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Abstract—Imitation learning enables a learner to improve its
abilities by observing others. Most robotic imitation learning
systems only learn from demonstrators that are homogeneous
physiologically (i.e. the same size and mode of locomotion) and
in terms of skill level. To successfully learn from physically
heterogeneous robots that may also vary in ability, the imitator
must be able to abstract behaviours it observes and approximate
them with its own actions, which may be very different than
those of the demonstrator. This paper describes an approach
to imitation learning from heterogeneous demonstrators, using
global vision for observations. It supports learning from physio-
logically different demonstrators (wheeled and legged, of various
sizes), and self-adapts to demonstrators with varying levels of
skill. The latter allows a bias toward demonstrators that are
successful in the domain, but also allows different parts of a
task to be learned from different individuals (that is, worthwhile
parts of a task can still be learned from a poorly-performing
demonstrator). We assume the imitator has no initial knowledge
of the observable effects of its own actions, and train a set
of Hidden Markov Models to map observations to actions and
create an understanding of the imitator’s own abilities. We
then use a combination of tracking sequences of primitives
and predicting future primitives from existing combinations
using forward models to learn abstract behaviours from the
demonstrations of others. This approach is evaluated using a
group of heterogeneous robots that have been previously used in
RoboCup soccer competitions.

I. INTRODUCTION

Imitation learning - the ability to observe demonstrations
of behaviour and reproduce functionally equivalent behaviour
with ones own abilities - is a powerful mechanism for improv-
ing the abilities of an intelligent agent. Evidence of learning
from the demonstrations of others can be seen in primates,
birds, and humans [1], [2], [3]. From an AI perspective, this is
attractive because of its potential for dealing with the general
problem of knowledge acquisition: instead of programming
a robot for each individual task, robots should ultimately be
able to gather information from human demonstrations [4],
[5], [6], or from one another [7], [6], [8] with the result
that the robot’s performance at that task improves over time.
Additionally, demonstrations do not have to be active teaching
exercises: the imitator can simply observe a demonstrator with
no communication necessary.

To make imitation learning useful, an agent must first have
an understanding of its own primitive motor skills, observe
demonstrations and their outcomes, and ultimately interpret
these within the context of its own primitives. In doing so, the

agent develops new motor skills by creating hierarchical com-
binations of primitives [2], providing a deeper understanding
of the imitated behaviour. In any real world setting, this will
be complicated by the fact that multiple demonstrations will
likely be performed by different agents. Arguably this should
be the case, since seeing the full range of ways in which a task
could be accomplished is faster than the learner discovering
these itself, and different agents will likely perform a task in
different ways.

Humans naturally deal with heterogeneous demonstrators:
if a child’s first exposure to the game of frisbee is through
observing a dog catching a frisbee in its mouth, when the
frisbee is thrown to the child they will likely attempt to catch
it in their hand instead. This way they learn the task using
the skills that are natural and available to them, even if the
demonstration displayed a different set of skills. Robots have
been developed for many purposes, and consequently differ
in size, control programs, sensors and effectors. In order to
increase the performance of a learner and allow it to learn from
whatever demonstrators happen to be available (ultimately, a
mixture of humans and other robots), overcoming differences
in physiology is absolutely necessary [9].

In this paper, we present a framework for imitation through
global vision, which models multiple demonstrators by ap-
proximating the visual outcomes of their actions with those
available to the imitator, with no prior knowledge of demon-
strators’ abilities or physiology. This framework is able to
learn from a range of heterogeneous demonstrators (different
physiologies, modes of locomotion, sizes, and behavioural
control systems), as well as a different range of domain-
specific skills. Individually modelling its teachers enables the
robot to be adaptable to heterogeneous demonstrators as well
as a range of skill levels. This allows the robot to approximate
differences in physiology by actions suited to its own abilities,
and to leverage the power of heterogeneous demonstrators to
learn portions of a task from one demonstrator that are difficult
to approximate from others. It similarly allows an agent to be
selective in learning from those who demonstrate better skills
in the domain at hand (yet still learn useful portions of a task
even from agents that that are not skilled).

