
Coordination of Hydraulic Manipulators by Reinforcement Learning

Mark Karpenko, John Anderson and Nariman Sepehri

Abstract— In this paper, a reinforcement learning method is
applied to coordinate a pair of horizontal hydraulic actuators
engaged in the cooperative positioning of an object. The goal
is to enable the actuators to discover how to intelligently
select control actions that tend to reduce the interaction
forces directed along the axis of motion, while maintaining the
desired trajectory. First, a detailed and realistic dynamic model
of the entire system is derived. A multi-layer reinforcement
learning neural network control architecture is designed next to
regulate the interaction force during positioning. To regulate the
interaction force, the neural network measures the interaction
force and proposes a modification to the a priori prescribed
formation constrained position trajectory. Each actuator system
is outfitted with such a neural controller so that a decentral-
ized reinforcement learning control system results. Simulations
demonstrate the efficacy of the approach towards reducing the
interaction forces and minimizing the associated object internal
force in a single degree of freedom.

I. INTRODUCTION

One aspect of robotics research that continues to receive

much attention in the literature is the manipulation of ob-

jects using multi-robot coordinated frameworks. One obvious

benefit of such an approach is the ability to manipulate

large or awkward objects that would be difficult for a

single robot to handle. Another important advantage of using

multi-manipulator systems is the possibility of regulating

the internal force acting on the object [1]. However, when

two or more manipulators are used to move an object, a

closed kinematic chain is formed and the motion of one

manipulator is translated through the object to affect the

motion of the other manipulators [2]. Consequently, it is

challenging to develop decentralized control systems for

effective coordinated manipulation and much development

is needed in this area.

One way to coordinate the efforts of multiple manipulators

performing a single task is by the use of reinforcement

learning (RL). Reinforcement learning [3] is an artificial

intelligence approach for machine learning that adopts the

notions of reward and punishment as a means of directing

the learning task. Learning by reinforcement is accomplished

by trial and error as the learning agents measure the en-

vironmental state using sensors and then respond to the

current stimuli by executing an action appropriate to the

circumstances. By associating a reward with the selected

action, it is possible via the RL algorithm to strengthen
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or weaken the tendency of the agent to execute the same

action when a similar state is sensed in the future. The

learning goal is therefore to discover an action-selection

policy that maximizes the reward. RL has been applied

successfully to many difficult control problems (see [4] and

[5] for examples). Yet, the application of RL techniques

to decentralized control problems, such as coordinating the

efforts of multiple manipulators, has only more recently

begun to receive attention in the literature.

The literature pertaining to the coordinated control of

multiple hydraulic manipulators, in particular, is not well

developed and is limited to only a few examples employing

centralized control strategies [6], [7], [8]. Moreover, the

application of decentralized control techniques to this prob-

lem has not been addressed and deserves attention. Due to

their widespread use in industry, the development of control

strategies for coordinating the efforts of multiple hydraulic

manipulators is also of industrial significance. The goal of

this paper, therefore, is to employ RL for coordinating a

pair of hydraulic actuators performing a single task in a

decentralized framework, for the first time.

The coordinated positioning task of interest in this paper

is for two hydraulic actuators to rigidly grasp and move an

object between two locations along a line while avoiding

the application of excessive interaction forces. A single

degree-of-freedom manipulation task was chosen to ease the

dynamic analysis and maintain the focus of this paper on

the RL aspects of the problem. To accomplish the specified

positioning task, the hydraulic actuators must follow a priori
defined formation constrained reference trajectories. Each

hydraulic actuator is therefore provided with a simple pro-

portional closed-loop position controller. While it is assumed

that the entire manipulation task can be accomplished using

this control law alone, positioning errors arise due to the

nonlinear nature of the hydraulic functions and imperfect

actuator dynamics. These errors result in the application of

excessive interaction forces to the manipulated object.

