.e., �
=0.6�1− r̂�, to obtain good learning performance. The neural net-
work weights were initialized with random values and the same
learning experiment as in the previous section was conducted.
Typical measured forces and actuator trajectory corrections for the
object with increased stiffness are shown in Fig. 13�a�. As ex-
pected, the peak-to-peak values of the interaction force have been
reduced by approximately 50% from 60 N �using the proportional
controller only� to approximately 30 N as a result of reinforce-
ment learning. The performance of the system is also maintained
after learning has ceased. Referring to Fig. 13�b�, the use of com-
munication has again ensured that both hydraulic actuators learn
to contribute equally to reducing the measured force.

To test the generalization of previously learned control actions
to position trajectories that require the actuators to start and stop,
the test trajectory shown in Fig. 14�a� was used. The benchmark
interaction force under proportional control only for this test tra-
jectory is shown in Fig. 14�b�. As is seen, the measured force
ranges between ±20 N, and the mean value is observed to drift
slightly over time.

The experimental performance of the reinforcement learning
system for the generalization test is shown in Fig. 15. In this
experiment, the neural network weights were first adapted during

a 30 s pretraining period using the sinusoidal reference trajecto-
ries �22� and �23�. Next, the actuators were commanded to move
the object according to the desired trajectories shown in Fig.
14�a�. For the first 15 s of the experiment �time interval �1��, no
additional learning was allowed and the actuators handled the ob-
ject using their previously learned behaviors. Figure 15�a� illus-
trates that the neural controllers can reduce the measured force
from 40 N peak to peak to approximately 10 N peak to peak.
Hence, the trajectory corrections learned while training on the
sinusoidal reference trajectory seem to generalize well to more
realistic manipulation tasks where the actuators are required to
stop and start. It is also observed that no significant improvement
or degradation in performance is obtained with additional learning
�time interval �2��.

Fig. 12 Typical experimental performance on coordination
task with communication: „a… measured force; „b… trajectory
corrections �x1 and �x2; „c… position trajectory errors, x 1

d−x1
and x 2

d−x2. Legend: „1… learning; „2… after learning.
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6 Conclusions
In this paper, decentralized multiagent reinforcement learning

has been applied to the problem of coordinating the motion of two
horizontal hydraulic actuators engaged in moving an object along
a specified position trajectory. To reduce the interaction force act-
ing on the object, which arises as a result of imperfect closed-loop
position control, each hydraulic actuator was outfitted with a
RLNN that can modulate the measured force between the imple-
ment and the object by modifying the local prescribed formation
constrained reference trajectory. The reinforcement learning goal
was to enable each actuator to �i� learn how to select actions that
reduce the object interaction force and �ii� to learn a cooperative
control strategy where the burden of reducing the interaction force
is shared equally amongst the actuators. To achieve these objec-
tives, the weights of each neural network were updated on-line
using a modified form of a reinforcement learning algorithm de-
scribed previously in the literature, which maximizes the immedi-
ate reward. The efficacy of the proposed decentralized coordinated
motion control scheme was proven using both simulation studies
and experiments.

The experimental results showed that the reinforcement learn-
ing hydraulic actuators could indeed learn a decentralized control
strategy to improve their coordination toward reducing the object
interaction force with little effect on positional accuracy and with-
out any knowledge of the other actuator’s state. However, the
experimental results also showed that without some knowledge of
the other’s state, the actuators could not learn how to select com-
plimentary control actions that allow them to equally share their
efforts. This problem, which arises due to the credit assignment
dilemma, was alleviated by allowing the actuators to communi-
cate their local position errors periodically during learning. Ex-

Fig. 13 Typical experimental performance with communica-
tion and increased object stiffness: „a… measured force; „b… tra-
jectory corrections �x1 and �x2. Legend: „1… learning; „2… after
learning.