The experimental domain we use to ground this work is
robotic soccer. In our evaluation, an imitating robot learns
to shoot the soccer ball into an open goal, from a range
of demonstrators that differ in size as well as physiology
(humanoid vs. wheeled).
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II. RELATED WORK

A number of prior approaches to imitation learning have
influenced this work. Demiris and Hayes [1] developed a
computational model based on the phenomenon of body bab-
bling, where babies practice movement through self-generated
activity [10]. Demiris and Hayes [1] devised their system
using forward models to predict the outcomes of the imitator’s
behaviours, in order to find the best match to an observed
demonstrator’s behaviour. A forward model takes as input
the state of the environment and a control command that
is to be applied. Demiris and Hayes [1] use one forward
model for each behaviour, which is then refined based on
how accurately the forward model predicts the behaviour’s
outcome. By using many of these forward models, Demiris
and Hayes construct a repertoire of behaviours with predictive
capabilities. In contrast, the forward models in our framework
model the repertoire of individual demonstrators (instead of
having an individual forward model for each behaviour), and
contain individual behaviours learned from specific demon-
strators within them (the behaviours can still predict their
effects on the environment, but these effects are not refined
during execution). This provides the imitator with a model
that can make predictions about what behaviours a specific
demonstrator might use at a given time.

Prior work in imitation learning has often used a series of
demonstrations from demonstrators that are similar in skill
level and physiologies [11], [5]. The approach presented in this
paper is designed from the bottom up to learn from multiple
demonstrators that vary physically, as well as in underlying
control programs and skill levels.

Some recent work in humanoid robots imitating humans
has used many demonstrations, but not necessarily different
demonstrators, and very few have modeled each demonstrator
separately. Those that do employ different demonstrators,
such as [11], often have demonstrators of similar skills and
physiologies (in this work all humans performing simple
drawing tasks) that also manipulate their environment using
the same parts of their physiology as the imitator (in this
case the imitator was a humanoid robot learning how to draw
letters, the demonstrators and imitators used the same hands
to draw). Inamura et al. [12], [13] use HMMs in their mimesis
architecture for imitation learning. They trained a humanoid
robot to learn motions from human demonstrators, though they
did not separately model or rank demonstrator skills relative
to each other like we do in our work. They also only have
humanoid demonstrators, unlike our work that focuses on
multiple heterogeneous demonstrators.

Nicolescu and Matarić [5] motivate the desire to have
robots with the ability to generalize over multiple teaching
experiences. They explain that the quality of a teacher’s
demonstration and particularities of the environment can pre-
vent the imitator from learning from a single trial. They also
note that multiple trials help to identify important parts of
a task, but point out that repeated observations of irrelevant
steps can cause the imitator to learn undesirable behaviours.

Fig. 1. Two views of the heterogeneous robots used in this work (a ballpoint
pen is used to give a rough illustration of scale). The right side of the image
shows the robots with visual markers in place to allow motion to be tracked
by a global vision system.

Fig. 2. Closer view of the Citizen Eco-Be Microrobot (v.1).

They do not implement any method of modeling individual
demonstrators, or try to evaluate demonstrator skill levels as
our work does.

III. METHODOLOGY

The robots used in this work are shown in Fig. 1. The
robot imitator, a two-wheeled differential-drive robot (built
from a Lego Mindstorms kit, and previously used by us in
the RoboCup Small-Size league), is on the far left. One of
the three robot types used for demonstrators is physically
identical (i.e. homogeneous) to the imitator, in order to provide
a baseline to compare how well the imitator learns from
heterogeneous demonstrators. Two demonstrators that are het-
erogeneous along different dimensions are also employed. The
first is a humanoid robot based on a Bioloid kit, using a
mobile phone for vision and processing [14]. The choice of a
humanoid was made because it provides an extremely different
physiology from the imitator in terms of how motions made by
the robot appear visually. The third demonstrator type is a two-
wheeled Citizen Eco-Be robot (version I, close-up in Fig. 2),
which is about 1/10 the size of the imitator. This was chosen
because the large size difference and difficulty in moving a
ball due to light weight makes for a different dimension of
heterogeneity.