To improve performance, and reduce the interaction force,

each hydraulic actuator is also outfitted with a specially

designed RL multi-layer neural network controller that can

modify the prescribed trajectory dynamically in response to

the locally measured interaction force. The neural controllers

adjust their weights independently using the RL algorithm of

Gullapalli [9], a RL algorithm that has not been tested before

in a multiagent learning environment. The learning goal is

for each actuator to acquire, by maximizing the immediate

reward, a cooperative intelligent positioning strategy that

reduces the interaction force as much as possible while

maintaining the desired trajectory. The undesirable internal
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force is also reduced as a result.

II. MATHEMATICAL MODELING

A schematic of the servovalve controlled hydraulic actua-

tor is shown in Fig. 1 along with the nomenclature associated

with the mathematical model. State equations that describe

the closed-loop actuator dynamics between the desired, xd,

and actual, x, positions of the actuator can be formed as [10],

[11].

ẋ = v

v̇ =
1
m

(−bv + A1P1 − A2P2 − F )

Ṗ1 =
β

A1x + V̄
(Q1 − A1ẋ)

Ṗ2 =
β

A2(L − x) + V̄
(−Q2 + A2ẋ)

ẋv = vv

v̇v = −ωv
2xv − 2ζvωvvv + Kpkvωv

2(xd − x)

(1)

Referring to (1), the system states are actuator position

x, actuator velocity v, chamber pressures P1 and P2, valve

spool displacement xv , and valve spool velocity vv . Param-

eters m and b are the combined mass of the actuator piston

and rod and the viscous actuator damping, respectively. Area

A1 refers to the area of the piston and area A2 is the

annulus area of the piston on the rod side of the actuator.

The effective bulk modulus of the hydraulic fluid is denoted

by β, while L denotes the actuator stroke and parameter V̄
represents the volume of the connecting lines between the

servovalve and the actuator. The valve spool dynamics are

expressed as a second-order lag where kv is the valve spool

position gain and parameters ωv and ζv are the servovalve

undamped natural frequency and damping ratio, respectively.

Gain Kp is the closed-loop proportional gain. Load force F
is a disturbance input and arises when the actuator interacts

with the environment or another actuator.

valve spool

torque motor

actuator

end effector

Fig. 1. Schematic of hydraulic actuator for mathematical modeling.

Assuming the valve orifices are matched and symmetrical,

the control flows, Q1 and Q2, supplied by the servovalve

are given by the turbulent orifice equation [10]. For positive

valve spool displacements, xv ≥ 0, the control flows are

Q1 = Kfxv

s
2 (Ps − P1)

ρ
; Q2 = Kfxv

s
2 (P2 − Pr)

ρ
(2)

For negative valve spool displacements, xv < 0, the control

flows are

Q1 = Kfxv

s
2 (P1 − Pr)

ρ
; Q2 = Kfxv

s
2 (Ps − P2)

ρ
(3)

In (2) and (3), parameter ρ is the mass density of the

hydraulic fluid and Kf is the servovalve flow gain. Ps

and Pr denote the hydraulic supply and return pressures,

respectively. The values of the hydraulic actuator parameters

used for simulation are listed in Table I.

TABLE I

PARAMETERS OF HYDRAULIC ACTUATOR FOR SIMULATION.

Parameter Symbol Value
supply pressure Ps 6.9 MPa (1000 psi)
return pressure Pr 0

total mass of piston and rod m 10 kg
viscous damping coefficient b 350 N·sec/m

actuator stroke L 0.6096 m
piston area A1 1.14×10−3 m2

piston annulus area A2 6.33×10−4 m2

volume of connecting lines V̄ 4.15×10−5 m3

valve flow gain Kf 0.01245 m2/m
valve spool position gain kv 4.06×10−5 m/V
valve natural frequency ωv 150 Hz

valve damping ratio ζv 0.5
density of hydraulic fluid ρ 847 kg/m3

bulk modulus of hydraulic fluid β 689 MPa
position control gain Kp 250 V/m

The dynamic model of the manipulated object is con-

structed with reference to Fig. 2. Referring to Figs. 2a

and 2b, the object of length, l is modeled as a lumped

mass, M , connected to the end effector of each hydraulic

actuator by a spring/damper pair having constants k and d,

respectively. Since the hydraulic actuators cannot follow their

desired trajectories perfectly, in general x1 �= xd
M − l/2 and

x2 �= xd
M +l/2 leading to deformation of the object as in Fig.