Fig. 14 Benchmark experimental performance on test trajec-
tory with starting and stopping motions: „a… desired position;
„b… measured force

Fig. 15 Typical experimental performance for trajectory fol-
lowing test task with communication: „a… measured force; „b…
trajectory corrections �x1 and �x2. Legend: „1… after pretrain-
ing on sinusoidal trajectory for 30 s; „2… additional learning.
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periments showed that the quality of coordinated motion, where
each actuator contributes equally to reducing the force, could be
improved by permitting interactuator communication. These gen-
eral characteristics of the inherently stochastic reinforcement
learning system were confirmed via simulation studies. This paper
has thus established reinforcement learning as a promising tech-
nique for synchronizing the motion of several nonlinear hydraulic
manipulators in a single degree of freedom. Future research ef-
forts in this area should examine the applicability of the approach
toward the coordinated motion control of multiple degree-of-
freedom hydraulic robots manipulating objects along several di-
mensions. The scalability of the approach to more than two ma-
nipulators should also be investigated. In addition, the
reinforcement learning control technique proposed in this paper
may also be relevant in applications involving prime movers other
than fluid power actuators.

Acknowledgment
The authors would like to thank the Natural Sciences and En-

gineering Research Council �NSERC� of Canada who provided
financial support for this research.

References
�1� Vuckbrotovic, M., and Tuneski, A. I., 1998, “Mathematical Model of Multiple

Manipulators: Cooperative Compliant Manipulation on Dynamical Environ-
ments,” Mech. Mach. Theory, 33, pp. 1211–1239.

�2� Braun, B. M., Starr, G. P., Wood, J. E., and Lumia, R., 2004, “A Framework
for Implementing Cooperative Motion on Industrial Controllers,” IEEE Trans.
Rob. Autom., 20, pp. 583–589.

�3� Arimoto, S., Miyazaki, F., and Kawamura, S., 1987, “Cooperative Motion
Control of Multiple Robot Arms or Fingers,” Proceedings of the 1987 IEEE
International Conference on Robotics and Automation, Raleigh, NC, pp.
1407–1412.

�4� Kopf, C. D., and Yabuta, T., 1988, “Experimental Comparison of Master/Slave
and Hybrid Two Arm Position/Force Control,” Proceedings of the 1988 IEEE
International Conference on Robotics and Automation, Philadelphia, PA, pp.
1633–1637.

�5� Raibert, M. H., and Craig, J. J., 1981, “Hybrid Position/Force Control of
Manipulators,” ASME J. Dyn. Syst., Meas., Control, 102, pp. 126–133.

�6� Yoshikawa, T., and Zheng, X.-Z., 1993, “Coordinated Dynamic Hybrid
Position/Force Control for Multiple Robot Manipulators Handling One Con-
strained Object,” Int. J. Robot. Res., 12�3�, pp. 219–230.

�7� Perdereau, V., and Drouin, M., 1996, “Hybrid External Contol for Two Robot
Coordinated Motion,” Robotica, 14, pp. 141–153.

�8� Liu, Y.-H., and Arimoto, S., 1996, “Distributively Controlling Two Robots
Handling an Object in the Task Space Without any Communicaiton,” IEEE
Trans. Autom. Control, 41�8�, pp. 1193–1198.

�9� Uzmay, I., Burkan, R., and Sarikaya, H., 2004, “Application of Robust and
Adaptive Control Techniques to Cooperative Manipulation,” Control Eng.

Pract., 12, pp. 139–148.
�10� Woon, L. C., Ge, S. S., Chen, X. Q., and Zhang, C., 1999, “Adaptive Neural

Network Control of Coordinated Manipulators,” J. Rob. Syst., 16�4�, pp. 195–
211.

�11� Nakayama, T., Arimoto, S., and Naniwa, T., 1995, “Coordinated Learning
Control for Multiple Manipulators Holding an Object Rigidly,” Proceedings of
the 1995 IEEE International Conference on Robotics and Automation,
Nagoya, Japan, 2, pp. 1529–1534.