The imitation learning robot observes one demonstrator at a
time, with the demonstrated task being that of shooting a ball
into an empty goal, similar to a penalty kick in soccer. This
task should allow for enough variation between approaches for

106



Fig. 3. Imitation Learning Architecture

both different skill levels and different physiologies to have an
impact. All knowledge of the task to be learned is gained by
observing the demonstrators: no communication between the
imitator and its demonstrators is allowed (or necessary).

Whether a robot is learning from imitation or not, it must
begin with a set of motion primitives that it can use to
accomplish actions. In our implementation we have defined
these as the atomic motor commands available to the wheeled
imitator as (forward, backward, left, right and stop). In our
work, prior to any imitation learning the imitator collects
visual data of the outcomes of its own primitive actions using
the Ergo vision system [15], to create a basic understanding
of what the imitator itself can do. These visual data are used
to train a set of Hidden Markov Models (HMMs) [16], which
can be used to match activity it views later to actions in the
agent’s repertoire.

In our approach to imitation learning, the data recorded in
a demonstration (and observed during a trial of the imitator)
are the x and y field coordinates of the demonstrator/imitator
and the ball, as well as the orientations of the demonstra-
tor/imitator. This data is sufficient for the imitator to learn
the chosen task from the collection of demonstrators. During
each observed demonstration, the imitator uses its knowledge
of the visual effects of its own actions (i.e. the mapping
represented by HMMs) to convert the visual stream of a
demonstration into a sequence of primitive symbols (Fig. 3,
top). This matching process is described in [17], and will result
in some visual segments that precisely match an imitator’s
action, others where an action is a close approximation, and
others where there will be no match at all (gaps). To attempt
to learn from portions of a demonstration where a match is
poor or no match at all is possible, the imitator must construct
a more meaningful abstraction of the demonstration, using
behaviours. An implementation-level description of behaviour
creation and maintenance requires an understanding of all
elements of this approach, and so the equations involved are
presented following an abstract description.

Behaviours are learned by combining primitives to produce
more complex actions based on observations [18], [3], [5].
In our implementation, a new behaviour is created from a

Fig. 4. Demonstrations from each demonstrator are used to train a forward
model representing that demonstrator (Demonstrator 1, here). Frequently
occurring behaviours in each session are are moved to the forward model
representing the imitator as potential behaviours to use in its own activities.

Fig. 5. All demonstrations are passed to the demonstrator models to elicit
any further candidate behaviour nominations.

combination of two primitives or existing behaviours when
the frequency of the two occurring in sequence surpasses
a threshold. For example, suppose the primitive forward is
recognized in demonstrations, followed by the primitive left
often enough that the frequency of their sequential occurrence
surpasses the threshold. A forward-left behaviour is created,
made from the primitive sequence forward followed by left.
To keep the number of behaviours learned reasonable, each
behaviour has a permanency attribute, which is used in con-
junction with predictive forward models (described below).
As the ongoing actions of a demonstrator are observed, the
primitive or behaviour deemed most likely to occur next is
predicted, and confirmed through future observations (which
may involve a long sequence of primitives to be matched in
the case of complex behaviours). A behaviour’s permanency
is increased if the behaviour is observed after being predicted
(i.e. it is useful for modeling behaviour), and slowly decays
over time otherwise, to the point where the behaviour is
eventually deleted. If the behaviour is predicted and then
observed frequently enough, the decay rate will slow, and if
the permanency attribute surpasses a threshold, the behaviour
will be marked as undeletable.