2c. In this paper, the hydraulic actuators are each assumed to

have the same values of the model parameters listed in Table

I. However, the asymmetry in the actuator piston areas causes

them to travel at different speeds depending on the direction

of motion. This discrepancy causes differences in the position

errors of each actuator and results in the deformation of the

object. In practice, slight differences in the parameters of

each actuator would further influence the position errors.

The equation of motion for mass M can be written as

MẍM = F1 − F2, where F1 and F2 denote the interaction

forces arising from the hydraulic actuators in contact with

the object. Thus, the following state equations for simulation

may be derived using the nomenclature of Fig. 2

ẋM = vM

v̇M = M−1 [k(x1 + x2 − 2xM ) + d(v1 + v2 − 2vM )]
(4)
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Fig. 2. Schematic of coordinated manipulation task for mathematical
modeling: (a) hydraulic actuators grasping object of length l; (b) definition
of desired trajectories xd

1 and xd
2 with respect to desired object position

xd
M ; (c) deformation of object due to positioning errors.

In (4), vM is the velocity of the mass while v1 and v2 refer

to the velocities of the hydraulic actuators. The parameters

of the object used for simulation are listed in Table II.

TABLE II

PARAMETERS OF OBJECT FOR SIMULATION.

Parameter Value
M 0.296 kg
k 3002 N/m
d 47 N·s/m
l 120 mm

III. CONTROL ARCHITECTURE

A schematic of the reinforcement learning (RL) control

architecture is illustrated in Fig. 3. With reference to Fig. 3,

each actuator is positioned using a simple closed-loop pro-

portional control law. The input signal to the control loop, x̄d,

is the summation of the desired position trajectory, xd, and a

trajectory correction, Δx, that is output by the reinforcement

learning neural network (RLNN). The trajectory correction is

used to modulate the interaction force during the manipula-

tion task. The RLNN consists of a temporal preprocessor,

two independent multi-layer feedforward networks and a

Gaussian random number generator. Output Δx is therefore

a normally distributed random variable Δx ∼ Ψ (μ, σ)
whose mean value and stochasticity are controlled by neural

network outputs, μ and σ = s(r̂), respectively. Function

σ = s(r̂) was selected to be a monotonically decreasing

nonnegative function

σ = 1 − r̂ (mm) (5)

Physically, equation (5) limits the stochastic exploration of

the random output to an envelope within 2 mm of network

output, μ , 95% of the time.
Referring to Fig. 3, it is observed that the single input to

the RLNN is the measured force, F , between the end effector

of the manipulator and the object. Temporal information

carried by the force transducer output is implicitly captured

by the temporal preprocessor which is a first-order tapped

delay line consisting of unit delay operator z−1. Hence,

each neural network has two inputs, the current value of

the force transducer output, F (t), and the stored value of

the force measurement, F (t − Δt), from the previous time

step. The short-term memory characteristic of the temporal

preprocessor allows the neural network to generate an input-

output map that considers the dynamics of the input and

thus behave as a one-step ahead predictor [12]. Considering

this and the fact that the neural networks have bias terms,

the control action tends to resemble a proportional-integral-

derivative control law.
The performance of each actuator is evaluated based on

the measured interaction force, F , as follows:

r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.05 |F | + 1 if |F | < 10 N