�12� Schneider, S. A., and Cannon, R. H., Jr., 1992, “Object Impedance Control for
Cooperative Manipulation: Theory and Experimental Results,” IEEE Trans.
Rob. Autom., 8�3�, pp. 383–394.

�13� Zeng, H., and Sepehri, N., 2005, “Nonlinear Position Control of Cooperative
Hydraulic Manipulators Handling Unknown Payloads,” Int. J. Control, 78�3�,
pp. 196–207.

�14� Mulder, M. C., and Malladi, S. R., 1991, “A Minimum Effort Control Algo-
rithm for a Cooperating Sensor Driven Intelligent Multi-Jointed Robotic Arm,”
Proceedings of the 30th IEEE Conference on Decision and Control, Brighton,
UK, 2, pp. 1573–1578.

�15� Zeng, H., and Sepehri, N., 2007, “On Tracking Control of Cooperative Hy-
draulic Manipulators,” Int. J. Control, 80�3�, pp. 454–469.

�16� Sutton, R. S., and Barto, A., 1998, Reinforcement Learning: An Introduction,
The MIT Press, Cambridge, MA.

�17� Kaebling, L. P., Littman, M. L., and Moore, A. W., 1996, “Reinforcement
Learning: A Survey,” J. Artif. Intell. Res., 4, pp. 237–285.

�18� Sutton, R. S., 1984, “Temporal Credit Assignment in Reinforcement Learn-
ing,” Ph.D. thesis, University of Massachusetts, Amherst.

�19� Russell, S., and Norvig, P., 1995, Artificial Intelligence: A Modern Approach,
Prentice-Hall, Englewood Cliffs, NJ.

�20� Watkins, C. J. C. H., 1989, “Learning With Delayed Rewards,” Ph.D. thesis,
Cambridge University, Cambridge.

�21� Williams, R. J., 1992, “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning,” Mach. Learn., 8�3�, pp. 229–256.

�22� Barto, A., Sutton, R. S., and Anderson, C. W., 1983, “Neuronlike Adaptive
Elements That Can Solve Difficult Learning Control Problems,” IEEE Trans.
Syst. Man Cybern., 13, pp. 834–846.

�23� Anderson, C. W., 1989, “Learning to Control an Inverted Pendulum Using
Neural Networks,” IEEE Control Syst. Mag., 9�3�, pp. 31–37.

�24� Gullapalli, V., Franklin, J. A., and Benbrahim, H., 1994, “Acquiring Robot
Skills via Reinforcement Learning,” IEEE Control Syst. Mag., 14, pp. 13–24.

�25� Tzasfestas, S. G., and Rigatos, G. G., 2002, “Fuzzy Reinforcement Learning
Control for Compliance Tasks of Robotic Manipulators,” IEEE Trans. Syst.,
Man, Cybern., Part B: Cybern., 32, pp. 107–113.

�26� Stone, P., and Veloso, M., 2000, “Multiagent Systems: A Survey From a Ma-
chine Learning Perspective,” Auton. Rob., 8, pp. 345–383.

�27� Gullapalli, V., 1990, “Stochastic Reinforcement Learning Algorithm for Learn-
ing Real-Valued Functions,” Neural Networks, 3�6�, pp. 671–692.

�28� Mataric, M. J., 1998, “Using Communication to Reduce Locality in Distrib-
uted Multi-Agent Learning,” J. Exp. Theor. Artif. Intell., 10�3�, pp. 357–369.

�29� Merritt, H., 1967, Hydraulic Control Systems, Wiley, New York.
�30� Karpenko, M., and Sepehri, N., 2003, “Robust Position Control of an Electro-

hydraulic Actuator With a Faulty Actuator Piston Seal,” ASME J. Dyn. Syst.,
Meas., Control, 125�3�, pp. 413–423.

�31� Bishop, C. M., 1995, Neural Networks for Pattern Recognition, Oxford Uni-
versity Press, New York.

Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 2007, Vol. 129 / 741

Downloaded 06 Sep 2007 to 130.179.230.148. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