Behaviours are built and stored using a type of forward
model (Fig. 3, bottom) which represents frequencies of prim-
itives and behaviours occurring in sequence, and are used to
explain and predict the behavior of demonstrators in terms of
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the imitator’s repertoire. In our approach, a unique forward
model is created for each demonstrator to which the imitator
is exposed, and begin with only the imitator’s primitives.
There is an additional forward model for the imitator itself,
used to model how the given task should be performed once
imitation learning is complete. Training begins by viewing
demonstrations for each demonstrator in turn, training only
the forward model for that demonstrator: Behaviours are
proposed, promoted, and removed through decay as described
above. Throughout the training of the demonstrator forward
models, frequently occurring behaviours are passed on to
the forward model representing the imitator, as suggestions
for controlling its own actions (Fig. 4). Following this, each
forward model representing a demonstrator is then used to
process each demonstration from all demonstrators (Fig. 5).
This step allows behaviours in one demonstrator model that
may not have been the most frequently used, to be further
stimulated by the demonstrations of others and passed along
to the imitator forward model. That is, a particular movement
combination may be useful but not be the best approach
for demonstrator X , but might improve on some part of
the technique demonstrated by demonstrator Y . This allows
demonstrator X to make a partial contribution even if the
technique ultimately followed by the imitator more closely
resembles that of Y (for example, because of physiology
differences). Finally, the imitator does the processing of all
demonstrations using the candidate behaviours added by the
forward models for the demonstrators, allowing the imitator to
keep some demonstrator behaviours and discard others, while
also learning new behaviours of its own.

To model the relative skill levels of the demonstrators in
our system, each of the demonstrator forward models maintain
a demonstrator-specific learning rate: the learning preference
(LP). A higher LP indicates that a demonstrator is more skilled
than its peers, so behaviours should be learned from it at
a faster rate. The LP is used as a weight when updating
the frequency of two behaviours or primitives occurring in
sequence. The LP of a demonstrator begins at the half way
point between the minimum (0) and maximum (1) values.
When updating the frequencies (freq) of sequentially occurring
behaviours (equation 1), a minimum increase in frequency
(minFreq - 0.05 in our implementation) is preserved, to ensure
that a forward model for a demonstrator that has an LP of 0
does not stagnate. The forward model for a given demonstrator
would still update frequencies, albeit more slowly than if its
LP were above 0. Equation 2 shows the decay step, which
happens every time a prediction is made, and is how the
permanency of all behaviors is slowly decreased. The decay
rate is equal to 1−LP and the decayStep is a constant (0.007
was used in our experiments). To overcome this constant
decay, the permanency of a behaviour is increased when it is
successfully predicted. The increase in permanency is given in
Equation 3, which shows that a correctly predicted behaviour
has its permanency increased by a constant permUpdate (0.09
in our experiments).

freq = freq + minFreq + minFreq × LP (1)

perm = perm− decayRate× decayStep (2)

perm = perm + permUpdate (3)

LP = LP ± lpShapeAmount (4)

The LP of a demonstrator is increased if one of its be-
haviours results in the demonstrator (ordered from highest LP
increase to lowest): scoring a goal, moving the ball closer to
the goal, or moving closer to the ball. The LP of a demon-
strator is decreased if the opposite of these criteria results
from one of the demonstrator’s behaviours. Equation 4 shows
the update step, where lpShapeAmount is either a constant
(0.001) if the LP is adjusted by the non-criteria factors, or
plus or minus 0.01 for a behaviour that results in scoring a
correct/incorrect goal, 0.005 for moving the ball closer to the
goal, or 0.002 for moving the robot closer to the ball. These
criteria are obviously domain-specific, and are used to shape
the learning (a technique that has been shown to be effective
in other domains [19]) in our system to speed up the imitator’s
learning. Though this may seem like pure reinforcement learn-
ing, these criteria do not directly influence which behaviours
are saved, and which behaviours are deleted. The criteria
merely influence the LP of a demonstrator, affecting how
much the imitator will learn from that particular demonstrator.
Dependence on these criteria was minimized so that future
work (such as learning the criteria from demonstrators) can
remove them entirely.

When the learning process is complete, the imitator is left
with a final forward model that it can use as a basis for
performing the tasks it has learned from the demonstrators.

IV. EXPERIMENTAL RESULTS

To evaluate this approach in a heterogeneous setting, we
employed the robots previously shown in Fig. 1 to gather
demonstrations. Each of the robots used in these experiments
was controlled using its own behaviour-based control system
that was developed for robotic soccer competitions, and all
would be considered expert demonstrations. The Bioloid and
Lego Mindstorms robots were demonstrated on a 1020 x 810
cm field, while the Citizen was demonstrated on a 56 x 34.5 cm
field (the small size of this robot made for significant battery
power issues given the distances covered on the large size
field). The ball used by the Bioloid and Lego Mindstorms
robots was 10 centimeters in diameter, while a smaller (2.5
cm) ball was needed for the Citizen robot.