−0.0075 |F | + 0.575 if 10 N ≤ |F | < 50 N

−0.004 |F | + 0.4 if 50 N ≤ |F | < 100 N

0 otherwise

(6)

Evaluation function (6) is piece-wise continuous and gener-

ates a reinforcement signal, r ∈ [0, 1]. Since it is assumed

the each actuator is equipped with a force transducer, a

reinforcement signal can be computed locally by substituting

the measured value of force F1 or F2 for F in (6).
The multi-layer feedforward networks of each RLNN were

restricted to have a variable number of hidden neurons ar-

ranged in a single layer. The hidden layer neurons use logistic

activation functions φ(v) = 1
(1−e−v) . The output of the first

neural network, referred to hereafter as the control network,

is computed as the linear weighted sum of the outputs of

the hidden layer neurons. The output unit of the second

neural network, referred to in the sequel as the reinforcement

estimator, uses a logistic activation function similar to the

hidden layer neurons. This output function was selected since

the actual value of the environmental reinforcement, r, varies

continuously between 0 and 1. Together the output neurons of

the control network and the reinforcement estimator as well

as the Gaussian random number generator form a stochastic

real valued (SRV) reinforcement learning element [9].
Both weight vectors of the SRV unit are tuned based on the

actual value of the external reinforcement, r ∈ [0, 1], received

from the environment. In this paper, the hidden layer weights

of the control network are updated at each time step, Δt,
using a slightly modified version of the original SRV weight

update rule [9]

wj(t+Δt) = wj(t)+0.5σ(t)S {r(t) − r̂(t)} (Δx(t) − μ(t)) zj(t)
(7)
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Fig. 3. Schematic of reinforcement learning control system.

where function S{·} denotes the sign function. A more

detailed discussion on the interpretation and comments on

the stability of (7) can be found in [9] and [13], respectively.

Equation (7) was used only to update the hidden layer

weights of the control network. The remaining input layer

weights of the control network are adapted using standard

error back-propagation [12] with a learning rate of 0.5. Since

reinforcement comparison r − r̂ is known at each time step,

the weights of the reinforcement estimator were adapted

using simple gradient descent and a learning rate of 0.5.

IV. SIMULATION RESULTS

It is expected that the performance of the hydraulic actua-

tors, with respect to alleviating the interaction force, should

continue to improve as the manipulation task is repeated.

Therefore, to facilitate training, the desired smooth path

between the initial and final positions of the manipulated

object was approximated by the continuous function

xd
M = 200 sin (0.5πt) + 300 (mm) (8)

The use of (8) allows the simulation of repetitive carrying

tasks so that learning can proceed uninterrupted.

The first set of simulations performed were carried out

to ascertain the ideal number of units in the hidden layers

of each RLNN. The adjustable weights were first randomly

initialized on the interval [−0.5, 0.5] and the dynamic equa-

tions were simulated for 55 repetitions of the manipulation

task (120 sec). The fourth-order Runge-Kutta integration

scheme with a time step of 0.001 sec was used. Learning

was assumed to occur at a constant rate of 100 Hz and an

equal number of hidden neurons in the control network and

reinforcement estimator was used. One hundred trials were

run for hidden layer sizes ranging from 2 to 24 neurons.

For each trial the root-mean-square (RMS) values of the

interaction forces were computed as an indicator of their

variance over the manipulation task. It was observed that

networks having 10 hidden layer neurons were ideal for the

reinforcement learning problem at hand.

To test the ability of the proposed reinforcement learn-

ing scheme to improve the coordination of the hydraulic

actuators by reducing the interaction forces, a second set of

simulations was performed with neural networks having the

ideal hidden layer size. As before, the adjustable network

weights were first initialized with random numbers on the

interval [−0.5, 0.5] and learning was assumed to occur at a

rate of 100 Hz. The system was simulated for 120 sec and

500 trials were conducted in an effort to nullify the effects

of the random initialization of the adjustable weights. For

each trial, the average RMS value of the interaction force

was computed over the last ten seconds of simulated time to

assess performance after learning had converged. The results

are shown in Fig. 4.