We limited the positions to the two field configurations
shown in Fig. 6. In the configuration on the left, the demon-
strator is positioned for a direct approach to the ball. As a
more challenging scenario, we also used a more degenerate
configuration (on the left).
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Fig. 6. Field configurations. The demonstrator is represented by a square
with an orientation marker. The target goal is indicated by a black rectangle.

Demonstrator Goals Scored Wrong Goals Scored
RC2004 27 4
Citizen 15 3
Bioloid 12 1

TABLE I
DEMONSTRATOR PERFORMANCE, GOALS AND WRONG GOALS.

The individual demonstrators were recorded by the Ergo
global vision system [15] while they performed 25 goal kicks
for each of the two field configurations. The global vision
system continually captures the x and y motion and orientation
of the demonstrating robot and the ball. The demonstrations
were filtered manually for simple vision problems such as
when the vision server was unable to track the robot, or
when the robot broke down (falls/loses power). The individual
demonstrations were considered complete when the ball or
robot left the field. A demonstration could result in a goal on
the opposing net (goal), a goal on the robot’s own net (wrong
goal), or no goal at all.

One learning trial consists of each forward model repre-
senting a given demonstrator training on the full set of kick
demonstrations for that particular demonstrator, presented in
random order. Once the forward models representing each
demonstrator are trained, the forward model representing the
imitator begins training. At this point all the forward models
for the demonstrators have been trained for their own data,
and have provided the forward model representing the imitator
with candidate behaviours. The forward model for the imitator
then processes all the demonstrations for each of the two
field configurations (a total of 150 attempted goal kicks) in
random order. All of the forward models for each demonstrator
predict and update their models at this time, one step ahead
of the forward model for the imitator. This is done to allow
each forward model a chance to nominate additional candidate
behaviours relevant to the current demonstration instance, to
the forward model for the imitator.

The total number of goals and wrong goals each demon-
strator scored during all 50 of their individual demonstrations
is given in Table I.

To determine if the order in which an imitator is exposed
to the various demonstrators had any impact on its learning,
we ordered demonstrators in two ways. The first is in order of
homogeneity to the imitator. In this ordering, the Mindstorms
robot demonstrator (labeled RC2004 here because its expert-
level control code was from our small-sized team at RoboCup-

Fig. 7. The number of behaviours created, comparing RCB and BCR
demonstrator orderings. Corresponding standard deviations are given at the
top of each bar.

Fig. 8. The number of behaviours deleted, comparing RCB and BCR
demonstrator orderings. Corresponding standard deviations are given at the
top of each bar.

2004) is first, then the Citizen demonstrator (which is much
smaller than the imitator, but still a differential-drive robot),
and finally the Bioloid demonstrator. The shorthand we have
adopted for this ordering is RCB. The second ordering is the
reverse of the first, that is, in order of greatest heterogeneity
to the imitator. The second ordering is thus Bioloid, Citizen,
RC2004, or BCR for short.

For each of the two orderings, we ran 100 trials. The
results of the forward model training processes using the RCB
and BCR demonstrator orderings are presented here. All the
following data has been averaged over 100 trials.

Figs. 7 and 8 show results for the number of behaviours
created and deleted for each of the forward models repre-
senting the given demonstrators, with the two orderings for
comparison purposes and standard deviations given above each
bar. It can be seen that the RCB and BCR demonstration
orderings do not affect the number of behaviours created or
deleted from any of the forward models. The forward models
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Fig. 9. The number of permanent behaviours in each forward model,
comparing RCB and BCR demonstrator orderings. Corresponding standard
deviations are given at the top of each bar.

representing the Bioloid demonstrator can be seen to create
many more behaviours than the other forward models (and
have a higher standard deviation), but they also end up deleting
many more than the others. The vast difference in physiology
from the other two-wheeled robots cause the forward models
representing the humanoid to build many behaviours in an
attempt to match the visual outcome of the Bioloid’s demon-
strations. When trying to use those behaviours to predict the
outcome of the other two-wheeled robot demonstrators, they
do not match frequently enough (i.e. they are not a useful basis
for imitation), and are eventually deleted as a result.

In Fig. 9, the number of permanent behaviours for each of
the forward models are shown along with standard deviations
above each bar, grouped by RCB and BCR to see any effect
on demonstrator orderings. It can be seen that the orderings
do not affect the number of behaviours made permanent to
any of the forward models, indicating that ordering does not
affect the number of useful behaviours acquired by the forward
models representing the demonstrators, or the imitator itself.
Even though the Bioloid has a very different physiology, the
forward models representing its actions still learn a relatively
similar number of behaviours as the other two forward models
for the other demonstrators. The forward models representing
the imitator have fewer permanent behaviours, partly because
the forward model for an imitator filters the candidate be-
haviours given to it by the forward models representing the
demonstrators, but it could also be due to the fact that the
imitator is only exposed to each set of demonstrations once,
while the other forward models see all demonstrations once,
but the demonstrations for their particular demonstrator twice.

To evaluate the performance of the imitators trained using
this approach, we selected two imitators from the learning
trials evaluated in this section at random (one from the RCB
training order, and one from the BCR order). We used the
forward models to control the Lego Mindstorms robots and

Demonstrator Ordering Goals Scored Wrong Goals Scored
RCB 11 9
BCR 7 13

TABLE II
GOALS AND WRONG GOALS SCORED BY IMITATORS TRAINED WITH

DIFFERENT DEMONSTRATOR ORDERINGS.

recorded them in exactly the same way that we recorded the
demonstrators, for 25 shots on goal in each of the two field
configurations (Fig. 6) for a total of 50 trials. Table II shows
the results of these penalty kick attempts by the two imitators
trained using our framework. We believe the poor performance
is related to the rough statistics used when a forward model
is controlling the imitator. The LP shaping criteria are used
during the control process for selecting a behaviour to execute.
The statistical methods used to calculate preconditions were
not robust enough given the task at hand, and had small sample
sizes to work with. This resulted in the criteria of the robot
driving closer to the ball overriding the other LP criteria in
most cases. This could be avoided if future work explored
methods of gathering more precondition statistics, possibly in
simulation for initial training, moving to physical robots later.

A. Learning from Demonstrators of Varying Skill

We also examined the ability of this approach to train an
imitator through the observation of demonstrators of varying
skill but identical physiology. The physiology chosen was
the differential-drive Mindstorms robot. Three demonstrators
were employed. The ExpertDemonstrator runs international
competition-level code previously used at RoboCup, while the
PoorDemonstrator simply turns until it has a minimum angle
threshold to the ball and then moves on that heading. Since it
will normally take more than one bump with the robot to get
the ball to the goal, the latter approach will cause significant
wandering over the field and a greater likelihood of scoring
on its own net even from the favourable configuration. Fi-
nally, there is also an AverageDemonstrator, chosen randomly
from the imitators trained in the heterogeneity experiments
described above. This was done because their performance
fell between the two extremes of the other demonstrators, and
to illustrate the potential for generational learning using this
approach. The actual performance of these demonstrators (in
terms of the number of goals and wrong goals scored by each)
is shown in Table III. To avoid any influence of demonstrator
ordering on these experiments, during the phase where the
forward models representing the demonstrators are trained,
each demonstration is chosen randomly.

Figs. 10 and 11 show the number of behaviours created
and deleted for the various forward models. The forward
models for the ExpertDemonstrator have fewer behaviours
created than the others, though they also have far fewer of
them deleted. This indicates that the behaviours learned by the
forward models for the ExpertDemonstrator are more useful
than those learned by the other models. There is not a large
difference between the models representing the PoorDemon-
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Demonstrator Goals Scored Wrong Goals Scored
PoorDemonstrator 13 23

AverageDemonstrator 11 9
ExpertDemonstrator 27 4

TABLE III
THE NUMBER OF GOALS AND WRONG GOALS SCORED FOR EACH

DEMONSTRATOR.