Fig. 4 shows that reinforcement learning improves the

coordination of the hydraulic actuators and significantly

reduces the RMS value of the interaction force (due to po-

sitioning errors) from a baseline value of 8.7 N (represented

by the dashed line in Fig. 4) to 1.2 N on average. Note that

the interaction force can never be zeroed entirely since some

force is required to accelerate the object as the actuators

follow the prescribed position trajectory. Moreover, the im-

provement in the coordination of the hydraulic manipulators

has been accomplished using a decentralized control scheme

and without the need to communicate local state information.

To illustrate how the performance of the hydraulic actua-

tors is improved by reinforcement learning, the time histories
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Fig. 4. Root-mean-square interaction force after learning. Dashed line
indicates baseline performance with reinforcement learning neural networks
switched off.

of the interaction forces and the trajectory corrections applied

by the RLNNs were obtained for a typical trial. The object

internal force, which represents the excess interaction force

absorbed by the object [1], and the object position error were

also recorded. The RLNNs were switched off for the first ten

seconds of the simulation to establish the baseline perfor-

mance. Then, the RLNNs (with random initial conditions)

were activated and learning was allowed for the next 100

seconds of simulated time. For the final ten seconds of the

simulation, no further learning was allowed and the hydraulic

actuators handled the object using their previously learned

behaviors.

Fig. 5a shows that before learning, (time interval 1©)

the peak values of the interaction forces reached nearly

13 N in magnitude. After the RLNNs were switched on

and learning began (time interval 2©), the interaction forces

were reduced almost immediately. Learning continued to

improve the performance as time increased. After learning,

during time interval 3©, it is observed that the peak to

peak amplitude of the interaction forces has been reduced

to less than 3.5 N, a 70% improvement over the baseline

performance.

The trajectory corrections applied by the RLNNs are

shown in Fig. 5b. At the beginning of time interval 2©, the

RLNNs are exploring the environment most. Consequently,

randomness in the corrections is observed. However, as the

time increased beyond 30 seconds the noise associated with

the explorative behavior is reduced. Thus, each RLNN has

learned a control strategy that maximizes the reward.

Fig. 6 shows the internal force and error in the position

(xd
M − xM ) of the object for the same trial. Inspection of

the figure shows that the internal force is reduced from 12 N

to less than 3 N without affecting the positional accuracy

of the manipulated object. Thus, the benefit of improved

coordination amongst the hydraulic actuators is obtained

while adhering to the desired position trajectory.

A final simulation was carried out to test the generalization
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Fig. 5. Typical performance on manipulation task: (a) interaction forces,
F1 and F2; (b) trajectory corrections, Δx1 and Δx2. Legend: 1© before
learning; 2© during learning; 3© after learning.
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Fig. 6. Typical performance on manipulation task: (a) internal force; (b)
position error xd

M − xM . Legend: 1© before learning; 2© during learning;
3© after learning.

of the previously learned control actions to position trajec-

tories with starting and stopping motions before and after

the manipulation task. The first 30 seconds of the repetitive

test trajectory is shown in Fig. 7. To establish the baseline

performance, the first three motions of Fig. 7 were carried

out with the RLNNs turned off. Then at t = 15 seconds, the

RLNNs, pre-trained using sinusoidal reference trajectory (8)

for 30 seconds, were activated and no additional learning

was allowed to occur. Finally, at t = 30 seconds learning

was allowed to resume at a rate of 100 Hz. The results are

shown in Fig. 8

Referring to Fig. 8 it is observed that after pre-training,

the selected trajectory corrections generalize well to more

realistic manipulation tasks and the hydraulic manipulators

behave stably before starting and after stopping motion.