Fig. 10. The number of behaviours created. Corresponding standard
deviations are given at the top of each bar.

strator or AverageDemonstrator. We believe this is due to
the control system of the imitator (the AverageDemonstrator)
relying too heavily on the LP criteria of its behaviours, which
cause it to favour driving toward the ball. As mentioned
previously, a larger set of training data would aid in proper
pruning of behaviours based on preconditions.

Fig. 12 shows that the forward models for the Expert-
Demonstrator retain more of the behaviours they create (make
them permanent) than the other forward models. This validates
our approach to behaviour permanencies that decay over time.
The less skilled demonstrators have lower LPs, and therefore
higher decay rates. Since the forward models representing the
ExpertDemonstrator have a higher LP than the others (shown
in Figs. 13:15), the forward models learn behaviours more
quickly, and have their behaviours decay more slowly. The
number of behaviours retained by each model is thus strongly
related to the LP, which was our intention when employing

Fig. 11. The number of behaviours deleted. Corresponding standard
deviations are given at the top of each bar.

Fig. 12. The number of permanent behaviours. Corresponding standard
deviations are given at the top of each bar.

Fig. 13. The change in LP over time for the PoorDemonstrator.

demonstrator specific learning rates. These results show that
our imitation learning architecture adaptively weights its learn-
ing toward demonstrators that are highly skilled. At the same
time, our approach still allows less-preferred demonstrators
to supply behaviours that support portions of behavior that
preferred demonstrators cannot (for reasons of physiology
difference, for example).

The PoorDemonstrator in these trials is recognized as
poorly skilled by the imitation learning architecture fairly
quickly, as the forward models representing it have their
LP decrease below the average LP value (0.5), and then
fluctuate around 0.3. The trend is downwards for most of the
PoorDemonstrator’s LP over time, but trends slightly upward
as training progresses. We believe that the few behaviours the
PoorDemonstrator acquires later in the training phase aid in
generating predictions that match the demonstration, which in
turn increases the LP of the PoorDemonstrator.

To evaluate the performance of the imitators trained using

Imitator Goals Scored Wrong Goals Scored
VaryingSkillTrained 11 13

TABLE IV
GOALS AND WRONG GOALS SCORED FOR AN IMITATOR TRAINED BY

DEMONSTRATORS OF VARYING SKILL LEVELS.
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Fig. 14. The change in LP over time for the AverageDemonstrator.

Fig. 15. The change in LP over time for the ExpertDemonstrator.

this approach, we selected an imitator from these trials at
random. We used the forward model to control the Lego
Mindstorms robot and recorded it in exactly the same way that
we recorded the demonstrators, for 25 shots on goal in each of
the two field configurations (Fig. 6) for a total of 50 trials. Ta-
ble IV shows the results of these penalty kick attempts by the
imitator trained from demonstrators of varying skill. Though
somewhat disappointing in an absolute sense, the performance
of a robot using the imitator as a control program still showed
that the imitator can learn behaviours from demonstrators and
perform the same tasks as the demonstrators. Moreover, this
imitator achieves roughly the same results as that trained only
with expert demonstrators in the previous experiment, despite
having average and poor demonstrators working with it.

V. CONCLUSION

We have presented the results and analysis of the ex-
periments used to evaluate our approach to developing an
imitation learning architecture that can learn from multiple
demonstrators of varying physiologies and skill levels. The
complete set of experiments and all results are found in [17].
The results for the performance of our forward models when
used as control systems did not perform as well as the
expert demonstrators, but they still were able to control the
imitator adequately. The main focus on our research was

in developing an imitation learning architecture that could
learn from multiple demonstrators of varying physiologies
and skill levels. The results in Section IV indicate that the
learning architecture we have devised is capable of properly
modeling relative demonstrator skill levels and can learn from
physiologically distinct demonstrators. A stronger focus on
the refinement of behaviour preconditions and control (pos-
sibly through simulation) similar to the work of Demiris and
Hayes [1] could make our entire system more robust.
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