Moreover, without further training (time interval 2©), the
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peak interaction forces are reduced by over 60% compared to

the case where the RLNNs are switched off. With additional

learning (time interval 3©) the neural network weights are

further refined to reduce the loading of the object when the

motion is stopped.

Several other simulation tests were carried out to examine

the robustness of the proposed coordination scheme for

objects having various characteristics. The adaptability of the

distributed reinforcement learning scheme was also tested by

examining how the system responds to sudden changes in

the characteristics of the object. The system was observed to

possess the capacity accommodate various objects and also

to react stably to sudden changes in the object parameters.

However, the results of these simulations have been omitted

for the sake of brevity.

V. CONCLUSIONS

A method, based on reinforcement learning, was intro-

duced in this paper to improve the coordination of two

horizontal hydraulic actuators engaged in positioning an

object along a line. Each manipulator system was outfitted

with a specially designed reinforcement learning neural net-

work (RLNN) controller to generate a modification to the

prescribed formation constrained trajectory in response to

the locally measured interaction force. The weights of each

RLNN were updated on-line using a reinforcement learning

scheme, described previously in the literature, yet never

tested in a multiagent reinforcement learning environment.

A detailed mathematical model of the multi-actuator sys-

tem was developed to facilitate simulations that proved the

efficacy of the proposed coordinated manipulation scheme.

The simulation results showed that the manipulators could

learn, by reinforcement, to intelligently select control actions

that significantly reduce the interaction forces during the

positioning of an object, while maintaining the desired posi-

tion trajectory, even in unseen circumstances. Importantly, it

was also observed that undesirable internal forces could be

reduced using a decentralized control scheme and without the

need for explicit communication of local state information.

REFERENCES

[1] M. Vuckbrotovic and A. I. Tuneski, “Mathematical model of multiple
manipulators: Cooperative compliant manipulation on dynamical envi-
ronments,” Mechanism and Machine Theory, vol. 33, pp. 1211–1239,
1998.

[2] B. M. Braun, G. P. Starr, J. E. Wood, and R. Lumia, “A framework
for implementing cooperative motion on industrial controllers,” IEEE
Transactions on Robotics and Automation, vol. 20, pp. 583–589, 2004.

[3] R. Sutton and A. Barto, Reinforcement Learning. Cambridge, MA:
MIT Press, 1998.

[4] C. W. Anderson, “Learning to control an inverted pendulum using
neural networks,” IEEE Control Systems Magazine, vol. 9, no. 3, pp.
31–37, 1989.

[5] V. Gullapalli, J. A. Franklin, and H. Benbrahim, “Acquiring robot
skills via reinforcement learning,” IEEE Control Systems Magazine,
vol. 14, pp. 13–24, 1994.

[6] H. Sun and T.-C. Chiu, “Motion synchronization for dual-cylinder
electrohydraulic lift systems,” IEEE/ASME Transactions on Mecha-
tronics, vol. 7, no. 2, pp. 171–181, 2002.

[7] T. Asokan, M. Singaperumal, and G. Seet, “Performance analysis of an
electrohydraulic impedance controller for robotic interaction control,”
Advanced Robotics, vol. 17, pp. 791–806, 2003.

[8] H. Zeng and N. Sepehri, “Nonlinear position control of cooperative
hydraulic manipulators handling unknown payloads,” International
Journal of Control, vol. 78, pp. 196–207, 2005.

[9] V. Gullapalli, “Stochastic reinforcement learning algorithm for learn-
ing real-valued functions,” Neural Networks, vol. 3, no. 6, pp. 671–
692, 1990.

[10] H. Merritt, Hydraulic Control Systems. New York: Wiley, 1967.
[11] M. Karpenko and N. Sepehri, “Robust position control of an electro-

hydraulic actuator with a faulty actuator piston seal,” ASME Journal
of Dynamic Systems, Measurement and Control, vol. 125, no. 3, pp.
413–423, 2003.

[12] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

[13] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no. 3,
pp. 229–256, 1992.

3226


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




